1//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements straight-line strength reduction (SLSR). Unlike loop
11// strength reduction, this algorithm is designed to reduce arithmetic
12// redundancy in straight-line code instead of loops. It has proven to be
13// effective in simplifying arithmetic statements derived from an unrolled loop.
14// It can also simplify the logic of SeparateConstOffsetFromGEP.
15//
16// There are many optimizations we can perform in the domain of SLSR. This file
17// for now contains only an initial step. Specifically, we look for strength
18// reduction candidates in the following forms:
19//
20// Form 1: B + i * S
21// Form 2: (B + i) * S
22// Form 3: &B[i * S]
23//
24// where S is an integer variable, and i is a constant integer. If we found two
25// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26// in a simpler way with respect to S1. For example,
27//
28// S1: X = B + i * S
29// S2: Y = B + i' * S   => X + (i' - i) * S
30//
31// S1: X = (B + i) * S
32// S2: Y = (B + i') * S => X + (i' - i) * S
33//
34// S1: X = &B[i * S]
35// S2: Y = &B[i' * S]   => &X[(i' - i) * S]
36//
37// Note: (i' - i) * S is folded to the extent possible.
38//
39// This rewriting is in general a good idea. The code patterns we focus on
40// usually come from loop unrolling, so (i' - i) * S is likely the same
41// across iterations and can be reused. When that happens, the optimized form
42// takes only one add starting from the second iteration.
43//
44// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45// multiple bases, we choose to rewrite S2 with respect to its "immediate"
46// basis, the basis that is the closest ancestor in the dominator tree.
47//
48// TODO:
49//
50// - Floating point arithmetics when fast math is enabled.
51//
52// - SLSR may decrease ILP at the architecture level. Targets that are very
53//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54//   left as future work.
55//
56// - When (i' - i) is constant but i and i' are not, we could still perform
57//   SLSR.
58#include <vector>
59
60#include "llvm/ADT/DenseSet.h"
61#include "llvm/ADT/FoldingSet.h"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/Analysis/TargetTransformInfo.h"
64#include "llvm/IR/DataLayout.h"
65#include "llvm/IR/Dominators.h"
66#include "llvm/IR/IRBuilder.h"
67#include "llvm/IR/Module.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/Support/raw_ostream.h"
70#include "llvm/Transforms/Scalar.h"
71
72using namespace llvm;
73using namespace PatternMatch;
74
75namespace {
76
77class StraightLineStrengthReduce : public FunctionPass {
78public:
79  // SLSR candidate. Such a candidate must be in one of the forms described in
80  // the header comments.
81  struct Candidate : public ilist_node<Candidate> {
82    enum Kind {
83      Invalid, // reserved for the default constructor
84      Add,     // B + i * S
85      Mul,     // (B + i) * S
86      GEP,     // &B[..][i * S][..]
87    };
88
89    Candidate()
90        : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
91          Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
92    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
93              Instruction *I)
94        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
95          Basis(nullptr) {}
96    Kind CandidateKind;
97    const SCEV *Base;
98    // Note that Index and Stride of a GEP candidate do not necessarily have the
99    // same integer type. In that case, during rewriting, Stride will be
100    // sign-extended or truncated to Index's type.
101    ConstantInt *Index;
102    Value *Stride;
103    // The instruction this candidate corresponds to. It helps us to rewrite a
104    // candidate with respect to its immediate basis. Note that one instruction
105    // can correspond to multiple candidates depending on how you associate the
106    // expression. For instance,
107    //
108    // (a + 1) * (b + 2)
109    //
110    // can be treated as
111    //
112    // <Base: a, Index: 1, Stride: b + 2>
113    //
114    // or
115    //
116    // <Base: b, Index: 2, Stride: a + 1>
117    Instruction *Ins;
118    // Points to the immediate basis of this candidate, or nullptr if we cannot
119    // find any basis for this candidate.
120    Candidate *Basis;
121  };
122
123  static char ID;
124
125  StraightLineStrengthReduce()
126      : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
127    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
128  }
129
130  void getAnalysisUsage(AnalysisUsage &AU) const override {
131    AU.addRequired<DominatorTreeWrapperPass>();
132    AU.addRequired<ScalarEvolution>();
133    AU.addRequired<TargetTransformInfoWrapperPass>();
134    // We do not modify the shape of the CFG.
135    AU.setPreservesCFG();
136  }
137
138  bool doInitialization(Module &M) override {
139    DL = &M.getDataLayout();
140    return false;
141  }
142
143  bool runOnFunction(Function &F) override;
144
145private:
146  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
147  // share the same base and stride.
148  bool isBasisFor(const Candidate &Basis, const Candidate &C);
149  // Returns whether the candidate can be folded into an addressing mode.
150  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
151                  const DataLayout *DL);
152  // Returns true if C is already in a simplest form and not worth being
153  // rewritten.
154  bool isSimplestForm(const Candidate &C);
155  // Checks whether I is in a candidate form. If so, adds all the matching forms
156  // to Candidates, and tries to find the immediate basis for each of them.
157  void allocateCandidatesAndFindBasis(Instruction *I);
158  // Allocate candidates and find bases for Add instructions.
159  void allocateCandidatesAndFindBasisForAdd(Instruction *I);
160  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
161  // candidate.
162  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
163                                            Instruction *I);
164  // Allocate candidates and find bases for Mul instructions.
165  void allocateCandidatesAndFindBasisForMul(Instruction *I);
166  // Splits LHS into Base + Index and, if succeeds, calls
167  // allocateCandidatesAndFindBasis.
168  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
169                                            Instruction *I);
170  // Allocate candidates and find bases for GetElementPtr instructions.
171  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
172  // A helper function that scales Idx with ElementSize before invoking
173  // allocateCandidatesAndFindBasis.
174  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
175                                            Value *S, uint64_t ElementSize,
176                                            Instruction *I);
177  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
178  // basis.
179  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
180                                      ConstantInt *Idx, Value *S,
181                                      Instruction *I);
182  // Rewrites candidate C with respect to Basis.
183  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
184  // A helper function that factors ArrayIdx to a product of a stride and a
185  // constant index, and invokes allocateCandidatesAndFindBasis with the
186  // factorings.
187  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
188                        GetElementPtrInst *GEP);
189  // Emit code that computes the "bump" from Basis to C. If the candidate is a
190  // GEP and the bump is not divisible by the element size of the GEP, this
191  // function sets the BumpWithUglyGEP flag to notify its caller to bump the
192  // basis using an ugly GEP.
193  static Value *emitBump(const Candidate &Basis, const Candidate &C,
194                         IRBuilder<> &Builder, const DataLayout *DL,
195                         bool &BumpWithUglyGEP);
196
197  const DataLayout *DL;
198  DominatorTree *DT;
199  ScalarEvolution *SE;
200  TargetTransformInfo *TTI;
201  ilist<Candidate> Candidates;
202  // Temporarily holds all instructions that are unlinked (but not deleted) by
203  // rewriteCandidateWithBasis. These instructions will be actually removed
204  // after all rewriting finishes.
205  std::vector<Instruction *> UnlinkedInstructions;
206};
207}  // anonymous namespace
208
209char StraightLineStrengthReduce::ID = 0;
210INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
211                      "Straight line strength reduction", false, false)
212INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
213INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
214INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
215INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
216                    "Straight line strength reduction", false, false)
217
218FunctionPass *llvm::createStraightLineStrengthReducePass() {
219  return new StraightLineStrengthReduce();
220}
221
222bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
223                                            const Candidate &C) {
224  return (Basis.Ins != C.Ins && // skip the same instruction
225          // Basis must dominate C in order to rewrite C with respect to Basis.
226          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
227          // They share the same base, stride, and candidate kind.
228          Basis.Base == C.Base &&
229          Basis.Stride == C.Stride &&
230          Basis.CandidateKind == C.CandidateKind);
231}
232
233static bool isGEPFoldable(GetElementPtrInst *GEP,
234                          const TargetTransformInfo *TTI,
235                          const DataLayout *DL) {
236  GlobalVariable *BaseGV = nullptr;
237  int64_t BaseOffset = 0;
238  bool HasBaseReg = false;
239  int64_t Scale = 0;
240
241  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
242    BaseGV = GV;
243  else
244    HasBaseReg = true;
245
246  gep_type_iterator GTI = gep_type_begin(GEP);
247  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
248    if (isa<SequentialType>(*GTI)) {
249      int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
250      if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
251        BaseOffset += ConstIdx->getSExtValue() * ElementSize;
252      } else {
253        // Needs scale register.
254        if (Scale != 0) {
255          // No addressing mode takes two scale registers.
256          return false;
257        }
258        Scale = ElementSize;
259      }
260    } else {
261      StructType *STy = cast<StructType>(*GTI);
262      uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
263      BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
264    }
265  }
266  return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
267                                    BaseOffset, HasBaseReg, Scale);
268}
269
270// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
271static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
272                          TargetTransformInfo *TTI) {
273  return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
274                                    Index->getSExtValue());
275}
276
277bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
278                                            TargetTransformInfo *TTI,
279                                            const DataLayout *DL) {
280  if (C.CandidateKind == Candidate::Add)
281    return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
282  if (C.CandidateKind == Candidate::GEP)
283    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
284  return false;
285}
286
287// Returns true if GEP has zero or one non-zero index.
288static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
289  unsigned NumNonZeroIndices = 0;
290  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
291    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
292    if (ConstIdx == nullptr || !ConstIdx->isZero())
293      ++NumNonZeroIndices;
294  }
295  return NumNonZeroIndices <= 1;
296}
297
298bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
299  if (C.CandidateKind == Candidate::Add) {
300    // B + 1 * S or B + (-1) * S
301    return C.Index->isOne() || C.Index->isMinusOne();
302  }
303  if (C.CandidateKind == Candidate::Mul) {
304    // (B + 0) * S
305    return C.Index->isZero();
306  }
307  if (C.CandidateKind == Candidate::GEP) {
308    // (char*)B + S or (char*)B - S
309    return ((C.Index->isOne() || C.Index->isMinusOne()) &&
310            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
311  }
312  return false;
313}
314
315// TODO: We currently implement an algorithm whose time complexity is linear in
316// the number of existing candidates. However, we could do better by using
317// ScopedHashTable. Specifically, while traversing the dominator tree, we could
318// maintain all the candidates that dominate the basic block being traversed in
319// a ScopedHashTable. This hash table is indexed by the base and the stride of
320// a candidate. Therefore, finding the immediate basis of a candidate boils down
321// to one hash-table look up.
322void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
323    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
324    Instruction *I) {
325  Candidate C(CT, B, Idx, S, I);
326  // SLSR can complicate an instruction in two cases:
327  //
328  // 1. If we can fold I into an addressing mode, computing I is likely free or
329  // takes only one instruction.
330  //
331  // 2. I is already in a simplest form. For example, when
332  //      X = B + 8 * S
333  //      Y = B + S,
334  //    rewriting Y to X - 7 * S is probably a bad idea.
335  //
336  // In the above cases, we still add I to the candidate list so that I can be
337  // the basis of other candidates, but we leave I's basis blank so that I
338  // won't be rewritten.
339  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
340    // Try to compute the immediate basis of C.
341    unsigned NumIterations = 0;
342    // Limit the scan radius to avoid running in quadratice time.
343    static const unsigned MaxNumIterations = 50;
344    for (auto Basis = Candidates.rbegin();
345         Basis != Candidates.rend() && NumIterations < MaxNumIterations;
346         ++Basis, ++NumIterations) {
347      if (isBasisFor(*Basis, C)) {
348        C.Basis = &(*Basis);
349        break;
350      }
351    }
352  }
353  // Regardless of whether we find a basis for C, we need to push C to the
354  // candidate list so that it can be the basis of other candidates.
355  Candidates.push_back(C);
356}
357
358void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
359    Instruction *I) {
360  switch (I->getOpcode()) {
361  case Instruction::Add:
362    allocateCandidatesAndFindBasisForAdd(I);
363    break;
364  case Instruction::Mul:
365    allocateCandidatesAndFindBasisForMul(I);
366    break;
367  case Instruction::GetElementPtr:
368    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
369    break;
370  }
371}
372
373void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
374    Instruction *I) {
375  // Try matching B + i * S.
376  if (!isa<IntegerType>(I->getType()))
377    return;
378
379  assert(I->getNumOperands() == 2 && "isn't I an add?");
380  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
381  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
382  if (LHS != RHS)
383    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
384}
385
386void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
387    Value *LHS, Value *RHS, Instruction *I) {
388  Value *S = nullptr;
389  ConstantInt *Idx = nullptr;
390  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
391    // I = LHS + RHS = LHS + Idx * S
392    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
393  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
394    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
395    APInt One(Idx->getBitWidth(), 1);
396    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
397    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
398  } else {
399    // At least, I = LHS + 1 * RHS
400    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
401    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
402                                   I);
403  }
404}
405
406void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
407    Value *LHS, Value *RHS, Instruction *I) {
408  Value *B = nullptr;
409  ConstantInt *Idx = nullptr;
410  // Only handle the canonical operand ordering.
411  if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
412    // If LHS is in the form of "Base + Index", then I is in the form of
413    // "(Base + Index) * RHS".
414    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
415  } else {
416    // Otherwise, at least try the form (LHS + 0) * RHS.
417    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
418    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
419                                  I);
420  }
421}
422
423void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
424    Instruction *I) {
425  // Try matching (B + i) * S.
426  // TODO: we could extend SLSR to float and vector types.
427  if (!isa<IntegerType>(I->getType()))
428    return;
429
430  assert(I->getNumOperands() == 2 && "isn't I a mul?");
431  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
432  allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
433  if (LHS != RHS) {
434    // Symmetrically, try to split RHS to Base + Index.
435    allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
436  }
437}
438
439void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
440    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
441    Instruction *I) {
442  // I = B + sext(Idx *nsw S) * ElementSize
443  //   = B + (sext(Idx) * sext(S)) * ElementSize
444  //   = B + (sext(Idx) * ElementSize) * sext(S)
445  // Casting to IntegerType is safe because we skipped vector GEPs.
446  IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
447  ConstantInt *ScaledIdx = ConstantInt::get(
448      IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
449  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
450}
451
452void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
453                                                  const SCEV *Base,
454                                                  uint64_t ElementSize,
455                                                  GetElementPtrInst *GEP) {
456  // At least, ArrayIdx = ArrayIdx *nsw 1.
457  allocateCandidatesAndFindBasisForGEP(
458      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
459      ArrayIdx, ElementSize, GEP);
460  Value *LHS = nullptr;
461  ConstantInt *RHS = nullptr;
462  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
463  // itself. This would allow us to handle the shl case for free. However,
464  // matching SCEVs has two issues:
465  //
466  // 1. this would complicate rewriting because the rewriting procedure
467  // would have to translate SCEVs back to IR instructions. This translation
468  // is difficult when LHS is further evaluated to a composite SCEV.
469  //
470  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
471  // to strip nsw/nuw flags which are critical for SLSR to trace into
472  // sext'ed multiplication.
473  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
474    // SLSR is currently unsafe if i * S may overflow.
475    // GEP = Base + sext(LHS *nsw RHS) * ElementSize
476    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
477  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
478    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
479    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
480    APInt One(RHS->getBitWidth(), 1);
481    ConstantInt *PowerOf2 =
482        ConstantInt::get(RHS->getContext(), One << RHS->getValue());
483    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
484  }
485}
486
487void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
488    GetElementPtrInst *GEP) {
489  // TODO: handle vector GEPs
490  if (GEP->getType()->isVectorTy())
491    return;
492
493  const SCEV *GEPExpr = SE->getSCEV(GEP);
494  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
495
496  gep_type_iterator GTI = gep_type_begin(GEP);
497  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
498    if (!isa<SequentialType>(*GTI++))
499      continue;
500    Value *ArrayIdx = *I;
501    // Compute the byte offset of this index.
502    uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
503    const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI);
504    const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx);
505    ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy);
506    const SCEV *LocalOffset =
507        SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW);
508    // The base of this candidate equals GEPExpr less the byte offset of this
509    // index.
510    const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset);
511    factorArrayIndex(ArrayIdx, Base, ElementSize, GEP);
512    // When ArrayIdx is the sext of a value, we try to factor that value as
513    // well.  Handling this case is important because array indices are
514    // typically sign-extended to the pointer size.
515    Value *TruncatedArrayIdx = nullptr;
516    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
517      factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP);
518  }
519}
520
521// A helper function that unifies the bitwidth of A and B.
522static void unifyBitWidth(APInt &A, APInt &B) {
523  if (A.getBitWidth() < B.getBitWidth())
524    A = A.sext(B.getBitWidth());
525  else if (A.getBitWidth() > B.getBitWidth())
526    B = B.sext(A.getBitWidth());
527}
528
529Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
530                                            const Candidate &C,
531                                            IRBuilder<> &Builder,
532                                            const DataLayout *DL,
533                                            bool &BumpWithUglyGEP) {
534  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
535  unifyBitWidth(Idx, BasisIdx);
536  APInt IndexOffset = Idx - BasisIdx;
537
538  BumpWithUglyGEP = false;
539  if (Basis.CandidateKind == Candidate::GEP) {
540    APInt ElementSize(
541        IndexOffset.getBitWidth(),
542        DL->getTypeAllocSize(
543            cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
544    APInt Q, R;
545    APInt::sdivrem(IndexOffset, ElementSize, Q, R);
546    if (R.getSExtValue() == 0)
547      IndexOffset = Q;
548    else
549      BumpWithUglyGEP = true;
550  }
551
552  // Compute Bump = C - Basis = (i' - i) * S.
553  // Common case 1: if (i' - i) is 1, Bump = S.
554  if (IndexOffset.getSExtValue() == 1)
555    return C.Stride;
556  // Common case 2: if (i' - i) is -1, Bump = -S.
557  if (IndexOffset.getSExtValue() == -1)
558    return Builder.CreateNeg(C.Stride);
559
560  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
561  // have different bit widths.
562  IntegerType *DeltaType =
563      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
564  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
565  if (IndexOffset.isPowerOf2()) {
566    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
567    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
568    return Builder.CreateShl(ExtendedStride, Exponent);
569  }
570  if ((-IndexOffset).isPowerOf2()) {
571    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
572    ConstantInt *Exponent =
573        ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
574    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
575  }
576  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
577  return Builder.CreateMul(ExtendedStride, Delta);
578}
579
580void StraightLineStrengthReduce::rewriteCandidateWithBasis(
581    const Candidate &C, const Candidate &Basis) {
582  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
583         C.Stride == Basis.Stride);
584  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
585  // basis of a candidate cannot be unlinked before the candidate.
586  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
587
588  // An instruction can correspond to multiple candidates. Therefore, instead of
589  // simply deleting an instruction when we rewrite it, we mark its parent as
590  // nullptr (i.e. unlink it) so that we can skip the candidates whose
591  // instruction is already rewritten.
592  if (!C.Ins->getParent())
593    return;
594
595  IRBuilder<> Builder(C.Ins);
596  bool BumpWithUglyGEP;
597  Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
598  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
599  switch (C.CandidateKind) {
600  case Candidate::Add:
601  case Candidate::Mul:
602    if (BinaryOperator::isNeg(Bump)) {
603      Reduced =
604          Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
605    } else {
606      Reduced = Builder.CreateAdd(Basis.Ins, Bump);
607    }
608    break;
609  case Candidate::GEP:
610    {
611      Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
612      bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
613      if (BumpWithUglyGEP) {
614        // C = (char *)Basis + Bump
615        unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
616        Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
617        Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
618        if (InBounds)
619          Reduced =
620              Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
621        else
622          Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
623        Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
624      } else {
625        // C = gep Basis, Bump
626        // Canonicalize bump to pointer size.
627        Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
628        if (InBounds)
629          Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
630        else
631          Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
632      }
633    }
634    break;
635  default:
636    llvm_unreachable("C.CandidateKind is invalid");
637  };
638  Reduced->takeName(C.Ins);
639  C.Ins->replaceAllUsesWith(Reduced);
640  C.Ins->dropAllReferences();
641  // Unlink C.Ins so that we can skip other candidates also corresponding to
642  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
643  C.Ins->removeFromParent();
644  UnlinkedInstructions.push_back(C.Ins);
645}
646
647bool StraightLineStrengthReduce::runOnFunction(Function &F) {
648  if (skipOptnoneFunction(F))
649    return false;
650
651  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
652  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
653  SE = &getAnalysis<ScalarEvolution>();
654  // Traverse the dominator tree in the depth-first order. This order makes sure
655  // all bases of a candidate are in Candidates when we process it.
656  for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
657       node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
658    for (auto &I : *node->getBlock())
659      allocateCandidatesAndFindBasis(&I);
660  }
661
662  // Rewrite candidates in the reverse depth-first order. This order makes sure
663  // a candidate being rewritten is not a basis for any other candidate.
664  while (!Candidates.empty()) {
665    const Candidate &C = Candidates.back();
666    if (C.Basis != nullptr) {
667      rewriteCandidateWithBasis(C, *C.Basis);
668    }
669    Candidates.pop_back();
670  }
671
672  // Delete all unlink instructions.
673  for (auto I : UnlinkedInstructions) {
674    delete I;
675  }
676  bool Ret = !UnlinkedInstructions.empty();
677  UnlinkedInstructions.clear();
678  return Ret;
679}
680