1//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements straight-line strength reduction (SLSR). Unlike loop 11// strength reduction, this algorithm is designed to reduce arithmetic 12// redundancy in straight-line code instead of loops. It has proven to be 13// effective in simplifying arithmetic statements derived from an unrolled loop. 14// It can also simplify the logic of SeparateConstOffsetFromGEP. 15// 16// There are many optimizations we can perform in the domain of SLSR. This file 17// for now contains only an initial step. Specifically, we look for strength 18// reduction candidates in the following forms: 19// 20// Form 1: B + i * S 21// Form 2: (B + i) * S 22// Form 3: &B[i * S] 23// 24// where S is an integer variable, and i is a constant integer. If we found two 25// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 26// in a simpler way with respect to S1. For example, 27// 28// S1: X = B + i * S 29// S2: Y = B + i' * S => X + (i' - i) * S 30// 31// S1: X = (B + i) * S 32// S2: Y = (B + i') * S => X + (i' - i) * S 33// 34// S1: X = &B[i * S] 35// S2: Y = &B[i' * S] => &X[(i' - i) * S] 36// 37// Note: (i' - i) * S is folded to the extent possible. 38// 39// This rewriting is in general a good idea. The code patterns we focus on 40// usually come from loop unrolling, so (i' - i) * S is likely the same 41// across iterations and can be reused. When that happens, the optimized form 42// takes only one add starting from the second iteration. 43// 44// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has 45// multiple bases, we choose to rewrite S2 with respect to its "immediate" 46// basis, the basis that is the closest ancestor in the dominator tree. 47// 48// TODO: 49// 50// - Floating point arithmetics when fast math is enabled. 51// 52// - SLSR may decrease ILP at the architecture level. Targets that are very 53// sensitive to ILP may want to disable it. Having SLSR to consider ILP is 54// left as future work. 55// 56// - When (i' - i) is constant but i and i' are not, we could still perform 57// SLSR. 58#include <vector> 59 60#include "llvm/ADT/DenseSet.h" 61#include "llvm/ADT/FoldingSet.h" 62#include "llvm/Analysis/ScalarEvolution.h" 63#include "llvm/Analysis/TargetTransformInfo.h" 64#include "llvm/IR/DataLayout.h" 65#include "llvm/IR/Dominators.h" 66#include "llvm/IR/IRBuilder.h" 67#include "llvm/IR/Module.h" 68#include "llvm/IR/PatternMatch.h" 69#include "llvm/Support/raw_ostream.h" 70#include "llvm/Transforms/Scalar.h" 71 72using namespace llvm; 73using namespace PatternMatch; 74 75namespace { 76 77class StraightLineStrengthReduce : public FunctionPass { 78public: 79 // SLSR candidate. Such a candidate must be in one of the forms described in 80 // the header comments. 81 struct Candidate : public ilist_node<Candidate> { 82 enum Kind { 83 Invalid, // reserved for the default constructor 84 Add, // B + i * S 85 Mul, // (B + i) * S 86 GEP, // &B[..][i * S][..] 87 }; 88 89 Candidate() 90 : CandidateKind(Invalid), Base(nullptr), Index(nullptr), 91 Stride(nullptr), Ins(nullptr), Basis(nullptr) {} 92 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 93 Instruction *I) 94 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I), 95 Basis(nullptr) {} 96 Kind CandidateKind; 97 const SCEV *Base; 98 // Note that Index and Stride of a GEP candidate do not necessarily have the 99 // same integer type. In that case, during rewriting, Stride will be 100 // sign-extended or truncated to Index's type. 101 ConstantInt *Index; 102 Value *Stride; 103 // The instruction this candidate corresponds to. It helps us to rewrite a 104 // candidate with respect to its immediate basis. Note that one instruction 105 // can correspond to multiple candidates depending on how you associate the 106 // expression. For instance, 107 // 108 // (a + 1) * (b + 2) 109 // 110 // can be treated as 111 // 112 // <Base: a, Index: 1, Stride: b + 2> 113 // 114 // or 115 // 116 // <Base: b, Index: 2, Stride: a + 1> 117 Instruction *Ins; 118 // Points to the immediate basis of this candidate, or nullptr if we cannot 119 // find any basis for this candidate. 120 Candidate *Basis; 121 }; 122 123 static char ID; 124 125 StraightLineStrengthReduce() 126 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) { 127 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); 128 } 129 130 void getAnalysisUsage(AnalysisUsage &AU) const override { 131 AU.addRequired<DominatorTreeWrapperPass>(); 132 AU.addRequired<ScalarEvolution>(); 133 AU.addRequired<TargetTransformInfoWrapperPass>(); 134 // We do not modify the shape of the CFG. 135 AU.setPreservesCFG(); 136 } 137 138 bool doInitialization(Module &M) override { 139 DL = &M.getDataLayout(); 140 return false; 141 } 142 143 bool runOnFunction(Function &F) override; 144 145private: 146 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they 147 // share the same base and stride. 148 bool isBasisFor(const Candidate &Basis, const Candidate &C); 149 // Returns whether the candidate can be folded into an addressing mode. 150 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, 151 const DataLayout *DL); 152 // Returns true if C is already in a simplest form and not worth being 153 // rewritten. 154 bool isSimplestForm(const Candidate &C); 155 // Checks whether I is in a candidate form. If so, adds all the matching forms 156 // to Candidates, and tries to find the immediate basis for each of them. 157 void allocateCandidatesAndFindBasis(Instruction *I); 158 // Allocate candidates and find bases for Add instructions. 159 void allocateCandidatesAndFindBasisForAdd(Instruction *I); 160 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a 161 // candidate. 162 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, 163 Instruction *I); 164 // Allocate candidates and find bases for Mul instructions. 165 void allocateCandidatesAndFindBasisForMul(Instruction *I); 166 // Splits LHS into Base + Index and, if succeeds, calls 167 // allocateCandidatesAndFindBasis. 168 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, 169 Instruction *I); 170 // Allocate candidates and find bases for GetElementPtr instructions. 171 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); 172 // A helper function that scales Idx with ElementSize before invoking 173 // allocateCandidatesAndFindBasis. 174 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, 175 Value *S, uint64_t ElementSize, 176 Instruction *I); 177 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate 178 // basis. 179 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, 180 ConstantInt *Idx, Value *S, 181 Instruction *I); 182 // Rewrites candidate C with respect to Basis. 183 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); 184 // A helper function that factors ArrayIdx to a product of a stride and a 185 // constant index, and invokes allocateCandidatesAndFindBasis with the 186 // factorings. 187 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, 188 GetElementPtrInst *GEP); 189 // Emit code that computes the "bump" from Basis to C. If the candidate is a 190 // GEP and the bump is not divisible by the element size of the GEP, this 191 // function sets the BumpWithUglyGEP flag to notify its caller to bump the 192 // basis using an ugly GEP. 193 static Value *emitBump(const Candidate &Basis, const Candidate &C, 194 IRBuilder<> &Builder, const DataLayout *DL, 195 bool &BumpWithUglyGEP); 196 197 const DataLayout *DL; 198 DominatorTree *DT; 199 ScalarEvolution *SE; 200 TargetTransformInfo *TTI; 201 ilist<Candidate> Candidates; 202 // Temporarily holds all instructions that are unlinked (but not deleted) by 203 // rewriteCandidateWithBasis. These instructions will be actually removed 204 // after all rewriting finishes. 205 std::vector<Instruction *> UnlinkedInstructions; 206}; 207} // anonymous namespace 208 209char StraightLineStrengthReduce::ID = 0; 210INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", 211 "Straight line strength reduction", false, false) 212INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 213INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 214INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 215INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", 216 "Straight line strength reduction", false, false) 217 218FunctionPass *llvm::createStraightLineStrengthReducePass() { 219 return new StraightLineStrengthReduce(); 220} 221 222bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, 223 const Candidate &C) { 224 return (Basis.Ins != C.Ins && // skip the same instruction 225 // Basis must dominate C in order to rewrite C with respect to Basis. 226 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && 227 // They share the same base, stride, and candidate kind. 228 Basis.Base == C.Base && 229 Basis.Stride == C.Stride && 230 Basis.CandidateKind == C.CandidateKind); 231} 232 233static bool isGEPFoldable(GetElementPtrInst *GEP, 234 const TargetTransformInfo *TTI, 235 const DataLayout *DL) { 236 GlobalVariable *BaseGV = nullptr; 237 int64_t BaseOffset = 0; 238 bool HasBaseReg = false; 239 int64_t Scale = 0; 240 241 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand())) 242 BaseGV = GV; 243 else 244 HasBaseReg = true; 245 246 gep_type_iterator GTI = gep_type_begin(GEP); 247 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { 248 if (isa<SequentialType>(*GTI)) { 249 int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 250 if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) { 251 BaseOffset += ConstIdx->getSExtValue() * ElementSize; 252 } else { 253 // Needs scale register. 254 if (Scale != 0) { 255 // No addressing mode takes two scale registers. 256 return false; 257 } 258 Scale = ElementSize; 259 } 260 } else { 261 StructType *STy = cast<StructType>(*GTI); 262 uint64_t Field = cast<ConstantInt>(*I)->getZExtValue(); 263 BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); 264 } 265 } 266 return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV, 267 BaseOffset, HasBaseReg, Scale); 268} 269 270// Returns whether (Base + Index * Stride) can be folded to an addressing mode. 271static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, 272 TargetTransformInfo *TTI) { 273 return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, 274 Index->getSExtValue()); 275} 276 277bool StraightLineStrengthReduce::isFoldable(const Candidate &C, 278 TargetTransformInfo *TTI, 279 const DataLayout *DL) { 280 if (C.CandidateKind == Candidate::Add) 281 return isAddFoldable(C.Base, C.Index, C.Stride, TTI); 282 if (C.CandidateKind == Candidate::GEP) 283 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL); 284 return false; 285} 286 287// Returns true if GEP has zero or one non-zero index. 288static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { 289 unsigned NumNonZeroIndices = 0; 290 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { 291 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); 292 if (ConstIdx == nullptr || !ConstIdx->isZero()) 293 ++NumNonZeroIndices; 294 } 295 return NumNonZeroIndices <= 1; 296} 297 298bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { 299 if (C.CandidateKind == Candidate::Add) { 300 // B + 1 * S or B + (-1) * S 301 return C.Index->isOne() || C.Index->isMinusOne(); 302 } 303 if (C.CandidateKind == Candidate::Mul) { 304 // (B + 0) * S 305 return C.Index->isZero(); 306 } 307 if (C.CandidateKind == Candidate::GEP) { 308 // (char*)B + S or (char*)B - S 309 return ((C.Index->isOne() || C.Index->isMinusOne()) && 310 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); 311 } 312 return false; 313} 314 315// TODO: We currently implement an algorithm whose time complexity is linear in 316// the number of existing candidates. However, we could do better by using 317// ScopedHashTable. Specifically, while traversing the dominator tree, we could 318// maintain all the candidates that dominate the basic block being traversed in 319// a ScopedHashTable. This hash table is indexed by the base and the stride of 320// a candidate. Therefore, finding the immediate basis of a candidate boils down 321// to one hash-table look up. 322void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 323 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 324 Instruction *I) { 325 Candidate C(CT, B, Idx, S, I); 326 // SLSR can complicate an instruction in two cases: 327 // 328 // 1. If we can fold I into an addressing mode, computing I is likely free or 329 // takes only one instruction. 330 // 331 // 2. I is already in a simplest form. For example, when 332 // X = B + 8 * S 333 // Y = B + S, 334 // rewriting Y to X - 7 * S is probably a bad idea. 335 // 336 // In the above cases, we still add I to the candidate list so that I can be 337 // the basis of other candidates, but we leave I's basis blank so that I 338 // won't be rewritten. 339 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { 340 // Try to compute the immediate basis of C. 341 unsigned NumIterations = 0; 342 // Limit the scan radius to avoid running in quadratice time. 343 static const unsigned MaxNumIterations = 50; 344 for (auto Basis = Candidates.rbegin(); 345 Basis != Candidates.rend() && NumIterations < MaxNumIterations; 346 ++Basis, ++NumIterations) { 347 if (isBasisFor(*Basis, C)) { 348 C.Basis = &(*Basis); 349 break; 350 } 351 } 352 } 353 // Regardless of whether we find a basis for C, we need to push C to the 354 // candidate list so that it can be the basis of other candidates. 355 Candidates.push_back(C); 356} 357 358void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 359 Instruction *I) { 360 switch (I->getOpcode()) { 361 case Instruction::Add: 362 allocateCandidatesAndFindBasisForAdd(I); 363 break; 364 case Instruction::Mul: 365 allocateCandidatesAndFindBasisForMul(I); 366 break; 367 case Instruction::GetElementPtr: 368 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); 369 break; 370 } 371} 372 373void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 374 Instruction *I) { 375 // Try matching B + i * S. 376 if (!isa<IntegerType>(I->getType())) 377 return; 378 379 assert(I->getNumOperands() == 2 && "isn't I an add?"); 380 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 381 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); 382 if (LHS != RHS) 383 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); 384} 385 386void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 387 Value *LHS, Value *RHS, Instruction *I) { 388 Value *S = nullptr; 389 ConstantInt *Idx = nullptr; 390 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { 391 // I = LHS + RHS = LHS + Idx * S 392 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 393 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { 394 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) 395 APInt One(Idx->getBitWidth(), 1); 396 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); 397 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 398 } else { 399 // At least, I = LHS + 1 * RHS 400 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); 401 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, 402 I); 403 } 404} 405 406void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 407 Value *LHS, Value *RHS, Instruction *I) { 408 Value *B = nullptr; 409 ConstantInt *Idx = nullptr; 410 // Only handle the canonical operand ordering. 411 if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) { 412 // If LHS is in the form of "Base + Index", then I is in the form of 413 // "(Base + Index) * RHS". 414 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 415 } else { 416 // Otherwise, at least try the form (LHS + 0) * RHS. 417 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); 418 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, 419 I); 420 } 421} 422 423void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 424 Instruction *I) { 425 // Try matching (B + i) * S. 426 // TODO: we could extend SLSR to float and vector types. 427 if (!isa<IntegerType>(I->getType())) 428 return; 429 430 assert(I->getNumOperands() == 2 && "isn't I a mul?"); 431 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 432 allocateCandidatesAndFindBasisForMul(LHS, RHS, I); 433 if (LHS != RHS) { 434 // Symmetrically, try to split RHS to Base + Index. 435 allocateCandidatesAndFindBasisForMul(RHS, LHS, I); 436 } 437} 438 439void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 440 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, 441 Instruction *I) { 442 // I = B + sext(Idx *nsw S) * ElementSize 443 // = B + (sext(Idx) * sext(S)) * ElementSize 444 // = B + (sext(Idx) * ElementSize) * sext(S) 445 // Casting to IntegerType is safe because we skipped vector GEPs. 446 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); 447 ConstantInt *ScaledIdx = ConstantInt::get( 448 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); 449 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); 450} 451 452void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, 453 const SCEV *Base, 454 uint64_t ElementSize, 455 GetElementPtrInst *GEP) { 456 // At least, ArrayIdx = ArrayIdx *nsw 1. 457 allocateCandidatesAndFindBasisForGEP( 458 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), 459 ArrayIdx, ElementSize, GEP); 460 Value *LHS = nullptr; 461 ConstantInt *RHS = nullptr; 462 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx 463 // itself. This would allow us to handle the shl case for free. However, 464 // matching SCEVs has two issues: 465 // 466 // 1. this would complicate rewriting because the rewriting procedure 467 // would have to translate SCEVs back to IR instructions. This translation 468 // is difficult when LHS is further evaluated to a composite SCEV. 469 // 470 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends 471 // to strip nsw/nuw flags which are critical for SLSR to trace into 472 // sext'ed multiplication. 473 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { 474 // SLSR is currently unsafe if i * S may overflow. 475 // GEP = Base + sext(LHS *nsw RHS) * ElementSize 476 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); 477 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { 478 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize 479 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize 480 APInt One(RHS->getBitWidth(), 1); 481 ConstantInt *PowerOf2 = 482 ConstantInt::get(RHS->getContext(), One << RHS->getValue()); 483 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); 484 } 485} 486 487void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 488 GetElementPtrInst *GEP) { 489 // TODO: handle vector GEPs 490 if (GEP->getType()->isVectorTy()) 491 return; 492 493 const SCEV *GEPExpr = SE->getSCEV(GEP); 494 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 495 496 gep_type_iterator GTI = gep_type_begin(GEP); 497 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { 498 if (!isa<SequentialType>(*GTI++)) 499 continue; 500 Value *ArrayIdx = *I; 501 // Compute the byte offset of this index. 502 uint64_t ElementSize = DL->getTypeAllocSize(*GTI); 503 const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI); 504 const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx); 505 ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy); 506 const SCEV *LocalOffset = 507 SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW); 508 // The base of this candidate equals GEPExpr less the byte offset of this 509 // index. 510 const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset); 511 factorArrayIndex(ArrayIdx, Base, ElementSize, GEP); 512 // When ArrayIdx is the sext of a value, we try to factor that value as 513 // well. Handling this case is important because array indices are 514 // typically sign-extended to the pointer size. 515 Value *TruncatedArrayIdx = nullptr; 516 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx)))) 517 factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP); 518 } 519} 520 521// A helper function that unifies the bitwidth of A and B. 522static void unifyBitWidth(APInt &A, APInt &B) { 523 if (A.getBitWidth() < B.getBitWidth()) 524 A = A.sext(B.getBitWidth()); 525 else if (A.getBitWidth() > B.getBitWidth()) 526 B = B.sext(A.getBitWidth()); 527} 528 529Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, 530 const Candidate &C, 531 IRBuilder<> &Builder, 532 const DataLayout *DL, 533 bool &BumpWithUglyGEP) { 534 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); 535 unifyBitWidth(Idx, BasisIdx); 536 APInt IndexOffset = Idx - BasisIdx; 537 538 BumpWithUglyGEP = false; 539 if (Basis.CandidateKind == Candidate::GEP) { 540 APInt ElementSize( 541 IndexOffset.getBitWidth(), 542 DL->getTypeAllocSize( 543 cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType())); 544 APInt Q, R; 545 APInt::sdivrem(IndexOffset, ElementSize, Q, R); 546 if (R.getSExtValue() == 0) 547 IndexOffset = Q; 548 else 549 BumpWithUglyGEP = true; 550 } 551 552 // Compute Bump = C - Basis = (i' - i) * S. 553 // Common case 1: if (i' - i) is 1, Bump = S. 554 if (IndexOffset.getSExtValue() == 1) 555 return C.Stride; 556 // Common case 2: if (i' - i) is -1, Bump = -S. 557 if (IndexOffset.getSExtValue() == -1) 558 return Builder.CreateNeg(C.Stride); 559 560 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may 561 // have different bit widths. 562 IntegerType *DeltaType = 563 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); 564 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); 565 if (IndexOffset.isPowerOf2()) { 566 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). 567 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); 568 return Builder.CreateShl(ExtendedStride, Exponent); 569 } 570 if ((-IndexOffset).isPowerOf2()) { 571 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). 572 ConstantInt *Exponent = 573 ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); 574 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); 575 } 576 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); 577 return Builder.CreateMul(ExtendedStride, Delta); 578} 579 580void StraightLineStrengthReduce::rewriteCandidateWithBasis( 581 const Candidate &C, const Candidate &Basis) { 582 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && 583 C.Stride == Basis.Stride); 584 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the 585 // basis of a candidate cannot be unlinked before the candidate. 586 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); 587 588 // An instruction can correspond to multiple candidates. Therefore, instead of 589 // simply deleting an instruction when we rewrite it, we mark its parent as 590 // nullptr (i.e. unlink it) so that we can skip the candidates whose 591 // instruction is already rewritten. 592 if (!C.Ins->getParent()) 593 return; 594 595 IRBuilder<> Builder(C.Ins); 596 bool BumpWithUglyGEP; 597 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); 598 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins 599 switch (C.CandidateKind) { 600 case Candidate::Add: 601 case Candidate::Mul: 602 if (BinaryOperator::isNeg(Bump)) { 603 Reduced = 604 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump)); 605 } else { 606 Reduced = Builder.CreateAdd(Basis.Ins, Bump); 607 } 608 break; 609 case Candidate::GEP: 610 { 611 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); 612 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); 613 if (BumpWithUglyGEP) { 614 // C = (char *)Basis + Bump 615 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); 616 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); 617 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); 618 if (InBounds) 619 Reduced = 620 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); 621 else 622 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); 623 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); 624 } else { 625 // C = gep Basis, Bump 626 // Canonicalize bump to pointer size. 627 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); 628 if (InBounds) 629 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump); 630 else 631 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump); 632 } 633 } 634 break; 635 default: 636 llvm_unreachable("C.CandidateKind is invalid"); 637 }; 638 Reduced->takeName(C.Ins); 639 C.Ins->replaceAllUsesWith(Reduced); 640 C.Ins->dropAllReferences(); 641 // Unlink C.Ins so that we can skip other candidates also corresponding to 642 // C.Ins. The actual deletion is postponed to the end of runOnFunction. 643 C.Ins->removeFromParent(); 644 UnlinkedInstructions.push_back(C.Ins); 645} 646 647bool StraightLineStrengthReduce::runOnFunction(Function &F) { 648 if (skipOptnoneFunction(F)) 649 return false; 650 651 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 652 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 653 SE = &getAnalysis<ScalarEvolution>(); 654 // Traverse the dominator tree in the depth-first order. This order makes sure 655 // all bases of a candidate are in Candidates when we process it. 656 for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT); 657 node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) { 658 for (auto &I : *node->getBlock()) 659 allocateCandidatesAndFindBasis(&I); 660 } 661 662 // Rewrite candidates in the reverse depth-first order. This order makes sure 663 // a candidate being rewritten is not a basis for any other candidate. 664 while (!Candidates.empty()) { 665 const Candidate &C = Candidates.back(); 666 if (C.Basis != nullptr) { 667 rewriteCandidateWithBasis(C, *C.Basis); 668 } 669 Candidates.pop_back(); 670 } 671 672 // Delete all unlink instructions. 673 for (auto I : UnlinkedInstructions) { 674 delete I; 675 } 676 bool Ret = !UnlinkedInstructions.empty(); 677 UnlinkedInstructions.clear(); 678 return Ret; 679} 680