1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/UnrollLoop.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopIterator.h"
25#include "llvm/Analysis/LoopPass.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DiagnosticInfo.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/LoopUtils.h"
38#include "llvm/Transforms/Utils/SimplifyIndVar.h"
39using namespace llvm;
40
41#define DEBUG_TYPE "loop-unroll"
42
43// TODO: Should these be here or in LoopUnroll?
44STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46
47/// RemapInstruction - Convert the instruction operands from referencing the
48/// current values into those specified by VMap.
49static inline void RemapInstruction(Instruction *I,
50                                    ValueToValueMapTy &VMap) {
51  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
52    Value *Op = I->getOperand(op);
53    ValueToValueMapTy::iterator It = VMap.find(Op);
54    if (It != VMap.end())
55      I->setOperand(op, It->second);
56  }
57
58  if (PHINode *PN = dyn_cast<PHINode>(I)) {
59    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
60      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
61      if (It != VMap.end())
62        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
63    }
64  }
65}
66
67/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
68/// only has one predecessor, and that predecessor only has one successor.
69/// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
70/// successful references to the containing loop must be removed from
71/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
72/// references to the eliminated BB.  The argument ForgottenLoops contains a set
73/// of loops that have already been forgotten to prevent redundant, expensive
74/// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
75static BasicBlock *
76FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
77                         SmallPtrSetImpl<Loop *> &ForgottenLoops) {
78  // Merge basic blocks into their predecessor if there is only one distinct
79  // pred, and if there is only one distinct successor of the predecessor, and
80  // if there are no PHI nodes.
81  BasicBlock *OnlyPred = BB->getSinglePredecessor();
82  if (!OnlyPred) return nullptr;
83
84  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
85    return nullptr;
86
87  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
88
89  // Resolve any PHI nodes at the start of the block.  They are all
90  // guaranteed to have exactly one entry if they exist, unless there are
91  // multiple duplicate (but guaranteed to be equal) entries for the
92  // incoming edges.  This occurs when there are multiple edges from
93  // OnlyPred to OnlySucc.
94  FoldSingleEntryPHINodes(BB);
95
96  // Delete the unconditional branch from the predecessor...
97  OnlyPred->getInstList().pop_back();
98
99  // Make all PHI nodes that referred to BB now refer to Pred as their
100  // source...
101  BB->replaceAllUsesWith(OnlyPred);
102
103  // Move all definitions in the successor to the predecessor...
104  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
105
106  // OldName will be valid until erased.
107  StringRef OldName = BB->getName();
108
109  // Erase basic block from the function...
110
111  // ScalarEvolution holds references to loop exit blocks.
112  if (LPM) {
113    if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
114      if (Loop *L = LI->getLoopFor(BB)) {
115        if (ForgottenLoops.insert(L).second)
116          SE->forgetLoop(L);
117      }
118    }
119  }
120  LI->removeBlock(BB);
121
122  // Inherit predecessor's name if it exists...
123  if (!OldName.empty() && !OnlyPred->hasName())
124    OnlyPred->setName(OldName);
125
126  BB->eraseFromParent();
127
128  return OnlyPred;
129}
130
131/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
132/// if unrolling was successful, or false if the loop was unmodified. Unrolling
133/// can only fail when the loop's latch block is not terminated by a conditional
134/// branch instruction. However, if the trip count (and multiple) are not known,
135/// loop unrolling will mostly produce more code that is no faster.
136///
137/// TripCount is generally defined as the number of times the loop header
138/// executes. UnrollLoop relaxes the definition to permit early exits: here
139/// TripCount is the iteration on which control exits LatchBlock if no early
140/// exits were taken. Note that UnrollLoop assumes that the loop counter test
141/// terminates LatchBlock in order to remove unnecesssary instances of the
142/// test. In other words, control may exit the loop prior to TripCount
143/// iterations via an early branch, but control may not exit the loop from the
144/// LatchBlock's terminator prior to TripCount iterations.
145///
146/// Similarly, TripMultiple divides the number of times that the LatchBlock may
147/// execute without exiting the loop.
148///
149/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
150/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
151/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
152/// iterations before branching into the unrolled loop.  UnrollLoop will not
153/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
154/// AllowExpensiveTripCount is false.
155///
156/// The LoopInfo Analysis that is passed will be kept consistent.
157///
158/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
159/// removed from the LoopPassManager as well. LPM can also be NULL.
160///
161/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
162/// available from the Pass it must also preserve those analyses.
163bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
164                      bool AllowRuntime, bool AllowExpensiveTripCount,
165                      unsigned TripMultiple, LoopInfo *LI, Pass *PP,
166                      LPPassManager *LPM, AssumptionCache *AC) {
167  BasicBlock *Preheader = L->getLoopPreheader();
168  if (!Preheader) {
169    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
170    return false;
171  }
172
173  BasicBlock *LatchBlock = L->getLoopLatch();
174  if (!LatchBlock) {
175    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
176    return false;
177  }
178
179  // Loops with indirectbr cannot be cloned.
180  if (!L->isSafeToClone()) {
181    DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
182    return false;
183  }
184
185  BasicBlock *Header = L->getHeader();
186  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
187
188  if (!BI || BI->isUnconditional()) {
189    // The loop-rotate pass can be helpful to avoid this in many cases.
190    DEBUG(dbgs() <<
191             "  Can't unroll; loop not terminated by a conditional branch.\n");
192    return false;
193  }
194
195  if (Header->hasAddressTaken()) {
196    // The loop-rotate pass can be helpful to avoid this in many cases.
197    DEBUG(dbgs() <<
198          "  Won't unroll loop: address of header block is taken.\n");
199    return false;
200  }
201
202  if (TripCount != 0)
203    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
204  if (TripMultiple != 1)
205    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
206
207  // Effectively "DCE" unrolled iterations that are beyond the tripcount
208  // and will never be executed.
209  if (TripCount != 0 && Count > TripCount)
210    Count = TripCount;
211
212  // Don't enter the unroll code if there is nothing to do. This way we don't
213  // need to support "partial unrolling by 1".
214  if (TripCount == 0 && Count < 2)
215    return false;
216
217  assert(Count > 0);
218  assert(TripMultiple > 0);
219  assert(TripCount == 0 || TripCount % TripMultiple == 0);
220
221  // Are we eliminating the loop control altogether?
222  bool CompletelyUnroll = Count == TripCount;
223
224  // We assume a run-time trip count if the compiler cannot
225  // figure out the loop trip count and the unroll-runtime
226  // flag is specified.
227  bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
228
229  if (RuntimeTripCount &&
230      !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM))
231    return false;
232
233  // Notify ScalarEvolution that the loop will be substantially changed,
234  // if not outright eliminated.
235  ScalarEvolution *SE =
236      PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr;
237  if (SE)
238    SE->forgetLoop(L);
239
240  // If we know the trip count, we know the multiple...
241  unsigned BreakoutTrip = 0;
242  if (TripCount != 0) {
243    BreakoutTrip = TripCount % Count;
244    TripMultiple = 0;
245  } else {
246    // Figure out what multiple to use.
247    BreakoutTrip = TripMultiple =
248      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
249  }
250
251  // Report the unrolling decision.
252  DebugLoc LoopLoc = L->getStartLoc();
253  Function *F = Header->getParent();
254  LLVMContext &Ctx = F->getContext();
255
256  if (CompletelyUnroll) {
257    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
258          << " with trip count " << TripCount << "!\n");
259    emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
260                           Twine("completely unrolled loop with ") +
261                               Twine(TripCount) + " iterations");
262  } else {
263    auto EmitDiag = [&](const Twine &T) {
264      emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
265                             "unrolled loop by a factor of " + Twine(Count) +
266                                 T);
267    };
268
269    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
270          << " by " << Count);
271    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
272      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
273      EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
274    } else if (TripMultiple != 1) {
275      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
276      EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
277    } else if (RuntimeTripCount) {
278      DEBUG(dbgs() << " with run-time trip count");
279      EmitDiag(" with run-time trip count");
280    }
281    DEBUG(dbgs() << "!\n");
282  }
283
284  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
285  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
286
287  // For the first iteration of the loop, we should use the precloned values for
288  // PHI nodes.  Insert associations now.
289  ValueToValueMapTy LastValueMap;
290  std::vector<PHINode*> OrigPHINode;
291  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
292    OrigPHINode.push_back(cast<PHINode>(I));
293  }
294
295  std::vector<BasicBlock*> Headers;
296  std::vector<BasicBlock*> Latches;
297  Headers.push_back(Header);
298  Latches.push_back(LatchBlock);
299
300  // The current on-the-fly SSA update requires blocks to be processed in
301  // reverse postorder so that LastValueMap contains the correct value at each
302  // exit.
303  LoopBlocksDFS DFS(L);
304  DFS.perform(LI);
305
306  // Stash the DFS iterators before adding blocks to the loop.
307  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
308  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
309
310  for (unsigned It = 1; It != Count; ++It) {
311    std::vector<BasicBlock*> NewBlocks;
312    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
313    NewLoops[L] = L;
314
315    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
316      ValueToValueMapTy VMap;
317      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
318      Header->getParent()->getBasicBlockList().push_back(New);
319
320      // Tell LI about New.
321      if (*BB == Header) {
322        assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
323        L->addBasicBlockToLoop(New, *LI);
324      } else {
325        // Figure out which loop New is in.
326        const Loop *OldLoop = LI->getLoopFor(*BB);
327        assert(OldLoop && "Should (at least) be in the loop being unrolled!");
328
329        Loop *&NewLoop = NewLoops[OldLoop];
330        if (!NewLoop) {
331          // Found a new sub-loop.
332          assert(*BB == OldLoop->getHeader() &&
333                 "Header should be first in RPO");
334
335          Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
336          assert(NewLoopParent &&
337                 "Expected parent loop before sub-loop in RPO");
338          NewLoop = new Loop;
339          NewLoopParent->addChildLoop(NewLoop);
340
341          // Forget the old loop, since its inputs may have changed.
342          if (SE)
343            SE->forgetLoop(OldLoop);
344        }
345        NewLoop->addBasicBlockToLoop(New, *LI);
346      }
347
348      if (*BB == Header)
349        // Loop over all of the PHI nodes in the block, changing them to use
350        // the incoming values from the previous block.
351        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
352          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
353          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
354          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
355            if (It > 1 && L->contains(InValI))
356              InVal = LastValueMap[InValI];
357          VMap[OrigPHINode[i]] = InVal;
358          New->getInstList().erase(NewPHI);
359        }
360
361      // Update our running map of newest clones
362      LastValueMap[*BB] = New;
363      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
364           VI != VE; ++VI)
365        LastValueMap[VI->first] = VI->second;
366
367      // Add phi entries for newly created values to all exit blocks.
368      for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
369           SI != SE; ++SI) {
370        if (L->contains(*SI))
371          continue;
372        for (BasicBlock::iterator BBI = (*SI)->begin();
373             PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
374          Value *Incoming = phi->getIncomingValueForBlock(*BB);
375          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
376          if (It != LastValueMap.end())
377            Incoming = It->second;
378          phi->addIncoming(Incoming, New);
379        }
380      }
381      // Keep track of new headers and latches as we create them, so that
382      // we can insert the proper branches later.
383      if (*BB == Header)
384        Headers.push_back(New);
385      if (*BB == LatchBlock)
386        Latches.push_back(New);
387
388      NewBlocks.push_back(New);
389    }
390
391    // Remap all instructions in the most recent iteration
392    for (unsigned i = 0; i < NewBlocks.size(); ++i)
393      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
394           E = NewBlocks[i]->end(); I != E; ++I)
395        ::RemapInstruction(I, LastValueMap);
396  }
397
398  // Loop over the PHI nodes in the original block, setting incoming values.
399  for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
400    PHINode *PN = OrigPHINode[i];
401    if (CompletelyUnroll) {
402      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
403      Header->getInstList().erase(PN);
404    }
405    else if (Count > 1) {
406      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
407      // If this value was defined in the loop, take the value defined by the
408      // last iteration of the loop.
409      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
410        if (L->contains(InValI))
411          InVal = LastValueMap[InVal];
412      }
413      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
414      PN->addIncoming(InVal, Latches.back());
415    }
416  }
417
418  // Now that all the basic blocks for the unrolled iterations are in place,
419  // set up the branches to connect them.
420  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
421    // The original branch was replicated in each unrolled iteration.
422    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
423
424    // The branch destination.
425    unsigned j = (i + 1) % e;
426    BasicBlock *Dest = Headers[j];
427    bool NeedConditional = true;
428
429    if (RuntimeTripCount && j != 0) {
430      NeedConditional = false;
431    }
432
433    // For a complete unroll, make the last iteration end with a branch
434    // to the exit block.
435    if (CompletelyUnroll && j == 0) {
436      Dest = LoopExit;
437      NeedConditional = false;
438    }
439
440    // If we know the trip count or a multiple of it, we can safely use an
441    // unconditional branch for some iterations.
442    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
443      NeedConditional = false;
444    }
445
446    if (NeedConditional) {
447      // Update the conditional branch's successor for the following
448      // iteration.
449      Term->setSuccessor(!ContinueOnTrue, Dest);
450    } else {
451      // Remove phi operands at this loop exit
452      if (Dest != LoopExit) {
453        BasicBlock *BB = Latches[i];
454        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
455             SI != SE; ++SI) {
456          if (*SI == Headers[i])
457            continue;
458          for (BasicBlock::iterator BBI = (*SI)->begin();
459               PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
460            Phi->removeIncomingValue(BB, false);
461          }
462        }
463      }
464      // Replace the conditional branch with an unconditional one.
465      BranchInst::Create(Dest, Term);
466      Term->eraseFromParent();
467    }
468  }
469
470  // Merge adjacent basic blocks, if possible.
471  SmallPtrSet<Loop *, 4> ForgottenLoops;
472  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
473    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
474    if (Term->isUnconditional()) {
475      BasicBlock *Dest = Term->getSuccessor(0);
476      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM,
477                                                      ForgottenLoops))
478        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
479    }
480  }
481
482  // FIXME: We could register any cloned assumptions instead of clearing the
483  // whole function's cache.
484  AC->clear();
485
486  DominatorTree *DT = nullptr;
487  if (PP) {
488    // FIXME: Reconstruct dom info, because it is not preserved properly.
489    // Incrementally updating domtree after loop unrolling would be easy.
490    if (DominatorTreeWrapperPass *DTWP =
491            PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
492      DT = &DTWP->getDomTree();
493      DT->recalculate(*L->getHeader()->getParent());
494    }
495
496    // Simplify any new induction variables in the partially unrolled loop.
497    if (SE && !CompletelyUnroll) {
498      SmallVector<WeakVH, 16> DeadInsts;
499      simplifyLoopIVs(L, SE, LPM, DeadInsts);
500
501      // Aggressively clean up dead instructions that simplifyLoopIVs already
502      // identified. Any remaining should be cleaned up below.
503      while (!DeadInsts.empty())
504        if (Instruction *Inst =
505            dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
506          RecursivelyDeleteTriviallyDeadInstructions(Inst);
507    }
508  }
509  // At this point, the code is well formed.  We now do a quick sweep over the
510  // inserted code, doing constant propagation and dead code elimination as we
511  // go.
512  const DataLayout &DL = Header->getModule()->getDataLayout();
513  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
514  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
515       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
516    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
517      Instruction *Inst = I++;
518
519      if (isInstructionTriviallyDead(Inst))
520        (*BB)->getInstList().erase(Inst);
521      else if (Value *V = SimplifyInstruction(Inst, DL))
522        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
523          Inst->replaceAllUsesWith(V);
524          (*BB)->getInstList().erase(Inst);
525        }
526    }
527
528  NumCompletelyUnrolled += CompletelyUnroll;
529  ++NumUnrolled;
530
531  Loop *OuterL = L->getParentLoop();
532  // Remove the loop from the LoopPassManager if it's completely removed.
533  if (CompletelyUnroll && LPM != nullptr)
534    LPM->deleteLoopFromQueue(L);
535
536  // If we have a pass and a DominatorTree we should re-simplify impacted loops
537  // to ensure subsequent analyses can rely on this form. We want to simplify
538  // at least one layer outside of the loop that was unrolled so that any
539  // changes to the parent loop exposed by the unrolling are considered.
540  if (PP && DT) {
541    if (!OuterL && !CompletelyUnroll)
542      OuterL = L;
543    if (OuterL) {
544      simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, AC);
545
546      // LCSSA must be performed on the outermost affected loop. The unrolled
547      // loop's last loop latch is guaranteed to be in the outermost loop after
548      // deleteLoopFromQueue updates LoopInfo.
549      Loop *LatchLoop = LI->getLoopFor(Latches.back());
550      if (!OuterL->contains(LatchLoop))
551        while (OuterL->getParentLoop() != LatchLoop)
552          OuterL = OuterL->getParentLoop();
553
554      formLCSSARecursively(*OuterL, *DT, LI, SE);
555    }
556  }
557
558  return true;
559}
560
561/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
562/// node with the given name (for example, "llvm.loop.unroll.count"). If no
563/// such metadata node exists, then nullptr is returned.
564MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
565  // First operand should refer to the loop id itself.
566  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
567  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
568
569  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
570    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
571    if (!MD)
572      continue;
573
574    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
575    if (!S)
576      continue;
577
578    if (Name.equals(S->getString()))
579      return MD;
580  }
581  return nullptr;
582}
583