1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "CodeGenRegisters.h"
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/StringMap.h"
16#include "llvm/TableGen/Error.h"
17#include "llvm/TableGen/Record.h"
18#include <utility>
19using namespace llvm;
20
21
22/// getRegisterValueType - Look up and return the ValueType of the specified
23/// register. If the register is a member of multiple register classes which
24/// have different associated types, return MVT::Other.
25static MVT::SimpleValueType getRegisterValueType(Record *R,
26                                                 const CodeGenTarget &T) {
27  bool FoundRC = false;
28  MVT::SimpleValueType VT = MVT::Other;
29  const CodeGenRegister *Reg = T.getRegBank().getReg(R);
30
31  for (const auto &RC : T.getRegBank().getRegClasses()) {
32    if (!RC.contains(Reg))
33      continue;
34
35    if (!FoundRC) {
36      FoundRC = true;
37      VT = RC.getValueTypeNum(0);
38      continue;
39    }
40
41    // If this occurs in multiple register classes, they all have to agree.
42    assert(VT == RC.getValueTypeNum(0));
43  }
44  return VT;
45}
46
47
48namespace {
49  class MatcherGen {
50    const PatternToMatch &Pattern;
51    const CodeGenDAGPatterns &CGP;
52
53    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
54    /// out with all of the types removed.  This allows us to insert type checks
55    /// as we scan the tree.
56    TreePatternNode *PatWithNoTypes;
57
58    /// VariableMap - A map from variable names ('$dst') to the recorded operand
59    /// number that they were captured as.  These are biased by 1 to make
60    /// insertion easier.
61    StringMap<unsigned> VariableMap;
62
63    /// This maintains the recorded operand number that OPC_CheckComplexPattern
64    /// drops each sub-operand into. We don't want to insert these into
65    /// VariableMap because that leads to identity checking if they are
66    /// encountered multiple times. Biased by 1 like VariableMap for
67    /// consistency.
68    StringMap<unsigned> NamedComplexPatternOperands;
69
70    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
71    /// the RecordedNodes array, this keeps track of which slot will be next to
72    /// record into.
73    unsigned NextRecordedOperandNo;
74
75    /// MatchedChainNodes - This maintains the position in the recorded nodes
76    /// array of all of the recorded input nodes that have chains.
77    SmallVector<unsigned, 2> MatchedChainNodes;
78
79    /// MatchedGlueResultNodes - This maintains the position in the recorded
80    /// nodes array of all of the recorded input nodes that have glue results.
81    SmallVector<unsigned, 2> MatchedGlueResultNodes;
82
83    /// MatchedComplexPatterns - This maintains a list of all of the
84    /// ComplexPatterns that we need to check. The second element of each pair
85    /// is the recorded operand number of the input node.
86    SmallVector<std::pair<const TreePatternNode*,
87                          unsigned>, 2> MatchedComplexPatterns;
88
89    /// PhysRegInputs - List list has an entry for each explicitly specified
90    /// physreg input to the pattern.  The first elt is the Register node, the
91    /// second is the recorded slot number the input pattern match saved it in.
92    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
93
94    /// Matcher - This is the top level of the generated matcher, the result.
95    Matcher *TheMatcher;
96
97    /// CurPredicate - As we emit matcher nodes, this points to the latest check
98    /// which should have future checks stuck into its Next position.
99    Matcher *CurPredicate;
100  public:
101    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
102
103    ~MatcherGen() {
104      delete PatWithNoTypes;
105    }
106
107    bool EmitMatcherCode(unsigned Variant);
108    void EmitResultCode();
109
110    Matcher *GetMatcher() const { return TheMatcher; }
111  private:
112    void AddMatcher(Matcher *NewNode);
113    void InferPossibleTypes();
114
115    // Matcher Generation.
116    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
117    void EmitLeafMatchCode(const TreePatternNode *N);
118    void EmitOperatorMatchCode(const TreePatternNode *N,
119                               TreePatternNode *NodeNoTypes);
120
121    /// If this is the first time a node with unique identifier Name has been
122    /// seen, record it. Otherwise, emit a check to make sure this is the same
123    /// node. Returns true if this is the first encounter.
124    bool recordUniqueNode(std::string Name);
125
126    // Result Code Generation.
127    unsigned getNamedArgumentSlot(StringRef Name) {
128      unsigned VarMapEntry = VariableMap[Name];
129      assert(VarMapEntry != 0 &&
130             "Variable referenced but not defined and not caught earlier!");
131      return VarMapEntry-1;
132    }
133
134    /// GetInstPatternNode - Get the pattern for an instruction.
135    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
136                                              const TreePatternNode *N);
137
138    void EmitResultOperand(const TreePatternNode *N,
139                           SmallVectorImpl<unsigned> &ResultOps);
140    void EmitResultOfNamedOperand(const TreePatternNode *N,
141                                  SmallVectorImpl<unsigned> &ResultOps);
142    void EmitResultLeafAsOperand(const TreePatternNode *N,
143                                 SmallVectorImpl<unsigned> &ResultOps);
144    void EmitResultInstructionAsOperand(const TreePatternNode *N,
145                                        SmallVectorImpl<unsigned> &ResultOps);
146    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
147                                        SmallVectorImpl<unsigned> &ResultOps);
148    };
149
150} // end anon namespace.
151
152MatcherGen::MatcherGen(const PatternToMatch &pattern,
153                       const CodeGenDAGPatterns &cgp)
154: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
155  TheMatcher(nullptr), CurPredicate(nullptr) {
156  // We need to produce the matcher tree for the patterns source pattern.  To do
157  // this we need to match the structure as well as the types.  To do the type
158  // matching, we want to figure out the fewest number of type checks we need to
159  // emit.  For example, if there is only one integer type supported by a
160  // target, there should be no type comparisons at all for integer patterns!
161  //
162  // To figure out the fewest number of type checks needed, clone the pattern,
163  // remove the types, then perform type inference on the pattern as a whole.
164  // If there are unresolved types, emit an explicit check for those types,
165  // apply the type to the tree, then rerun type inference.  Iterate until all
166  // types are resolved.
167  //
168  PatWithNoTypes = Pattern.getSrcPattern()->clone();
169  PatWithNoTypes->RemoveAllTypes();
170
171  // If there are types that are manifestly known, infer them.
172  InferPossibleTypes();
173}
174
175/// InferPossibleTypes - As we emit the pattern, we end up generating type
176/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
177/// want to propagate implied types as far throughout the tree as possible so
178/// that we avoid doing redundant type checks.  This does the type propagation.
179void MatcherGen::InferPossibleTypes() {
180  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
181  // diagnostics, which we know are impossible at this point.
182  TreePattern &TP = *CGP.pf_begin()->second;
183
184  bool MadeChange = true;
185  while (MadeChange)
186    MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
187                                              true/*Ignore reg constraints*/);
188}
189
190
191/// AddMatcher - Add a matcher node to the current graph we're building.
192void MatcherGen::AddMatcher(Matcher *NewNode) {
193  if (CurPredicate)
194    CurPredicate->setNext(NewNode);
195  else
196    TheMatcher = NewNode;
197  CurPredicate = NewNode;
198}
199
200
201//===----------------------------------------------------------------------===//
202// Pattern Match Generation
203//===----------------------------------------------------------------------===//
204
205/// EmitLeafMatchCode - Generate matching code for leaf nodes.
206void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
207  assert(N->isLeaf() && "Not a leaf?");
208
209  // Direct match against an integer constant.
210  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
211    // If this is the root of the dag we're matching, we emit a redundant opcode
212    // check to ensure that this gets folded into the normal top-level
213    // OpcodeSwitch.
214    if (N == Pattern.getSrcPattern()) {
215      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
216      AddMatcher(new CheckOpcodeMatcher(NI));
217    }
218
219    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
220  }
221
222  // An UnsetInit represents a named node without any constraints.
223  if (N->getLeafValue() == UnsetInit::get()) {
224    assert(N->hasName() && "Unnamed ? leaf");
225    return;
226  }
227
228  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
229  if (!DI) {
230    errs() << "Unknown leaf kind: " << *N << "\n";
231    abort();
232  }
233
234  Record *LeafRec = DI->getDef();
235
236  // A ValueType leaf node can represent a register when named, or itself when
237  // unnamed.
238  if (LeafRec->isSubClassOf("ValueType")) {
239    // A named ValueType leaf always matches: (add i32:$a, i32:$b).
240    if (N->hasName())
241      return;
242    // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
243    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
244  }
245
246  if (// Handle register references.  Nothing to do here, they always match.
247      LeafRec->isSubClassOf("RegisterClass") ||
248      LeafRec->isSubClassOf("RegisterOperand") ||
249      LeafRec->isSubClassOf("PointerLikeRegClass") ||
250      LeafRec->isSubClassOf("SubRegIndex") ||
251      // Place holder for SRCVALUE nodes. Nothing to do here.
252      LeafRec->getName() == "srcvalue")
253    return;
254
255  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
256  // record the register
257  if (LeafRec->isSubClassOf("Register")) {
258    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
259                                 NextRecordedOperandNo));
260    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
261    return;
262  }
263
264  if (LeafRec->isSubClassOf("CondCode"))
265    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
266
267  if (LeafRec->isSubClassOf("ComplexPattern")) {
268    // We can't model ComplexPattern uses that don't have their name taken yet.
269    // The OPC_CheckComplexPattern operation implicitly records the results.
270    if (N->getName().empty()) {
271      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
272      exit(1);
273    }
274
275    // Remember this ComplexPattern so that we can emit it after all the other
276    // structural matches are done.
277    unsigned InputOperand = VariableMap[N->getName()] - 1;
278    MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
279    return;
280  }
281
282  errs() << "Unknown leaf kind: " << *N << "\n";
283  abort();
284}
285
286void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
287                                       TreePatternNode *NodeNoTypes) {
288  assert(!N->isLeaf() && "Not an operator?");
289
290  if (N->getOperator()->isSubClassOf("ComplexPattern")) {
291    // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
292    // "MY_PAT:op1:op2". We should already have validated that the uses are
293    // consistent.
294    std::string PatternName = N->getOperator()->getName();
295    for (unsigned i = 0; i < N->getNumChildren(); ++i) {
296      PatternName += ":";
297      PatternName += N->getChild(i)->getName();
298    }
299
300    if (recordUniqueNode(PatternName)) {
301      auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
302      MatchedComplexPatterns.push_back(NodeAndOpNum);
303    }
304
305    return;
306  }
307
308  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
309
310  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
311  // a constant without a predicate fn that has more that one bit set, handle
312  // this as a special case.  This is usually for targets that have special
313  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
314  // handling stuff).  Using these instructions is often far more efficient
315  // than materializing the constant.  Unfortunately, both the instcombiner
316  // and the dag combiner can often infer that bits are dead, and thus drop
317  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
318  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
319  // to handle this.
320  if ((N->getOperator()->getName() == "and" ||
321       N->getOperator()->getName() == "or") &&
322      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
323      N->getPredicateFns().empty()) {
324    if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
325      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
326        // If this is at the root of the pattern, we emit a redundant
327        // CheckOpcode so that the following checks get factored properly under
328        // a single opcode check.
329        if (N == Pattern.getSrcPattern())
330          AddMatcher(new CheckOpcodeMatcher(CInfo));
331
332        // Emit the CheckAndImm/CheckOrImm node.
333        if (N->getOperator()->getName() == "and")
334          AddMatcher(new CheckAndImmMatcher(II->getValue()));
335        else
336          AddMatcher(new CheckOrImmMatcher(II->getValue()));
337
338        // Match the LHS of the AND as appropriate.
339        AddMatcher(new MoveChildMatcher(0));
340        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
341        AddMatcher(new MoveParentMatcher());
342        return;
343      }
344    }
345  }
346
347  // Check that the current opcode lines up.
348  AddMatcher(new CheckOpcodeMatcher(CInfo));
349
350  // If this node has memory references (i.e. is a load or store), tell the
351  // interpreter to capture them in the memref array.
352  if (N->NodeHasProperty(SDNPMemOperand, CGP))
353    AddMatcher(new RecordMemRefMatcher());
354
355  // If this node has a chain, then the chain is operand #0 is the SDNode, and
356  // the child numbers of the node are all offset by one.
357  unsigned OpNo = 0;
358  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
359    // Record the node and remember it in our chained nodes list.
360    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
361                                         "' chained node",
362                                 NextRecordedOperandNo));
363    // Remember all of the input chains our pattern will match.
364    MatchedChainNodes.push_back(NextRecordedOperandNo++);
365
366    // Don't look at the input chain when matching the tree pattern to the
367    // SDNode.
368    OpNo = 1;
369
370    // If this node is not the root and the subtree underneath it produces a
371    // chain, then the result of matching the node is also produce a chain.
372    // Beyond that, this means that we're also folding (at least) the root node
373    // into the node that produce the chain (for example, matching
374    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
375    // problematic, if the 'reg' node also uses the load (say, its chain).
376    // Graphically:
377    //
378    //         [LD]
379    //         ^  ^
380    //         |  \                              DAG's like cheese.
381    //        /    |
382    //       /    [YY]
383    //       |     ^
384    //      [XX]--/
385    //
386    // It would be invalid to fold XX and LD.  In this case, folding the two
387    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
388    // To prevent this, we emit a dynamic check for legality before allowing
389    // this to be folded.
390    //
391    const TreePatternNode *Root = Pattern.getSrcPattern();
392    if (N != Root) {                             // Not the root of the pattern.
393      // If there is a node between the root and this node, then we definitely
394      // need to emit the check.
395      bool NeedCheck = !Root->hasChild(N);
396
397      // If it *is* an immediate child of the root, we can still need a check if
398      // the root SDNode has multiple inputs.  For us, this means that it is an
399      // intrinsic, has multiple operands, or has other inputs like chain or
400      // glue).
401      if (!NeedCheck) {
402        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
403        NeedCheck =
404          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
405          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
406          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
407          PInfo.getNumOperands() > 1 ||
408          PInfo.hasProperty(SDNPHasChain) ||
409          PInfo.hasProperty(SDNPInGlue) ||
410          PInfo.hasProperty(SDNPOptInGlue);
411      }
412
413      if (NeedCheck)
414        AddMatcher(new CheckFoldableChainNodeMatcher());
415    }
416  }
417
418  // If this node has an output glue and isn't the root, remember it.
419  if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
420      N != Pattern.getSrcPattern()) {
421    // TODO: This redundantly records nodes with both glues and chains.
422
423    // Record the node and remember it in our chained nodes list.
424    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
425                                         "' glue output node",
426                                 NextRecordedOperandNo));
427    // Remember all of the nodes with output glue our pattern will match.
428    MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
429  }
430
431  // If this node is known to have an input glue or if it *might* have an input
432  // glue, capture it as the glue input of the pattern.
433  if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
434      N->NodeHasProperty(SDNPInGlue, CGP))
435    AddMatcher(new CaptureGlueInputMatcher());
436
437  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
438    // Get the code suitable for matching this child.  Move to the child, check
439    // it then move back to the parent.
440    AddMatcher(new MoveChildMatcher(OpNo));
441    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
442    AddMatcher(new MoveParentMatcher());
443  }
444}
445
446bool MatcherGen::recordUniqueNode(std::string Name) {
447  unsigned &VarMapEntry = VariableMap[Name];
448  if (VarMapEntry == 0) {
449    // If it is a named node, we must emit a 'Record' opcode.
450    AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
451    VarMapEntry = ++NextRecordedOperandNo;
452    return true;
453  }
454
455  // If we get here, this is a second reference to a specific name.  Since
456  // we already have checked that the first reference is valid, we don't
457  // have to recursively match it, just check that it's the same as the
458  // previously named thing.
459  AddMatcher(new CheckSameMatcher(VarMapEntry-1));
460  return false;
461}
462
463void MatcherGen::EmitMatchCode(const TreePatternNode *N,
464                               TreePatternNode *NodeNoTypes) {
465  // If N and NodeNoTypes don't agree on a type, then this is a case where we
466  // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
467  // reinfer any correlated types.
468  SmallVector<unsigned, 2> ResultsToTypeCheck;
469
470  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
471    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
472    NodeNoTypes->setType(i, N->getExtType(i));
473    InferPossibleTypes();
474    ResultsToTypeCheck.push_back(i);
475  }
476
477  // If this node has a name associated with it, capture it in VariableMap. If
478  // we already saw this in the pattern, emit code to verify dagness.
479  if (!N->getName().empty())
480    if (!recordUniqueNode(N->getName()))
481      return;
482
483  if (N->isLeaf())
484    EmitLeafMatchCode(N);
485  else
486    EmitOperatorMatchCode(N, NodeNoTypes);
487
488  // If there are node predicates for this node, generate their checks.
489  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
490    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
491
492  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
493    AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
494                                    ResultsToTypeCheck[i]));
495}
496
497/// EmitMatcherCode - Generate the code that matches the predicate of this
498/// pattern for the specified Variant.  If the variant is invalid this returns
499/// true and does not generate code, if it is valid, it returns false.
500bool MatcherGen::EmitMatcherCode(unsigned Variant) {
501  // If the root of the pattern is a ComplexPattern and if it is specified to
502  // match some number of root opcodes, these are considered to be our variants.
503  // Depending on which variant we're generating code for, emit the root opcode
504  // check.
505  if (const ComplexPattern *CP =
506                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
507    const std::vector<Record*> &OpNodes = CP->getRootNodes();
508    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
509    if (Variant >= OpNodes.size()) return true;
510
511    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
512  } else {
513    if (Variant != 0) return true;
514  }
515
516  // Emit the matcher for the pattern structure and types.
517  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
518
519  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
520  // feature is around, do the check).
521  if (!Pattern.getPredicateCheck().empty())
522    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
523
524  // Now that we've completed the structural type match, emit any ComplexPattern
525  // checks (e.g. addrmode matches).  We emit this after the structural match
526  // because they are generally more expensive to evaluate and more difficult to
527  // factor.
528  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
529    const TreePatternNode *N = MatchedComplexPatterns[i].first;
530
531    // Remember where the results of this match get stuck.
532    if (N->isLeaf()) {
533      NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
534    } else {
535      unsigned CurOp = NextRecordedOperandNo;
536      for (unsigned i = 0; i < N->getNumChildren(); ++i) {
537        NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
538        CurOp += N->getChild(i)->getNumMIResults(CGP);
539      }
540    }
541
542    // Get the slot we recorded the value in from the name on the node.
543    unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
544
545    const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
546
547    // Emit a CheckComplexPat operation, which does the match (aborting if it
548    // fails) and pushes the matched operands onto the recorded nodes list.
549    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
550                                          N->getName(), NextRecordedOperandNo));
551
552    // Record the right number of operands.
553    NextRecordedOperandNo += CP.getNumOperands();
554    if (CP.hasProperty(SDNPHasChain)) {
555      // If the complex pattern has a chain, then we need to keep track of the
556      // fact that we just recorded a chain input.  The chain input will be
557      // matched as the last operand of the predicate if it was successful.
558      ++NextRecordedOperandNo; // Chained node operand.
559
560      // It is the last operand recorded.
561      assert(NextRecordedOperandNo > 1 &&
562             "Should have recorded input/result chains at least!");
563      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
564    }
565
566    // TODO: Complex patterns can't have output glues, if they did, we'd want
567    // to record them.
568  }
569
570  return false;
571}
572
573
574//===----------------------------------------------------------------------===//
575// Node Result Generation
576//===----------------------------------------------------------------------===//
577
578void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
579                                          SmallVectorImpl<unsigned> &ResultOps){
580  assert(!N->getName().empty() && "Operand not named!");
581
582  if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
583    // Complex operands have already been completely selected, just find the
584    // right slot ant add the arguments directly.
585    for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
586      ResultOps.push_back(SlotNo - 1 + i);
587
588    return;
589  }
590
591  unsigned SlotNo = getNamedArgumentSlot(N->getName());
592
593  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
594  // version of the immediate so that it doesn't get selected due to some other
595  // node use.
596  if (!N->isLeaf()) {
597    StringRef OperatorName = N->getOperator()->getName();
598    if (OperatorName == "imm" || OperatorName == "fpimm") {
599      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
600      ResultOps.push_back(NextRecordedOperandNo++);
601      return;
602    }
603  }
604
605  for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
606    ResultOps.push_back(SlotNo + i);
607}
608
609void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
610                                         SmallVectorImpl<unsigned> &ResultOps) {
611  assert(N->isLeaf() && "Must be a leaf");
612
613  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
614    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
615    ResultOps.push_back(NextRecordedOperandNo++);
616    return;
617  }
618
619  // If this is an explicit register reference, handle it.
620  if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
621    Record *Def = DI->getDef();
622    if (Def->isSubClassOf("Register")) {
623      const CodeGenRegister *Reg =
624        CGP.getTargetInfo().getRegBank().getReg(Def);
625      AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
626      ResultOps.push_back(NextRecordedOperandNo++);
627      return;
628    }
629
630    if (Def->getName() == "zero_reg") {
631      AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
632      ResultOps.push_back(NextRecordedOperandNo++);
633      return;
634    }
635
636    // Handle a reference to a register class. This is used
637    // in COPY_TO_SUBREG instructions.
638    if (Def->isSubClassOf("RegisterOperand"))
639      Def = Def->getValueAsDef("RegClass");
640    if (Def->isSubClassOf("RegisterClass")) {
641      std::string Value = getQualifiedName(Def) + "RegClassID";
642      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
643      ResultOps.push_back(NextRecordedOperandNo++);
644      return;
645    }
646
647    // Handle a subregister index. This is used for INSERT_SUBREG etc.
648    if (Def->isSubClassOf("SubRegIndex")) {
649      std::string Value = getQualifiedName(Def);
650      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
651      ResultOps.push_back(NextRecordedOperandNo++);
652      return;
653    }
654  }
655
656  errs() << "unhandled leaf node: \n";
657  N->dump();
658}
659
660/// GetInstPatternNode - Get the pattern for an instruction.
661///
662const TreePatternNode *MatcherGen::
663GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
664  const TreePattern *InstPat = Inst.getPattern();
665
666  // FIXME2?: Assume actual pattern comes before "implicit".
667  TreePatternNode *InstPatNode;
668  if (InstPat)
669    InstPatNode = InstPat->getTree(0);
670  else if (/*isRoot*/ N == Pattern.getDstPattern())
671    InstPatNode = Pattern.getSrcPattern();
672  else
673    return nullptr;
674
675  if (InstPatNode && !InstPatNode->isLeaf() &&
676      InstPatNode->getOperator()->getName() == "set")
677    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
678
679  return InstPatNode;
680}
681
682static bool
683mayInstNodeLoadOrStore(const TreePatternNode *N,
684                       const CodeGenDAGPatterns &CGP) {
685  Record *Op = N->getOperator();
686  const CodeGenTarget &CGT = CGP.getTargetInfo();
687  CodeGenInstruction &II = CGT.getInstruction(Op);
688  return II.mayLoad || II.mayStore;
689}
690
691static unsigned
692numNodesThatMayLoadOrStore(const TreePatternNode *N,
693                           const CodeGenDAGPatterns &CGP) {
694  if (N->isLeaf())
695    return 0;
696
697  Record *OpRec = N->getOperator();
698  if (!OpRec->isSubClassOf("Instruction"))
699    return 0;
700
701  unsigned Count = 0;
702  if (mayInstNodeLoadOrStore(N, CGP))
703    ++Count;
704
705  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
706    Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
707
708  return Count;
709}
710
711void MatcherGen::
712EmitResultInstructionAsOperand(const TreePatternNode *N,
713                               SmallVectorImpl<unsigned> &OutputOps) {
714  Record *Op = N->getOperator();
715  const CodeGenTarget &CGT = CGP.getTargetInfo();
716  CodeGenInstruction &II = CGT.getInstruction(Op);
717  const DAGInstruction &Inst = CGP.getInstruction(Op);
718
719  // If we can, get the pattern for the instruction we're generating. We derive
720  // a variety of information from this pattern, such as whether it has a chain.
721  //
722  // FIXME2: This is extremely dubious for several reasons, not the least of
723  // which it gives special status to instructions with patterns that Pat<>
724  // nodes can't duplicate.
725  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
726
727  // NodeHasChain - Whether the instruction node we're creating takes chains.
728  bool NodeHasChain = InstPatNode &&
729                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
730
731  // Instructions which load and store from memory should have a chain,
732  // regardless of whether they happen to have an internal pattern saying so.
733  if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
734      && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
735          II.hasSideEffects))
736      NodeHasChain = true;
737
738  bool isRoot = N == Pattern.getDstPattern();
739
740  // TreeHasOutGlue - True if this tree has glue.
741  bool TreeHasInGlue = false, TreeHasOutGlue = false;
742  if (isRoot) {
743    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
744    TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
745                    SrcPat->TreeHasProperty(SDNPInGlue, CGP);
746
747    // FIXME2: this is checking the entire pattern, not just the node in
748    // question, doing this just for the root seems like a total hack.
749    TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
750  }
751
752  // NumResults - This is the number of results produced by the instruction in
753  // the "outs" list.
754  unsigned NumResults = Inst.getNumResults();
755
756  // Number of operands we know the output instruction must have. If it is
757  // variadic, we could have more operands.
758  unsigned NumFixedOperands = II.Operands.size();
759
760  SmallVector<unsigned, 8> InstOps;
761
762  // Loop over all of the fixed operands of the instruction pattern, emitting
763  // code to fill them all in. The node 'N' usually has number children equal to
764  // the number of input operands of the instruction.  However, in cases where
765  // there are predicate operands for an instruction, we need to fill in the
766  // 'execute always' values. Match up the node operands to the instruction
767  // operands to do this.
768  unsigned ChildNo = 0;
769  for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
770       InstOpNo != e; ++InstOpNo) {
771    // Determine what to emit for this operand.
772    Record *OperandNode = II.Operands[InstOpNo].Rec;
773    if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
774        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
775      // This is a predicate or optional def operand; emit the
776      // 'default ops' operands.
777      const DAGDefaultOperand &DefaultOp
778        = CGP.getDefaultOperand(OperandNode);
779      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
780        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
781      continue;
782    }
783
784    // Otherwise this is a normal operand or a predicate operand without
785    // 'execute always'; emit it.
786
787    // For operands with multiple sub-operands we may need to emit
788    // multiple child patterns to cover them all.  However, ComplexPattern
789    // children may themselves emit multiple MI operands.
790    unsigned NumSubOps = 1;
791    if (OperandNode->isSubClassOf("Operand")) {
792      DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
793      if (unsigned NumArgs = MIOpInfo->getNumArgs())
794        NumSubOps = NumArgs;
795    }
796
797    unsigned FinalNumOps = InstOps.size() + NumSubOps;
798    while (InstOps.size() < FinalNumOps) {
799      const TreePatternNode *Child = N->getChild(ChildNo);
800      unsigned BeforeAddingNumOps = InstOps.size();
801      EmitResultOperand(Child, InstOps);
802      assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
803
804      // If the operand is an instruction and it produced multiple results, just
805      // take the first one.
806      if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
807        InstOps.resize(BeforeAddingNumOps+1);
808
809      ++ChildNo;
810    }
811  }
812
813  // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
814  // expand suboperands, use default operands, or other features determined from
815  // the CodeGenInstruction after the fixed operands, which were handled
816  // above. Emit the remaining instructions implicitly added by the use for
817  // variable_ops.
818  if (II.Operands.isVariadic) {
819    for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
820      EmitResultOperand(N->getChild(I), InstOps);
821  }
822
823  // If this node has input glue or explicitly specified input physregs, we
824  // need to add chained and glued copyfromreg nodes and materialize the glue
825  // input.
826  if (isRoot && !PhysRegInputs.empty()) {
827    // Emit all of the CopyToReg nodes for the input physical registers.  These
828    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
829    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
830      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
831                                          PhysRegInputs[i].first));
832    // Even if the node has no other glue inputs, the resultant node must be
833    // glued to the CopyFromReg nodes we just generated.
834    TreeHasInGlue = true;
835  }
836
837  // Result order: node results, chain, glue
838
839  // Determine the result types.
840  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
841  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
842    ResultVTs.push_back(N->getType(i));
843
844  // If this is the root instruction of a pattern that has physical registers in
845  // its result pattern, add output VTs for them.  For example, X86 has:
846  //   (set AL, (mul ...))
847  // This also handles implicit results like:
848  //   (implicit EFLAGS)
849  if (isRoot && !Pattern.getDstRegs().empty()) {
850    // If the root came from an implicit def in the instruction handling stuff,
851    // don't re-add it.
852    Record *HandledReg = nullptr;
853    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
854      HandledReg = II.ImplicitDefs[0];
855
856    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
857      Record *Reg = Pattern.getDstRegs()[i];
858      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
859      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
860    }
861  }
862
863  // If this is the root of the pattern and the pattern we're matching includes
864  // a node that is variadic, mark the generated node as variadic so that it
865  // gets the excess operands from the input DAG.
866  int NumFixedArityOperands = -1;
867  if (isRoot &&
868      Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
869    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
870
871  // If this is the root node and multiple matched nodes in the input pattern
872  // have MemRefs in them, have the interpreter collect them and plop them onto
873  // this node. If there is just one node with MemRefs, leave them on that node
874  // even if it is not the root.
875  //
876  // FIXME3: This is actively incorrect for result patterns with multiple
877  // memory-referencing instructions.
878  bool PatternHasMemOperands =
879    Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
880
881  bool NodeHasMemRefs = false;
882  if (PatternHasMemOperands) {
883    unsigned NumNodesThatLoadOrStore =
884      numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
885    bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
886                                   NumNodesThatLoadOrStore == 1;
887    NodeHasMemRefs =
888      NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
889                                             NumNodesThatLoadOrStore != 1));
890  }
891
892  assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
893         "Node has no result");
894
895  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
896                                 ResultVTs, InstOps,
897                                 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
898                                 NodeHasMemRefs, NumFixedArityOperands,
899                                 NextRecordedOperandNo));
900
901  // The non-chain and non-glue results of the newly emitted node get recorded.
902  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
903    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
904    OutputOps.push_back(NextRecordedOperandNo++);
905  }
906}
907
908void MatcherGen::
909EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
910                               SmallVectorImpl<unsigned> &ResultOps) {
911  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
912
913  // Emit the operand.
914  SmallVector<unsigned, 8> InputOps;
915
916  // FIXME2: Could easily generalize this to support multiple inputs and outputs
917  // to the SDNodeXForm.  For now we just support one input and one output like
918  // the old instruction selector.
919  assert(N->getNumChildren() == 1);
920  EmitResultOperand(N->getChild(0), InputOps);
921
922  // The input currently must have produced exactly one result.
923  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
924
925  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
926  ResultOps.push_back(NextRecordedOperandNo++);
927}
928
929void MatcherGen::EmitResultOperand(const TreePatternNode *N,
930                                   SmallVectorImpl<unsigned> &ResultOps) {
931  // This is something selected from the pattern we matched.
932  if (!N->getName().empty())
933    return EmitResultOfNamedOperand(N, ResultOps);
934
935  if (N->isLeaf())
936    return EmitResultLeafAsOperand(N, ResultOps);
937
938  Record *OpRec = N->getOperator();
939  if (OpRec->isSubClassOf("Instruction"))
940    return EmitResultInstructionAsOperand(N, ResultOps);
941  if (OpRec->isSubClassOf("SDNodeXForm"))
942    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
943  errs() << "Unknown result node to emit code for: " << *N << '\n';
944  PrintFatalError("Unknown node in result pattern!");
945}
946
947void MatcherGen::EmitResultCode() {
948  // Patterns that match nodes with (potentially multiple) chain inputs have to
949  // merge them together into a token factor.  This informs the generated code
950  // what all the chained nodes are.
951  if (!MatchedChainNodes.empty())
952    AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
953
954  // Codegen the root of the result pattern, capturing the resulting values.
955  SmallVector<unsigned, 8> Ops;
956  EmitResultOperand(Pattern.getDstPattern(), Ops);
957
958  // At this point, we have however many values the result pattern produces.
959  // However, the input pattern might not need all of these.  If there are
960  // excess values at the end (such as implicit defs of condition codes etc)
961  // just lop them off.  This doesn't need to worry about glue or chains, just
962  // explicit results.
963  //
964  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
965
966  // If the pattern also has (implicit) results, count them as well.
967  if (!Pattern.getDstRegs().empty()) {
968    // If the root came from an implicit def in the instruction handling stuff,
969    // don't re-add it.
970    Record *HandledReg = nullptr;
971    const TreePatternNode *DstPat = Pattern.getDstPattern();
972    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
973      const CodeGenTarget &CGT = CGP.getTargetInfo();
974      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
975
976      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
977        HandledReg = II.ImplicitDefs[0];
978    }
979
980    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
981      Record *Reg = Pattern.getDstRegs()[i];
982      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
983      ++NumSrcResults;
984    }
985  }
986
987  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
988  Ops.resize(NumSrcResults);
989
990  // If the matched pattern covers nodes which define a glue result, emit a node
991  // that tells the matcher about them so that it can update their results.
992  if (!MatchedGlueResultNodes.empty())
993    AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes));
994
995  AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
996}
997
998
999/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1000/// the specified variant.  If the variant number is invalid, this returns null.
1001Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1002                                       unsigned Variant,
1003                                       const CodeGenDAGPatterns &CGP) {
1004  MatcherGen Gen(Pattern, CGP);
1005
1006  // Generate the code for the matcher.
1007  if (Gen.EmitMatcherCode(Variant))
1008    return nullptr;
1009
1010  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1011  // FIXME2: Split result code out to another table, and make the matcher end
1012  // with an "Emit <index>" command.  This allows result generation stuff to be
1013  // shared and factored?
1014
1015  // If the match succeeds, then we generate Pattern.
1016  Gen.EmitResultCode();
1017
1018  // Unconditional match.
1019  return Gen.GetMatcher();
1020}
1021