1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41#include "_cv.h"
42
43
44CV_IMPL CvRect
45cvMaxRect( const CvRect* rect1, const CvRect* rect2 )
46{
47    if( rect1 && rect2 )
48    {
49        CvRect max_rect;
50        int a, b;
51
52        max_rect.x = a = rect1->x;
53        b = rect2->x;
54        if( max_rect.x > b )
55            max_rect.x = b;
56
57        max_rect.width = a += rect1->width;
58        b += rect2->width;
59
60        if( max_rect.width < b )
61            max_rect.width = b;
62        max_rect.width -= max_rect.x;
63
64        max_rect.y = a = rect1->y;
65        b = rect2->y;
66        if( max_rect.y > b )
67            max_rect.y = b;
68
69        max_rect.height = a += rect1->height;
70        b += rect2->height;
71
72        if( max_rect.height < b )
73            max_rect.height = b;
74        max_rect.height -= max_rect.y;
75        return max_rect;
76    }
77    else if( rect1 )
78        return *rect1;
79    else if( rect2 )
80        return *rect2;
81    else
82        return cvRect(0,0,0,0);
83}
84
85
86CV_IMPL void
87cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
88{
89    CV_FUNCNAME( "cvBoxPoints" );
90
91    __BEGIN__;
92
93    double angle = box.angle*CV_PI/180.;
94    float a = (float)cos(angle)*0.5f;
95    float b = (float)sin(angle)*0.5f;
96
97    if( !pt )
98        CV_ERROR( CV_StsNullPtr, "NULL vertex array pointer" );
99
100    pt[0].x = box.center.x - a*box.size.height - b*box.size.width;
101    pt[0].y = box.center.y + b*box.size.height - a*box.size.width;
102    pt[1].x = box.center.x + a*box.size.height - b*box.size.width;
103    pt[1].y = box.center.y - b*box.size.height - a*box.size.width;
104    pt[2].x = 2*box.center.x - pt[0].x;
105    pt[2].y = 2*box.center.y - pt[0].y;
106    pt[3].x = 2*box.center.x - pt[1].x;
107    pt[3].y = 2*box.center.y - pt[1].y;
108
109    __END__;
110}
111
112
113int
114icvIntersectLines( double x1, double dx1, double y1, double dy1,
115                   double x2, double dx2, double y2, double dy2, double *t2 )
116{
117    double d = dx1 * dy2 - dx2 * dy1;
118    int result = -1;
119
120    if( d != 0 )
121    {
122        *t2 = ((x2 - x1) * dy1 - (y2 - y1) * dx1) / d;
123        result = 0;
124    }
125    return result;
126}
127
128
129void
130icvCreateCenterNormalLine( CvSubdiv2DEdge edge, double *_a, double *_b, double *_c )
131{
132    CvPoint2D32f org = cvSubdiv2DEdgeOrg( edge )->pt;
133    CvPoint2D32f dst = cvSubdiv2DEdgeDst( edge )->pt;
134
135    double a = dst.x - org.x;
136    double b = dst.y - org.y;
137    double c = -(a * (dst.x + org.x) + b * (dst.y + org.y));
138
139    *_a = a + a;
140    *_b = b + b;
141    *_c = c;
142}
143
144
145void
146icvIntersectLines3( double *a0, double *b0, double *c0,
147                    double *a1, double *b1, double *c1, CvPoint2D32f * point )
148{
149    double det = a0[0] * b1[0] - a1[0] * b0[0];
150
151    if( det != 0 )
152    {
153        det = 1. / det;
154        point->x = (float) ((b0[0] * c1[0] - b1[0] * c0[0]) * det);
155        point->y = (float) ((a1[0] * c0[0] - a0[0] * c1[0]) * det);
156    }
157    else
158    {
159        point->x = point->y = FLT_MAX;
160    }
161}
162
163
164CV_IMPL double
165cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
166{
167    double result = 0;
168    CV_FUNCNAME( "cvCheckPointPolygon" );
169
170    __BEGIN__;
171
172    CvSeqBlock block;
173    CvContour header;
174    CvSeq* contour = (CvSeq*)_contour;
175    CvSeqReader reader;
176    int i, total, counter = 0;
177    int is_float;
178    double min_dist_num = FLT_MAX, min_dist_denom = 1;
179    CvPoint ip = {0,0};
180
181    if( !CV_IS_SEQ(contour) )
182    {
183        CV_CALL( contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE + CV_SEQ_FLAG_CLOSED,
184                                              _contour, &header, &block ));
185    }
186    else if( CV_IS_SEQ_POLYGON(contour) )
187    {
188        if( contour->header_size == sizeof(CvContour) && !measure_dist )
189        {
190            CvRect r = ((CvContour*)contour)->rect;
191            if( pt.x < r.x || pt.y < r.y ||
192                pt.x >= r.x + r.width || pt.y >= r.y + r.height )
193                return -100;
194        }
195    }
196    else if( CV_IS_SEQ_CHAIN(contour) )
197    {
198        CV_ERROR( CV_StsBadArg,
199            "Chains are not supported. Convert them to polygonal representation using cvApproxChains()" );
200    }
201    else
202        CV_ERROR( CV_StsBadArg, "Input contour is neither a valid sequence nor a matrix" );
203
204    total = contour->total;
205    is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
206    cvStartReadSeq( contour, &reader, -1 );
207
208    if( !is_float && !measure_dist && (ip.x = cvRound(pt.x)) == pt.x && (ip.y = cvRound(pt.y)) == pt.y )
209    {
210        // the fastest "pure integer" branch
211        CvPoint v0, v;
212        CV_READ_SEQ_ELEM( v, reader );
213
214        for( i = 0; i < total; i++ )
215        {
216            int dist;
217            v0 = v;
218            CV_READ_SEQ_ELEM( v, reader );
219
220            if( (v0.y <= ip.y && v.y <= ip.y) ||
221                (v0.y > ip.y && v.y > ip.y) ||
222                (v0.x < ip.x && v.x < ip.x) )
223            {
224                if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
225                    ((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) )
226                    EXIT;
227                continue;
228            }
229
230            dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y);
231            if( dist == 0 )
232                EXIT;
233            if( v.y < v0.y )
234                dist = -dist;
235            counter += dist > 0;
236        }
237
238        result = counter % 2 == 0 ? -100 : 100;
239    }
240    else
241    {
242        CvPoint2D32f v0, v;
243        CvPoint iv;
244
245        if( is_float )
246        {
247            CV_READ_SEQ_ELEM( v, reader );
248        }
249        else
250        {
251            CV_READ_SEQ_ELEM( iv, reader );
252            v = cvPointTo32f( iv );
253        }
254
255        if( !measure_dist )
256        {
257            for( i = 0; i < total; i++ )
258            {
259                double dist;
260                v0 = v;
261                if( is_float )
262                {
263                    CV_READ_SEQ_ELEM( v, reader );
264                }
265                else
266                {
267                    CV_READ_SEQ_ELEM( iv, reader );
268                    v = cvPointTo32f( iv );
269                }
270
271                if( (v0.y <= pt.y && v.y <= pt.y) ||
272                    (v0.y > pt.y && v.y > pt.y) ||
273                    (v0.x < pt.x && v.x < pt.x) )
274                {
275                    if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
276                        ((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) )
277                        EXIT;
278                    continue;
279                }
280
281                dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y);
282                if( dist == 0 )
283                    EXIT;
284                if( v.y < v0.y )
285                    dist = -dist;
286                counter += dist > 0;
287            }
288
289            result = counter % 2 == 0 ? -100 : 100;
290        }
291        else
292        {
293            for( i = 0; i < total; i++ )
294            {
295                double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;
296
297                v0 = v;
298                if( is_float )
299                {
300                    CV_READ_SEQ_ELEM( v, reader );
301                }
302                else
303                {
304                    CV_READ_SEQ_ELEM( iv, reader );
305                    v = cvPointTo32f( iv );
306                }
307
308                dx = v.x - v0.x; dy = v.y - v0.y;
309                dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
310                dx2 = pt.x - v.x; dy2 = pt.y - v.y;
311
312                if( dx1*dx + dy1*dy <= 0 )
313                    dist_num = dx1*dx1 + dy1*dy1;
314                else if( dx2*dx + dy2*dy >= 0 )
315                    dist_num = dx2*dx2 + dy2*dy2;
316                else
317                {
318                    dist_num = (dy1*dx - dx1*dy);
319                    dist_num *= dist_num;
320                    dist_denom = dx*dx + dy*dy;
321                }
322
323                if( dist_num*min_dist_denom < min_dist_num*dist_denom )
324                {
325                    min_dist_num = dist_num;
326                    min_dist_denom = dist_denom;
327                    if( min_dist_num == 0 )
328                        break;
329                }
330
331                if( (v0.y <= pt.y && v.y <= pt.y) ||
332                    (v0.y > pt.y && v.y > pt.y) ||
333                    (v0.x < pt.x && v.x < pt.x) )
334                    continue;
335
336                dist_num = dy1*dx - dx1*dy;
337                if( dy < 0 )
338                    dist_num = -dist_num;
339                counter += dist_num > 0;
340            }
341
342            result = sqrt(min_dist_num/min_dist_denom);
343            if( counter % 2 == 0 )
344                result = -result;
345        }
346    }
347
348    __END__;
349
350    return result;
351}
352
353
354CV_IMPL void
355cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
356               CvMat *matrixQx, CvMat *matrixQy, CvMat *matrixQz,
357               CvPoint3D64f *eulerAngles)
358{
359    CV_FUNCNAME("cvRQDecomp3x3");
360    __BEGIN__;
361
362    double _M[3][3], _R[3][3], _Q[3][3];
363    CvMat M = cvMat(3, 3, CV_64F, _M);
364    CvMat R = cvMat(3, 3, CV_64F, _R);
365    CvMat Q = cvMat(3, 3, CV_64F, _Q);
366    double z, c, s;
367
368    /* Validate parameters. */
369    CV_ASSERT( CV_IS_MAT(matrixM) && CV_IS_MAT(matrixR) && CV_IS_MAT(matrixQ) &&
370        matrixM->cols == 3 && matrixM->rows == 3 &&
371        CV_ARE_SIZES_EQ(matrixM, matrixR) && CV_ARE_SIZES_EQ(matrixM, matrixQ));
372
373    cvConvert(matrixM, &M);
374
375    {
376    /* Find Givens rotation Q_x for x axis (left multiplication). */
377    /*
378         ( 1  0  0 )
379    Qx = ( 0  c  s ), c = m33/sqrt(m32^2 + m33^2), s = m32/sqrt(m32^2 + m33^2)
380         ( 0 -s  c )
381    */
382    s = _M[2][1];
383    c = _M[2][2];
384    z = 1./sqrt(c * c + s * s + DBL_EPSILON);
385    c *= z;
386    s *= z;
387
388    double _Qx[3][3] = { {1, 0, 0}, {0, c, s}, {0, -s, c} };
389    CvMat Qx = cvMat(3, 3, CV_64F, _Qx);
390
391    cvMatMul(&M, &Qx, &R);
392    assert(fabs(_R[2][1]) < FLT_EPSILON);
393    _R[2][1] = 0;
394
395    /* Find Givens rotation for y axis. */
396    /*
397         ( c  0  s )
398    Qy = ( 0  1  0 ), c = m33/sqrt(m31^2 + m33^2), s = m31/sqrt(m31^2 + m33^2)
399         (-s  0  c )
400    */
401    s = _R[2][0];
402    c = _R[2][2];
403    z = 1./sqrt(c * c + s * s + DBL_EPSILON);
404    c *= z;
405    s *= z;
406
407    double _Qy[3][3] = { {c, 0, s}, {0, 1, 0}, {-s, 0, c} };
408    CvMat Qy = cvMat(3, 3, CV_64F, _Qy);
409    cvMatMul(&R, &Qy, &M);
410
411    assert(fabs(_M[2][0]) < FLT_EPSILON);
412    _M[2][0] = 0;
413
414    /* Find Givens rotation for z axis. */
415    /*
416         ( c  s  0 )
417    Qz = (-s  c  0 ), c = m22/sqrt(m21^2 + m22^2), s = m21/sqrt(m21^2 + m22^2)
418         ( 0  0  1 )
419    */
420
421    s = _M[1][0];
422    c = _M[1][1];
423    z = 1./sqrt(c * c + s * s + DBL_EPSILON);
424    c *= z;
425    s *= z;
426
427    double _Qz[3][3] = { {c, s, 0}, {-s, c, 0}, {0, 0, 1} };
428    CvMat Qz = cvMat(3, 3, CV_64F, _Qz);
429
430    cvMatMul(&M, &Qz, &R);
431    assert(fabs(_R[1][0]) < FLT_EPSILON);
432    _R[1][0] = 0;
433
434    // Solve the decomposition ambiguity.
435    // Diagonal entries of R, except the last one, shall be positive.
436    // Further rotate R by 180 degree if necessary
437    if( _R[0][0] < 0 )
438    {
439        if( _R[1][1] < 0 )
440        {
441            // rotate around z for 180 degree, i.e. a rotation matrix of
442            // [-1,  0,  0],
443            // [ 0, -1,  0],
444            // [ 0,  0,  1]
445            _R[0][0] *= -1;
446            _R[0][1] *= -1;
447            _R[1][1] *= -1;
448
449            _Qz[0][0] *= -1;
450            _Qz[0][1] *= -1;
451            _Qz[1][0] *= -1;
452            _Qz[1][1] *= -1;
453        }
454        else
455        {
456            // rotate around y for 180 degree, i.e. a rotation matrix of
457            // [-1,  0,  0],
458            // [ 0,  1,  0],
459            // [ 0,  0, -1]
460            _R[0][0] *= -1;
461            _R[0][2] *= -1;
462            _R[1][2] *= -1;
463            _R[2][2] *= -1;
464
465            cvTranspose( &Qz, &Qz );
466
467            _Qy[0][0] *= -1;
468            _Qy[0][2] *= -1;
469            _Qy[2][0] *= -1;
470            _Qy[2][2] *= -1;
471        }
472    }
473    else if( _R[1][1] < 0 )
474    {
475        // ??? for some reason, we never get here ???
476
477        // rotate around x for 180 degree, i.e. a rotation matrix of
478        // [ 1,  0,  0],
479        // [ 0, -1,  0],
480        // [ 0,  0, -1]
481        _R[0][1] *= -1;
482        _R[0][2] *= -1;
483        _R[1][1] *= -1;
484        _R[1][2] *= -1;
485        _R[2][2] *= -1;
486
487        cvTranspose( &Qz, &Qz );
488        cvTranspose( &Qy, &Qy );
489
490        _Qx[1][1] *= -1;
491        _Qx[1][2] *= -1;
492        _Qx[2][1] *= -1;
493        _Qx[2][2] *= -1;
494    }
495
496    // calculate the euler angle
497    if( eulerAngles )
498    {
499        eulerAngles->x = acos(_Qx[1][1]) * (_Qx[1][2] >= 0 ? 1 : -1) * (180.0 / CV_PI);
500        eulerAngles->y = acos(_Qy[0][0]) * (_Qy[0][2] >= 0 ? 1 : -1) * (180.0 / CV_PI);
501        eulerAngles->z = acos(_Qz[0][0]) * (_Qz[0][1] >= 0 ? 1 : -1) * (180.0 / CV_PI);
502    }
503
504    /* Calulate orthogonal matrix. */
505    /*
506    Q = QzT * QyT * QxT
507    */
508    cvGEMM( &Qz, &Qy, 1, 0, 0, &M, CV_GEMM_A_T + CV_GEMM_B_T );
509    cvGEMM( &M, &Qx, 1, 0, 0, &Q, CV_GEMM_B_T );
510
511    /* Save R and Q matrices. */
512    cvConvert( &R, matrixR );
513    cvConvert( &Q, matrixQ );
514
515    if( matrixQx )
516        cvConvert(&Qx, matrixQx);
517    if( matrixQy )
518        cvConvert(&Qy, matrixQy);
519    if( matrixQz )
520        cvConvert(&Qz, matrixQz);
521    }
522
523    __END__;
524}
525
526
527CV_IMPL void
528cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
529                             CvMat *rotMatr, CvMat *posVect,
530                             CvMat *rotMatrX, CvMat *rotMatrY,
531                             CvMat *rotMatrZ, CvPoint3D64f *eulerAngles)
532{
533    CvMat *tmpProjMatr = 0;
534    CvMat *tmpMatrixD = 0;
535    CvMat *tmpMatrixV = 0;
536    CvMat *tmpMatrixM = 0;
537
538    CV_FUNCNAME("cvDecomposeProjectionMatrix");
539    __BEGIN__;
540
541    /* Validate parameters. */
542    if(projMatr == 0 || calibMatr == 0 || rotMatr == 0 || posVect == 0)
543        CV_ERROR(CV_StsNullPtr, "Some of parameters is a NULL pointer!");
544
545    if(!CV_IS_MAT(projMatr) || !CV_IS_MAT(calibMatr) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(posVect))
546        CV_ERROR(CV_StsUnsupportedFormat, "Input parameters must be a matrices!");
547
548    if(projMatr->cols != 4 || projMatr->rows != 3)
549        CV_ERROR(CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4!");
550
551    if(calibMatr->cols != 3 || calibMatr->rows != 3 || rotMatr->cols != 3 || rotMatr->rows != 3)
552        CV_ERROR(CV_StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!");
553
554    if(posVect->cols != 1 || posVect->rows != 4)
555        CV_ERROR(CV_StsUnmatchedSizes, "Size of position vector must be 4x1!");
556
557    CV_CALL(tmpProjMatr = cvCreateMat(4, 4, CV_64F));
558    CV_CALL(tmpMatrixD = cvCreateMat(4, 4, CV_64F));
559    CV_CALL(tmpMatrixV = cvCreateMat(4, 4, CV_64F));
560    CV_CALL(tmpMatrixM = cvCreateMat(3, 3, CV_64F));
561
562    /* Compute position vector. */
563
564    cvSetZero(tmpProjMatr); // Add zero row to make matrix square.
565    int i, k;
566    for(i = 0; i < 3; i++)
567        for(k = 0; k < 4; k++)
568            cvmSet(tmpProjMatr, i, k, cvmGet(projMatr, i, k));
569
570    CV_CALL(cvSVD(tmpProjMatr, tmpMatrixD, NULL, tmpMatrixV, CV_SVD_MODIFY_A + CV_SVD_V_T));
571
572    /* Save position vector. */
573
574    for(i = 0; i < 4; i++)
575        cvmSet(posVect, i, 0, cvmGet(tmpMatrixV, 3, i)); // Solution is last row of V.
576
577    /* Compute calibration and rotation matrices via RQ decomposition. */
578
579    cvGetCols(projMatr, tmpMatrixM, 0, 3); // M is first square matrix of P.
580
581    assert(cvDet(tmpMatrixM) != 0.0); // So far only finite cameras could be decomposed, so M has to be nonsingular [det(M) != 0].
582
583    CV_CALL(cvRQDecomp3x3(tmpMatrixM, calibMatr, rotMatr, rotMatrX, rotMatrY, rotMatrZ, eulerAngles));
584
585    __END__;
586
587    cvReleaseMat(&tmpProjMatr);
588    cvReleaseMat(&tmpMatrixD);
589    cvReleaseMat(&tmpMatrixV);
590    cvReleaseMat(&tmpMatrixM);
591}
592
593/* End of file. */
594