1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//         atenasio@google.com (Chris Atenasio) (ZigZag transform)
33//         wink@google.com (Wink Saville) (refactored from wire_format.h)
34//  Based on original Protocol Buffers design by
35//  Sanjay Ghemawat, Jeff Dean, and others.
36//
37// This header is logically internal, but is made public because it is used
38// from protocol-compiler-generated code, which may reside in other components.
39
40#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
41#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
42
43#include <string>
44#include <google/protobuf/stubs/common.h>
45#include <google/protobuf/message_lite.h>
46#include <google/protobuf/io/coded_stream.h>  // for CodedOutputStream::Varint32Size
47
48namespace google {
49
50namespace protobuf {
51  template <typename T> class RepeatedField;  // repeated_field.h
52}
53
54namespace protobuf {
55namespace internal {
56
57class StringPieceField;
58
59// This class is for internal use by the protocol buffer library and by
60// protocol-complier-generated message classes.  It must not be called
61// directly by clients.
62//
63// This class contains helpers for implementing the binary protocol buffer
64// wire format without the need for reflection. Use WireFormat when using
65// reflection.
66//
67// This class is really a namespace that contains only static methods.
68class LIBPROTOBUF_EXPORT WireFormatLite {
69 public:
70
71  // -----------------------------------------------------------------
72  // Helper constants and functions related to the format.  These are
73  // mostly meant for internal and generated code to use.
74
75  // The wire format is composed of a sequence of tag/value pairs, each
76  // of which contains the value of one field (or one element of a repeated
77  // field).  Each tag is encoded as a varint.  The lower bits of the tag
78  // identify its wire type, which specifies the format of the data to follow.
79  // The rest of the bits contain the field number.  Each type of field (as
80  // declared by FieldDescriptor::Type, in descriptor.h) maps to one of
81  // these wire types.  Immediately following each tag is the field's value,
82  // encoded in the format specified by the wire type.  Because the tag
83  // identifies the encoding of this data, it is possible to skip
84  // unrecognized fields for forwards compatibility.
85
86  enum WireType {
87    WIRETYPE_VARINT           = 0,
88    WIRETYPE_FIXED64          = 1,
89    WIRETYPE_LENGTH_DELIMITED = 2,
90    WIRETYPE_START_GROUP      = 3,
91    WIRETYPE_END_GROUP        = 4,
92    WIRETYPE_FIXED32          = 5,
93  };
94
95  // Lite alternative to FieldDescriptor::Type.  Must be kept in sync.
96  enum FieldType {
97    TYPE_DOUBLE         = 1,
98    TYPE_FLOAT          = 2,
99    TYPE_INT64          = 3,
100    TYPE_UINT64         = 4,
101    TYPE_INT32          = 5,
102    TYPE_FIXED64        = 6,
103    TYPE_FIXED32        = 7,
104    TYPE_BOOL           = 8,
105    TYPE_STRING         = 9,
106    TYPE_GROUP          = 10,
107    TYPE_MESSAGE        = 11,
108    TYPE_BYTES          = 12,
109    TYPE_UINT32         = 13,
110    TYPE_ENUM           = 14,
111    TYPE_SFIXED32       = 15,
112    TYPE_SFIXED64       = 16,
113    TYPE_SINT32         = 17,
114    TYPE_SINT64         = 18,
115    MAX_FIELD_TYPE      = 18,
116  };
117
118  // Lite alternative to FieldDescriptor::CppType.  Must be kept in sync.
119  enum CppType {
120    CPPTYPE_INT32       = 1,
121    CPPTYPE_INT64       = 2,
122    CPPTYPE_UINT32      = 3,
123    CPPTYPE_UINT64      = 4,
124    CPPTYPE_DOUBLE      = 5,
125    CPPTYPE_FLOAT       = 6,
126    CPPTYPE_BOOL        = 7,
127    CPPTYPE_ENUM        = 8,
128    CPPTYPE_STRING      = 9,
129    CPPTYPE_MESSAGE     = 10,
130    MAX_CPPTYPE         = 10,
131  };
132
133  // Helper method to get the CppType for a particular Type.
134  static CppType FieldTypeToCppType(FieldType type);
135
136  // Given a FieldSescriptor::Type return its WireType
137  static inline WireFormatLite::WireType WireTypeForFieldType(
138      WireFormatLite::FieldType type) {
139    return kWireTypeForFieldType[type];
140  }
141
142  // Number of bits in a tag which identify the wire type.
143  static const int kTagTypeBits = 3;
144  // Mask for those bits.
145  static const uint32 kTagTypeMask = (1 << kTagTypeBits) - 1;
146
147  // Helper functions for encoding and decoding tags.  (Inlined below and in
148  // _inl.h)
149  //
150  // This is different from MakeTag(field->number(), field->type()) in the case
151  // of packed repeated fields.
152  static uint32 MakeTag(int field_number, WireType type);
153  static WireType GetTagWireType(uint32 tag);
154  static int GetTagFieldNumber(uint32 tag);
155
156  // Compute the byte size of a tag.  For groups, this includes both the start
157  // and end tags.
158  static inline int TagSize(int field_number, WireFormatLite::FieldType type);
159
160  // Skips a field value with the given tag.  The input should start
161  // positioned immediately after the tag.  Skipped values are simply discarded,
162  // not recorded anywhere.  See WireFormat::SkipField() for a version that
163  // records to an UnknownFieldSet.
164  static bool SkipField(io::CodedInputStream* input, uint32 tag);
165
166  // Skips a field value with the given tag.  The input should start
167  // positioned immediately after the tag. Skipped values are recorded to a
168  // CodedOutputStream.
169  static bool SkipField(io::CodedInputStream* input, uint32 tag,
170                        io::CodedOutputStream* output);
171
172  // Reads and ignores a message from the input.  Skipped values are simply
173  // discarded, not recorded anywhere.  See WireFormat::SkipMessage() for a
174  // version that records to an UnknownFieldSet.
175  static bool SkipMessage(io::CodedInputStream* input);
176
177  // Reads and ignores a message from the input.  Skipped values are recorded
178  // to a CodedOutputStream.
179  static bool SkipMessage(io::CodedInputStream* input,
180                          io::CodedOutputStream* output);
181
182// This macro does the same thing as WireFormatLite::MakeTag(), but the
183// result is usable as a compile-time constant, which makes it usable
184// as a switch case or a template input.  WireFormatLite::MakeTag() is more
185// type-safe, though, so prefer it if possible.
186#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE)                  \
187  static_cast<uint32>(                                                   \
188    ((FIELD_NUMBER) << ::google::protobuf::internal::WireFormatLite::kTagTypeBits) \
189      | (TYPE))
190
191  // These are the tags for the old MessageSet format, which was defined as:
192  //   message MessageSet {
193  //     repeated group Item = 1 {
194  //       required int32 type_id = 2;
195  //       required string message = 3;
196  //     }
197  //   }
198  static const int kMessageSetItemNumber = 1;
199  static const int kMessageSetTypeIdNumber = 2;
200  static const int kMessageSetMessageNumber = 3;
201  static const int kMessageSetItemStartTag =
202    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
203                                WireFormatLite::WIRETYPE_START_GROUP);
204  static const int kMessageSetItemEndTag =
205    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
206                                WireFormatLite::WIRETYPE_END_GROUP);
207  static const int kMessageSetTypeIdTag =
208    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetTypeIdNumber,
209                                WireFormatLite::WIRETYPE_VARINT);
210  static const int kMessageSetMessageTag =
211    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetMessageNumber,
212                                WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
213
214  // Byte size of all tags of a MessageSet::Item combined.
215  static const int kMessageSetItemTagsSize;
216
217  // Helper functions for converting between floats/doubles and IEEE-754
218  // uint32s/uint64s so that they can be written.  (Assumes your platform
219  // uses IEEE-754 floats.)
220  static uint32 EncodeFloat(float value);
221  static float DecodeFloat(uint32 value);
222  static uint64 EncodeDouble(double value);
223  static double DecodeDouble(uint64 value);
224
225  // Helper functions for mapping signed integers to unsigned integers in
226  // such a way that numbers with small magnitudes will encode to smaller
227  // varints.  If you simply static_cast a negative number to an unsigned
228  // number and varint-encode it, it will always take 10 bytes, defeating
229  // the purpose of varint.  So, for the "sint32" and "sint64" field types,
230  // we ZigZag-encode the values.
231  static uint32 ZigZagEncode32(int32 n);
232  static int32  ZigZagDecode32(uint32 n);
233  static uint64 ZigZagEncode64(int64 n);
234  static int64  ZigZagDecode64(uint64 n);
235
236  // =================================================================
237  // Methods for reading/writing individual field.  The implementations
238  // of these methods are defined in wire_format_lite_inl.h; you must #include
239  // that file to use these.
240
241// Avoid ugly line wrapping
242#define input  io::CodedInputStream*  input_arg
243#define output io::CodedOutputStream* output_arg
244#define field_number int field_number_arg
245#define INL GOOGLE_ATTRIBUTE_ALWAYS_INLINE
246
247  // Read fields, not including tags.  The assumption is that you already
248  // read the tag to determine what field to read.
249
250  // For primitive fields, we just use a templatized routine parameterized by
251  // the represented type and the FieldType. These are specialized with the
252  // appropriate definition for each declared type.
253  template <typename CType, enum FieldType DeclaredType>
254  static inline bool ReadPrimitive(input, CType* value) INL;
255
256  // Reads repeated primitive values, with optimizations for repeats.
257  // tag_size and tag should both be compile-time constants provided by the
258  // protocol compiler.
259  template <typename CType, enum FieldType DeclaredType>
260  static inline bool ReadRepeatedPrimitive(int tag_size,
261                                           uint32 tag,
262                                           input,
263                                           RepeatedField<CType>* value) INL;
264
265  // Identical to ReadRepeatedPrimitive, except will not inline the
266  // implementation.
267  template <typename CType, enum FieldType DeclaredType>
268  static bool ReadRepeatedPrimitiveNoInline(int tag_size,
269                                            uint32 tag,
270                                            input,
271                                            RepeatedField<CType>* value);
272
273  // Reads a primitive value directly from the provided buffer. It returns a
274  // pointer past the segment of data that was read.
275  //
276  // This is only implemented for the types with fixed wire size, e.g.
277  // float, double, and the (s)fixed* types.
278  template <typename CType, enum FieldType DeclaredType>
279  static inline const uint8* ReadPrimitiveFromArray(const uint8* buffer,
280                                                    CType* value) INL;
281
282  // Reads a primitive packed field.
283  //
284  // This is only implemented for packable types.
285  template <typename CType, enum FieldType DeclaredType>
286  static inline bool ReadPackedPrimitive(input,
287                                         RepeatedField<CType>* value) INL;
288
289  // Identical to ReadPackedPrimitive, except will not inline the
290  // implementation.
291  template <typename CType, enum FieldType DeclaredType>
292  static bool ReadPackedPrimitiveNoInline(input, RepeatedField<CType>* value);
293
294  // Read a packed enum field. Values for which is_valid() returns false are
295  // dropped.
296  static bool ReadPackedEnumNoInline(input,
297                                     bool (*is_valid)(int),
298                                     RepeatedField<int>* value);
299
300  static bool ReadString(input, string* value);
301  static bool ReadBytes (input, string* value);
302
303  static inline bool ReadGroup  (field_number, input, MessageLite* value);
304  static inline bool ReadMessage(input, MessageLite* value);
305
306  // Like above, but de-virtualize the call to MergePartialFromCodedStream().
307  // The pointer must point at an instance of MessageType, *not* a subclass (or
308  // the subclass must not override MergePartialFromCodedStream()).
309  template<typename MessageType>
310  static inline bool ReadGroupNoVirtual(field_number, input,
311                                        MessageType* value);
312  template<typename MessageType>
313  static inline bool ReadMessageNoVirtual(input, MessageType* value);
314
315  // Write a tag.  The Write*() functions typically include the tag, so
316  // normally there's no need to call this unless using the Write*NoTag()
317  // variants.
318  static inline void WriteTag(field_number, WireType type, output) INL;
319
320  // Write fields, without tags.
321  static inline void WriteInt32NoTag   (int32 value, output) INL;
322  static inline void WriteInt64NoTag   (int64 value, output) INL;
323  static inline void WriteUInt32NoTag  (uint32 value, output) INL;
324  static inline void WriteUInt64NoTag  (uint64 value, output) INL;
325  static inline void WriteSInt32NoTag  (int32 value, output) INL;
326  static inline void WriteSInt64NoTag  (int64 value, output) INL;
327  static inline void WriteFixed32NoTag (uint32 value, output) INL;
328  static inline void WriteFixed64NoTag (uint64 value, output) INL;
329  static inline void WriteSFixed32NoTag(int32 value, output) INL;
330  static inline void WriteSFixed64NoTag(int64 value, output) INL;
331  static inline void WriteFloatNoTag   (float value, output) INL;
332  static inline void WriteDoubleNoTag  (double value, output) INL;
333  static inline void WriteBoolNoTag    (bool value, output) INL;
334  static inline void WriteEnumNoTag    (int value, output) INL;
335
336  // Write fields, including tags.
337  static void WriteInt32   (field_number,  int32 value, output);
338  static void WriteInt64   (field_number,  int64 value, output);
339  static void WriteUInt32  (field_number, uint32 value, output);
340  static void WriteUInt64  (field_number, uint64 value, output);
341  static void WriteSInt32  (field_number,  int32 value, output);
342  static void WriteSInt64  (field_number,  int64 value, output);
343  static void WriteFixed32 (field_number, uint32 value, output);
344  static void WriteFixed64 (field_number, uint64 value, output);
345  static void WriteSFixed32(field_number,  int32 value, output);
346  static void WriteSFixed64(field_number,  int64 value, output);
347  static void WriteFloat   (field_number,  float value, output);
348  static void WriteDouble  (field_number, double value, output);
349  static void WriteBool    (field_number,   bool value, output);
350  static void WriteEnum    (field_number,    int value, output);
351
352  static void WriteString(field_number, const string& value, output);
353  static void WriteBytes (field_number, const string& value, output);
354  static void WriteStringMaybeAliased(
355      field_number, const string& value, output);
356  static void WriteBytesMaybeAliased(
357      field_number, const string& value, output);
358
359  static void WriteGroup(
360    field_number, const MessageLite& value, output);
361  static void WriteMessage(
362    field_number, const MessageLite& value, output);
363  // Like above, but these will check if the output stream has enough
364  // space to write directly to a flat array.
365  static void WriteGroupMaybeToArray(
366    field_number, const MessageLite& value, output);
367  static void WriteMessageMaybeToArray(
368    field_number, const MessageLite& value, output);
369
370  // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
371  // pointer must point at an instance of MessageType, *not* a subclass (or
372  // the subclass must not override SerializeWithCachedSizes()).
373  template<typename MessageType>
374  static inline void WriteGroupNoVirtual(
375    field_number, const MessageType& value, output);
376  template<typename MessageType>
377  static inline void WriteMessageNoVirtual(
378    field_number, const MessageType& value, output);
379
380#undef output
381#define output uint8* target
382
383  // Like above, but use only *ToArray methods of CodedOutputStream.
384  static inline uint8* WriteTagToArray(field_number, WireType type, output) INL;
385
386  // Write fields, without tags.
387  static inline uint8* WriteInt32NoTagToArray   (int32 value, output) INL;
388  static inline uint8* WriteInt64NoTagToArray   (int64 value, output) INL;
389  static inline uint8* WriteUInt32NoTagToArray  (uint32 value, output) INL;
390  static inline uint8* WriteUInt64NoTagToArray  (uint64 value, output) INL;
391  static inline uint8* WriteSInt32NoTagToArray  (int32 value, output) INL;
392  static inline uint8* WriteSInt64NoTagToArray  (int64 value, output) INL;
393  static inline uint8* WriteFixed32NoTagToArray (uint32 value, output) INL;
394  static inline uint8* WriteFixed64NoTagToArray (uint64 value, output) INL;
395  static inline uint8* WriteSFixed32NoTagToArray(int32 value, output) INL;
396  static inline uint8* WriteSFixed64NoTagToArray(int64 value, output) INL;
397  static inline uint8* WriteFloatNoTagToArray   (float value, output) INL;
398  static inline uint8* WriteDoubleNoTagToArray  (double value, output) INL;
399  static inline uint8* WriteBoolNoTagToArray    (bool value, output) INL;
400  static inline uint8* WriteEnumNoTagToArray    (int value, output) INL;
401
402  // Write fields, including tags.
403  static inline uint8* WriteInt32ToArray(
404    field_number, int32 value, output) INL;
405  static inline uint8* WriteInt64ToArray(
406    field_number, int64 value, output) INL;
407  static inline uint8* WriteUInt32ToArray(
408    field_number, uint32 value, output) INL;
409  static inline uint8* WriteUInt64ToArray(
410    field_number, uint64 value, output) INL;
411  static inline uint8* WriteSInt32ToArray(
412    field_number, int32 value, output) INL;
413  static inline uint8* WriteSInt64ToArray(
414    field_number, int64 value, output) INL;
415  static inline uint8* WriteFixed32ToArray(
416    field_number, uint32 value, output) INL;
417  static inline uint8* WriteFixed64ToArray(
418    field_number, uint64 value, output) INL;
419  static inline uint8* WriteSFixed32ToArray(
420    field_number, int32 value, output) INL;
421  static inline uint8* WriteSFixed64ToArray(
422    field_number, int64 value, output) INL;
423  static inline uint8* WriteFloatToArray(
424    field_number, float value, output) INL;
425  static inline uint8* WriteDoubleToArray(
426    field_number, double value, output) INL;
427  static inline uint8* WriteBoolToArray(
428    field_number, bool value, output) INL;
429  static inline uint8* WriteEnumToArray(
430    field_number, int value, output) INL;
431
432  static inline uint8* WriteStringToArray(
433    field_number, const string& value, output) INL;
434  static inline uint8* WriteBytesToArray(
435    field_number, const string& value, output) INL;
436
437  static inline uint8* WriteGroupToArray(
438      field_number, const MessageLite& value, output) INL;
439  static inline uint8* WriteMessageToArray(
440      field_number, const MessageLite& value, output) INL;
441
442  // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
443  // pointer must point at an instance of MessageType, *not* a subclass (or
444  // the subclass must not override SerializeWithCachedSizes()).
445  template<typename MessageType>
446  static inline uint8* WriteGroupNoVirtualToArray(
447    field_number, const MessageType& value, output) INL;
448  template<typename MessageType>
449  static inline uint8* WriteMessageNoVirtualToArray(
450    field_number, const MessageType& value, output) INL;
451
452#undef output
453#undef input
454#undef INL
455
456#undef field_number
457
458  // Compute the byte size of a field.  The XxSize() functions do NOT include
459  // the tag, so you must also call TagSize().  (This is because, for repeated
460  // fields, you should only call TagSize() once and multiply it by the element
461  // count, but you may have to call XxSize() for each individual element.)
462  static inline int Int32Size   ( int32 value);
463  static inline int Int64Size   ( int64 value);
464  static inline int UInt32Size  (uint32 value);
465  static inline int UInt64Size  (uint64 value);
466  static inline int SInt32Size  ( int32 value);
467  static inline int SInt64Size  ( int64 value);
468  static inline int EnumSize    (   int value);
469
470  // These types always have the same size.
471  static const int kFixed32Size  = 4;
472  static const int kFixed64Size  = 8;
473  static const int kSFixed32Size = 4;
474  static const int kSFixed64Size = 8;
475  static const int kFloatSize    = 4;
476  static const int kDoubleSize   = 8;
477  static const int kBoolSize     = 1;
478
479  static inline int StringSize(const string& value);
480  static inline int BytesSize (const string& value);
481
482  static inline int GroupSize  (const MessageLite& value);
483  static inline int MessageSize(const MessageLite& value);
484
485  // Like above, but de-virtualize the call to ByteSize().  The
486  // pointer must point at an instance of MessageType, *not* a subclass (or
487  // the subclass must not override ByteSize()).
488  template<typename MessageType>
489  static inline int GroupSizeNoVirtual  (const MessageType& value);
490  template<typename MessageType>
491  static inline int MessageSizeNoVirtual(const MessageType& value);
492
493  // Given the length of data, calculate the byte size of the data on the
494  // wire if we encode the data as a length delimited field.
495  static inline int LengthDelimitedSize(int length);
496
497 private:
498  // A helper method for the repeated primitive reader. This method has
499  // optimizations for primitive types that have fixed size on the wire, and
500  // can be read using potentially faster paths.
501  template <typename CType, enum FieldType DeclaredType>
502  static inline bool ReadRepeatedFixedSizePrimitive(
503      int tag_size,
504      uint32 tag,
505      google::protobuf::io::CodedInputStream* input,
506      RepeatedField<CType>* value) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
507
508  // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
509  template <typename CType, enum FieldType DeclaredType>
510  static inline bool ReadPackedFixedSizePrimitive(
511      google::protobuf::io::CodedInputStream* input,
512      RepeatedField<CType>* value) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
513
514  static const CppType kFieldTypeToCppTypeMap[];
515  static const WireFormatLite::WireType kWireTypeForFieldType[];
516
517  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
518};
519
520// A class which deals with unknown values.  The default implementation just
521// discards them.  WireFormat defines a subclass which writes to an
522// UnknownFieldSet.  This class is used by ExtensionSet::ParseField(), since
523// ExtensionSet is part of the lite library but UnknownFieldSet is not.
524class LIBPROTOBUF_EXPORT FieldSkipper {
525 public:
526  FieldSkipper() {}
527  virtual ~FieldSkipper() {}
528
529  // Skip a field whose tag has already been consumed.
530  virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
531
532  // Skip an entire message or group, up to an end-group tag (which is consumed)
533  // or end-of-stream.
534  virtual bool SkipMessage(io::CodedInputStream* input);
535
536  // Deal with an already-parsed unrecognized enum value.  The default
537  // implementation does nothing, but the UnknownFieldSet-based implementation
538  // saves it as an unknown varint.
539  virtual void SkipUnknownEnum(int field_number, int value);
540};
541
542// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.
543
544class LIBPROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
545 public:
546  explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
547      : unknown_fields_(unknown_fields) {}
548  virtual ~CodedOutputStreamFieldSkipper() {}
549
550  // implements FieldSkipper -----------------------------------------
551  virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
552  virtual bool SkipMessage(io::CodedInputStream* input);
553  virtual void SkipUnknownEnum(int field_number, int value);
554
555 protected:
556  io::CodedOutputStream* unknown_fields_;
557};
558
559
560// inline methods ====================================================
561
562inline WireFormatLite::CppType
563WireFormatLite::FieldTypeToCppType(FieldType type) {
564  return kFieldTypeToCppTypeMap[type];
565}
566
567inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) {
568  return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
569}
570
571inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) {
572  return static_cast<WireType>(tag & kTagTypeMask);
573}
574
575inline int WireFormatLite::GetTagFieldNumber(uint32 tag) {
576  return static_cast<int>(tag >> kTagTypeBits);
577}
578
579inline int WireFormatLite::TagSize(int field_number,
580                                   WireFormatLite::FieldType type) {
581  int result = io::CodedOutputStream::VarintSize32(
582    field_number << kTagTypeBits);
583  if (type == TYPE_GROUP) {
584    // Groups have both a start and an end tag.
585    return result * 2;
586  } else {
587    return result;
588  }
589}
590
591inline uint32 WireFormatLite::EncodeFloat(float value) {
592  union {float f; uint32 i;};
593  f = value;
594  return i;
595}
596
597inline float WireFormatLite::DecodeFloat(uint32 value) {
598  union {float f; uint32 i;};
599  i = value;
600  return f;
601}
602
603inline uint64 WireFormatLite::EncodeDouble(double value) {
604  union {double f; uint64 i;};
605  f = value;
606  return i;
607}
608
609inline double WireFormatLite::DecodeDouble(uint64 value) {
610  union {double f; uint64 i;};
611  i = value;
612  return f;
613}
614
615// ZigZag Transform:  Encodes signed integers so that they can be
616// effectively used with varint encoding.
617//
618// varint operates on unsigned integers, encoding smaller numbers into
619// fewer bytes.  If you try to use it on a signed integer, it will treat
620// this number as a very large unsigned integer, which means that even
621// small signed numbers like -1 will take the maximum number of bytes
622// (10) to encode.  ZigZagEncode() maps signed integers to unsigned
623// in such a way that those with a small absolute value will have smaller
624// encoded values, making them appropriate for encoding using varint.
625//
626//       int32 ->     uint32
627// -------------------------
628//           0 ->          0
629//          -1 ->          1
630//           1 ->          2
631//          -2 ->          3
632//         ... ->        ...
633//  2147483647 -> 4294967294
634// -2147483648 -> 4294967295
635//
636//        >> encode >>
637//        << decode <<
638
639inline uint32 WireFormatLite::ZigZagEncode32(int32 n) {
640  // Note:  the right-shift must be arithmetic
641  return (n << 1) ^ (n >> 31);
642}
643
644inline int32 WireFormatLite::ZigZagDecode32(uint32 n) {
645  return (n >> 1) ^ -static_cast<int32>(n & 1);
646}
647
648inline uint64 WireFormatLite::ZigZagEncode64(int64 n) {
649  // Note:  the right-shift must be arithmetic
650  return (n << 1) ^ (n >> 63);
651}
652
653inline int64 WireFormatLite::ZigZagDecode64(uint64 n) {
654  return (n >> 1) ^ -static_cast<int64>(n & 1);
655}
656
657}  // namespace internal
658}  // namespace protobuf
659
660}  // namespace google
661#endif  // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
662