1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkScanPriv.h"
11#include "SkPath.h"
12#include "SkMatrix.h"
13#include "SkBlitter.h"
14#include "SkRegion.h"
15#include "SkAntiRun.h"
16
17#define SHIFT   2
18#define SCALE   (1 << SHIFT)
19#define MASK    (SCALE - 1)
20
21/** @file
22    We have two techniques for capturing the output of the supersampler:
23    - SUPERMASK, which records a large mask-bitmap
24        this is often faster for small, complex objects
25    - RLE, which records a rle-encoded scanline
26        this is often faster for large objects with big spans
27
28    These blitters use two coordinate systems:
29    - destination coordinates, scale equal to the output - often
30        abbreviated with 'i' or 'I' in variable names
31    - supersampled coordinates, scale equal to the output * SCALE
32 */
33
34//#define FORCE_SUPERMASK
35//#define FORCE_RLE
36
37///////////////////////////////////////////////////////////////////////////////
38
39/// Base class for a single-pass supersampled blitter.
40class BaseSuperBlitter : public SkBlitter {
41public:
42    BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
43                     const SkRegion& clip, bool isInverse);
44
45    /// Must be explicitly defined on subclasses.
46    virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
47                           const int16_t runs[]) override {
48        SkDEBUGFAIL("How did I get here?");
49    }
50    /// May not be called on BaseSuperBlitter because it blits out of order.
51    void blitV(int x, int y, int height, SkAlpha alpha) override {
52        SkDEBUGFAIL("How did I get here?");
53    }
54
55protected:
56    SkBlitter*  fRealBlitter;
57    /// Current y coordinate, in destination coordinates.
58    int         fCurrIY;
59    /// Widest row of region to be blitted, in destination coordinates.
60    int         fWidth;
61    /// Leftmost x coordinate in any row, in destination coordinates.
62    int         fLeft;
63    /// Leftmost x coordinate in any row, in supersampled coordinates.
64    int         fSuperLeft;
65
66    SkDEBUGCODE(int fCurrX;)
67    /// Current y coordinate in supersampled coordinates.
68    int fCurrY;
69    /// Initial y coordinate (top of bounds).
70    int fTop;
71
72    SkIRect fSectBounds;
73};
74
75BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlit, const SkIRect& ir, const SkRegion& clip,
76                                   bool isInverse) {
77    fRealBlitter = realBlit;
78
79    SkIRect sectBounds;
80    if (isInverse) {
81        // We use the clip bounds instead of the ir, since we may be asked to
82        //draw outside of the rect when we're a inverse filltype
83        sectBounds = clip.getBounds();
84    } else {
85        if (!sectBounds.intersect(ir, clip.getBounds())) {
86            sectBounds.setEmpty();
87        }
88    }
89
90    const int left = sectBounds.left();
91    const int right = sectBounds.right();
92
93    fLeft = left;
94    fSuperLeft = left << SHIFT;
95    fWidth = right - left;
96    fTop = sectBounds.top();
97    fCurrIY = fTop - 1;
98    fCurrY = (fTop << SHIFT) - 1;
99
100    SkDEBUGCODE(fCurrX = -1;)
101}
102
103/// Run-length-encoded supersampling antialiased blitter.
104class SuperBlitter : public BaseSuperBlitter {
105public:
106    SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, bool isInverse);
107
108    virtual ~SuperBlitter() {
109        this->flush();
110    }
111
112    /// Once fRuns contains a complete supersampled row, flush() blits
113    /// it out through the wrapped blitter.
114    void flush();
115
116    /// Blits a row of pixels, with location and width specified
117    /// in supersampled coordinates.
118    void blitH(int x, int y, int width) override;
119    /// Blits a rectangle of pixels, with location and size specified
120    /// in supersampled coordinates.
121    void blitRect(int x, int y, int width, int height) override;
122
123private:
124    // The next three variables are used to track a circular buffer that
125    // contains the values used in SkAlphaRuns. These variables should only
126    // ever be updated in advanceRuns(), and fRuns should always point to
127    // a valid SkAlphaRuns...
128    int         fRunsToBuffer;
129    void*       fRunsBuffer;
130    int         fCurrentRun;
131    SkAlphaRuns fRuns;
132
133    // extra one to store the zero at the end
134    int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
135
136    // This function updates the fRuns variable to point to the next buffer space
137    // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
138    // and resets fRuns to point to an empty scanline.
139    void advanceRuns() {
140        const size_t kRunsSz = this->getRunsSz();
141        fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
142        fRuns.fRuns = reinterpret_cast<int16_t*>(
143            reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
144        fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
145        fRuns.reset(fWidth);
146    }
147
148    int         fOffsetX;
149};
150
151SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
152                           bool isInverse)
153        : BaseSuperBlitter(realBlitter, ir, clip, isInverse)
154{
155    fRunsToBuffer = realBlitter->requestRowsPreserved();
156    fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
157    fCurrentRun = -1;
158
159    this->advanceRuns();
160
161    fOffsetX = 0;
162}
163
164void SuperBlitter::flush() {
165    if (fCurrIY >= fTop) {
166
167        SkASSERT(fCurrentRun < fRunsToBuffer);
168        if (!fRuns.empty()) {
169            // SkDEBUGCODE(fRuns.dump();)
170            fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
171            this->advanceRuns();
172            fOffsetX = 0;
173        }
174
175        fCurrIY = fTop - 1;
176        SkDEBUGCODE(fCurrX = -1;)
177    }
178}
179
180/** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
181    *accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
182    to produce a final value in [0, 255] and handles clamping 256->255
183    itself, with the same (alpha - (alpha >> 8)) correction as
184    coverage_to_exact_alpha().
185*/
186static inline int coverage_to_partial_alpha(int aa) {
187    aa <<= 8 - 2*SHIFT;
188    return aa;
189}
190
191/** coverage_to_exact_alpha() is being used by our blitter, which wants
192    a final value in [0, 255].
193*/
194static inline int coverage_to_exact_alpha(int aa) {
195    int alpha = (256 >> SHIFT) * aa;
196    // clamp 256->255
197    return alpha - (alpha >> 8);
198}
199
200void SuperBlitter::blitH(int x, int y, int width) {
201    SkASSERT(width > 0);
202
203    int iy = y >> SHIFT;
204    SkASSERT(iy >= fCurrIY);
205
206    x -= fSuperLeft;
207    // hack, until I figure out why my cubics (I think) go beyond the bounds
208    if (x < 0) {
209        width += x;
210        x = 0;
211    }
212
213#ifdef SK_DEBUG
214    SkASSERT(y != fCurrY || x >= fCurrX);
215#endif
216    SkASSERT(y >= fCurrY);
217    if (fCurrY != y) {
218        fOffsetX = 0;
219        fCurrY = y;
220    }
221
222    if (iy != fCurrIY) {  // new scanline
223        this->flush();
224        fCurrIY = iy;
225    }
226
227    int start = x;
228    int stop = x + width;
229
230    SkASSERT(start >= 0 && stop > start);
231    // integer-pixel-aligned ends of blit, rounded out
232    int fb = start & MASK;
233    int fe = stop & MASK;
234    int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
235
236    if (n < 0) {
237        fb = fe - fb;
238        n = 0;
239        fe = 0;
240    } else {
241        if (fb == 0) {
242            n += 1;
243        } else {
244            fb = SCALE - fb;
245        }
246    }
247
248    fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
249                         n, coverage_to_partial_alpha(fe),
250                         (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
251                         fOffsetX);
252
253#ifdef SK_DEBUG
254    fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
255    fCurrX = x + width;
256#endif
257}
258
259#if 0 // UNUSED
260static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
261                               int n, U8CPU riteA) {
262    SkASSERT(leftA <= 0xFF);
263    SkASSERT(riteA <= 0xFF);
264
265    int16_t* run = runs.fRuns;
266    uint8_t* aa = runs.fAlpha;
267
268    if (ileft > 0) {
269        run[0] = ileft;
270        aa[0] = 0;
271        run += ileft;
272        aa += ileft;
273    }
274
275    SkASSERT(leftA < 0xFF);
276    if (leftA > 0) {
277        *run++ = 1;
278        *aa++ = leftA;
279    }
280
281    if (n > 0) {
282        run[0] = n;
283        aa[0] = 0xFF;
284        run += n;
285        aa += n;
286    }
287
288    SkASSERT(riteA < 0xFF);
289    if (riteA > 0) {
290        *run++ = 1;
291        *aa++ = riteA;
292    }
293    run[0] = 0;
294}
295#endif
296
297void SuperBlitter::blitRect(int x, int y, int width, int height) {
298    SkASSERT(width > 0);
299    SkASSERT(height > 0);
300
301    // blit leading rows
302    while ((y & MASK)) {
303        this->blitH(x, y++, width);
304        if (--height <= 0) {
305            return;
306        }
307    }
308    SkASSERT(height > 0);
309
310    // Since this is a rect, instead of blitting supersampled rows one at a
311    // time and then resolving to the destination canvas, we can blit
312    // directly to the destintion canvas one row per SCALE supersampled rows.
313    int start_y = y >> SHIFT;
314    int stop_y = (y + height) >> SHIFT;
315    int count = stop_y - start_y;
316    if (count > 0) {
317        y += count << SHIFT;
318        height -= count << SHIFT;
319
320        // save original X for our tail blitH() loop at the bottom
321        int origX = x;
322
323        x -= fSuperLeft;
324        // hack, until I figure out why my cubics (I think) go beyond the bounds
325        if (x < 0) {
326            width += x;
327            x = 0;
328        }
329
330        // There is always a left column, a middle, and a right column.
331        // ileft is the destination x of the first pixel of the entire rect.
332        // xleft is (SCALE - # of covered supersampled pixels) in that
333        // destination pixel.
334        int ileft = x >> SHIFT;
335        int xleft = x & MASK;
336        // irite is the destination x of the last pixel of the OPAQUE section.
337        // xrite is the number of supersampled pixels extending beyond irite;
338        // xrite/SCALE should give us alpha.
339        int irite = (x + width) >> SHIFT;
340        int xrite = (x + width) & MASK;
341        if (!xrite) {
342            xrite = SCALE;
343            irite--;
344        }
345
346        // Need to call flush() to clean up pending draws before we
347        // even consider blitV(), since otherwise it can look nonmonotonic.
348        SkASSERT(start_y > fCurrIY);
349        this->flush();
350
351        int n = irite - ileft - 1;
352        if (n < 0) {
353            // If n < 0, we'll only have a single partially-transparent column
354            // of pixels to render.
355            xleft = xrite - xleft;
356            SkASSERT(xleft <= SCALE);
357            SkASSERT(xleft > 0);
358            xrite = 0;
359            fRealBlitter->blitV(ileft + fLeft, start_y, count,
360                coverage_to_exact_alpha(xleft));
361        } else {
362            // With n = 0, we have two possibly-transparent columns of pixels
363            // to render; with n > 0, we have opaque columns between them.
364
365            xleft = SCALE - xleft;
366
367            // Using coverage_to_exact_alpha is not consistent with blitH()
368            const int coverageL = coverage_to_exact_alpha(xleft);
369            const int coverageR = coverage_to_exact_alpha(xrite);
370
371            SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
372            SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);
373
374            fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
375                                       coverageL, coverageR);
376        }
377
378        // preamble for our next call to blitH()
379        fCurrIY = stop_y - 1;
380        fOffsetX = 0;
381        fCurrY = y - 1;
382        fRuns.reset(fWidth);
383        x = origX;
384    }
385
386    // catch any remaining few rows
387    SkASSERT(height <= MASK);
388    while (--height >= 0) {
389        this->blitH(x, y++, width);
390    }
391}
392
393///////////////////////////////////////////////////////////////////////////////
394
395/// Masked supersampling antialiased blitter.
396class MaskSuperBlitter : public BaseSuperBlitter {
397public:
398    MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion&, bool isInverse);
399    virtual ~MaskSuperBlitter() {
400        fRealBlitter->blitMask(fMask, fClipRect);
401    }
402
403    void blitH(int x, int y, int width) override;
404
405    static bool CanHandleRect(const SkIRect& bounds) {
406#ifdef FORCE_RLE
407        return false;
408#endif
409        int width = bounds.width();
410        int64_t rb = SkAlign4(width);
411        // use 64bits to detect overflow
412        int64_t storage = rb * bounds.height();
413
414        return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
415               (storage <= MaskSuperBlitter::kMAX_STORAGE);
416    }
417
418private:
419    enum {
420#ifdef FORCE_SUPERMASK
421        kMAX_WIDTH = 2048,
422        kMAX_STORAGE = 1024 * 1024 * 2
423#else
424        kMAX_WIDTH = 32,    // so we don't try to do very wide things, where the RLE blitter would be faster
425        kMAX_STORAGE = 1024
426#endif
427    };
428
429    SkMask      fMask;
430    SkIRect     fClipRect;
431    // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
432    // perform a test to see if stopAlpha != 0
433    uint32_t    fStorage[(kMAX_STORAGE >> 2) + 1];
434};
435
436MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
437                                   bool isInverse)
438    : BaseSuperBlitter(realBlitter, ir, clip, isInverse)
439{
440    SkASSERT(CanHandleRect(ir));
441    SkASSERT(!isInverse);
442
443    fMask.fImage    = (uint8_t*)fStorage;
444    fMask.fBounds   = ir;
445    fMask.fRowBytes = ir.width();
446    fMask.fFormat   = SkMask::kA8_Format;
447
448    fClipRect = ir;
449    if (!fClipRect.intersect(clip.getBounds())) {
450        SkASSERT(0);
451        fClipRect.setEmpty();
452    }
453
454    // For valgrind, write 1 extra byte at the end so we don't read
455    // uninitialized memory. See comment in add_aa_span and fStorage[].
456    memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
457}
458
459static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
460    /*  I should be able to just add alpha[x] + startAlpha.
461        However, if the trailing edge of the previous span and the leading
462        edge of the current span round to the same super-sampled x value,
463        I might overflow to 256 with this add, hence the funny subtract.
464    */
465    unsigned tmp = *alpha + startAlpha;
466    SkASSERT(tmp <= 256);
467    *alpha = SkToU8(tmp - (tmp >> 8));
468}
469
470static inline uint32_t quadplicate_byte(U8CPU value) {
471    uint32_t pair = (value << 8) | value;
472    return (pair << 16) | pair;
473}
474
475// Perform this tricky subtract, to avoid overflowing to 256. Our caller should
476// only ever call us with at most enough to hit 256 (never larger), so it is
477// enough to just subtract the high-bit. Actually clamping with a branch would
478// be slower (e.g. if (tmp > 255) tmp = 255;)
479//
480static inline void saturated_add(uint8_t* ptr, U8CPU add) {
481    unsigned tmp = *ptr + add;
482    SkASSERT(tmp <= 256);
483    *ptr = SkToU8(tmp - (tmp >> 8));
484}
485
486// minimum count before we want to setup an inner loop, adding 4-at-a-time
487#define MIN_COUNT_FOR_QUAD_LOOP  16
488
489static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
490                        U8CPU stopAlpha, U8CPU maxValue) {
491    SkASSERT(middleCount >= 0);
492
493    saturated_add(alpha, startAlpha);
494    alpha += 1;
495
496    if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
497        // loop until we're quad-byte aligned
498        while (SkTCast<intptr_t>(alpha) & 0x3) {
499            alpha[0] = SkToU8(alpha[0] + maxValue);
500            alpha += 1;
501            middleCount -= 1;
502        }
503
504        int bigCount = middleCount >> 2;
505        uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
506        uint32_t qval = quadplicate_byte(maxValue);
507        do {
508            *qptr++ += qval;
509        } while (--bigCount > 0);
510
511        middleCount &= 3;
512        alpha = reinterpret_cast<uint8_t*> (qptr);
513        // fall through to the following while-loop
514    }
515
516    while (--middleCount >= 0) {
517        alpha[0] = SkToU8(alpha[0] + maxValue);
518        alpha += 1;
519    }
520
521    // potentially this can be off the end of our "legal" alpha values, but that
522    // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
523    // every time (slow), we just do it, and ensure that we've allocated extra space
524    // (see the + 1 comment in fStorage[]
525    saturated_add(alpha, stopAlpha);
526}
527
528void MaskSuperBlitter::blitH(int x, int y, int width) {
529    int iy = (y >> SHIFT);
530
531    SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
532    iy -= fMask.fBounds.fTop;   // make it relative to 0
533
534    // This should never happen, but it does.  Until the true cause is
535    // discovered, let's skip this span instead of crashing.
536    // See http://crbug.com/17569.
537    if (iy < 0) {
538        return;
539    }
540
541#ifdef SK_DEBUG
542    {
543        int ix = x >> SHIFT;
544        SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
545    }
546#endif
547
548    x -= (fMask.fBounds.fLeft << SHIFT);
549
550    // hack, until I figure out why my cubics (I think) go beyond the bounds
551    if (x < 0) {
552        width += x;
553        x = 0;
554    }
555
556    uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
557
558    int start = x;
559    int stop = x + width;
560
561    SkASSERT(start >= 0 && stop > start);
562    int fb = start & MASK;
563    int fe = stop & MASK;
564    int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
565
566
567    if (n < 0) {
568        SkASSERT(row >= fMask.fImage);
569        SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
570        add_aa_span(row, coverage_to_partial_alpha(fe - fb));
571    } else {
572        fb = SCALE - fb;
573        SkASSERT(row >= fMask.fImage);
574        SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
575        add_aa_span(row,  coverage_to_partial_alpha(fb),
576                    n, coverage_to_partial_alpha(fe),
577                    (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
578    }
579
580#ifdef SK_DEBUG
581    fCurrX = x + width;
582#endif
583}
584
585///////////////////////////////////////////////////////////////////////////////
586
587static bool fitsInsideLimit(const SkRect& r, SkScalar max) {
588    const SkScalar min = -max;
589    return  r.fLeft > min && r.fTop > min &&
590            r.fRight < max && r.fBottom < max;
591}
592
593static int overflows_short_shift(int value, int shift) {
594    const int s = 16 + shift;
595    return (value << s >> s) - value;
596}
597
598/**
599  Would any of the coordinates of this rectangle not fit in a short,
600  when left-shifted by shift?
601*/
602static int rect_overflows_short_shift(SkIRect rect, int shift) {
603    SkASSERT(!overflows_short_shift(8191, SHIFT));
604    SkASSERT(overflows_short_shift(8192, SHIFT));
605    SkASSERT(!overflows_short_shift(32767, 0));
606    SkASSERT(overflows_short_shift(32768, 0));
607
608    // Since we expect these to succeed, we bit-or together
609    // for a tiny extra bit of speed.
610    return overflows_short_shift(rect.fLeft, SHIFT) |
611           overflows_short_shift(rect.fRight, SHIFT) |
612           overflows_short_shift(rect.fTop, SHIFT) |
613           overflows_short_shift(rect.fBottom, SHIFT);
614}
615
616static bool safeRoundOut(const SkRect& src, SkIRect* dst, int32_t maxInt) {
617    const SkScalar maxScalar = SkIntToScalar(maxInt);
618
619    if (fitsInsideLimit(src, maxScalar)) {
620        src.roundOut(dst);
621        return true;
622    }
623    return false;
624}
625
626void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
627                          SkBlitter* blitter, bool forceRLE) {
628    if (origClip.isEmpty()) {
629        return;
630    }
631
632    const bool isInverse = path.isInverseFillType();
633    SkIRect ir;
634
635    if (!safeRoundOut(path.getBounds(), &ir, SK_MaxS32 >> SHIFT)) {
636#if 0
637        const SkRect& r = path.getBounds();
638        SkDebugf("--- bounds can't fit in SkIRect\n", r.fLeft, r.fTop, r.fRight, r.fBottom);
639#endif
640        return;
641    }
642    if (ir.isEmpty()) {
643        if (isInverse) {
644            blitter->blitRegion(origClip);
645        }
646        return;
647    }
648
649    // If the intersection of the path bounds and the clip bounds
650    // will overflow 32767 when << by SHIFT, we can't supersample,
651    // so draw without antialiasing.
652    SkIRect clippedIR;
653    if (isInverse) {
654       // If the path is an inverse fill, it's going to fill the entire
655       // clip, and we care whether the entire clip exceeds our limits.
656       clippedIR = origClip.getBounds();
657    } else {
658       if (!clippedIR.intersect(ir, origClip.getBounds())) {
659           return;
660       }
661    }
662    if (rect_overflows_short_shift(clippedIR, SHIFT)) {
663        SkScan::FillPath(path, origClip, blitter);
664        return;
665    }
666
667    // Our antialiasing can't handle a clip larger than 32767, so we restrict
668    // the clip to that limit here. (the runs[] uses int16_t for its index).
669    //
670    // A more general solution (one that could also eliminate the need to
671    // disable aa based on ir bounds (see overflows_short_shift) would be
672    // to tile the clip/target...
673    SkRegion tmpClipStorage;
674    const SkRegion* clipRgn = &origClip;
675    {
676        static const int32_t kMaxClipCoord = 32767;
677        const SkIRect& bounds = origClip.getBounds();
678        if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
679            SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
680            tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
681            clipRgn = &tmpClipStorage;
682        }
683    }
684    // for here down, use clipRgn, not origClip
685
686    SkScanClipper   clipper(blitter, clipRgn, ir);
687    const SkIRect*  clipRect = clipper.getClipRect();
688
689    if (clipper.getBlitter() == NULL) { // clipped out
690        if (isInverse) {
691            blitter->blitRegion(*clipRgn);
692        }
693        return;
694    }
695
696    // now use the (possibly wrapped) blitter
697    blitter = clipper.getBlitter();
698
699    if (isInverse) {
700        sk_blit_above(blitter, ir, *clipRgn);
701    }
702
703    SkIRect superRect, *superClipRect = NULL;
704
705    if (clipRect) {
706        superRect.set(  clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT,
707                        clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT);
708        superClipRect = &superRect;
709    }
710
711    SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
712
713    // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
714    // if we're an inverse filltype
715    if (!isInverse && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
716        MaskSuperBlitter    superBlit(blitter, ir, *clipRgn, isInverse);
717        SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
718        sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
719    } else {
720        SuperBlitter    superBlit(blitter, ir, *clipRgn, isInverse);
721        sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
722    }
723
724    if (isInverse) {
725        sk_blit_below(blitter, ir, *clipRgn);
726    }
727}
728
729///////////////////////////////////////////////////////////////////////////////
730
731#include "SkRasterClip.h"
732
733void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip,
734                          SkBlitter* blitter) {
735    if (clip.isEmpty()) {
736        return;
737    }
738
739    if (clip.isBW()) {
740        FillPath(path, clip.bwRgn(), blitter);
741    } else {
742        SkRegion        tmp;
743        SkAAClipBlitter aaBlitter;
744
745        tmp.setRect(clip.getBounds());
746        aaBlitter.init(blitter, &clip.aaRgn());
747        SkScan::FillPath(path, tmp, &aaBlitter);
748    }
749}
750
751void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
752                          SkBlitter* blitter) {
753    if (clip.isEmpty()) {
754        return;
755    }
756
757    if (clip.isBW()) {
758        AntiFillPath(path, clip.bwRgn(), blitter);
759    } else {
760        SkRegion        tmp;
761        SkAAClipBlitter aaBlitter;
762
763        tmp.setRect(clip.getBounds());
764        aaBlitter.init(blitter, &clip.aaRgn());
765        SkScan::AntiFillPath(path, tmp, &aaBlitter, true);
766    }
767}
768