1/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
2 * Use of this source code is governed by a BSD-style license that can be
3 * found in the LICENSE file.
4 */
5
6/* APIs provided by firmware to vboot_reference.
7 *
8 * General notes:
9 *
10 * All verified boot functions now start with "Vb" for namespace clarity.  This
11 * fixes the problem where uboot and vboot both defined assert().
12 *
13 * Verified boot APIs to be implemented by the calling firmware and exported to
14 * vboot_reference start with "VbEx".
15 *
16 * TODO: split this file into a vboot_entry_points.h file which contains the
17 * entry points for the firmware to call vboot_reference, and a
18 * vboot_firmware_exports.h which contains the APIs to be implemented by the
19 * calling firmware and exported to vboot_reference.
20 */
21
22#ifndef VBOOT_REFERENCE_VBOOT_API_H_
23#define VBOOT_REFERENCE_VBOOT_API_H_
24#include <stdint.h>
25#include <stdlib.h>
26
27/*****************************************************************************/
28/* Error codes */
29
30/*
31 * Functions which return an error all return this type.  This is a 32-bit
32 * value rather than an int so it's consistent across UEFI, which is 32-bit
33 * during PEI and 64-bit during DXE/BDS.
34 */
35typedef uint32_t VbError_t;
36
37/*
38 * Predefined error numbers.  Success is 0.  Errors are non-zero, but differ
39 * between functions.  For example, the TPM functions may pass through TPM
40 * error codes, some of which may be recoverable.
41 */
42enum VbErrorPredefined_t {
43	/* No error; function completed successfully. */
44	VBERROR_SUCCESS                       = 0,
45
46	/*
47	 * The verified boot entry points VbInit(), VbSelectFirmware(),
48	 * VbSelectAndLoadKernel() may return the following errors.
49	 */
50	/* Unknown error */
51	VBERROR_UNKNOWN                       = 0x10000,
52	/* Unable to initialize shared data */
53	VBERROR_INIT_SHARED_DATA              = 0x10001,
54	/* Error resuming TPM during a S3 resume */
55	VBERROR_TPM_S3_RESUME                 = 0x10002,
56	/* VbSelectFirmware() failed to find a valid firmware */
57	VBERROR_LOAD_FIRMWARE                 = 0x10003,
58	/* Unable to write firmware versions to TPM */
59	VBERROR_TPM_WRITE_FIRMWARE            = 0x10004,
60	/* Unable to lock firmware versions in TPM */
61	VBERROR_TPM_LOCK_FIRMWARE             = 0x10005,
62	/* Unable to set boot mode state in TPM */
63	VBERROR_TPM_SET_BOOT_MODE_STATE       = 0x10006,
64	/* TPM requires reboot */
65	VBERROR_TPM_REBOOT_REQUIRED           = 0x10007,
66	/* Unable to set up TPM */
67	VBERROR_TPM_FIRMWARE_SETUP            = 0x10008,
68	/* Unable to read kernel versions from TPM */
69	VBERROR_TPM_READ_KERNEL               = 0x10009,
70	/* Attempt to load developer-only firmware with developer switch off */
71	VBERROR_DEV_FIRMWARE_SWITCH_MISMATCH  = 0x1000A,
72	/* Unable to write kernel versions to TPM */
73	VBERROR_TPM_WRITE_KERNEL              = 0x1000B,
74	/* Unable to lock kernel versions in TPM */
75	VBERROR_TPM_LOCK_KERNEL               = 0x1000C,
76	/* Calling firmware requested shutdown via VbExIsShutdownRequested() */
77	VBERROR_SHUTDOWN_REQUESTED            = 0x1000D,
78	/* Unable to find a boot device on which to look for a kernel */
79	VBERROR_NO_DISK_FOUND                 = 0x1000E,
80	/* No OS kernel found on any boot device */
81	VBERROR_NO_KERNEL_FOUND               = 0x1000F,
82	/* All OS kernels found were invalid (corrupt, improperly signed...) */
83	VBERROR_INVALID_KERNEL_FOUND          = 0x10010,
84	/* VbSelectAndLoadKernel() requested recovery mode */
85	VBERROR_LOAD_KERNEL_RECOVERY          = 0x10011,
86	/* Other error inside VbSelectAndLoadKernel() */
87	VBERROR_LOAD_KERNEL                   = 0x10012,
88	/* Invalid Google binary block */
89	VBERROR_INVALID_GBB                   = 0x10013,
90	/* Invalid bitmap volume */
91	VBERROR_INVALID_BMPFV                 = 0x10014,
92	/* Invalid screen index */
93	VBERROR_INVALID_SCREEN_INDEX          = 0x10015,
94	/* Simulated (test) error */
95	VBERROR_SIMULATED                     = 0x10016,
96	/* Invalid parameter */
97	VBERROR_INVALID_PARAMETER             = 0x10017,
98	/* VbExBeep() can't make sounds at all */
99	VBERROR_NO_SOUND                      = 0x10018,
100	/* VbExBeep() can't make sound in the background */
101	VBERROR_NO_BACKGROUND_SOUND           = 0x10019,
102	/* Developer has requested a BIOS shell */
103	VBERROR_BIOS_SHELL_REQUESTED          = 0x10020,
104	/* Need VGA and don't have it, or vice-versa */
105	VBERROR_VGA_OPROM_MISMATCH            = 0x10021,
106	/* Need EC to reboot to read-only code */
107	VBERROR_EC_REBOOT_TO_RO_REQUIRED      = 0x10022,
108	/* Invalid region read parameters */
109	VBERROR_REGION_READ_INVALID           = 0x10023,
110	/* Cannot read from region */
111	VBERROR_REGION_READ_FAILED            = 0x10024,
112	/* Unsupported region type */
113	VBERROR_UNSUPPORTED_REGION            = 0x10025,
114	/* No image present (returned from VbGbbReadImage() for missing image) */
115	VBERROR_NO_IMAGE_PRESENT              = 0x10026,
116
117	/* VbExEcGetExpectedRWHash() may return the following codes */
118	/* Compute expected RW hash from the EC image; BIOS doesn't have it */
119	VBERROR_EC_GET_EXPECTED_HASH_FROM_IMAGE = 0x20000,
120};
121
122
123/*****************************************************************************/
124/* Main entry points from firmware into vboot_reference */
125
126/*
127 * Minimum and recommended size of shared_data_blob in bytes.  Shared data blob
128 * is used to communicate data between calls to VbInit(), VbSelectFirmware(),
129 * the OS.  Minimum size is enough to hold all required data for verified boot
130 * but may not be able to hold debug output.
131 */
132#define VB_SHARED_DATA_MIN_SIZE 3072
133#define VB_SHARED_DATA_REC_SIZE 16384
134
135/*
136 * Data passed by firmware to VbInit(), VbSelectFirmware() and
137 * VbSelectAndLoadKernel().
138 *
139 * Note that in UEFI, these are called by different phases in different
140 * processor modes (VbInit() and VbSelectFirmware() = 32-bit PEI,
141 * VbSelectAndLoadKernel() = 64-bit BDS), so the data may be at a different
142 * location between calls.
143 */
144typedef struct VbCommonParams {
145	/* Pointer to GBB data */
146	void *gbb_data;
147	/* Size of GBB data in bytes */
148	uint32_t gbb_size;
149
150	/*
151	 * Shared data blob for data shared between verified boot entry points.
152	 * This should be at least VB_SHARED_DATA_MIN_SIZE bytes long, and
153	 * ideally is VB_SHARED_DATA_REC_SIZE bytes long.
154	 */
155	/* Pointer to shared data blob buffer */
156	void *shared_data_blob;
157	/*
158	 * On input, set to size of shared data blob buffer, in bytes.  On
159	 * output, this will contain the actual data size placed into the
160	 * buffer.
161	 */
162	uint32_t shared_data_size;
163
164	/*
165	 * Internal context/data for verified boot, to maintain state during
166	 * calls to other API functions such as VbExHashFirmwareBody().
167	 * Allocated and freed inside the entry point; firmware should not look
168	 * at this.
169	 */
170	void *vboot_context;
171
172	/*
173	 * Internal context/data for firmware / VbExHashFirmwareBody().  Needed
174	 * because the PEI phase of UEFI boot runs out of ROM and thus can't
175	 * modify global variables; everything needs to get passed around on
176	 * the stack.
177	 */
178	void *caller_context;
179
180	/* For internal use of Vboot - do not examine or modify! */
181	struct GoogleBinaryBlockHeader *gbb;
182	struct BmpBlockHeader *bmp;
183} VbCommonParams;
184
185/* Flags for VbInitParams.flags */
186/* Developer switch was on at boot time. */
187#define VB_INIT_FLAG_DEV_SWITCH_ON       0x00000001
188/* Recovery button was pressed at boot time. */
189#define VB_INIT_FLAG_REC_BUTTON_PRESSED  0x00000002
190/* Hardware write protect was enabled at boot time. */
191#define VB_INIT_FLAG_WP_ENABLED          0x00000004
192/* This is a S3 resume, not a normal boot. */
193#define VB_INIT_FLAG_S3_RESUME           0x00000008
194/*
195 * Previous boot attempt failed for reasons external to verified boot (RAM
196 * init failure, SSD missing, etc.).
197 *
198 * TODO: add a field to VbInitParams which holds a reason code, and report
199 * that via VbSharedData.
200 */
201#define VB_INIT_FLAG_PREVIOUS_BOOT_FAIL  0x00000010
202/*
203 * Calling firmware supports read only firmware for normal/developer boot path.
204 */
205#define VB_INIT_FLAG_RO_NORMAL_SUPPORT   0x00000020
206/*
207 * This platform does not have a physical dev-switch, so we must rely on a
208 * virtual switch (kept in the TPM) instead. When this flag is set,
209 * VB_INIT_FLAG_DEV_SWITCH_ON is ignored.
210 */
211#define VB_INIT_FLAG_VIRTUAL_DEV_SWITCH  0x00000040
212/* Set when the VGA Option ROM has been loaded already. */
213#define VB_INIT_FLAG_OPROM_LOADED        0x00000080
214/* Set if we care about the VGA Option ROM - some platforms don't. */
215#define VB_INIT_FLAG_OPROM_MATTERS       0x00000100
216/* EC on this platform supports EC software sync. */
217#define VB_INIT_FLAG_EC_SOFTWARE_SYNC    0x00000200
218/* EC on this platform is slow to update. */
219#define VB_INIT_FLAG_EC_SLOW_UPDATE      0x00000400
220/*
221 * Software write protect was enabled at boot time. This is separate from the
222 * HW write protect. Both must be set for flash write protection to work.
223 */
224#define VB_INIT_FLAG_SW_WP_ENABLED       0x00000800
225/*
226 * This platform does not have a physical recovery switch which, when present,
227 * can (and should) be used for additional physical presence checks.
228 */
229#define VB_INIT_FLAG_VIRTUAL_REC_SWITCH  0x00001000
230/* Set when we are calling VbInit() before loading Option ROMs */
231#define VB_INIT_FLAG_BEFORE_OPROM_LOAD   0x00002000
232
233/*
234 * Output flags for VbInitParams.out_flags.  Used to indicate potential boot
235 * paths and configuration to the calling firmware early in the boot process,
236 * so that it can properly configure itself for the capabilities subsequently
237 * required by VbSelectFirmware() and VbSelectAndLoadKernel().
238 */
239/*
240 * Enable recovery path.  Do not rely on any rewritable data (cached RAM
241 * timings, etc.).  Reliable operation is more important than boot speed.
242 */
243#define VB_INIT_OUT_ENABLE_RECOVERY      0x00000001
244/* RAM must be cleared before calling VbSelectFirmware(). */
245#define VB_INIT_OUT_CLEAR_RAM            0x00000002
246/*
247 * Load display drivers; VbExDisplay*() functions may be called.  If this flag
248 * is not present, VbExDisplay*() functions will not be called this boot.
249 */
250#define VB_INIT_OUT_ENABLE_DISPLAY       0x00000004
251/*
252 * Load USB storage drivers; VbExDisk*() functions may be called with the
253 * VB_DISK_FLAG_REMOVABLE flag.  If this flag is not present, VbExDisk*()
254 * functions will only be called for fixed disks.
255 */
256#define VB_INIT_OUT_ENABLE_USB_STORAGE   0x00000008
257/* If this is a S3 resume, do a debug reset boot instead */
258#define VB_INIT_OUT_S3_DEBUG_BOOT        0x00000010
259/* BIOS should load any PCI option ROMs it finds, not just internal video */
260#define VB_INIT_OUT_ENABLE_OPROM         0x00000020
261/* BIOS may be asked to boot something other than ChromeOS */
262#define VB_INIT_OUT_ENABLE_ALTERNATE_OS  0x00000040
263/* Enable developer path. */
264#define VB_INIT_OUT_ENABLE_DEVELOPER     0x00000080
265
266/* Data only used by VbInit() */
267typedef struct VbInitParams {
268	/* Inputs to VbInit() */
269	/* Flags (see VB_INIT_FLAG_*) */
270	uint32_t flags;
271
272	/* Outputs from VbInit(); valid only if it returns success. */
273	/* Output flags for firmware; see VB_INIT_OUT_*) */
274	uint32_t out_flags;
275} VbInitParams;
276
277/*
278 * Firmware types for VbHashFirmwareBody() and
279 * VbSelectFirmwareParams.selected_firmware.  Note that we store these in a
280 * uint32_t because enum maps to int, which isn't fixed-size.
281 */
282enum VbSelectFirmware_t {
283	/* Recovery mode */
284	VB_SELECT_FIRMWARE_RECOVERY = 0,
285	/* Rewritable firmware A/B for normal or developer path */
286	VB_SELECT_FIRMWARE_A = 1,
287	VB_SELECT_FIRMWARE_B = 2,
288	/* Read only firmware for normal or developer path. */
289	VB_SELECT_FIRMWARE_READONLY = 3,
290        VB_SELECT_FIRMWARE_COUNT,
291};
292
293/* Data only used by VbSelectFirmware() */
294typedef struct VbSelectFirmwareParams {
295	/* Inputs to VbSelectFirmware() */
296	/* Key block + preamble for firmware A */
297	void *verification_block_A;
298	/* Key block + preamble for firmware B */
299	void *verification_block_B;
300	/* Verification block A size in bytes */
301	uint32_t verification_size_A;
302	/* Verification block B size in bytes */
303	uint32_t verification_size_B;
304
305	/* Outputs from VbSelectFirmware(); valid only if it returns success. */
306	/* Main firmware to run; see VB_SELECT_FIRMWARE_*. */
307	uint32_t selected_firmware;
308} VbSelectFirmwareParams;
309
310/*
311 * We use disk handles rather than indices.  Using indices causes problems if
312 * a disk is removed/inserted in the middle of processing.
313 */
314typedef void *VbExDiskHandle_t;
315
316/* Data used only by VbSelectAndLoadKernel() */
317typedef struct VbSelectAndLoadKernelParams {
318	/* Inputs to VbSelectAndLoadKernel() */
319	/* Destination buffer for kernel (normally at 0x100000 on x86) */
320	void *kernel_buffer;
321	/* Size of kernel buffer in bytes */
322	uint32_t kernel_buffer_size;
323
324	/*
325	 * Outputs from VbSelectAndLoadKernel(); valid only if it returns
326	 * success.
327	 */
328	/* Handle of disk containing loaded kernel */
329	VbExDiskHandle_t disk_handle;
330	/* Partition number on disk to boot (1...M) */
331	uint32_t partition_number;
332	/* Address of bootloader image in RAM */
333	uint64_t bootloader_address;
334	/* Size of bootloader image in bytes */
335	uint32_t bootloader_size;
336	/* UniquePartitionGuid for boot partition */
337	uint8_t partition_guid[16];
338	/* Flags passed in by signer */
339	uint32_t flags;
340	/*
341	 * TODO: in H2C, all that pretty much just gets passed to the
342	 * bootloader as KernelBootloaderOptions, though the disk handle is
343	 * passed as an index instead of a handle.  Is that used anymore now
344	 * that we're passing partition_guid?
345	 */
346} VbSelectAndLoadKernelParams;
347
348/**
349 * Initialize the verified boot library.
350 *
351 * Returns VBERROR_SUCCESS if success, non-zero if error; on error,
352 * caller should reboot.
353 */
354VbError_t VbInit(VbCommonParams *cparams, VbInitParams *iparams);
355
356/**
357 * Select the main firmware.
358 *
359 * Returns VBERROR_SUCCESS if success, non-zero if error; on error,
360 * caller should reboot.
361 *
362 * NOTE: This is now called in all modes, including recovery.  Previously,
363 * LoadFirmware() was not called in recovery mode, which meant that
364 * LoadKernel() needed to duplicate the TPM and VbSharedData initialization
365 * code.
366 */
367VbError_t VbSelectFirmware(VbCommonParams *cparams,
368                           VbSelectFirmwareParams *fparams);
369
370/**
371 * Update the data hash for the current firmware image, extending it by [size]
372 * bytes stored in [*data].  This function must only be called inside
373 * VbExHashFirmwareBody(), which is in turn called by VbSelectFirmware().
374 */
375void VbUpdateFirmwareBodyHash(VbCommonParams *cparams,
376                              uint8_t *data, uint32_t size);
377
378/**
379 * Select and loads the kernel.
380 *
381 * Returns VBERROR_SUCCESS if success, non-zero if error; on error, caller
382 * should reboot. */
383VbError_t VbSelectAndLoadKernel(VbCommonParams *cparams,
384                                VbSelectAndLoadKernelParams *kparams);
385
386/*****************************************************************************/
387/* Debug output (from utility.h) */
388
389/**
390 * Output an error message and quit.  Does not return.  Supports
391 * printf()-style formatting.
392 */
393void VbExError(const char *format, ...);
394
395/**
396 * Output a debug message.  Supports printf()-style formatting.
397 */
398void VbExDebug(const char *format, ...)
399	__attribute__ ((format (__printf__, 1, 2)));
400
401/*****************************************************************************/
402/* Memory (from utility.h) */
403
404/**
405 * Allocate [size] bytes and return a pointer to the allocated memory. Abort
406 * on error; this always either returns a good pointer or never returns.
407 *
408 * If any of the firmware API implementations require aligned data (for
409 * example, disk access on ARM), all pointers returned by VbExMalloc() must
410 * also be aligned.
411 */
412void *VbExMalloc(size_t size);
413
414/**
415 * Free memory pointed to by [ptr] previously allocated by VbExMalloc().
416 */
417void VbExFree(void *ptr);
418
419/*****************************************************************************/
420/* Timer and delay (first two from utility.h) */
421
422/**
423 * Read a high-resolution timer.  Returns the current timer value in arbitrary
424 * units.
425 *
426 * This is intended for benchmarking, so this call MUST be fast.  The timer
427 * frequency must be >1 KHz (preferably >1 MHz), and the timer must not wrap
428 * around for at least 10 minutes.  It is preferable (but not required) that
429 * the timer be initialized to 0 at boot.
430 *
431 * It is assumed that the firmware has some other way of communicating the
432 * timer frequency to the OS.  For example, on x86 we use TSC, and the OS
433 * kernel reports the initial TSC value at kernel-start and calculates the
434 * frequency. */
435uint64_t VbExGetTimer(void);
436
437/**
438 * Delay for at least the specified number of milliseconds.  Should be accurate
439 * to within 10% (a requested delay of 1000 ms should result in an actual delay
440 * of between 1000 - 1100 ms).
441 */
442void VbExSleepMs(uint32_t msec);
443
444/**
445 * Play a beep tone of the specified frequency in Hz and duration in msec.
446 * This is effectively a VbSleep() variant that makes noise.
447 *
448 * If the audio codec can run in the background, then:
449 *   zero frequency means OFF, non-zero frequency means ON
450 *   zero msec means return immediately, non-zero msec means delay (and
451 *     then OFF if needed)
452 * otherwise,
453 *   non-zero msec and non-zero frequency means ON, delay, OFF, return
454 *   zero msec or zero frequency means do nothing and return immediately
455 *
456 * The return value is used by the caller to determine the capabilities. The
457 * implementation should always do the best it can if it cannot fully support
458 * all features - for example, beeping at a fixed frequency if frequency
459 * support is not available.  At a minimum, it must delay for the specified
460 * non-zero duration.
461 */
462VbError_t VbExBeep(uint32_t msec, uint32_t frequency);
463
464/*****************************************************************************/
465/* TPM (from tlcl_stub.h) */
466
467/**
468 * Initialize the stub library. */
469VbError_t VbExTpmInit(void);
470
471/**
472 * Close and open the device.  This is needed for running more complex commands
473 * at user level, such as TPM_TakeOwnership, since the TPM device can be opened
474 * only by one process at a time.
475 */
476VbError_t VbExTpmClose(void);
477VbError_t VbExTpmOpen(void);
478
479/**
480 * Send a request_length-byte request to the TPM and receive a response.  On
481 * input, response_length is the size of the response buffer in bytes.  On
482 * exit, response_length is set to the actual received response length in
483 * bytes. */
484VbError_t VbExTpmSendReceive(const uint8_t *request, uint32_t request_length,
485                             uint8_t *response, uint32_t *response_length);
486
487/*****************************************************************************/
488/* Non-volatile storage */
489
490#define VBNV_BLOCK_SIZE 16  /* Size of NV storage block in bytes */
491
492/**
493 * Read the VBNV_BLOCK_SIZE-byte non-volatile storage into buf.
494 */
495VbError_t VbExNvStorageRead(uint8_t *buf);
496
497/**
498 * Write the VBNV_BLOCK_SIZE-byte non-volatile storage from buf.
499 */
500VbError_t VbExNvStorageWrite(const uint8_t *buf);
501
502/*****************************************************************************/
503/* Firmware / EEPROM access (previously in load_firmware_fw.h) */
504
505/**
506 * Calculate the hash of the firmware body data for [firmware_index], which is
507 * either VB_SELECT_FIRMWARE_A or VB_SELECT_FIRMWARE B.
508 *
509 * This function must call VbUpdateFirmwareBodyHash() before returning, to
510 * update the secure hash for the firmware image.  For best performance, the
511 * implementation should call VbUpdateFirmwareBodyHash() periodically during
512 * the read, so that updating the hash can be pipelined with the read.  If the
513 * reader cannot update the hash during the read process, it should call
514 * VbUpdateFirmwareBodyHash() on the entire firmware data after the read,
515 * before returning.
516 *
517 * It is recommended that the firmware use this call to copy the requested
518 * firmware body from EEPROM into RAM, so that it doesn't need to do a second
519 * slow copy from EEPROM to RAM if this firmware body is selected.
520 *
521 * Note this function doesn't actually pass the firmware body data to verified
522 * boot, because verified boot doesn't actually need the firmware body, just
523 * its hash.  This is important on x86, where the firmware is stored
524 * compressed.  We hash the compressed data, but the BIOS decompresses it
525 * during read.  Simply updating a hash is compatible with the x86
526 * read-and-decompress pipeline.
527 */
528VbError_t VbExHashFirmwareBody(VbCommonParams *cparams,
529                               uint32_t firmware_index);
530
531/*****************************************************************************/
532/* Disk access (previously in boot_device.h) */
533
534/* Flags for VbDisk APIs */
535/* Disk is removable.  Example removable disks: SD cards, USB keys.  */
536#define VB_DISK_FLAG_REMOVABLE 0x00000001
537/*
538 * Disk is fixed.  If this flag is present, disk is internal to the system and
539 * not removable.  Example fixed disks: internal SATA SSD, eMMC.
540 */
541#define VB_DISK_FLAG_FIXED     0x00000002
542/*
543 * Note that VB_DISK_FLAG_REMOVABLE and VB_DISK_FLAG_FIXED are
544 * mutually-exclusive for a single disk.  VbExDiskGetInfo() may specify both
545 * flags to request disks of both types in a single call.
546 *
547 * At some point we could specify additional flags, but we don't currently
548 * have a way to make use of these:
549 *
550 * USB              Device is known to be attached to USB.  Note that the SD
551 *                  card reader inside x86 systems is attached to USB so this
552 *                  isn't super useful.
553 * SD               Device is known to be a SD card.  Note that external card
554 *                  readers might not return this information, so also of
555 *                  questionable use.
556 * READ_ONLY        Device is known to be read-only.  Could be used by recovery
557 *                  when processing read-only recovery image.
558 */
559
560/*
561 * Disks are used in two ways:
562 * - As a random-access device to read and write the GPT
563 * - As a streaming device to read the kernel
564 * These are implemented differently on raw NAND vs eMMC/SATA/USB
565 * - On eMMC/SATA/USB, both of these refer to the same underlying
566 *   storage, so they have the same size and LBA size. In this case,
567 *   the GPT should not point to the same address as itself.
568 * - On raw NAND, the GPT is held on a portion of the SPI flash.
569 *   Random access GPT operations refer to the SPI and streaming
570 *   operations refer to NAND. The GPT may therefore point into
571 *   the same offsets as itself.
572 * These types are distinguished by the following flag and VbDiskInfo
573 * has separate fields to describe the random-access ("GPT") and
574 * streaming aspects of the disk. If a disk is random-access (i.e.
575 * not raw NAND) then these fields are equal.
576 */
577#define VB_DISK_FLAG_EXTERNAL_GPT	0x00000004
578
579/* Information on a single disk */
580typedef struct VbDiskInfo {
581	/* Disk handle */
582	VbExDiskHandle_t handle;
583	/* Size of a random-access LBA sector in bytes */
584	uint64_t bytes_per_lba;
585	/* Number of random-access LBA sectors on the device.
586	 * If streaming_lba_count is 0, this stands in for the size of the
587	 * randomly accessed portion as well as the streaming portion.
588	 * Otherwise, this is only the randomly-accessed portion. */
589	uint64_t lba_count;
590	/* Number of streaming sectors on the device */
591	uint64_t streaming_lba_count;
592	/* Flags (see VB_DISK_FLAG_* constants) */
593	uint32_t flags;
594	/*
595	 * Optional name string, for use in debugging.  May be empty or null if
596	 * not available.
597	 */
598	const char *name;
599} VbDiskInfo;
600
601/**
602 * Store information into [info] for all disks (storage devices) attached to
603 * the system which match all of the disk_flags.
604 *
605 * On output, count indicates how many disks are present, and [infos_ptr]
606 * points to a [count]-sized array of VbDiskInfo structs with the information
607 * on those disks; this pointer must be freed by calling VbExDiskFreeInfo().
608 * If count=0, infos_ptr may point to NULL.  If [infos_ptr] points to NULL
609 * because count=0 or error, it is not necessary to call VbExDiskFreeInfo().
610 *
611 * A multi-function device (such as a 4-in-1 card reader) should provide
612 * multiple disk handles.
613 *
614 * The firmware must not alter or free the list pointed to by [infos_ptr] until
615 * VbExDiskFreeInfo() is called.
616 */
617VbError_t VbExDiskGetInfo(VbDiskInfo **infos_ptr, uint32_t *count,
618                          uint32_t disk_flags);
619
620/**
621 * Free a disk information list [infos] previously returned by
622 * VbExDiskGetInfo().  If [preserve_handle] != NULL, the firmware must ensure
623 * that handle remains valid after this call; all other handles from the info
624 * list need not remain valid after this call.
625 */
626VbError_t VbExDiskFreeInfo(VbDiskInfo *infos,
627                           VbExDiskHandle_t preserve_handle);
628
629/**
630 * Read lba_count LBA sectors, starting at sector lba_start, from the disk,
631 * into the buffer.
632 *
633 * This is used for random access to the GPT. It is not for the partition
634 * contents. The upper limit is lba_count.
635 *
636 * If the disk handle is invalid (for example, the handle refers to a disk
637 * which as been removed), the function must return error but must not
638 * crash.
639 */
640VbError_t VbExDiskRead(VbExDiskHandle_t handle, uint64_t lba_start,
641                       uint64_t lba_count, void *buffer);
642
643/**
644 * Write lba_count LBA sectors, starting at sector lba_start, to the disk, from
645 * the buffer.
646 *
647 * This is used for random access to the GPT. It does not (necessarily) access
648 * the streaming portion of the device.
649 *
650 * If the disk handle is invalid (for example, the handle refers to a disk
651 * which as been removed), the function must return error but must not
652 * crash.
653 */
654VbError_t VbExDiskWrite(VbExDiskHandle_t handle, uint64_t lba_start,
655                        uint64_t lba_count, const void *buffer);
656
657/* Streaming read interface */
658typedef void *VbExStream_t;
659
660/**
661 * Open a stream on a disk
662 *
663 * @param handle	Disk to open the stream against
664 * @param lba_start	Starting sector offset within the disk to stream from
665 * @param lba_count	Maximum extent of the stream in sectors
666 * @param stream	out-paramter for the generated stream
667 *
668 * @return Error code, or VBERROR_SUCCESS.
669 *
670 * This is used for access to the contents of the actual partitions on the
671 * device. It is not used to access the GPT. The size of the content addressed
672 * is within streaming_lba_count.
673 */
674VbError_t VbExStreamOpen(VbExDiskHandle_t handle, uint64_t lba_start,
675			 uint64_t lba_count, VbExStream_t *stream_ptr);
676
677/**
678 * Read from a stream on a disk
679 *
680 * @param stream	Stream to read from
681 * @param bytes		Number of bytes to read
682 * @param buffer	Destination to read into
683 *
684 * @return Error code, or VBERROR_SUCCESS. Failure to read as much data as
685 * requested is an error.
686 *
687 * This is used for access to the contents of the actual partitions on the
688 * device. It is not used to access the GPT.
689 */
690VbError_t VbExStreamRead(VbExStream_t stream, uint32_t bytes, void *buffer);
691
692/**
693 * Close a stream
694 *
695 * @param stream	Stream to close
696 */
697void VbExStreamClose(VbExStream_t stream);
698
699
700/*****************************************************************************/
701/* Display */
702
703/* Predefined (default) screens for VbExDisplayScreen(). */
704enum VbScreenType_t {
705	/* Blank (clear) screen */
706	VB_SCREEN_BLANK = 0,
707	/* Developer - warning */
708	VB_SCREEN_DEVELOPER_WARNING = 0x101,
709	/* Developer - easter egg */
710	VB_SCREEN_DEVELOPER_EGG     = 0x102,
711	/* Recovery - remove inserted devices */
712	VB_SCREEN_RECOVERY_REMOVE   = 0x201,
713	/* Recovery - insert recovery image */
714	VB_SCREEN_RECOVERY_INSERT   = 0x202,
715	/* Recovery - inserted image invalid */
716	VB_SCREEN_RECOVERY_NO_GOOD  = 0x203,
717	/* Recovery - confirm dev mode */
718	VB_SCREEN_RECOVERY_TO_DEV   = 0x204,
719	/* Developer - confirm normal mode */
720	VB_SCREEN_DEVELOPER_TO_NORM = 0x205,
721	/* Please wait - programming EC */
722	VB_SCREEN_WAIT              = 0x206,
723	/* Confirm after DEVELOPER_TO_NORM */
724	VB_SCREEN_TO_NORM_CONFIRMED = 0x207,
725};
726
727/**
728 * Initialize and clear the display.  Set width and height to the screen
729 * dimensions in pixels.
730 */
731VbError_t VbExDisplayInit(uint32_t *width, uint32_t *height);
732
733/**
734 * Enable (enable!=0) or disable (enable=0) the display backlight.
735 */
736VbError_t VbExDisplayBacklight(uint8_t enable);
737
738/**
739 * Sets the logical dimension to display.
740 *
741 * If the physical display is larger or smaller than given dimension, display
742 * provider may decide to scale or shift images (from VbExDisplayImage)to proper
743 * location.
744 */
745VbError_t VbExDisplaySetDimension(uint32_t width, uint32_t height);
746
747/**
748 * Display a predefined screen; see VB_SCREEN_* for valid screens.
749 *
750 * This is a backup method of screen display, intended for use if the GBB does
751 * not contain a full set of bitmaps.  It is acceptable for the backup screen
752 * to be simple ASCII text such as "NO GOOD" or "INSERT"; these screens should
753 * only be seen during development.
754 */
755VbError_t VbExDisplayScreen(uint32_t screen_type);
756
757/**
758 * Write an image to the display, with the upper left corner at the specified
759 * pixel coordinates.  The bitmap buffer is a pointer to the platform-dependent
760 * uncompressed binary blob with dimensions and format specified internally
761 * (for example, a raw BMP, GIF, PNG, whatever). We pass the size just for
762 * convenience.
763 */
764VbError_t VbExDisplayImage(uint32_t x, uint32_t y,
765                           void *buffer, uint32_t buffersize);
766
767/**
768 * Display a string containing debug information on the screen, rendered in a
769 * platform-dependent font.  Should be able to handle newlines '\n' in the
770 * string.  Firmware must support displaying at least 20 lines of text, where
771 * each line may be at least 80 characters long.  If the firmware has its own
772 * debug state, it may display it to the screen below this information.
773 *
774 * NOTE: This is what we currently display when TAB is pressed.  Some
775 * information (HWID, recovery reason) is ours; some (CMOS breadcrumbs) is
776 * platform-specific.  If we decide to soft-render the HWID string
777 * (chrome-os-partner:3693), we'll need to maintain our own fonts, so we'll
778 * likely display it via VbExDisplayImage() above.
779 */
780VbError_t VbExDisplayDebugInfo(const char *info_str);
781
782/*****************************************************************************/
783/* Keyboard and switches */
784
785/* Key codes for required non-printable-ASCII characters. */
786enum VbKeyCode_t {
787	VB_KEY_UP = 0x100,
788	VB_KEY_DOWN = 0x101,
789	VB_KEY_LEFT = 0x102,
790	VB_KEY_RIGHT = 0x103,
791	VB_KEY_CTRL_ENTER = 0x104,
792};
793
794/* Flags for additional information.
795 * TODO(semenzato): consider adding flags for modifiers instead of
796 * making up some of the key codes above.
797 */
798enum VbKeyFlags_t {
799	VB_KEY_FLAG_TRUSTED_KEYBOARD = 1 << 0,
800};
801
802/**
803 * Read the next keypress from the keyboard buffer.
804 *
805 * Returns the keypress, or zero if no keypress is pending or error.
806 *
807 * The following keys must be returned as ASCII character codes:
808 *    0x08          Backspace
809 *    0x09          Tab
810 *    0x0D          Enter (carriage return)
811 *    0x01 - 0x1A   Ctrl+A - Ctrl+Z (yes, those alias with backspace/tab/enter)
812 *    0x1B          Esc
813 *    0x20          Space
814 *    0x30 - 0x39   '0' - '9'
815 *    0x60 - 0x7A   'a' - 'z'
816 *
817 * Some extended keys must also be supported; see the VB_KEY_* defines above.
818 *
819 * Keys ('/') or key-chords (Fn+Q) not defined above may be handled in any of
820 * the following ways:
821 *    1. Filter (don't report anything if one of these keys is pressed).
822 *    2. Report as ASCII (if a well-defined ASCII value exists for the key).
823 *    3. Report as any other value in the range 0x200 - 0x2FF.
824 * It is not permitted to report a key as a multi-byte code (for example,
825 * sending an arrow key as the sequence of keys '\x1b', '[', '1', 'A'). */
826uint32_t VbExKeyboardRead(void);
827
828/**
829 * Same as VbExKeyboardRead(), but return extra information.
830 */
831uint32_t VbExKeyboardReadWithFlags(uint32_t *flags_ptr);
832
833/**
834 * Return the current state of the switches specified in request_mask
835 */
836uint32_t VbExGetSwitches(uint32_t request_mask);
837
838/*****************************************************************************/
839/* Embedded controller (EC) */
840
841/*
842 * All these functions take a devidx parameter, which indicates which embedded
843 * processor the call applies to.  At present, only devidx=0 is valid, but
844 * upcoming CLs will add support for multiple devices.
845 */
846
847/**
848 * This is called only if the system implements a keyboard-based (virtual)
849 * developer switch. It must return true only if the system has an embedded
850 * controller which is provably running in its RO firmware at the time the
851 * function is called.
852 */
853int VbExTrustEC(int devidx);
854
855/**
856 * Check if the EC is currently running rewritable code.
857 *
858 * If the EC is in RO code, sets *in_rw=0.
859 * If the EC is in RW code, sets *in_rw non-zero.
860 * If the current EC image is unknown, returns error. */
861VbError_t VbExEcRunningRW(int devidx, int *in_rw);
862
863/**
864 * Request the EC jump to its rewritable code.  If successful, returns when the
865 * EC has booting its RW code far enough to respond to subsequent commands.
866 * Does nothing if the EC is already in its rewritable code.
867 */
868VbError_t VbExEcJumpToRW(int devidx);
869
870/**
871 * Tell the EC to refuse another jump until it reboots. Subsequent calls to
872 * VbExEcJumpToRW() in this boot will fail.
873 */
874VbError_t VbExEcDisableJump(int devidx);
875
876/**
877 * Read the SHA-256 hash of the rewriteable EC image.
878 */
879VbError_t VbExEcHashRW(int devidx, const uint8_t **hash, int *hash_size);
880
881/**
882 * Get the expected contents of the EC image associated with the main firmware
883 * specified by the "select" argument.
884 */
885VbError_t VbExEcGetExpectedRW(int devidx, enum VbSelectFirmware_t select,
886                              const uint8_t **image, int *image_size);
887
888/**
889 * Read the SHA-256 hash of the expected contents of the EC image associated
890 * with the main firmware specified by the "select" argument.
891 */
892VbError_t VbExEcGetExpectedRWHash(int devidx, enum VbSelectFirmware_t select,
893		       const uint8_t **hash, int *hash_size);
894
895/**
896 * Update the EC rewritable image.
897 */
898VbError_t VbExEcUpdateRW(int devidx, const uint8_t *image, int image_size);
899
900/**
901 * Lock the EC code to prevent updates until the EC is rebooted.
902 * Subsequent calls to VbExEcUpdateRW() this boot will fail.
903 */
904VbError_t VbExEcProtectRW(int devidx);
905
906/**
907 * Info the EC of the boot mode selected by the AP.
908 * mode: Normal, Developer, or Recovery
909 */
910enum VbEcBootMode_t {VB_EC_NORMAL, VB_EC_DEVELOPER, VB_EC_RECOVERY };
911VbError_t VbExEcEnteringMode(int devidx, enum VbEcBootMode_t mode);
912
913/*****************************************************************************/
914/* Misc */
915
916/* Args to VbExProtectFlash() */
917enum VbProtectFlash_t { VBPROTECT_RW_A, VBPROTECT_RW_B, VBPROTECT_RW_DEVKEY };
918
919/**
920 * Lock a section of the BIOS flash address space to prevent updates until the
921 * host is rebooted. Subsequent attempts to erase or modify the specified BIOS
922 * image will fail. If this function is called more than once each call should
923 * be cumulative.
924 */
925VbError_t VbExProtectFlash(enum VbProtectFlash_t region);
926
927/**
928 * Check if the firmware needs to shut down the system.
929 *
930 * Returns a non-zero VB_SHUTDOWN_REQUEST mask indicating the reason(s) for
931 * shutdown if a shutdown is being requested (see VB_SHUTDOWN_REQUEST_*), or 0
932 * if a shutdown is not being requested.
933 *
934 * NOTE: When we're displaying a screen, pressing the power button should shut
935 * down the computer.  We need a way to break out of our control loop so this
936 * can occur cleanly.
937 */
938uint32_t VbExIsShutdownRequested(void);
939
940/*
941 * Shutdown requested for a reason which is not defined among other
942 * VB_SHUTDOWN_REQUEST_* values. This must be defined as 1 for backward
943 * compatibility with old versions of the API.
944 */
945#define VB_SHUTDOWN_REQUEST_OTHER		0x00000001
946/* Shutdown requested due to a lid switch being closed. */
947#define VB_SHUTDOWN_REQUEST_LID_CLOSED		0x00000002
948/* Shutdown requested due to a power button being pressed. */
949#define VB_SHUTDOWN_REQUEST_POWER_BUTTON	0x00000004
950
951/**
952 * Expose the BIOS' built-in decompression routine to the vboot wrapper. The
953 * caller must know how large the uncompressed data will be and must manage
954 * that memory. The decompression routine just puts the uncompressed data into
955 * the specified buffer. We pass in the size of the outbuf, and get back the
956 * actual size used.
957 */
958VbError_t VbExDecompress(void *inbuf, uint32_t in_size,
959                         uint32_t compression_type,
960                         void *outbuf, uint32_t *out_size);
961
962/* Constants for compression_type */
963enum {
964	COMPRESS_NONE = 0,
965	COMPRESS_EFIv1,           /* The x86 BIOS only supports this */
966	COMPRESS_LZMA1,           /* The ARM BIOS supports LZMA1 */
967	MAX_COMPRESS,
968};
969
970/**
971 * Execute legacy boot option.
972 */
973int VbExLegacy(void);
974
975/* Regions for VbExRegionRead() */
976enum vb_firmware_region {
977	VB_REGION_GBB,	/* Google Binary Block - see gbbheader.h */
978
979	VB_REGION_COUNT,
980};
981
982/**
983 * Read data from a region of the firmware image
984 *
985 * Vboot wants access to a region, to read data from it. This function
986 * reads it (typically from the firmware image such as SPI flash) and
987 * returns the data.
988 *
989 * cparams is passed so that the boot loader has some context for the
990 * operation.
991 *
992 * @param cparams	Common parameters, e.g. use member caller_context
993 *			to point to useful context data
994 * @param region	Firmware region to read
995 * @param offset	Start offset within region
996 * @param size		Number of bytes to read
997 * @param buf		Place to put data
998 * @return VBERROR_... error, VBERROR_SUCCESS on success,
999 */
1000VbError_t VbExRegionRead(VbCommonParams *cparams,
1001			 enum vb_firmware_region region, uint32_t offset,
1002			 uint32_t size, void *buf);
1003
1004#endif  /* VBOOT_REFERENCE_VBOOT_API_H_ */
1005