1// Copyright 2010 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// Frame-reconstruction function. Memory allocation.
11//
12// Author: Skal (pascal.massimino@gmail.com)
13
14#include <stdlib.h>
15#include "./vp8i.h"
16#include "../utils/utils.h"
17
18#define ALIGN_MASK (32 - 1)
19
20static void ReconstructRow(const VP8Decoder* const dec,
21                           const VP8ThreadContext* ctx);  // TODO(skal): remove
22
23//------------------------------------------------------------------------------
24// Filtering
25
26// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
27// for caching, given a filtering level.
28// Simple filter:  up to 2 luma samples are read and 1 is written.
29// Complex filter: up to 4 luma samples are read and 3 are written. Same for
30//                 U/V, so it's 8 samples total (because of the 2x upsampling).
31static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
32
33static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
34  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
35  const int cache_id = ctx->id_;
36  const int y_bps = dec->cache_y_stride_;
37  const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
38  uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
39  const int ilevel = f_info->f_ilevel_;
40  const int limit = f_info->f_limit_;
41  if (limit == 0) {
42    return;
43  }
44  assert(limit >= 3);
45  if (dec->filter_type_ == 1) {   // simple
46    if (mb_x > 0) {
47      VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
48    }
49    if (f_info->f_inner_) {
50      VP8SimpleHFilter16i(y_dst, y_bps, limit);
51    }
52    if (mb_y > 0) {
53      VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
54    }
55    if (f_info->f_inner_) {
56      VP8SimpleVFilter16i(y_dst, y_bps, limit);
57    }
58  } else {    // complex
59    const int uv_bps = dec->cache_uv_stride_;
60    uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
61    uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
62    const int hev_thresh = f_info->hev_thresh_;
63    if (mb_x > 0) {
64      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
65      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
66    }
67    if (f_info->f_inner_) {
68      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
69      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
70    }
71    if (mb_y > 0) {
72      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
73      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
74    }
75    if (f_info->f_inner_) {
76      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
77      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
78    }
79  }
80}
81
82// Filter the decoded macroblock row (if needed)
83static void FilterRow(const VP8Decoder* const dec) {
84  int mb_x;
85  const int mb_y = dec->thread_ctx_.mb_y_;
86  assert(dec->thread_ctx_.filter_row_);
87  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
88    DoFilter(dec, mb_x, mb_y);
89  }
90}
91
92//------------------------------------------------------------------------------
93// Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
94
95static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
96  if (dec->filter_type_ > 0) {
97    int s;
98    const VP8FilterHeader* const hdr = &dec->filter_hdr_;
99    for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
100      int i4x4;
101      // First, compute the initial level
102      int base_level;
103      if (dec->segment_hdr_.use_segment_) {
104        base_level = dec->segment_hdr_.filter_strength_[s];
105        if (!dec->segment_hdr_.absolute_delta_) {
106          base_level += hdr->level_;
107        }
108      } else {
109        base_level = hdr->level_;
110      }
111      for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
112        VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
113        int level = base_level;
114        if (hdr->use_lf_delta_) {
115          // TODO(skal): only CURRENT is handled for now.
116          level += hdr->ref_lf_delta_[0];
117          if (i4x4) {
118            level += hdr->mode_lf_delta_[0];
119          }
120        }
121        level = (level < 0) ? 0 : (level > 63) ? 63 : level;
122        if (level > 0) {
123          int ilevel = level;
124          if (hdr->sharpness_ > 0) {
125            if (hdr->sharpness_ > 4) {
126              ilevel >>= 2;
127            } else {
128              ilevel >>= 1;
129            }
130            if (ilevel > 9 - hdr->sharpness_) {
131              ilevel = 9 - hdr->sharpness_;
132            }
133          }
134          if (ilevel < 1) ilevel = 1;
135          info->f_ilevel_ = ilevel;
136          info->f_limit_ = 2 * level + ilevel;
137          info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
138        } else {
139          info->f_limit_ = 0;  // no filtering
140        }
141        info->f_inner_ = i4x4;
142      }
143    }
144  }
145}
146
147//------------------------------------------------------------------------------
148// Dithering
149
150#define DITHER_AMP_TAB_SIZE 12
151static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
152  // roughly, it's dqm->uv_mat_[1]
153  8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
154};
155
156void VP8InitDithering(const WebPDecoderOptions* const options,
157                      VP8Decoder* const dec) {
158  assert(dec != NULL);
159  if (options != NULL) {
160    const int d = options->dithering_strength;
161    const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
162    const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
163    if (f > 0) {
164      int s;
165      int all_amp = 0;
166      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
167        VP8QuantMatrix* const dqm = &dec->dqm_[s];
168        if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
169          // TODO(skal): should we specially dither more for uv_quant_ < 0?
170          const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
171          dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
172        }
173        all_amp |= dqm->dither_;
174      }
175      if (all_amp != 0) {
176        VP8InitRandom(&dec->dithering_rg_, 1.0f);
177        dec->dither_ = 1;
178      }
179    }
180#if WEBP_DECODER_ABI_VERSION > 0x0204
181    // potentially allow alpha dithering
182    dec->alpha_dithering_ = options->alpha_dithering_strength;
183    if (dec->alpha_dithering_ > 100) {
184      dec->alpha_dithering_ = 100;
185    } else if (dec->alpha_dithering_ < 0) {
186      dec->alpha_dithering_ = 0;
187    }
188#endif
189  }
190}
191
192// minimal amp that will provide a non-zero dithering effect
193#define MIN_DITHER_AMP 4
194#define DITHER_DESCALE 4
195#define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1))
196#define DITHER_AMP_BITS 8
197#define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS)
198
199static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
200  int i, j;
201  for (j = 0; j < 8; ++j) {
202    for (i = 0; i < 8; ++i) {
203      // TODO: could be made faster with SSE2
204      const int bits =
205          VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER;
206      // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
207      const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE;
208      const int v = (int)dst[i] + delta;
209      dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v;
210    }
211    dst += bps;
212  }
213}
214
215static void DitherRow(VP8Decoder* const dec) {
216  int mb_x;
217  assert(dec->dither_);
218  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
219    const VP8ThreadContext* const ctx = &dec->thread_ctx_;
220    const VP8MBData* const data = ctx->mb_data_ + mb_x;
221    const int cache_id = ctx->id_;
222    const int uv_bps = dec->cache_uv_stride_;
223    if (data->dither_ >= MIN_DITHER_AMP) {
224      uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
225      uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
226      Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
227      Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
228    }
229  }
230}
231
232//------------------------------------------------------------------------------
233// This function is called after a row of macroblocks is finished decoding.
234// It also takes into account the following restrictions:
235//  * In case of in-loop filtering, we must hold off sending some of the bottom
236//    pixels as they are yet unfiltered. They will be when the next macroblock
237//    row is decoded. Meanwhile, we must preserve them by rotating them in the
238//    cache area. This doesn't hold for the very bottom row of the uncropped
239//    picture of course.
240//  * we must clip the remaining pixels against the cropping area. The VP8Io
241//    struct must have the following fields set correctly before calling put():
242
243#define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
244
245// Finalize and transmit a complete row. Return false in case of user-abort.
246static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
247  int ok = 1;
248  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
249  const int cache_id = ctx->id_;
250  const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
251  const int ysize = extra_y_rows * dec->cache_y_stride_;
252  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
253  const int y_offset = cache_id * 16 * dec->cache_y_stride_;
254  const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
255  uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
256  uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
257  uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
258  const int mb_y = ctx->mb_y_;
259  const int is_first_row = (mb_y == 0);
260  const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
261
262  if (dec->mt_method_ == 2) {
263    ReconstructRow(dec, ctx);
264  }
265
266  if (ctx->filter_row_) {
267    FilterRow(dec);
268  }
269
270  if (dec->dither_) {
271    DitherRow(dec);
272  }
273
274  if (io->put != NULL) {
275    int y_start = MACROBLOCK_VPOS(mb_y);
276    int y_end = MACROBLOCK_VPOS(mb_y + 1);
277    if (!is_first_row) {
278      y_start -= extra_y_rows;
279      io->y = ydst;
280      io->u = udst;
281      io->v = vdst;
282    } else {
283      io->y = dec->cache_y_ + y_offset;
284      io->u = dec->cache_u_ + uv_offset;
285      io->v = dec->cache_v_ + uv_offset;
286    }
287
288    if (!is_last_row) {
289      y_end -= extra_y_rows;
290    }
291    if (y_end > io->crop_bottom) {
292      y_end = io->crop_bottom;    // make sure we don't overflow on last row.
293    }
294    io->a = NULL;
295    if (dec->alpha_data_ != NULL && y_start < y_end) {
296      // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
297      // good idea.
298      io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
299      if (io->a == NULL) {
300        return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
301                           "Could not decode alpha data.");
302      }
303    }
304    if (y_start < io->crop_top) {
305      const int delta_y = io->crop_top - y_start;
306      y_start = io->crop_top;
307      assert(!(delta_y & 1));
308      io->y += dec->cache_y_stride_ * delta_y;
309      io->u += dec->cache_uv_stride_ * (delta_y >> 1);
310      io->v += dec->cache_uv_stride_ * (delta_y >> 1);
311      if (io->a != NULL) {
312        io->a += io->width * delta_y;
313      }
314    }
315    if (y_start < y_end) {
316      io->y += io->crop_left;
317      io->u += io->crop_left >> 1;
318      io->v += io->crop_left >> 1;
319      if (io->a != NULL) {
320        io->a += io->crop_left;
321      }
322      io->mb_y = y_start - io->crop_top;
323      io->mb_w = io->crop_right - io->crop_left;
324      io->mb_h = y_end - y_start;
325      ok = io->put(io);
326    }
327  }
328  // rotate top samples if needed
329  if (cache_id + 1 == dec->num_caches_) {
330    if (!is_last_row) {
331      memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
332      memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
333      memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
334    }
335  }
336
337  return ok;
338}
339
340#undef MACROBLOCK_VPOS
341
342//------------------------------------------------------------------------------
343
344int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
345  int ok = 1;
346  VP8ThreadContext* const ctx = &dec->thread_ctx_;
347  const int filter_row =
348      (dec->filter_type_ > 0) &&
349      (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
350  if (dec->mt_method_ == 0) {
351    // ctx->id_ and ctx->f_info_ are already set
352    ctx->mb_y_ = dec->mb_y_;
353    ctx->filter_row_ = filter_row;
354    ReconstructRow(dec, ctx);
355    ok = FinishRow(dec, io);
356  } else {
357    WebPWorker* const worker = &dec->worker_;
358    // Finish previous job *before* updating context
359    ok &= WebPGetWorkerInterface()->Sync(worker);
360    assert(worker->status_ == OK);
361    if (ok) {   // spawn a new deblocking/output job
362      ctx->io_ = *io;
363      ctx->id_ = dec->cache_id_;
364      ctx->mb_y_ = dec->mb_y_;
365      ctx->filter_row_ = filter_row;
366      if (dec->mt_method_ == 2) {  // swap macroblock data
367        VP8MBData* const tmp = ctx->mb_data_;
368        ctx->mb_data_ = dec->mb_data_;
369        dec->mb_data_ = tmp;
370      } else {
371        // perform reconstruction directly in main thread
372        ReconstructRow(dec, ctx);
373      }
374      if (filter_row) {            // swap filter info
375        VP8FInfo* const tmp = ctx->f_info_;
376        ctx->f_info_ = dec->f_info_;
377        dec->f_info_ = tmp;
378      }
379      // (reconstruct)+filter in parallel
380      WebPGetWorkerInterface()->Launch(worker);
381      if (++dec->cache_id_ == dec->num_caches_) {
382        dec->cache_id_ = 0;
383      }
384    }
385  }
386  return ok;
387}
388
389//------------------------------------------------------------------------------
390// Finish setting up the decoding parameter once user's setup() is called.
391
392VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
393  // Call setup() first. This may trigger additional decoding features on 'io'.
394  // Note: Afterward, we must call teardown() no matter what.
395  if (io->setup != NULL && !io->setup(io)) {
396    VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
397    return dec->status_;
398  }
399
400  // Disable filtering per user request
401  if (io->bypass_filtering) {
402    dec->filter_type_ = 0;
403  }
404  // TODO(skal): filter type / strength / sharpness forcing
405
406  // Define the area where we can skip in-loop filtering, in case of cropping.
407  //
408  // 'Simple' filter reads two luma samples outside of the macroblock
409  // and filters one. It doesn't filter the chroma samples. Hence, we can
410  // avoid doing the in-loop filtering before crop_top/crop_left position.
411  // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
412  // Means: there's a dependency chain that goes all the way up to the
413  // top-left corner of the picture (MB #0). We must filter all the previous
414  // macroblocks.
415  // TODO(skal): add an 'approximate_decoding' option, that won't produce
416  // a 1:1 bit-exactness for complex filtering?
417  {
418    const int extra_pixels = kFilterExtraRows[dec->filter_type_];
419    if (dec->filter_type_ == 2) {
420      // For complex filter, we need to preserve the dependency chain.
421      dec->tl_mb_x_ = 0;
422      dec->tl_mb_y_ = 0;
423    } else {
424      // For simple filter, we can filter only the cropped region.
425      // We include 'extra_pixels' on the other side of the boundary, since
426      // vertical or horizontal filtering of the previous macroblock can
427      // modify some abutting pixels.
428      dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
429      dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
430      if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
431      if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
432    }
433    // We need some 'extra' pixels on the right/bottom.
434    dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
435    dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
436    if (dec->br_mb_x_ > dec->mb_w_) {
437      dec->br_mb_x_ = dec->mb_w_;
438    }
439    if (dec->br_mb_y_ > dec->mb_h_) {
440      dec->br_mb_y_ = dec->mb_h_;
441    }
442  }
443  PrecomputeFilterStrengths(dec);
444  return VP8_STATUS_OK;
445}
446
447int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
448  int ok = 1;
449  if (dec->mt_method_ > 0) {
450    ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
451  }
452
453  if (io->teardown != NULL) {
454    io->teardown(io);
455  }
456  return ok;
457}
458
459//------------------------------------------------------------------------------
460// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
461//
462// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
463// immediately, and needs to wait for first few rows of the next macroblock to
464// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
465// on strength).
466// With two threads, the vertical positions of the rows being decoded are:
467// Decode:  [ 0..15][16..31][32..47][48..63][64..79][...
468// Deblock:         [ 0..11][12..27][28..43][44..59][...
469// If we use two threads and two caches of 16 pixels, the sequence would be:
470// Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
471// Deblock:         [ 0..11][12..27!!][-4..11][12..27][...
472// The problem occurs during row [12..15!!] that both the decoding and
473// deblocking threads are writing simultaneously.
474// With 3 cache lines, one get a safe write pattern:
475// Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
476// Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28...
477// Note that multi-threaded output _without_ deblocking can make use of two
478// cache lines of 16 pixels only, since there's no lagging behind. The decoding
479// and output process have non-concurrent writing:
480// Decode:  [ 0..15][16..31][ 0..15][16..31][...
481// io->put:         [ 0..15][16..31][ 0..15][...
482
483#define MT_CACHE_LINES 3
484#define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case
485
486// Initialize multi/single-thread worker
487static int InitThreadContext(VP8Decoder* const dec) {
488  dec->cache_id_ = 0;
489  if (dec->mt_method_ > 0) {
490    WebPWorker* const worker = &dec->worker_;
491    if (!WebPGetWorkerInterface()->Reset(worker)) {
492      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
493                         "thread initialization failed.");
494    }
495    worker->data1 = dec;
496    worker->data2 = (void*)&dec->thread_ctx_.io_;
497    worker->hook = (WebPWorkerHook)FinishRow;
498    dec->num_caches_ =
499      (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
500  } else {
501    dec->num_caches_ = ST_CACHE_LINES;
502  }
503  return 1;
504}
505
506int VP8GetThreadMethod(const WebPDecoderOptions* const options,
507                       const WebPHeaderStructure* const headers,
508                       int width, int height) {
509  if (options == NULL || options->use_threads == 0) {
510    return 0;
511  }
512  (void)headers;
513  (void)width;
514  (void)height;
515  assert(headers == NULL || !headers->is_lossless);
516#if defined(WEBP_USE_THREAD)
517  if (width < MIN_WIDTH_FOR_THREADS) return 0;
518  // TODO(skal): tune the heuristic further
519#if 0
520  if (height < 2 * width) return 2;
521#endif
522  return 2;
523#else   // !WEBP_USE_THREAD
524  return 0;
525#endif
526}
527
528#undef MT_CACHE_LINES
529#undef ST_CACHE_LINES
530
531//------------------------------------------------------------------------------
532// Memory setup
533
534static int AllocateMemory(VP8Decoder* const dec) {
535  const int num_caches = dec->num_caches_;
536  const int mb_w = dec->mb_w_;
537  // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
538  const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
539  const size_t top_size = sizeof(VP8TopSamples) * mb_w;
540  const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
541  const size_t f_info_size =
542      (dec->filter_type_ > 0) ?
543          mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
544        : 0;
545  const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
546  const size_t mb_data_size =
547      (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
548  const size_t cache_height = (16 * num_caches
549                            + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
550  const size_t cache_size = top_size * cache_height;
551  // alpha_size is the only one that scales as width x height.
552  const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
553      (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
554  const uint64_t needed = (uint64_t)intra_pred_mode_size
555                        + top_size + mb_info_size + f_info_size
556                        + yuv_size + mb_data_size
557                        + cache_size + alpha_size + ALIGN_MASK;
558  uint8_t* mem;
559
560  if (needed != (size_t)needed) return 0;  // check for overflow
561  if (needed > dec->mem_size_) {
562    WebPSafeFree(dec->mem_);
563    dec->mem_size_ = 0;
564    dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
565    if (dec->mem_ == NULL) {
566      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
567                         "no memory during frame initialization.");
568    }
569    // down-cast is ok, thanks to WebPSafeAlloc() above.
570    dec->mem_size_ = (size_t)needed;
571  }
572
573  mem = (uint8_t*)dec->mem_;
574  dec->intra_t_ = (uint8_t*)mem;
575  mem += intra_pred_mode_size;
576
577  dec->yuv_t_ = (VP8TopSamples*)mem;
578  mem += top_size;
579
580  dec->mb_info_ = ((VP8MB*)mem) + 1;
581  mem += mb_info_size;
582
583  dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
584  mem += f_info_size;
585  dec->thread_ctx_.id_ = 0;
586  dec->thread_ctx_.f_info_ = dec->f_info_;
587  if (dec->mt_method_ > 0) {
588    // secondary cache line. The deblocking process need to make use of the
589    // filtering strength from previous macroblock row, while the new ones
590    // are being decoded in parallel. We'll just swap the pointers.
591    dec->thread_ctx_.f_info_ += mb_w;
592  }
593
594  mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
595  assert((yuv_size & ALIGN_MASK) == 0);
596  dec->yuv_b_ = (uint8_t*)mem;
597  mem += yuv_size;
598
599  dec->mb_data_ = (VP8MBData*)mem;
600  dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
601  if (dec->mt_method_ == 2) {
602    dec->thread_ctx_.mb_data_ += mb_w;
603  }
604  mem += mb_data_size;
605
606  dec->cache_y_stride_ = 16 * mb_w;
607  dec->cache_uv_stride_ = 8 * mb_w;
608  {
609    const int extra_rows = kFilterExtraRows[dec->filter_type_];
610    const int extra_y = extra_rows * dec->cache_y_stride_;
611    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
612    dec->cache_y_ = ((uint8_t*)mem) + extra_y;
613    dec->cache_u_ = dec->cache_y_
614                  + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
615    dec->cache_v_ = dec->cache_u_
616                  + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
617    dec->cache_id_ = 0;
618  }
619  mem += cache_size;
620
621  // alpha plane
622  dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
623  mem += alpha_size;
624  assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
625
626  // note: left/top-info is initialized once for all.
627  memset(dec->mb_info_ - 1, 0, mb_info_size);
628  VP8InitScanline(dec);   // initialize left too.
629
630  // initialize top
631  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
632
633  return 1;
634}
635
636static void InitIo(VP8Decoder* const dec, VP8Io* io) {
637  // prepare 'io'
638  io->mb_y = 0;
639  io->y = dec->cache_y_;
640  io->u = dec->cache_u_;
641  io->v = dec->cache_v_;
642  io->y_stride = dec->cache_y_stride_;
643  io->uv_stride = dec->cache_uv_stride_;
644  io->a = NULL;
645}
646
647int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
648  if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_.
649  if (!AllocateMemory(dec)) return 0;
650  InitIo(dec, io);
651  VP8DspInit();  // Init critical function pointers and look-up tables.
652  return 1;
653}
654
655//------------------------------------------------------------------------------
656// Main reconstruction function.
657
658static const int kScan[16] = {
659  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
660  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
661  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
662  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
663};
664
665static int CheckMode(int mb_x, int mb_y, int mode) {
666  if (mode == B_DC_PRED) {
667    if (mb_x == 0) {
668      return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
669    } else {
670      return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
671    }
672  }
673  return mode;
674}
675
676static void Copy32b(uint8_t* dst, uint8_t* src) {
677  memcpy(dst, src, 4);
678}
679
680static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
681                                    uint8_t* const dst) {
682  switch (bits >> 30) {
683    case 3:
684      VP8Transform(src, dst, 0);
685      break;
686    case 2:
687      VP8TransformAC3(src, dst);
688      break;
689    case 1:
690      VP8TransformDC(src, dst);
691      break;
692    default:
693      break;
694  }
695}
696
697static void DoUVTransform(uint32_t bits, const int16_t* const src,
698                          uint8_t* const dst) {
699  if (bits & 0xff) {    // any non-zero coeff at all?
700    if (bits & 0xaa) {  // any non-zero AC coefficient?
701      VP8TransformUV(src, dst);   // note we don't use the AC3 variant for U/V
702    } else {
703      VP8TransformDCUV(src, dst);
704    }
705  }
706}
707
708static void ReconstructRow(const VP8Decoder* const dec,
709                           const VP8ThreadContext* ctx) {
710  int j;
711  int mb_x;
712  const int mb_y = ctx->mb_y_;
713  const int cache_id = ctx->id_;
714  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
715  uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
716  uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
717  for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
718    const VP8MBData* const block = ctx->mb_data_ + mb_x;
719
720    // Rotate in the left samples from previously decoded block. We move four
721    // pixels at a time for alignment reason, and because of in-loop filter.
722    if (mb_x > 0) {
723      for (j = -1; j < 16; ++j) {
724        Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
725      }
726      for (j = -1; j < 8; ++j) {
727        Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
728        Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
729      }
730    } else {
731      for (j = 0; j < 16; ++j) {
732        y_dst[j * BPS - 1] = 129;
733      }
734      for (j = 0; j < 8; ++j) {
735        u_dst[j * BPS - 1] = 129;
736        v_dst[j * BPS - 1] = 129;
737      }
738      // Init top-left sample on left column too
739      if (mb_y > 0) {
740        y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
741      }
742    }
743    {
744      // bring top samples into the cache
745      VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
746      const int16_t* const coeffs = block->coeffs_;
747      uint32_t bits = block->non_zero_y_;
748      int n;
749
750      if (mb_y > 0) {
751        memcpy(y_dst - BPS, top_yuv[0].y, 16);
752        memcpy(u_dst - BPS, top_yuv[0].u, 8);
753        memcpy(v_dst - BPS, top_yuv[0].v, 8);
754      } else if (mb_x == 0) {
755        // we only need to do this init once at block (0,0).
756        // Afterward, it remains valid for the whole topmost row.
757        memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
758        memset(u_dst - BPS - 1, 127, 8 + 1);
759        memset(v_dst - BPS - 1, 127, 8 + 1);
760      }
761
762      // predict and add residuals
763      if (block->is_i4x4_) {   // 4x4
764        uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
765
766        if (mb_y > 0) {
767          if (mb_x >= dec->mb_w_ - 1) {    // on rightmost border
768            memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
769          } else {
770            memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
771          }
772        }
773        // replicate the top-right pixels below
774        top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
775
776        // predict and add residuals for all 4x4 blocks in turn.
777        for (n = 0; n < 16; ++n, bits <<= 2) {
778          uint8_t* const dst = y_dst + kScan[n];
779          VP8PredLuma4[block->imodes_[n]](dst);
780          DoTransform(bits, coeffs + n * 16, dst);
781        }
782      } else {    // 16x16
783        const int pred_func = CheckMode(mb_x, mb_y,
784                                        block->imodes_[0]);
785        VP8PredLuma16[pred_func](y_dst);
786        if (bits != 0) {
787          for (n = 0; n < 16; ++n, bits <<= 2) {
788            DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
789          }
790        }
791      }
792      {
793        // Chroma
794        const uint32_t bits_uv = block->non_zero_uv_;
795        const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
796        VP8PredChroma8[pred_func](u_dst);
797        VP8PredChroma8[pred_func](v_dst);
798        DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
799        DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
800      }
801
802      // stash away top samples for next block
803      if (mb_y < dec->mb_h_ - 1) {
804        memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
805        memcpy(top_yuv[0].u, u_dst +  7 * BPS,  8);
806        memcpy(top_yuv[0].v, v_dst +  7 * BPS,  8);
807      }
808    }
809    // Transfer reconstructed samples from yuv_b_ cache to final destination.
810    {
811      const int y_offset = cache_id * 16 * dec->cache_y_stride_;
812      const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
813      uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
814      uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
815      uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
816      for (j = 0; j < 16; ++j) {
817        memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
818      }
819      for (j = 0; j < 8; ++j) {
820        memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
821        memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
822      }
823    }
824  }
825}
826
827//------------------------------------------------------------------------------
828
829