1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18#include "includes.h"
19
20#include "common.h"
21#include "pcsc_funcs.h"
22#include "state_machine.h"
23#include "ext_password.h"
24#include "crypto/crypto.h"
25#include "crypto/tls.h"
26#include "crypto/sha256.h"
27#include "common/wpa_ctrl.h"
28#include "eap_common/eap_wsc_common.h"
29#include "eap_i.h"
30#include "eap_config.h"
31
32#define STATE_MACHINE_DATA struct eap_sm
33#define STATE_MACHINE_DEBUG_PREFIX "EAP"
34
35#define EAP_MAX_AUTH_ROUNDS 50
36#define EAP_CLIENT_TIMEOUT_DEFAULT 60
37
38
39static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40				  EapType method);
41static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42static void eap_sm_processIdentity(struct eap_sm *sm,
43				   const struct wpabuf *req);
44static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45static struct wpabuf * eap_sm_buildNotify(int id);
46static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48static const char * eap_sm_method_state_txt(EapMethodState state);
49static const char * eap_sm_decision_txt(EapDecision decision);
50#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51
52
53
54static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
55{
56	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
57}
58
59
60static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
61			   Boolean value)
62{
63	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
64}
65
66
67static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
68{
69	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
70}
71
72
73static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
74			  unsigned int value)
75{
76	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
77}
78
79
80static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
81{
82	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
83}
84
85
86static void eap_notify_status(struct eap_sm *sm, const char *status,
87				      const char *parameter)
88{
89	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
90		   status, parameter);
91	if (sm->eapol_cb->notify_status)
92		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
93}
94
95
96static void eap_sm_free_key(struct eap_sm *sm)
97{
98	if (sm->eapKeyData) {
99		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
100		sm->eapKeyData = NULL;
101	}
102}
103
104
105static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
106{
107	ext_password_free(sm->ext_pw_buf);
108	sm->ext_pw_buf = NULL;
109
110	if (sm->m == NULL || sm->eap_method_priv == NULL)
111		return;
112
113	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
114		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
115	sm->m->deinit(sm, sm->eap_method_priv);
116	sm->eap_method_priv = NULL;
117	sm->m = NULL;
118}
119
120
121/**
122 * eap_allowed_method - Check whether EAP method is allowed
123 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
124 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
125 * @method: EAP type
126 * Returns: 1 = allowed EAP method, 0 = not allowed
127 */
128int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
129{
130	struct eap_peer_config *config = eap_get_config(sm);
131	int i;
132	struct eap_method_type *m;
133
134	if (config == NULL || config->eap_methods == NULL)
135		return 1;
136
137	m = config->eap_methods;
138	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
139		     m[i].method != EAP_TYPE_NONE; i++) {
140		if (m[i].vendor == vendor && m[i].method == method)
141			return 1;
142	}
143	return 0;
144}
145
146
147/*
148 * This state initializes state machine variables when the machine is
149 * activated (portEnabled = TRUE). This is also used when re-starting
150 * authentication (eapRestart == TRUE).
151 */
152SM_STATE(EAP, INITIALIZE)
153{
154	SM_ENTRY(EAP, INITIALIZE);
155	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
156	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
157	    !sm->prev_failure &&
158	    sm->last_config == eap_get_config(sm)) {
159		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
160			   "fast reauthentication");
161		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
162	} else {
163		sm->last_config = eap_get_config(sm);
164		eap_deinit_prev_method(sm, "INITIALIZE");
165	}
166	sm->selectedMethod = EAP_TYPE_NONE;
167	sm->methodState = METHOD_NONE;
168	sm->allowNotifications = TRUE;
169	sm->decision = DECISION_FAIL;
170	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
171	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
172	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
173	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
174	eap_sm_free_key(sm);
175	os_free(sm->eapSessionId);
176	sm->eapSessionId = NULL;
177	sm->eapKeyAvailable = FALSE;
178	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
179	sm->lastId = -1; /* new session - make sure this does not match with
180			  * the first EAP-Packet */
181	/*
182	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
183	 * seemed to be able to trigger cases where both were set and if EAPOL
184	 * state machine uses eapNoResp first, it may end up not sending a real
185	 * reply correctly. This occurred when the workaround in FAIL state set
186	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
187	 * something else(?)
188	 */
189	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
190	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
191	sm->num_rounds = 0;
192	sm->prev_failure = 0;
193	sm->expected_failure = 0;
194	sm->reauthInit = FALSE;
195	sm->erp_seq = (u32) -1;
196}
197
198
199/*
200 * This state is reached whenever service from the lower layer is interrupted
201 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
202 * occurs when the port becomes enabled.
203 */
204SM_STATE(EAP, DISABLED)
205{
206	SM_ENTRY(EAP, DISABLED);
207	sm->num_rounds = 0;
208	/*
209	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
210	 * allows the timer tick to be stopped more quickly when EAP is not in
211	 * use.
212	 */
213	eapol_set_int(sm, EAPOL_idleWhile, 0);
214}
215
216
217/*
218 * The state machine spends most of its time here, waiting for something to
219 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
220 * SEND_RESPONSE states.
221 */
222SM_STATE(EAP, IDLE)
223{
224	SM_ENTRY(EAP, IDLE);
225}
226
227
228/*
229 * This state is entered when an EAP packet is received (eapReq == TRUE) to
230 * parse the packet header.
231 */
232SM_STATE(EAP, RECEIVED)
233{
234	const struct wpabuf *eapReqData;
235
236	SM_ENTRY(EAP, RECEIVED);
237	eapReqData = eapol_get_eapReqData(sm);
238	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
239	eap_sm_parseEapReq(sm, eapReqData);
240	sm->num_rounds++;
241}
242
243
244/*
245 * This state is entered when a request for a new type comes in. Either the
246 * correct method is started, or a Nak response is built.
247 */
248SM_STATE(EAP, GET_METHOD)
249{
250	int reinit;
251	EapType method;
252	const struct eap_method *eap_method;
253
254	SM_ENTRY(EAP, GET_METHOD);
255
256	if (sm->reqMethod == EAP_TYPE_EXPANDED)
257		method = sm->reqVendorMethod;
258	else
259		method = sm->reqMethod;
260
261	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
262
263	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
264		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
265			   sm->reqVendor, method);
266		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
267			"vendor=%u method=%u -> NAK",
268			sm->reqVendor, method);
269		eap_notify_status(sm, "refuse proposed method",
270				  eap_method ?  eap_method->name : "unknown");
271		goto nak;
272	}
273
274	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
275		"vendor=%u method=%u", sm->reqVendor, method);
276
277	eap_notify_status(sm, "accept proposed method",
278			  eap_method ?  eap_method->name : "unknown");
279	/*
280	 * RFC 4137 does not define specific operation for fast
281	 * re-authentication (session resumption). The design here is to allow
282	 * the previously used method data to be maintained for
283	 * re-authentication if the method support session resumption.
284	 * Otherwise, the previously used method data is freed and a new method
285	 * is allocated here.
286	 */
287	if (sm->fast_reauth &&
288	    sm->m && sm->m->vendor == sm->reqVendor &&
289	    sm->m->method == method &&
290	    sm->m->has_reauth_data &&
291	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
292		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
293			   " for fast re-authentication");
294		reinit = 1;
295	} else {
296		eap_deinit_prev_method(sm, "GET_METHOD");
297		reinit = 0;
298	}
299
300	sm->selectedMethod = sm->reqMethod;
301	if (sm->m == NULL)
302		sm->m = eap_method;
303	if (!sm->m) {
304		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
305			   "vendor %d method %d",
306			   sm->reqVendor, method);
307		goto nak;
308	}
309
310	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
311
312	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
313		   "vendor %u method %u (%s)",
314		   sm->reqVendor, method, sm->m->name);
315	if (reinit)
316		sm->eap_method_priv = sm->m->init_for_reauth(
317			sm, sm->eap_method_priv);
318	else
319		sm->eap_method_priv = sm->m->init(sm);
320
321	if (sm->eap_method_priv == NULL) {
322		struct eap_peer_config *config = eap_get_config(sm);
323		wpa_msg(sm->msg_ctx, MSG_INFO,
324			"EAP: Failed to initialize EAP method: vendor %u "
325			"method %u (%s)",
326			sm->reqVendor, method, sm->m->name);
327		sm->m = NULL;
328		sm->methodState = METHOD_NONE;
329		sm->selectedMethod = EAP_TYPE_NONE;
330		if (sm->reqMethod == EAP_TYPE_TLS && config &&
331		    (config->pending_req_pin ||
332		     config->pending_req_passphrase)) {
333			/*
334			 * Return without generating Nak in order to allow
335			 * entering of PIN code or passphrase to retry the
336			 * current EAP packet.
337			 */
338			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
339				   "request - skip Nak");
340			return;
341		}
342
343		goto nak;
344	}
345
346	sm->methodState = METHOD_INIT;
347	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
348		"EAP vendor %u method %u (%s) selected",
349		sm->reqVendor, method, sm->m->name);
350	return;
351
352nak:
353	wpabuf_free(sm->eapRespData);
354	sm->eapRespData = NULL;
355	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
356}
357
358
359#ifdef CONFIG_ERP
360
361static char * eap_home_realm(struct eap_sm *sm)
362{
363	struct eap_peer_config *config = eap_get_config(sm);
364	char *realm;
365	size_t i, realm_len;
366
367	if (!config)
368		return NULL;
369
370	if (config->identity) {
371		for (i = 0; i < config->identity_len; i++) {
372			if (config->identity[i] == '@')
373				break;
374		}
375		if (i < config->identity_len) {
376			realm_len = config->identity_len - i - 1;
377			realm = os_malloc(realm_len + 1);
378			if (realm == NULL)
379				return NULL;
380			os_memcpy(realm, &config->identity[i + 1], realm_len);
381			realm[realm_len] = '\0';
382			return realm;
383		}
384	}
385
386	if (config->anonymous_identity) {
387		for (i = 0; i < config->anonymous_identity_len; i++) {
388			if (config->anonymous_identity[i] == '@')
389				break;
390		}
391		if (i < config->anonymous_identity_len) {
392			realm_len = config->anonymous_identity_len - i - 1;
393			realm = os_malloc(realm_len + 1);
394			if (realm == NULL)
395				return NULL;
396			os_memcpy(realm, &config->anonymous_identity[i + 1],
397				  realm_len);
398			realm[realm_len] = '\0';
399			return realm;
400		}
401	}
402
403	return os_strdup("");
404}
405
406
407static struct eap_erp_key *
408eap_erp_get_key(struct eap_sm *sm, const char *realm)
409{
410	struct eap_erp_key *erp;
411
412	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
413		char *pos;
414
415		pos = os_strchr(erp->keyname_nai, '@');
416		if (!pos)
417			continue;
418		pos++;
419		if (os_strcmp(pos, realm) == 0)
420			return erp;
421	}
422
423	return NULL;
424}
425
426
427static struct eap_erp_key *
428eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
429{
430	struct eap_erp_key *erp;
431
432	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
433		if (os_strcmp(erp->keyname_nai, nai) == 0)
434			return erp;
435	}
436
437	return NULL;
438}
439
440
441static void eap_peer_erp_free_key(struct eap_erp_key *erp)
442{
443	dl_list_del(&erp->list);
444	bin_clear_free(erp, sizeof(*erp));
445}
446
447
448static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
449{
450	struct eap_erp_key *erp;
451
452	while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
453		wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
454			   erp->keyname_nai);
455		eap_peer_erp_free_key(erp);
456	}
457}
458
459#endif /* CONFIG_ERP */
460
461
462void eap_peer_erp_free_keys(struct eap_sm *sm)
463{
464#ifdef CONFIG_ERP
465	struct eap_erp_key *erp, *tmp;
466
467	dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
468		eap_peer_erp_free_key(erp);
469#endif /* CONFIG_ERP */
470}
471
472
473static void eap_peer_erp_init(struct eap_sm *sm)
474{
475#ifdef CONFIG_ERP
476	u8 *emsk = NULL;
477	size_t emsk_len = 0;
478	u8 EMSKname[EAP_EMSK_NAME_LEN];
479	u8 len[2];
480	char *realm;
481	size_t realm_len, nai_buf_len;
482	struct eap_erp_key *erp = NULL;
483	int pos;
484
485	realm = eap_home_realm(sm);
486	if (!realm)
487		return;
488	realm_len = os_strlen(realm);
489	wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
490	eap_erp_remove_keys_realm(sm, realm);
491
492	nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
493	if (nai_buf_len > 253) {
494		/*
495		 * keyName-NAI has a maximum length of 253 octet to fit in
496		 * RADIUS attributes.
497		 */
498		wpa_printf(MSG_DEBUG,
499			   "EAP: Too long realm for ERP keyName-NAI maximum length");
500		goto fail;
501	}
502	nai_buf_len++; /* null termination */
503	erp = os_zalloc(sizeof(*erp) + nai_buf_len);
504	if (erp == NULL)
505		goto fail;
506
507	emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
508	if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
509		wpa_printf(MSG_DEBUG,
510			   "EAP: No suitable EMSK available for ERP");
511		goto fail;
512	}
513
514	wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
515
516	WPA_PUT_BE16(len, 8);
517	if (hmac_sha256_kdf(sm->eapSessionId, sm->eapSessionIdLen, "EMSK",
518			    len, sizeof(len),
519			    EMSKname, EAP_EMSK_NAME_LEN) < 0) {
520		wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
521		goto fail;
522	}
523	wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
524
525	pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
526			       EMSKname, EAP_EMSK_NAME_LEN);
527	erp->keyname_nai[pos] = '@';
528	os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
529
530	WPA_PUT_BE16(len, emsk_len);
531	if (hmac_sha256_kdf(emsk, emsk_len,
532			    "EAP Re-authentication Root Key@ietf.org",
533			    len, sizeof(len), erp->rRK, emsk_len) < 0) {
534		wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
535		goto fail;
536	}
537	erp->rRK_len = emsk_len;
538	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
539
540	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
541			    "EAP Re-authentication Integrity Key@ietf.org",
542			    len, sizeof(len), erp->rIK, erp->rRK_len) < 0) {
543		wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
544		goto fail;
545	}
546	erp->rIK_len = erp->rRK_len;
547	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
548
549	wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
550	dl_list_add(&sm->erp_keys, &erp->list);
551	erp = NULL;
552fail:
553	bin_clear_free(emsk, emsk_len);
554	bin_clear_free(erp, sizeof(*erp));
555	os_free(realm);
556#endif /* CONFIG_ERP */
557}
558
559
560#ifdef CONFIG_ERP
561static int eap_peer_erp_reauth_start(struct eap_sm *sm,
562				     const struct eap_hdr *hdr, size_t len)
563{
564	char *realm;
565	struct eap_erp_key *erp;
566	struct wpabuf *msg;
567	u8 hash[SHA256_MAC_LEN];
568
569	realm = eap_home_realm(sm);
570	if (!realm)
571		return -1;
572
573	erp = eap_erp_get_key(sm, realm);
574	os_free(realm);
575	realm = NULL;
576	if (!erp)
577		return -1;
578
579	if (erp->next_seq >= 65536)
580		return -1; /* SEQ has range of 0..65535 */
581
582	/* TODO: check rRK lifetime expiration */
583
584	wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
585		   erp->keyname_nai, erp->next_seq);
586
587	msg = eap_msg_alloc(EAP_VENDOR_IETF, EAP_ERP_TYPE_REAUTH,
588			    1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
589			    EAP_CODE_INITIATE, hdr->identifier);
590	if (msg == NULL)
591		return -1;
592
593	wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
594	wpabuf_put_be16(msg, erp->next_seq);
595
596	wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
597	wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
598	wpabuf_put_str(msg, erp->keyname_nai);
599
600	wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
601
602	if (hmac_sha256(erp->rIK, erp->rIK_len,
603			wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
604		wpabuf_free(msg);
605		return -1;
606	}
607	wpabuf_put_data(msg, hash, 16);
608
609	wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
610	sm->erp_seq = erp->next_seq;
611	erp->next_seq++;
612	wpabuf_free(sm->eapRespData);
613	sm->eapRespData = msg;
614	sm->reauthInit = TRUE;
615	return 0;
616}
617#endif /* CONFIG_ERP */
618
619
620/*
621 * The method processing happens here. The request from the authenticator is
622 * processed, and an appropriate response packet is built.
623 */
624SM_STATE(EAP, METHOD)
625{
626	struct wpabuf *eapReqData;
627	struct eap_method_ret ret;
628	int min_len = 1;
629
630	SM_ENTRY(EAP, METHOD);
631	if (sm->m == NULL) {
632		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
633		return;
634	}
635
636	eapReqData = eapol_get_eapReqData(sm);
637	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
638		min_len = 0; /* LEAP uses EAP-Success without payload */
639	if (!eap_hdr_len_valid(eapReqData, min_len))
640		return;
641
642	/*
643	 * Get ignore, methodState, decision, allowNotifications, and
644	 * eapRespData. RFC 4137 uses three separate method procedure (check,
645	 * process, and buildResp) in this state. These have been combined into
646	 * a single function call to m->process() in order to optimize EAP
647	 * method implementation interface a bit. These procedures are only
648	 * used from within this METHOD state, so there is no need to keep
649	 * these as separate C functions.
650	 *
651	 * The RFC 4137 procedures return values as follows:
652	 * ignore = m.check(eapReqData)
653	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
654	 * eapRespData = m.buildResp(reqId)
655	 */
656	os_memset(&ret, 0, sizeof(ret));
657	ret.ignore = sm->ignore;
658	ret.methodState = sm->methodState;
659	ret.decision = sm->decision;
660	ret.allowNotifications = sm->allowNotifications;
661	wpabuf_free(sm->eapRespData);
662	sm->eapRespData = NULL;
663	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
664					 eapReqData);
665	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
666		   "methodState=%s decision=%s eapRespData=%p",
667		   ret.ignore ? "TRUE" : "FALSE",
668		   eap_sm_method_state_txt(ret.methodState),
669		   eap_sm_decision_txt(ret.decision),
670		   sm->eapRespData);
671
672	sm->ignore = ret.ignore;
673	if (sm->ignore)
674		return;
675	sm->methodState = ret.methodState;
676	sm->decision = ret.decision;
677	sm->allowNotifications = ret.allowNotifications;
678
679	if (sm->m->isKeyAvailable && sm->m->getKey &&
680	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
681		struct eap_peer_config *config = eap_get_config(sm);
682
683		eap_sm_free_key(sm);
684		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
685					       &sm->eapKeyDataLen);
686		os_free(sm->eapSessionId);
687		sm->eapSessionId = NULL;
688		if (sm->m->getSessionId) {
689			sm->eapSessionId = sm->m->getSessionId(
690				sm, sm->eap_method_priv,
691				&sm->eapSessionIdLen);
692			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
693				    sm->eapSessionId, sm->eapSessionIdLen);
694		}
695		if (config->erp && sm->m->get_emsk && sm->eapSessionId)
696			eap_peer_erp_init(sm);
697	}
698}
699
700
701/*
702 * This state signals the lower layer that a response packet is ready to be
703 * sent.
704 */
705SM_STATE(EAP, SEND_RESPONSE)
706{
707	SM_ENTRY(EAP, SEND_RESPONSE);
708	wpabuf_free(sm->lastRespData);
709	if (sm->eapRespData) {
710		if (sm->workaround)
711			os_memcpy(sm->last_md5, sm->req_md5, 16);
712		sm->lastId = sm->reqId;
713		sm->lastRespData = wpabuf_dup(sm->eapRespData);
714		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
715	} else {
716		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
717		sm->lastRespData = NULL;
718	}
719	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
720	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
721	sm->reauthInit = FALSE;
722}
723
724
725/*
726 * This state signals the lower layer that the request was discarded, and no
727 * response packet will be sent at this time.
728 */
729SM_STATE(EAP, DISCARD)
730{
731	SM_ENTRY(EAP, DISCARD);
732	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
733	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
734}
735
736
737/*
738 * Handles requests for Identity method and builds a response.
739 */
740SM_STATE(EAP, IDENTITY)
741{
742	const struct wpabuf *eapReqData;
743
744	SM_ENTRY(EAP, IDENTITY);
745	eapReqData = eapol_get_eapReqData(sm);
746	if (!eap_hdr_len_valid(eapReqData, 1))
747		return;
748	eap_sm_processIdentity(sm, eapReqData);
749	wpabuf_free(sm->eapRespData);
750	sm->eapRespData = NULL;
751	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
752}
753
754
755/*
756 * Handles requests for Notification method and builds a response.
757 */
758SM_STATE(EAP, NOTIFICATION)
759{
760	const struct wpabuf *eapReqData;
761
762	SM_ENTRY(EAP, NOTIFICATION);
763	eapReqData = eapol_get_eapReqData(sm);
764	if (!eap_hdr_len_valid(eapReqData, 1))
765		return;
766	eap_sm_processNotify(sm, eapReqData);
767	wpabuf_free(sm->eapRespData);
768	sm->eapRespData = NULL;
769	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
770}
771
772
773/*
774 * This state retransmits the previous response packet.
775 */
776SM_STATE(EAP, RETRANSMIT)
777{
778	SM_ENTRY(EAP, RETRANSMIT);
779	wpabuf_free(sm->eapRespData);
780	if (sm->lastRespData)
781		sm->eapRespData = wpabuf_dup(sm->lastRespData);
782	else
783		sm->eapRespData = NULL;
784}
785
786
787/*
788 * This state is entered in case of a successful completion of authentication
789 * and state machine waits here until port is disabled or EAP authentication is
790 * restarted.
791 */
792SM_STATE(EAP, SUCCESS)
793{
794	SM_ENTRY(EAP, SUCCESS);
795	if (sm->eapKeyData != NULL)
796		sm->eapKeyAvailable = TRUE;
797	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
798
799	/*
800	 * RFC 4137 does not clear eapReq here, but this seems to be required
801	 * to avoid processing the same request twice when state machine is
802	 * initialized.
803	 */
804	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
805
806	/*
807	 * RFC 4137 does not set eapNoResp here, but this seems to be required
808	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
809	 * addition, either eapResp or eapNoResp is required to be set after
810	 * processing the received EAP frame.
811	 */
812	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
813
814	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
815		"EAP authentication completed successfully");
816}
817
818
819/*
820 * This state is entered in case of a failure and state machine waits here
821 * until port is disabled or EAP authentication is restarted.
822 */
823SM_STATE(EAP, FAILURE)
824{
825	SM_ENTRY(EAP, FAILURE);
826	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
827
828	/*
829	 * RFC 4137 does not clear eapReq here, but this seems to be required
830	 * to avoid processing the same request twice when state machine is
831	 * initialized.
832	 */
833	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
834
835	/*
836	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
837	 * eapNoResp is required to be set after processing the received EAP
838	 * frame.
839	 */
840	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
841
842	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
843		"EAP authentication failed");
844
845	sm->prev_failure = 1;
846}
847
848
849static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
850{
851	/*
852	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
853	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
854	 * RFC 4137 require that reqId == lastId. In addition, it looks like
855	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
856	 *
857	 * Accept this kind of Id if EAP workarounds are enabled. These are
858	 * unauthenticated plaintext messages, so this should have minimal
859	 * security implications (bit easier to fake EAP-Success/Failure).
860	 */
861	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
862			       reqId == ((lastId + 2) & 0xff))) {
863		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
864			   "identifier field in EAP Success: "
865			   "reqId=%d lastId=%d (these are supposed to be "
866			   "same)", reqId, lastId);
867		return 1;
868	}
869	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
870		   "lastId=%d", reqId, lastId);
871	return 0;
872}
873
874
875/*
876 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
877 */
878
879static void eap_peer_sm_step_idle(struct eap_sm *sm)
880{
881	/*
882	 * The first three transitions are from RFC 4137. The last two are
883	 * local additions to handle special cases with LEAP and PEAP server
884	 * not sending EAP-Success in some cases.
885	 */
886	if (eapol_get_bool(sm, EAPOL_eapReq))
887		SM_ENTER(EAP, RECEIVED);
888	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
889		  sm->decision != DECISION_FAIL) ||
890		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
891		  sm->decision == DECISION_UNCOND_SUCC))
892		SM_ENTER(EAP, SUCCESS);
893	else if (eapol_get_bool(sm, EAPOL_altReject) ||
894		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
895		  sm->decision != DECISION_UNCOND_SUCC) ||
896		 (eapol_get_bool(sm, EAPOL_altAccept) &&
897		  sm->methodState != METHOD_CONT &&
898		  sm->decision == DECISION_FAIL))
899		SM_ENTER(EAP, FAILURE);
900	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
901		 sm->leap_done && sm->decision != DECISION_FAIL &&
902		 sm->methodState == METHOD_DONE)
903		SM_ENTER(EAP, SUCCESS);
904	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
905		 sm->peap_done && sm->decision != DECISION_FAIL &&
906		 sm->methodState == METHOD_DONE)
907		SM_ENTER(EAP, SUCCESS);
908}
909
910
911static int eap_peer_req_is_duplicate(struct eap_sm *sm)
912{
913	int duplicate;
914
915	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
916	if (sm->workaround && duplicate &&
917	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
918		/*
919		 * RFC 4137 uses (reqId == lastId) as the only verification for
920		 * duplicate EAP requests. However, this misses cases where the
921		 * AS is incorrectly using the same id again; and
922		 * unfortunately, such implementations exist. Use MD5 hash as
923		 * an extra verification for the packets being duplicate to
924		 * workaround these issues.
925		 */
926		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
927			   "EAP packets were not identical");
928		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
929			   "duplicate packet");
930		duplicate = 0;
931	}
932
933	return duplicate;
934}
935
936
937static int eap_peer_sm_allow_canned(struct eap_sm *sm)
938{
939	struct eap_peer_config *config = eap_get_config(sm);
940
941	return config && config->phase1 &&
942		os_strstr(config->phase1, "allow_canned_success=1");
943}
944
945
946static void eap_peer_sm_step_received(struct eap_sm *sm)
947{
948	int duplicate = eap_peer_req_is_duplicate(sm);
949
950	/*
951	 * Two special cases below for LEAP are local additions to work around
952	 * odd LEAP behavior (EAP-Success in the middle of authentication and
953	 * then swapped roles). Other transitions are based on RFC 4137.
954	 */
955	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
956	    (sm->reqId == sm->lastId ||
957	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
958		SM_ENTER(EAP, SUCCESS);
959	else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
960		 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
961		SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
962	else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
963		 !sm->rxReq && sm->methodState != METHOD_CONT &&
964		 eap_peer_sm_allow_canned(sm))
965		SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
966	else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
967		 !sm->rxReq && sm->methodState != METHOD_CONT &&
968		 eap_peer_sm_allow_canned(sm))
969		SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
970	else if (sm->methodState != METHOD_CONT &&
971		 ((sm->rxFailure &&
972		   sm->decision != DECISION_UNCOND_SUCC) ||
973		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
974		   (sm->selectedMethod != EAP_TYPE_LEAP ||
975		    sm->methodState != METHOD_MAY_CONT))) &&
976		 (sm->reqId == sm->lastId ||
977		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
978		SM_ENTER(EAP, FAILURE);
979	else if (sm->rxReq && duplicate)
980		SM_ENTER(EAP, RETRANSMIT);
981	else if (sm->rxReq && !duplicate &&
982		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
983		 sm->allowNotifications)
984		SM_ENTER(EAP, NOTIFICATION);
985	else if (sm->rxReq && !duplicate &&
986		 sm->selectedMethod == EAP_TYPE_NONE &&
987		 sm->reqMethod == EAP_TYPE_IDENTITY)
988		SM_ENTER(EAP, IDENTITY);
989	else if (sm->rxReq && !duplicate &&
990		 sm->selectedMethod == EAP_TYPE_NONE &&
991		 sm->reqMethod != EAP_TYPE_IDENTITY &&
992		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
993		SM_ENTER(EAP, GET_METHOD);
994	else if (sm->rxReq && !duplicate &&
995		 sm->reqMethod == sm->selectedMethod &&
996		 sm->methodState != METHOD_DONE)
997		SM_ENTER(EAP, METHOD);
998	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
999		 (sm->rxSuccess || sm->rxResp))
1000		SM_ENTER(EAP, METHOD);
1001	else if (sm->reauthInit)
1002		SM_ENTER(EAP, SEND_RESPONSE);
1003	else
1004		SM_ENTER(EAP, DISCARD);
1005}
1006
1007
1008static void eap_peer_sm_step_local(struct eap_sm *sm)
1009{
1010	switch (sm->EAP_state) {
1011	case EAP_INITIALIZE:
1012		SM_ENTER(EAP, IDLE);
1013		break;
1014	case EAP_DISABLED:
1015		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1016		    !sm->force_disabled)
1017			SM_ENTER(EAP, INITIALIZE);
1018		break;
1019	case EAP_IDLE:
1020		eap_peer_sm_step_idle(sm);
1021		break;
1022	case EAP_RECEIVED:
1023		eap_peer_sm_step_received(sm);
1024		break;
1025	case EAP_GET_METHOD:
1026		if (sm->selectedMethod == sm->reqMethod)
1027			SM_ENTER(EAP, METHOD);
1028		else
1029			SM_ENTER(EAP, SEND_RESPONSE);
1030		break;
1031	case EAP_METHOD:
1032		/*
1033		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1034		 * as the condition. eapRespData == NULL here is used to allow
1035		 * final EAP method response to be sent without having to change
1036		 * all methods to either use methodState MAY_CONT or leaving
1037		 * decision to something else than FAIL in cases where the only
1038		 * expected response is EAP-Failure.
1039		 */
1040		if (sm->ignore)
1041			SM_ENTER(EAP, DISCARD);
1042		else if (sm->methodState == METHOD_DONE &&
1043			 sm->decision == DECISION_FAIL && !sm->eapRespData)
1044			SM_ENTER(EAP, FAILURE);
1045		else
1046			SM_ENTER(EAP, SEND_RESPONSE);
1047		break;
1048	case EAP_SEND_RESPONSE:
1049		SM_ENTER(EAP, IDLE);
1050		break;
1051	case EAP_DISCARD:
1052		SM_ENTER(EAP, IDLE);
1053		break;
1054	case EAP_IDENTITY:
1055		SM_ENTER(EAP, SEND_RESPONSE);
1056		break;
1057	case EAP_NOTIFICATION:
1058		SM_ENTER(EAP, SEND_RESPONSE);
1059		break;
1060	case EAP_RETRANSMIT:
1061		SM_ENTER(EAP, SEND_RESPONSE);
1062		break;
1063	case EAP_SUCCESS:
1064		break;
1065	case EAP_FAILURE:
1066		break;
1067	}
1068}
1069
1070
1071SM_STEP(EAP)
1072{
1073	/* Global transitions */
1074	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1075	    eapol_get_bool(sm, EAPOL_portEnabled))
1076		SM_ENTER_GLOBAL(EAP, INITIALIZE);
1077	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1078		SM_ENTER_GLOBAL(EAP, DISABLED);
1079	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1080		/* RFC 4137 does not place any limit on number of EAP messages
1081		 * in an authentication session. However, some error cases have
1082		 * ended up in a state were EAP messages were sent between the
1083		 * peer and server in a loop (e.g., TLS ACK frame in both
1084		 * direction). Since this is quite undesired outcome, limit the
1085		 * total number of EAP round-trips and abort authentication if
1086		 * this limit is exceeded.
1087		 */
1088		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1089			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1090				"authentication rounds - abort",
1091				EAP_MAX_AUTH_ROUNDS);
1092			sm->num_rounds++;
1093			SM_ENTER_GLOBAL(EAP, FAILURE);
1094		}
1095	} else {
1096		/* Local transitions */
1097		eap_peer_sm_step_local(sm);
1098	}
1099}
1100
1101
1102static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1103				  EapType method)
1104{
1105	if (!eap_allowed_method(sm, vendor, method)) {
1106		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1107			   "vendor %u method %u", vendor, method);
1108		return FALSE;
1109	}
1110	if (eap_peer_get_eap_method(vendor, method))
1111		return TRUE;
1112	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1113		   "vendor %u method %u", vendor, method);
1114	return FALSE;
1115}
1116
1117
1118static struct wpabuf * eap_sm_build_expanded_nak(
1119	struct eap_sm *sm, int id, const struct eap_method *methods,
1120	size_t count)
1121{
1122	struct wpabuf *resp;
1123	int found = 0;
1124	const struct eap_method *m;
1125
1126	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1127
1128	/* RFC 3748 - 5.3.2: Expanded Nak */
1129	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1130			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1131	if (resp == NULL)
1132		return NULL;
1133
1134	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1135	wpabuf_put_be32(resp, EAP_TYPE_NAK);
1136
1137	for (m = methods; m; m = m->next) {
1138		if (sm->reqVendor == m->vendor &&
1139		    sm->reqVendorMethod == m->method)
1140			continue; /* do not allow the current method again */
1141		if (eap_allowed_method(sm, m->vendor, m->method)) {
1142			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1143				   "vendor=%u method=%u",
1144				   m->vendor, m->method);
1145			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1146			wpabuf_put_be24(resp, m->vendor);
1147			wpabuf_put_be32(resp, m->method);
1148
1149			found++;
1150		}
1151	}
1152	if (!found) {
1153		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1154		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1155		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1156		wpabuf_put_be32(resp, EAP_TYPE_NONE);
1157	}
1158
1159	eap_update_len(resp);
1160
1161	return resp;
1162}
1163
1164
1165static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1166{
1167	struct wpabuf *resp;
1168	u8 *start;
1169	int found = 0, expanded_found = 0;
1170	size_t count;
1171	const struct eap_method *methods, *m;
1172
1173	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1174		   "vendor=%u method=%u not allowed)", sm->reqMethod,
1175		   sm->reqVendor, sm->reqVendorMethod);
1176	methods = eap_peer_get_methods(&count);
1177	if (methods == NULL)
1178		return NULL;
1179	if (sm->reqMethod == EAP_TYPE_EXPANDED)
1180		return eap_sm_build_expanded_nak(sm, id, methods, count);
1181
1182	/* RFC 3748 - 5.3.1: Legacy Nak */
1183	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1184			     sizeof(struct eap_hdr) + 1 + count + 1,
1185			     EAP_CODE_RESPONSE, id);
1186	if (resp == NULL)
1187		return NULL;
1188
1189	start = wpabuf_put(resp, 0);
1190	for (m = methods; m; m = m->next) {
1191		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1192			continue; /* do not allow the current method again */
1193		if (eap_allowed_method(sm, m->vendor, m->method)) {
1194			if (m->vendor != EAP_VENDOR_IETF) {
1195				if (expanded_found)
1196					continue;
1197				expanded_found = 1;
1198				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1199			} else
1200				wpabuf_put_u8(resp, m->method);
1201			found++;
1202		}
1203	}
1204	if (!found)
1205		wpabuf_put_u8(resp, EAP_TYPE_NONE);
1206	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1207
1208	eap_update_len(resp);
1209
1210	return resp;
1211}
1212
1213
1214static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1215{
1216	const u8 *pos;
1217	size_t msg_len;
1218
1219	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1220		"EAP authentication started");
1221	eap_notify_status(sm, "started", "");
1222
1223	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1224			       &msg_len);
1225	if (pos == NULL)
1226		return;
1227
1228	/*
1229	 * RFC 3748 - 5.1: Identity
1230	 * Data field may contain a displayable message in UTF-8. If this
1231	 * includes NUL-character, only the data before that should be
1232	 * displayed. Some EAP implementasitons may piggy-back additional
1233	 * options after the NUL.
1234	 */
1235	/* TODO: could save displayable message so that it can be shown to the
1236	 * user in case of interaction is required */
1237	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1238			  pos, msg_len);
1239}
1240
1241
1242#ifdef PCSC_FUNCS
1243
1244/*
1245 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1246 * include MNC length field.
1247 */
1248static int mnc_len_from_imsi(const char *imsi)
1249{
1250	char mcc_str[4];
1251	unsigned int mcc;
1252
1253	os_memcpy(mcc_str, imsi, 3);
1254	mcc_str[3] = '\0';
1255	mcc = atoi(mcc_str);
1256
1257	if (mcc == 228)
1258		return 2; /* Networks in Switzerland use 2-digit MNC */
1259	if (mcc == 244)
1260		return 2; /* Networks in Finland use 2-digit MNC */
1261
1262	return -1;
1263}
1264
1265
1266static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
1267				    size_t max_len, size_t *imsi_len)
1268{
1269	int mnc_len;
1270	char *pos, mnc[4];
1271
1272	if (*imsi_len + 36 > max_len) {
1273		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
1274		return -1;
1275	}
1276
1277	/* MNC (2 or 3 digits) */
1278	mnc_len = scard_get_mnc_len(sm->scard_ctx);
1279	if (mnc_len < 0)
1280		mnc_len = mnc_len_from_imsi(imsi);
1281	if (mnc_len < 0) {
1282		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1283			   "assuming 3");
1284		mnc_len = 3;
1285	}
1286
1287	if (mnc_len == 2) {
1288		mnc[0] = '0';
1289		mnc[1] = imsi[3];
1290		mnc[2] = imsi[4];
1291	} else if (mnc_len == 3) {
1292		mnc[0] = imsi[3];
1293		mnc[1] = imsi[4];
1294		mnc[2] = imsi[5];
1295	}
1296	mnc[3] = '\0';
1297
1298	pos = imsi + *imsi_len;
1299	pos += os_snprintf(pos, imsi + max_len - pos,
1300			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1301			   mnc, imsi[0], imsi[1], imsi[2]);
1302	*imsi_len = pos - imsi;
1303
1304	return 0;
1305}
1306
1307
1308static int eap_sm_imsi_identity(struct eap_sm *sm,
1309				struct eap_peer_config *conf)
1310{
1311	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1312	char imsi[100];
1313	size_t imsi_len;
1314	struct eap_method_type *m = conf->eap_methods;
1315	int i;
1316
1317	imsi_len = sizeof(imsi);
1318	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1319		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1320		return -1;
1321	}
1322
1323	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1324
1325	if (imsi_len < 7) {
1326		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1327		return -1;
1328	}
1329
1330	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1331		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1332		return -1;
1333	}
1334	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1335
1336	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1337			  m[i].method != EAP_TYPE_NONE); i++) {
1338		if (m[i].vendor == EAP_VENDOR_IETF &&
1339		    m[i].method == EAP_TYPE_AKA_PRIME) {
1340			method = EAP_SM_AKA_PRIME;
1341			break;
1342		}
1343
1344		if (m[i].vendor == EAP_VENDOR_IETF &&
1345		    m[i].method == EAP_TYPE_AKA) {
1346			method = EAP_SM_AKA;
1347			break;
1348		}
1349	}
1350
1351	os_free(conf->identity);
1352	conf->identity = os_malloc(1 + imsi_len);
1353	if (conf->identity == NULL) {
1354		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1355			   "IMSI-based identity");
1356		return -1;
1357	}
1358
1359	switch (method) {
1360	case EAP_SM_SIM:
1361		conf->identity[0] = '1';
1362		break;
1363	case EAP_SM_AKA:
1364		conf->identity[0] = '0';
1365		break;
1366	case EAP_SM_AKA_PRIME:
1367		conf->identity[0] = '6';
1368		break;
1369	}
1370	os_memcpy(conf->identity + 1, imsi, imsi_len);
1371	conf->identity_len = 1 + imsi_len;
1372
1373	return 0;
1374}
1375
1376#endif /* PCSC_FUNCS */
1377
1378
1379static int eap_sm_set_scard_pin(struct eap_sm *sm,
1380				struct eap_peer_config *conf)
1381{
1382#ifdef PCSC_FUNCS
1383	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1384		/*
1385		 * Make sure the same PIN is not tried again in order to avoid
1386		 * blocking SIM.
1387		 */
1388		os_free(conf->pin);
1389		conf->pin = NULL;
1390
1391		wpa_printf(MSG_WARNING, "PIN validation failed");
1392		eap_sm_request_pin(sm);
1393		return -1;
1394	}
1395	return 0;
1396#else /* PCSC_FUNCS */
1397	return -1;
1398#endif /* PCSC_FUNCS */
1399}
1400
1401static int eap_sm_get_scard_identity(struct eap_sm *sm,
1402				     struct eap_peer_config *conf)
1403{
1404#ifdef PCSC_FUNCS
1405	if (eap_sm_set_scard_pin(sm, conf))
1406		return -1;
1407
1408	return eap_sm_imsi_identity(sm, conf);
1409#else /* PCSC_FUNCS */
1410	return -1;
1411#endif /* PCSC_FUNCS */
1412}
1413
1414
1415/**
1416 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1417 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1418 * @id: EAP identifier for the packet
1419 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1420 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1421 * failure
1422 *
1423 * This function allocates and builds an EAP-Identity/Response packet for the
1424 * current network. The caller is responsible for freeing the returned data.
1425 */
1426struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1427{
1428	struct eap_peer_config *config = eap_get_config(sm);
1429	struct wpabuf *resp;
1430	const u8 *identity;
1431	size_t identity_len;
1432
1433	if (config == NULL) {
1434		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1435			   "was not available");
1436		return NULL;
1437	}
1438
1439	if (sm->m && sm->m->get_identity &&
1440	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1441					    &identity_len)) != NULL) {
1442		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1443				  "identity", identity, identity_len);
1444	} else if (!encrypted && config->anonymous_identity) {
1445		identity = config->anonymous_identity;
1446		identity_len = config->anonymous_identity_len;
1447		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1448				  identity, identity_len);
1449	} else {
1450		identity = config->identity;
1451		identity_len = config->identity_len;
1452		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1453				  identity, identity_len);
1454	}
1455
1456	if (identity == NULL) {
1457		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1458			   "configuration was not available");
1459		if (config->pcsc) {
1460			if (eap_sm_get_scard_identity(sm, config) < 0)
1461				return NULL;
1462			identity = config->identity;
1463			identity_len = config->identity_len;
1464			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1465					  "IMSI", identity, identity_len);
1466		} else {
1467			eap_sm_request_identity(sm);
1468			return NULL;
1469		}
1470	} else if (config->pcsc) {
1471		if (eap_sm_set_scard_pin(sm, config) < 0)
1472			return NULL;
1473	}
1474
1475	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1476			     EAP_CODE_RESPONSE, id);
1477	if (resp == NULL)
1478		return NULL;
1479
1480	wpabuf_put_data(resp, identity, identity_len);
1481
1482	return resp;
1483}
1484
1485
1486static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1487{
1488	const u8 *pos;
1489	char *msg;
1490	size_t i, msg_len;
1491
1492	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1493			       &msg_len);
1494	if (pos == NULL)
1495		return;
1496	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1497			  pos, msg_len);
1498
1499	msg = os_malloc(msg_len + 1);
1500	if (msg == NULL)
1501		return;
1502	for (i = 0; i < msg_len; i++)
1503		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1504	msg[msg_len] = '\0';
1505	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1506		WPA_EVENT_EAP_NOTIFICATION, msg);
1507	os_free(msg);
1508}
1509
1510
1511static struct wpabuf * eap_sm_buildNotify(int id)
1512{
1513	struct wpabuf *resp;
1514
1515	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1516	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1517			     EAP_CODE_RESPONSE, id);
1518	if (resp == NULL)
1519		return NULL;
1520
1521	return resp;
1522}
1523
1524
1525static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1526			      size_t len)
1527{
1528#ifdef CONFIG_ERP
1529	const u8 *pos = (const u8 *) (hdr + 1);
1530	const u8 *end = ((const u8 *) hdr) + len;
1531	struct erp_tlvs parse;
1532
1533	if (len < sizeof(*hdr) + 1) {
1534		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1535		return;
1536	}
1537
1538	if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1539		wpa_printf(MSG_DEBUG,
1540			   "EAP: Ignored unexpected EAP-Initiate Type=%u",
1541			   *pos);
1542		return;
1543	}
1544
1545	pos++;
1546	if (pos >= end) {
1547		wpa_printf(MSG_DEBUG,
1548			   "EAP: Too short EAP-Initiate/Re-auth-Start");
1549		return;
1550	}
1551	pos++; /* Reserved */
1552	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1553		    pos, end - pos);
1554
1555	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1556		goto invalid;
1557
1558	if (parse.domain) {
1559		wpa_hexdump_ascii(MSG_DEBUG,
1560				  "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1561				  parse.domain, parse.domain_len);
1562		/* TODO: Derivation of domain specific keys for local ER */
1563	}
1564
1565	if (eap_peer_erp_reauth_start(sm, hdr, len) == 0)
1566		return;
1567
1568invalid:
1569#endif /* CONFIG_ERP */
1570	wpa_printf(MSG_DEBUG,
1571		   "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1572	eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1573}
1574
1575
1576static void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr,
1577			    size_t len)
1578{
1579#ifdef CONFIG_ERP
1580	const u8 *pos = (const u8 *) (hdr + 1);
1581	const u8 *end = ((const u8 *) hdr) + len;
1582	const u8 *start;
1583	struct erp_tlvs parse;
1584	u8 flags;
1585	u16 seq;
1586	u8 hash[SHA256_MAC_LEN];
1587	size_t hash_len;
1588	struct eap_erp_key *erp;
1589	int max_len;
1590	char nai[254];
1591	u8 seed[4];
1592	int auth_tag_ok = 0;
1593
1594	if (len < sizeof(*hdr) + 1) {
1595		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1596		return;
1597	}
1598
1599	if (*pos != EAP_ERP_TYPE_REAUTH) {
1600		wpa_printf(MSG_DEBUG,
1601			   "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1602		return;
1603	}
1604
1605	if (len < sizeof(*hdr) + 4) {
1606		wpa_printf(MSG_DEBUG,
1607			   "EAP: Ignored too short EAP-Finish/Re-auth");
1608		return;
1609	}
1610
1611	pos++;
1612	flags = *pos++;
1613	seq = WPA_GET_BE16(pos);
1614	pos += 2;
1615	wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1616
1617	if (seq != sm->erp_seq) {
1618		wpa_printf(MSG_DEBUG,
1619			   "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1620		return;
1621	}
1622
1623	/*
1624	 * Parse TVs/TLVs. Since we do not yet know the length of the
1625	 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1626	 * just try to find the keyName-NAI first so that we can check the
1627	 * Authentication Tag.
1628	 */
1629	if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1630		return;
1631
1632	if (!parse.keyname) {
1633		wpa_printf(MSG_DEBUG,
1634			   "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1635		return;
1636	}
1637
1638	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1639			  parse.keyname, parse.keyname_len);
1640	if (parse.keyname_len > 253) {
1641		wpa_printf(MSG_DEBUG,
1642			   "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1643		return;
1644	}
1645	os_memcpy(nai, parse.keyname, parse.keyname_len);
1646	nai[parse.keyname_len] = '\0';
1647
1648	erp = eap_erp_get_key_nai(sm, nai);
1649	if (!erp) {
1650		wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1651			   nai);
1652		return;
1653	}
1654
1655	/* Is there enough room for Cryptosuite and Authentication Tag? */
1656	start = parse.keyname + parse.keyname_len;
1657	max_len = end - start;
1658	hash_len = 16;
1659	if (max_len < 1 + (int) hash_len) {
1660		wpa_printf(MSG_DEBUG,
1661			   "EAP: Not enough room for Authentication Tag");
1662		if (flags & 0x80)
1663			goto no_auth_tag;
1664		return;
1665	}
1666	if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1667		wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1668		if (flags & 0x80)
1669			goto no_auth_tag;
1670		return;
1671	}
1672
1673	if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1674			end - ((const u8 *) hdr) - hash_len, hash) < 0)
1675		return;
1676	if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1677		wpa_printf(MSG_DEBUG,
1678			   "EAP: Authentication Tag mismatch");
1679		return;
1680	}
1681	auth_tag_ok = 1;
1682	end -= 1 + hash_len;
1683
1684no_auth_tag:
1685	/*
1686	 * Parse TVs/TLVs again now that we know the exact part of the buffer
1687	 * that contains them.
1688	 */
1689	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1690		    pos, end - pos);
1691	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1692		return;
1693
1694	if (flags & 0x80 || !auth_tag_ok) {
1695		wpa_printf(MSG_DEBUG,
1696			   "EAP: EAP-Finish/Re-auth indicated failure");
1697		eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1698		eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1699		eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1700		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1701			"EAP authentication failed");
1702		sm->prev_failure = 1;
1703		wpa_printf(MSG_DEBUG,
1704			   "EAP: Drop ERP key to try full authentication on next attempt");
1705		eap_peer_erp_free_key(erp);
1706		return;
1707	}
1708
1709	eap_sm_free_key(sm);
1710	sm->eapKeyDataLen = 0;
1711	sm->eapKeyData = os_malloc(erp->rRK_len);
1712	if (!sm->eapKeyData)
1713		return;
1714	sm->eapKeyDataLen = erp->rRK_len;
1715
1716	WPA_PUT_BE16(seed, seq);
1717	WPA_PUT_BE16(&seed[2], erp->rRK_len);
1718	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1719			    "Re-authentication Master Session Key@ietf.org",
1720			    seed, sizeof(seed),
1721			    sm->eapKeyData, erp->rRK_len) < 0) {
1722		wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1723		eap_sm_free_key(sm);
1724		return;
1725	}
1726	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1727			sm->eapKeyData, sm->eapKeyDataLen);
1728	sm->eapKeyAvailable = TRUE;
1729	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1730	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1731	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1732	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1733		"EAP re-authentication completed successfully");
1734#endif /* CONFIG_ERP */
1735}
1736
1737
1738static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1739{
1740	const struct eap_hdr *hdr;
1741	size_t plen;
1742	const u8 *pos;
1743
1744	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1745	sm->reqId = 0;
1746	sm->reqMethod = EAP_TYPE_NONE;
1747	sm->reqVendor = EAP_VENDOR_IETF;
1748	sm->reqVendorMethod = EAP_TYPE_NONE;
1749
1750	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1751		return;
1752
1753	hdr = wpabuf_head(req);
1754	plen = be_to_host16(hdr->length);
1755	if (plen > wpabuf_len(req)) {
1756		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1757			   "(len=%lu plen=%lu)",
1758			   (unsigned long) wpabuf_len(req),
1759			   (unsigned long) plen);
1760		return;
1761	}
1762
1763	sm->reqId = hdr->identifier;
1764
1765	if (sm->workaround) {
1766		const u8 *addr[1];
1767		addr[0] = wpabuf_head(req);
1768		md5_vector(1, addr, &plen, sm->req_md5);
1769	}
1770
1771	switch (hdr->code) {
1772	case EAP_CODE_REQUEST:
1773		if (plen < sizeof(*hdr) + 1) {
1774			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1775				   "no Type field");
1776			return;
1777		}
1778		sm->rxReq = TRUE;
1779		pos = (const u8 *) (hdr + 1);
1780		sm->reqMethod = *pos++;
1781		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1782			if (plen < sizeof(*hdr) + 8) {
1783				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1784					   "expanded EAP-Packet (plen=%lu)",
1785					   (unsigned long) plen);
1786				return;
1787			}
1788			sm->reqVendor = WPA_GET_BE24(pos);
1789			pos += 3;
1790			sm->reqVendorMethod = WPA_GET_BE32(pos);
1791		}
1792		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1793			   "method=%u vendor=%u vendorMethod=%u",
1794			   sm->reqId, sm->reqMethod, sm->reqVendor,
1795			   sm->reqVendorMethod);
1796		break;
1797	case EAP_CODE_RESPONSE:
1798		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1799			/*
1800			 * LEAP differs from RFC 4137 by using reversed roles
1801			 * for mutual authentication and because of this, we
1802			 * need to accept EAP-Response frames if LEAP is used.
1803			 */
1804			if (plen < sizeof(*hdr) + 1) {
1805				wpa_printf(MSG_DEBUG, "EAP: Too short "
1806					   "EAP-Response - no Type field");
1807				return;
1808			}
1809			sm->rxResp = TRUE;
1810			pos = (const u8 *) (hdr + 1);
1811			sm->reqMethod = *pos;
1812			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1813				   "LEAP method=%d id=%d",
1814				   sm->reqMethod, sm->reqId);
1815			break;
1816		}
1817		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1818		break;
1819	case EAP_CODE_SUCCESS:
1820		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1821		eap_notify_status(sm, "completion", "success");
1822		sm->rxSuccess = TRUE;
1823		break;
1824	case EAP_CODE_FAILURE:
1825		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1826		eap_notify_status(sm, "completion", "failure");
1827		sm->rxFailure = TRUE;
1828		break;
1829	case EAP_CODE_INITIATE:
1830		eap_peer_initiate(sm, hdr, plen);
1831		break;
1832	case EAP_CODE_FINISH:
1833		eap_peer_finish(sm, hdr, plen);
1834		break;
1835	default:
1836		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1837			   "code %d", hdr->code);
1838		break;
1839	}
1840}
1841
1842
1843static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1844				  union tls_event_data *data)
1845{
1846	struct eap_sm *sm = ctx;
1847	char *hash_hex = NULL;
1848
1849	switch (ev) {
1850	case TLS_CERT_CHAIN_SUCCESS:
1851		eap_notify_status(sm, "remote certificate verification",
1852				  "success");
1853		break;
1854	case TLS_CERT_CHAIN_FAILURE:
1855		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1856			"reason=%d depth=%d subject='%s' err='%s'",
1857			data->cert_fail.reason,
1858			data->cert_fail.depth,
1859			data->cert_fail.subject,
1860			data->cert_fail.reason_txt);
1861		eap_notify_status(sm, "remote certificate verification",
1862				  data->cert_fail.reason_txt);
1863		break;
1864	case TLS_PEER_CERTIFICATE:
1865		if (!sm->eapol_cb->notify_cert)
1866			break;
1867
1868		if (data->peer_cert.hash) {
1869			size_t len = data->peer_cert.hash_len * 2 + 1;
1870			hash_hex = os_malloc(len);
1871			if (hash_hex) {
1872				wpa_snprintf_hex(hash_hex, len,
1873						 data->peer_cert.hash,
1874						 data->peer_cert.hash_len);
1875			}
1876		}
1877
1878		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1879					  data->peer_cert.depth,
1880					  data->peer_cert.subject,
1881					  data->peer_cert.altsubject,
1882					  data->peer_cert.num_altsubject,
1883					  hash_hex, data->peer_cert.cert);
1884		break;
1885	case TLS_ALERT:
1886		if (data->alert.is_local)
1887			eap_notify_status(sm, "local TLS alert",
1888					  data->alert.description);
1889		else
1890			eap_notify_status(sm, "remote TLS alert",
1891					  data->alert.description);
1892		break;
1893	}
1894
1895	os_free(hash_hex);
1896}
1897
1898
1899/**
1900 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1901 * @eapol_ctx: Context data to be used with eapol_cb calls
1902 * @eapol_cb: Pointer to EAPOL callback functions
1903 * @msg_ctx: Context data for wpa_msg() calls
1904 * @conf: EAP configuration
1905 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1906 *
1907 * This function allocates and initializes an EAP state machine. In addition,
1908 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1909 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1910 * state machine. Consequently, the caller must make sure that this data
1911 * structure remains alive while the EAP state machine is active.
1912 */
1913struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1914				 const struct eapol_callbacks *eapol_cb,
1915				 void *msg_ctx, struct eap_config *conf)
1916{
1917	struct eap_sm *sm;
1918	struct tls_config tlsconf;
1919
1920	sm = os_zalloc(sizeof(*sm));
1921	if (sm == NULL)
1922		return NULL;
1923	sm->eapol_ctx = eapol_ctx;
1924	sm->eapol_cb = eapol_cb;
1925	sm->msg_ctx = msg_ctx;
1926	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1927	sm->wps = conf->wps;
1928	dl_list_init(&sm->erp_keys);
1929
1930	os_memset(&tlsconf, 0, sizeof(tlsconf));
1931	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1932	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1933	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1934	tlsconf.openssl_ciphers = conf->openssl_ciphers;
1935#ifdef CONFIG_FIPS
1936	tlsconf.fips_mode = 1;
1937#endif /* CONFIG_FIPS */
1938	tlsconf.event_cb = eap_peer_sm_tls_event;
1939	tlsconf.cb_ctx = sm;
1940	tlsconf.cert_in_cb = conf->cert_in_cb;
1941	sm->ssl_ctx = tls_init(&tlsconf);
1942	if (sm->ssl_ctx == NULL) {
1943		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1944			   "context.");
1945		os_free(sm);
1946		return NULL;
1947	}
1948
1949	sm->ssl_ctx2 = tls_init(&tlsconf);
1950	if (sm->ssl_ctx2 == NULL) {
1951		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1952			   "context (2).");
1953		/* Run without separate TLS context within TLS tunnel */
1954	}
1955
1956	return sm;
1957}
1958
1959
1960/**
1961 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1962 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1963 *
1964 * This function deinitializes EAP state machine and frees all allocated
1965 * resources.
1966 */
1967void eap_peer_sm_deinit(struct eap_sm *sm)
1968{
1969	if (sm == NULL)
1970		return;
1971	eap_deinit_prev_method(sm, "EAP deinit");
1972	eap_sm_abort(sm);
1973	if (sm->ssl_ctx2)
1974		tls_deinit(sm->ssl_ctx2);
1975	tls_deinit(sm->ssl_ctx);
1976	eap_peer_erp_free_keys(sm);
1977	os_free(sm);
1978}
1979
1980
1981/**
1982 * eap_peer_sm_step - Step EAP peer state machine
1983 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1984 * Returns: 1 if EAP state was changed or 0 if not
1985 *
1986 * This function advances EAP state machine to a new state to match with the
1987 * current variables. This should be called whenever variables used by the EAP
1988 * state machine have changed.
1989 */
1990int eap_peer_sm_step(struct eap_sm *sm)
1991{
1992	int res = 0;
1993	do {
1994		sm->changed = FALSE;
1995		SM_STEP_RUN(EAP);
1996		if (sm->changed)
1997			res = 1;
1998	} while (sm->changed);
1999	return res;
2000}
2001
2002
2003/**
2004 * eap_sm_abort - Abort EAP authentication
2005 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2006 *
2007 * Release system resources that have been allocated for the authentication
2008 * session without fully deinitializing the EAP state machine.
2009 */
2010void eap_sm_abort(struct eap_sm *sm)
2011{
2012	wpabuf_free(sm->lastRespData);
2013	sm->lastRespData = NULL;
2014	wpabuf_free(sm->eapRespData);
2015	sm->eapRespData = NULL;
2016	eap_sm_free_key(sm);
2017	os_free(sm->eapSessionId);
2018	sm->eapSessionId = NULL;
2019
2020	/* This is not clearly specified in the EAP statemachines draft, but
2021	 * it seems necessary to make sure that some of the EAPOL variables get
2022	 * cleared for the next authentication. */
2023	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2024}
2025
2026
2027#ifdef CONFIG_CTRL_IFACE
2028static const char * eap_sm_state_txt(int state)
2029{
2030	switch (state) {
2031	case EAP_INITIALIZE:
2032		return "INITIALIZE";
2033	case EAP_DISABLED:
2034		return "DISABLED";
2035	case EAP_IDLE:
2036		return "IDLE";
2037	case EAP_RECEIVED:
2038		return "RECEIVED";
2039	case EAP_GET_METHOD:
2040		return "GET_METHOD";
2041	case EAP_METHOD:
2042		return "METHOD";
2043	case EAP_SEND_RESPONSE:
2044		return "SEND_RESPONSE";
2045	case EAP_DISCARD:
2046		return "DISCARD";
2047	case EAP_IDENTITY:
2048		return "IDENTITY";
2049	case EAP_NOTIFICATION:
2050		return "NOTIFICATION";
2051	case EAP_RETRANSMIT:
2052		return "RETRANSMIT";
2053	case EAP_SUCCESS:
2054		return "SUCCESS";
2055	case EAP_FAILURE:
2056		return "FAILURE";
2057	default:
2058		return "UNKNOWN";
2059	}
2060}
2061#endif /* CONFIG_CTRL_IFACE */
2062
2063
2064#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2065static const char * eap_sm_method_state_txt(EapMethodState state)
2066{
2067	switch (state) {
2068	case METHOD_NONE:
2069		return "NONE";
2070	case METHOD_INIT:
2071		return "INIT";
2072	case METHOD_CONT:
2073		return "CONT";
2074	case METHOD_MAY_CONT:
2075		return "MAY_CONT";
2076	case METHOD_DONE:
2077		return "DONE";
2078	default:
2079		return "UNKNOWN";
2080	}
2081}
2082
2083
2084static const char * eap_sm_decision_txt(EapDecision decision)
2085{
2086	switch (decision) {
2087	case DECISION_FAIL:
2088		return "FAIL";
2089	case DECISION_COND_SUCC:
2090		return "COND_SUCC";
2091	case DECISION_UNCOND_SUCC:
2092		return "UNCOND_SUCC";
2093	default:
2094		return "UNKNOWN";
2095	}
2096}
2097#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2098
2099
2100#ifdef CONFIG_CTRL_IFACE
2101
2102/**
2103 * eap_sm_get_status - Get EAP state machine status
2104 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2105 * @buf: Buffer for status information
2106 * @buflen: Maximum buffer length
2107 * @verbose: Whether to include verbose status information
2108 * Returns: Number of bytes written to buf.
2109 *
2110 * Query EAP state machine for status information. This function fills in a
2111 * text area with current status information from the EAPOL state machine. If
2112 * the buffer (buf) is not large enough, status information will be truncated
2113 * to fit the buffer.
2114 */
2115int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2116{
2117	int len, ret;
2118
2119	if (sm == NULL)
2120		return 0;
2121
2122	len = os_snprintf(buf, buflen,
2123			  "EAP state=%s\n",
2124			  eap_sm_state_txt(sm->EAP_state));
2125	if (os_snprintf_error(buflen, len))
2126		return 0;
2127
2128	if (sm->selectedMethod != EAP_TYPE_NONE) {
2129		const char *name;
2130		if (sm->m) {
2131			name = sm->m->name;
2132		} else {
2133			const struct eap_method *m =
2134				eap_peer_get_eap_method(EAP_VENDOR_IETF,
2135							sm->selectedMethod);
2136			if (m)
2137				name = m->name;
2138			else
2139				name = "?";
2140		}
2141		ret = os_snprintf(buf + len, buflen - len,
2142				  "selectedMethod=%d (EAP-%s)\n",
2143				  sm->selectedMethod, name);
2144		if (os_snprintf_error(buflen - len, ret))
2145			return len;
2146		len += ret;
2147
2148		if (sm->m && sm->m->get_status) {
2149			len += sm->m->get_status(sm, sm->eap_method_priv,
2150						 buf + len, buflen - len,
2151						 verbose);
2152		}
2153	}
2154
2155	if (verbose) {
2156		ret = os_snprintf(buf + len, buflen - len,
2157				  "reqMethod=%d\n"
2158				  "methodState=%s\n"
2159				  "decision=%s\n"
2160				  "ClientTimeout=%d\n",
2161				  sm->reqMethod,
2162				  eap_sm_method_state_txt(sm->methodState),
2163				  eap_sm_decision_txt(sm->decision),
2164				  sm->ClientTimeout);
2165		if (os_snprintf_error(buflen - len, ret))
2166			return len;
2167		len += ret;
2168	}
2169
2170	return len;
2171}
2172#endif /* CONFIG_CTRL_IFACE */
2173
2174
2175#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2176static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2177			   const char *msg, size_t msglen)
2178{
2179	struct eap_peer_config *config;
2180	const char *txt = NULL;
2181	char *tmp;
2182
2183	if (sm == NULL)
2184		return;
2185	config = eap_get_config(sm);
2186	if (config == NULL)
2187		return;
2188
2189	switch (field) {
2190	case WPA_CTRL_REQ_EAP_IDENTITY:
2191		config->pending_req_identity++;
2192		break;
2193	case WPA_CTRL_REQ_EAP_PASSWORD:
2194		config->pending_req_password++;
2195		break;
2196	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2197		config->pending_req_new_password++;
2198		break;
2199	case WPA_CTRL_REQ_EAP_PIN:
2200		config->pending_req_pin++;
2201		break;
2202	case WPA_CTRL_REQ_EAP_OTP:
2203		if (msg) {
2204			tmp = os_malloc(msglen + 3);
2205			if (tmp == NULL)
2206				return;
2207			tmp[0] = '[';
2208			os_memcpy(tmp + 1, msg, msglen);
2209			tmp[msglen + 1] = ']';
2210			tmp[msglen + 2] = '\0';
2211			txt = tmp;
2212			os_free(config->pending_req_otp);
2213			config->pending_req_otp = tmp;
2214			config->pending_req_otp_len = msglen + 3;
2215		} else {
2216			if (config->pending_req_otp == NULL)
2217				return;
2218			txt = config->pending_req_otp;
2219		}
2220		break;
2221	case WPA_CTRL_REQ_EAP_PASSPHRASE:
2222		config->pending_req_passphrase++;
2223		break;
2224	case WPA_CTRL_REQ_SIM:
2225		txt = msg;
2226		break;
2227	default:
2228		return;
2229	}
2230
2231	if (sm->eapol_cb->eap_param_needed)
2232		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2233}
2234#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2235#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
2236#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2237
2238const char * eap_sm_get_method_name(struct eap_sm *sm)
2239{
2240	if (sm->m == NULL)
2241		return "UNKNOWN";
2242	return sm->m->name;
2243}
2244
2245
2246/**
2247 * eap_sm_request_identity - Request identity from user (ctrl_iface)
2248 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2249 *
2250 * EAP methods can call this function to request identity information for the
2251 * current network. This is normally called when the identity is not included
2252 * in the network configuration. The request will be sent to monitor programs
2253 * through the control interface.
2254 */
2255void eap_sm_request_identity(struct eap_sm *sm)
2256{
2257	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2258}
2259
2260
2261/**
2262 * eap_sm_request_password - Request password from user (ctrl_iface)
2263 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2264 *
2265 * EAP methods can call this function to request password information for the
2266 * current network. This is normally called when the password is not included
2267 * in the network configuration. The request will be sent to monitor programs
2268 * through the control interface.
2269 */
2270void eap_sm_request_password(struct eap_sm *sm)
2271{
2272	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2273}
2274
2275
2276/**
2277 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2278 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2279 *
2280 * EAP methods can call this function to request new password information for
2281 * the current network. This is normally called when the EAP method indicates
2282 * that the current password has expired and password change is required. The
2283 * request will be sent to monitor programs through the control interface.
2284 */
2285void eap_sm_request_new_password(struct eap_sm *sm)
2286{
2287	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2288}
2289
2290
2291/**
2292 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2293 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2294 *
2295 * EAP methods can call this function to request SIM or smart card PIN
2296 * information for the current network. This is normally called when the PIN is
2297 * not included in the network configuration. The request will be sent to
2298 * monitor programs through the control interface.
2299 */
2300void eap_sm_request_pin(struct eap_sm *sm)
2301{
2302	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2303}
2304
2305
2306/**
2307 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2308 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2309 * @msg: Message to be displayed to the user when asking for OTP
2310 * @msg_len: Length of the user displayable message
2311 *
2312 * EAP methods can call this function to request open time password (OTP) for
2313 * the current network. The request will be sent to monitor programs through
2314 * the control interface.
2315 */
2316void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2317{
2318	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2319}
2320
2321
2322/**
2323 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2324 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2325 *
2326 * EAP methods can call this function to request passphrase for a private key
2327 * for the current network. This is normally called when the passphrase is not
2328 * included in the network configuration. The request will be sent to monitor
2329 * programs through the control interface.
2330 */
2331void eap_sm_request_passphrase(struct eap_sm *sm)
2332{
2333	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2334}
2335
2336
2337/**
2338 * eap_sm_request_sim - Request external SIM processing
2339 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2340 * @req: EAP method specific request
2341 */
2342void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2343{
2344	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2345}
2346
2347
2348/**
2349 * eap_sm_notify_ctrl_attached - Notification of attached monitor
2350 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351 *
2352 * Notify EAP state machines that a monitor was attached to the control
2353 * interface to trigger re-sending of pending requests for user input.
2354 */
2355void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2356{
2357	struct eap_peer_config *config = eap_get_config(sm);
2358
2359	if (config == NULL)
2360		return;
2361
2362	/* Re-send any pending requests for user data since a new control
2363	 * interface was added. This handles cases where the EAP authentication
2364	 * starts immediately after system startup when the user interface is
2365	 * not yet running. */
2366	if (config->pending_req_identity)
2367		eap_sm_request_identity(sm);
2368	if (config->pending_req_password)
2369		eap_sm_request_password(sm);
2370	if (config->pending_req_new_password)
2371		eap_sm_request_new_password(sm);
2372	if (config->pending_req_otp)
2373		eap_sm_request_otp(sm, NULL, 0);
2374	if (config->pending_req_pin)
2375		eap_sm_request_pin(sm);
2376	if (config->pending_req_passphrase)
2377		eap_sm_request_passphrase(sm);
2378}
2379
2380
2381static int eap_allowed_phase2_type(int vendor, int type)
2382{
2383	if (vendor != EAP_VENDOR_IETF)
2384		return 0;
2385	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2386		type != EAP_TYPE_FAST;
2387}
2388
2389
2390/**
2391 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2392 * @name: EAP method name, e.g., MD5
2393 * @vendor: Buffer for returning EAP Vendor-Id
2394 * Returns: EAP method type or %EAP_TYPE_NONE if not found
2395 *
2396 * This function maps EAP type names into EAP type numbers that are allowed for
2397 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2398 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2399 */
2400u32 eap_get_phase2_type(const char *name, int *vendor)
2401{
2402	int v;
2403	u32 type = eap_peer_get_type(name, &v);
2404	if (eap_allowed_phase2_type(v, type)) {
2405		*vendor = v;
2406		return type;
2407	}
2408	*vendor = EAP_VENDOR_IETF;
2409	return EAP_TYPE_NONE;
2410}
2411
2412
2413/**
2414 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2415 * @config: Pointer to a network configuration
2416 * @count: Pointer to a variable to be filled with number of returned EAP types
2417 * Returns: Pointer to allocated type list or %NULL on failure
2418 *
2419 * This function generates an array of allowed EAP phase 2 (tunneled) types for
2420 * the given network configuration.
2421 */
2422struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2423					      size_t *count)
2424{
2425	struct eap_method_type *buf;
2426	u32 method;
2427	int vendor;
2428	size_t mcount;
2429	const struct eap_method *methods, *m;
2430
2431	methods = eap_peer_get_methods(&mcount);
2432	if (methods == NULL)
2433		return NULL;
2434	*count = 0;
2435	buf = os_malloc(mcount * sizeof(struct eap_method_type));
2436	if (buf == NULL)
2437		return NULL;
2438
2439	for (m = methods; m; m = m->next) {
2440		vendor = m->vendor;
2441		method = m->method;
2442		if (eap_allowed_phase2_type(vendor, method)) {
2443			if (vendor == EAP_VENDOR_IETF &&
2444			    method == EAP_TYPE_TLS && config &&
2445			    config->private_key2 == NULL)
2446				continue;
2447			buf[*count].vendor = vendor;
2448			buf[*count].method = method;
2449			(*count)++;
2450		}
2451	}
2452
2453	return buf;
2454}
2455
2456
2457/**
2458 * eap_set_fast_reauth - Update fast_reauth setting
2459 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2460 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2461 */
2462void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2463{
2464	sm->fast_reauth = enabled;
2465}
2466
2467
2468/**
2469 * eap_set_workaround - Update EAP workarounds setting
2470 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2471 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2472 */
2473void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2474{
2475	sm->workaround = workaround;
2476}
2477
2478
2479/**
2480 * eap_get_config - Get current network configuration
2481 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2482 * Returns: Pointer to the current network configuration or %NULL if not found
2483 *
2484 * EAP peer methods should avoid using this function if they can use other
2485 * access functions, like eap_get_config_identity() and
2486 * eap_get_config_password(), that do not require direct access to
2487 * struct eap_peer_config.
2488 */
2489struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2490{
2491	return sm->eapol_cb->get_config(sm->eapol_ctx);
2492}
2493
2494
2495/**
2496 * eap_get_config_identity - Get identity from the network configuration
2497 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2498 * @len: Buffer for the length of the identity
2499 * Returns: Pointer to the identity or %NULL if not found
2500 */
2501const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2502{
2503	struct eap_peer_config *config = eap_get_config(sm);
2504	if (config == NULL)
2505		return NULL;
2506	*len = config->identity_len;
2507	return config->identity;
2508}
2509
2510
2511static int eap_get_ext_password(struct eap_sm *sm,
2512				struct eap_peer_config *config)
2513{
2514	char *name;
2515
2516	if (config->password == NULL)
2517		return -1;
2518
2519	name = os_zalloc(config->password_len + 1);
2520	if (name == NULL)
2521		return -1;
2522	os_memcpy(name, config->password, config->password_len);
2523
2524	ext_password_free(sm->ext_pw_buf);
2525	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2526	os_free(name);
2527
2528	return sm->ext_pw_buf == NULL ? -1 : 0;
2529}
2530
2531
2532/**
2533 * eap_get_config_password - Get password from the network configuration
2534 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2535 * @len: Buffer for the length of the password
2536 * Returns: Pointer to the password or %NULL if not found
2537 */
2538const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2539{
2540	struct eap_peer_config *config = eap_get_config(sm);
2541	if (config == NULL)
2542		return NULL;
2543
2544	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2545		if (eap_get_ext_password(sm, config) < 0)
2546			return NULL;
2547		*len = wpabuf_len(sm->ext_pw_buf);
2548		return wpabuf_head(sm->ext_pw_buf);
2549	}
2550
2551	*len = config->password_len;
2552	return config->password;
2553}
2554
2555
2556/**
2557 * eap_get_config_password2 - Get password from the network configuration
2558 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2559 * @len: Buffer for the length of the password
2560 * @hash: Buffer for returning whether the password is stored as a
2561 * NtPasswordHash instead of plaintext password; can be %NULL if this
2562 * information is not needed
2563 * Returns: Pointer to the password or %NULL if not found
2564 */
2565const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2566{
2567	struct eap_peer_config *config = eap_get_config(sm);
2568	if (config == NULL)
2569		return NULL;
2570
2571	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2572		if (eap_get_ext_password(sm, config) < 0)
2573			return NULL;
2574		if (hash)
2575			*hash = 0;
2576		*len = wpabuf_len(sm->ext_pw_buf);
2577		return wpabuf_head(sm->ext_pw_buf);
2578	}
2579
2580	*len = config->password_len;
2581	if (hash)
2582		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2583	return config->password;
2584}
2585
2586
2587/**
2588 * eap_get_config_new_password - Get new password from network configuration
2589 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2590 * @len: Buffer for the length of the new password
2591 * Returns: Pointer to the new password or %NULL if not found
2592 */
2593const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2594{
2595	struct eap_peer_config *config = eap_get_config(sm);
2596	if (config == NULL)
2597		return NULL;
2598	*len = config->new_password_len;
2599	return config->new_password;
2600}
2601
2602
2603/**
2604 * eap_get_config_otp - Get one-time password from the network configuration
2605 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2606 * @len: Buffer for the length of the one-time password
2607 * Returns: Pointer to the one-time password or %NULL if not found
2608 */
2609const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2610{
2611	struct eap_peer_config *config = eap_get_config(sm);
2612	if (config == NULL)
2613		return NULL;
2614	*len = config->otp_len;
2615	return config->otp;
2616}
2617
2618
2619/**
2620 * eap_clear_config_otp - Clear used one-time password
2621 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2622 *
2623 * This function clears a used one-time password (OTP) from the current network
2624 * configuration. This should be called when the OTP has been used and is not
2625 * needed anymore.
2626 */
2627void eap_clear_config_otp(struct eap_sm *sm)
2628{
2629	struct eap_peer_config *config = eap_get_config(sm);
2630	if (config == NULL)
2631		return;
2632	os_memset(config->otp, 0, config->otp_len);
2633	os_free(config->otp);
2634	config->otp = NULL;
2635	config->otp_len = 0;
2636}
2637
2638
2639/**
2640 * eap_get_config_phase1 - Get phase1 data from the network configuration
2641 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2642 * Returns: Pointer to the phase1 data or %NULL if not found
2643 */
2644const char * eap_get_config_phase1(struct eap_sm *sm)
2645{
2646	struct eap_peer_config *config = eap_get_config(sm);
2647	if (config == NULL)
2648		return NULL;
2649	return config->phase1;
2650}
2651
2652
2653/**
2654 * eap_get_config_phase2 - Get phase2 data from the network configuration
2655 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2656 * Returns: Pointer to the phase1 data or %NULL if not found
2657 */
2658const char * eap_get_config_phase2(struct eap_sm *sm)
2659{
2660	struct eap_peer_config *config = eap_get_config(sm);
2661	if (config == NULL)
2662		return NULL;
2663	return config->phase2;
2664}
2665
2666
2667int eap_get_config_fragment_size(struct eap_sm *sm)
2668{
2669	struct eap_peer_config *config = eap_get_config(sm);
2670	if (config == NULL)
2671		return -1;
2672	return config->fragment_size;
2673}
2674
2675
2676/**
2677 * eap_key_available - Get key availability (eapKeyAvailable variable)
2678 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2679 * Returns: 1 if EAP keying material is available, 0 if not
2680 */
2681int eap_key_available(struct eap_sm *sm)
2682{
2683	return sm ? sm->eapKeyAvailable : 0;
2684}
2685
2686
2687/**
2688 * eap_notify_success - Notify EAP state machine about external success trigger
2689 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2690 *
2691 * This function is called when external event, e.g., successful completion of
2692 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2693 * success state. This is mainly used with security modes that do not use EAP
2694 * state machine (e.g., WPA-PSK).
2695 */
2696void eap_notify_success(struct eap_sm *sm)
2697{
2698	if (sm) {
2699		sm->decision = DECISION_COND_SUCC;
2700		sm->EAP_state = EAP_SUCCESS;
2701	}
2702}
2703
2704
2705/**
2706 * eap_notify_lower_layer_success - Notification of lower layer success
2707 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2708 *
2709 * Notify EAP state machines that a lower layer has detected a successful
2710 * authentication. This is used to recover from dropped EAP-Success messages.
2711 */
2712void eap_notify_lower_layer_success(struct eap_sm *sm)
2713{
2714	if (sm == NULL)
2715		return;
2716
2717	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2718	    sm->decision == DECISION_FAIL ||
2719	    (sm->methodState != METHOD_MAY_CONT &&
2720	     sm->methodState != METHOD_DONE))
2721		return;
2722
2723	if (sm->eapKeyData != NULL)
2724		sm->eapKeyAvailable = TRUE;
2725	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2726	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2727		"EAP authentication completed successfully (based on lower "
2728		"layer success)");
2729}
2730
2731
2732/**
2733 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2734 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2735 * @len: Pointer to variable that will be set to number of bytes in the session
2736 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2737 *
2738 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2739 * only after a successful authentication. EAP state machine continues to manage
2740 * the Session-Id and the caller must not change or free the returned data.
2741 */
2742const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2743{
2744	if (sm == NULL || sm->eapSessionId == NULL) {
2745		*len = 0;
2746		return NULL;
2747	}
2748
2749	*len = sm->eapSessionIdLen;
2750	return sm->eapSessionId;
2751}
2752
2753
2754/**
2755 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2756 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2757 * @len: Pointer to variable that will be set to number of bytes in the key
2758 * Returns: Pointer to the EAP keying data or %NULL on failure
2759 *
2760 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2761 * key is available only after a successful authentication. EAP state machine
2762 * continues to manage the key data and the caller must not change or free the
2763 * returned data.
2764 */
2765const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2766{
2767	if (sm == NULL || sm->eapKeyData == NULL) {
2768		*len = 0;
2769		return NULL;
2770	}
2771
2772	*len = sm->eapKeyDataLen;
2773	return sm->eapKeyData;
2774}
2775
2776
2777/**
2778 * eap_get_eapKeyData - Get EAP response data
2779 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2780 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2781 *
2782 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2783 * available when EAP state machine has processed an incoming EAP request. The
2784 * EAP state machine does not maintain a reference to the response after this
2785 * function is called and the caller is responsible for freeing the data.
2786 */
2787struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2788{
2789	struct wpabuf *resp;
2790
2791	if (sm == NULL || sm->eapRespData == NULL)
2792		return NULL;
2793
2794	resp = sm->eapRespData;
2795	sm->eapRespData = NULL;
2796
2797	return resp;
2798}
2799
2800
2801/**
2802 * eap_sm_register_scard_ctx - Notification of smart card context
2803 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2804 * @ctx: Context data for smart card operations
2805 *
2806 * Notify EAP state machines of context data for smart card operations. This
2807 * context data will be used as a parameter for scard_*() functions.
2808 */
2809void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2810{
2811	if (sm)
2812		sm->scard_ctx = ctx;
2813}
2814
2815
2816/**
2817 * eap_set_config_blob - Set or add a named configuration blob
2818 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2819 * @blob: New value for the blob
2820 *
2821 * Adds a new configuration blob or replaces the current value of an existing
2822 * blob.
2823 */
2824void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2825{
2826#ifndef CONFIG_NO_CONFIG_BLOBS
2827	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2828#endif /* CONFIG_NO_CONFIG_BLOBS */
2829}
2830
2831
2832/**
2833 * eap_get_config_blob - Get a named configuration blob
2834 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2835 * @name: Name of the blob
2836 * Returns: Pointer to blob data or %NULL if not found
2837 */
2838const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2839						   const char *name)
2840{
2841#ifndef CONFIG_NO_CONFIG_BLOBS
2842	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2843#else /* CONFIG_NO_CONFIG_BLOBS */
2844	return NULL;
2845#endif /* CONFIG_NO_CONFIG_BLOBS */
2846}
2847
2848
2849/**
2850 * eap_set_force_disabled - Set force_disabled flag
2851 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2852 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2853 *
2854 * This function is used to force EAP state machine to be disabled when it is
2855 * not in use (e.g., with WPA-PSK or plaintext connections).
2856 */
2857void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2858{
2859	sm->force_disabled = disabled;
2860}
2861
2862
2863/**
2864 * eap_set_external_sim - Set external_sim flag
2865 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2866 * @external_sim: Whether external SIM/USIM processing is used
2867 */
2868void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2869{
2870	sm->external_sim = external_sim;
2871}
2872
2873
2874 /**
2875 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2876 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2877 *
2878 * An EAP method can perform a pending operation (e.g., to get a response from
2879 * an external process). Once the response is available, this function can be
2880 * used to request EAPOL state machine to retry delivering the previously
2881 * received (and still unanswered) EAP request to EAP state machine.
2882 */
2883void eap_notify_pending(struct eap_sm *sm)
2884{
2885	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2886}
2887
2888
2889/**
2890 * eap_invalidate_cached_session - Mark cached session data invalid
2891 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2892 */
2893void eap_invalidate_cached_session(struct eap_sm *sm)
2894{
2895	if (sm)
2896		eap_deinit_prev_method(sm, "invalidate");
2897}
2898
2899
2900int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2901{
2902	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2903	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2904		return 0; /* Not a WPS Enrollee */
2905
2906	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2907		return 0; /* Not using PBC */
2908
2909	return 1;
2910}
2911
2912
2913int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2914{
2915	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2916	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2917		return 0; /* Not a WPS Enrollee */
2918
2919	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2920		return 0; /* Not using PIN */
2921
2922	return 1;
2923}
2924
2925
2926void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2927{
2928	ext_password_free(sm->ext_pw_buf);
2929	sm->ext_pw_buf = NULL;
2930	sm->ext_pw = ext;
2931}
2932
2933
2934/**
2935 * eap_set_anon_id - Set or add anonymous identity
2936 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2937 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2938 * @len: Length of anonymous identity in octets
2939 */
2940void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2941{
2942	if (sm->eapol_cb->set_anon_id)
2943		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2944}
2945
2946
2947int eap_peer_was_failure_expected(struct eap_sm *sm)
2948{
2949	return sm->expected_failure;
2950}
2951