1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31//
32// Tests for Google Test itself.  This verifies that the basic constructs of
33// Google Test work.
34
35#include "gtest/gtest.h"
36
37// Verifies that the command line flag variables can be accessed
38// in code once <gtest/gtest.h> has been #included.
39// Do not move it after other #includes.
40TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41  bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42      || testing::GTEST_FLAG(break_on_failure)
43      || testing::GTEST_FLAG(catch_exceptions)
44      || testing::GTEST_FLAG(color) != "unknown"
45      || testing::GTEST_FLAG(filter) != "unknown"
46      || testing::GTEST_FLAG(list_tests)
47      || testing::GTEST_FLAG(output) != "unknown"
48      || testing::GTEST_FLAG(print_time)
49      || testing::GTEST_FLAG(random_seed)
50      || testing::GTEST_FLAG(repeat) > 0
51      || testing::GTEST_FLAG(show_internal_stack_frames)
52      || testing::GTEST_FLAG(shuffle)
53      || testing::GTEST_FLAG(stack_trace_depth) > 0
54      || testing::GTEST_FLAG(stream_result_to) != "unknown"
55      || testing::GTEST_FLAG(throw_on_failure);
56  EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57}
58
59#include <limits.h>  // For INT_MAX.
60#include <stdlib.h>
61#include <string.h>
62#include <time.h>
63
64#include <map>
65#include <vector>
66#include <ostream>
67
68#include "gtest/gtest-spi.h"
69
70// Indicates that this translation unit is part of Google Test's
71// implementation.  It must come before gtest-internal-inl.h is
72// included, or there will be a compiler error.  This trick is to
73// prevent a user from accidentally including gtest-internal-inl.h in
74// his code.
75#define GTEST_IMPLEMENTATION_ 1
76#include "src/gtest-internal-inl.h"
77#undef GTEST_IMPLEMENTATION_
78
79namespace testing {
80namespace internal {
81
82#if GTEST_CAN_STREAM_RESULTS_
83
84class StreamingListenerTest : public Test {
85 public:
86  class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87   public:
88    // Sends a string to the socket.
89    virtual void Send(const string& message) { output_ += message; }
90
91    string output_;
92  };
93
94  StreamingListenerTest()
95      : fake_sock_writer_(new FakeSocketWriter),
96        streamer_(fake_sock_writer_),
97        test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
98
99 protected:
100  string* output() { return &(fake_sock_writer_->output_); }
101
102  FakeSocketWriter* const fake_sock_writer_;
103  StreamingListener streamer_;
104  UnitTest unit_test_;
105  TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
106};
107
108TEST_F(StreamingListenerTest, OnTestProgramEnd) {
109  *output() = "";
110  streamer_.OnTestProgramEnd(unit_test_);
111  EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
112}
113
114TEST_F(StreamingListenerTest, OnTestIterationEnd) {
115  *output() = "";
116  streamer_.OnTestIterationEnd(unit_test_, 42);
117  EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
118}
119
120TEST_F(StreamingListenerTest, OnTestCaseStart) {
121  *output() = "";
122  streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
123  EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
124}
125
126TEST_F(StreamingListenerTest, OnTestCaseEnd) {
127  *output() = "";
128  streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
129  EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
130}
131
132TEST_F(StreamingListenerTest, OnTestStart) {
133  *output() = "";
134  streamer_.OnTestStart(test_info_obj_);
135  EXPECT_EQ("event=TestStart&name=Bar\n", *output());
136}
137
138TEST_F(StreamingListenerTest, OnTestEnd) {
139  *output() = "";
140  streamer_.OnTestEnd(test_info_obj_);
141  EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
142}
143
144TEST_F(StreamingListenerTest, OnTestPartResult) {
145  *output() = "";
146  streamer_.OnTestPartResult(TestPartResult(
147      TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
148
149  // Meta characters in the failure message should be properly escaped.
150  EXPECT_EQ(
151      "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
152      *output());
153}
154
155#endif  // GTEST_CAN_STREAM_RESULTS_
156
157// Provides access to otherwise private parts of the TestEventListeners class
158// that are needed to test it.
159class TestEventListenersAccessor {
160 public:
161  static TestEventListener* GetRepeater(TestEventListeners* listeners) {
162    return listeners->repeater();
163  }
164
165  static void SetDefaultResultPrinter(TestEventListeners* listeners,
166                                      TestEventListener* listener) {
167    listeners->SetDefaultResultPrinter(listener);
168  }
169  static void SetDefaultXmlGenerator(TestEventListeners* listeners,
170                                     TestEventListener* listener) {
171    listeners->SetDefaultXmlGenerator(listener);
172  }
173
174  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
175    return listeners.EventForwardingEnabled();
176  }
177
178  static void SuppressEventForwarding(TestEventListeners* listeners) {
179    listeners->SuppressEventForwarding();
180  }
181};
182
183class UnitTestRecordPropertyTestHelper : public Test {
184 protected:
185  UnitTestRecordPropertyTestHelper() {}
186
187  // Forwards to UnitTest::RecordProperty() to bypass access controls.
188  void UnitTestRecordProperty(const char* key, const std::string& value) {
189    unit_test_.RecordProperty(key, value);
190  }
191
192  UnitTest unit_test_;
193};
194
195}  // namespace internal
196}  // namespace testing
197
198using testing::AssertionFailure;
199using testing::AssertionResult;
200using testing::AssertionSuccess;
201using testing::DoubleLE;
202using testing::EmptyTestEventListener;
203using testing::Environment;
204using testing::FloatLE;
205using testing::GTEST_FLAG(also_run_disabled_tests);
206using testing::GTEST_FLAG(break_on_failure);
207using testing::GTEST_FLAG(catch_exceptions);
208using testing::GTEST_FLAG(color);
209using testing::GTEST_FLAG(death_test_use_fork);
210using testing::GTEST_FLAG(filter);
211using testing::GTEST_FLAG(list_tests);
212using testing::GTEST_FLAG(output);
213using testing::GTEST_FLAG(print_time);
214using testing::GTEST_FLAG(random_seed);
215using testing::GTEST_FLAG(repeat);
216using testing::GTEST_FLAG(show_internal_stack_frames);
217using testing::GTEST_FLAG(shuffle);
218using testing::GTEST_FLAG(stack_trace_depth);
219using testing::GTEST_FLAG(stream_result_to);
220using testing::GTEST_FLAG(throw_on_failure);
221using testing::IsNotSubstring;
222using testing::IsSubstring;
223using testing::Message;
224using testing::ScopedFakeTestPartResultReporter;
225using testing::StaticAssertTypeEq;
226using testing::Test;
227using testing::TestCase;
228using testing::TestEventListeners;
229using testing::TestInfo;
230using testing::TestPartResult;
231using testing::TestPartResultArray;
232using testing::TestProperty;
233using testing::TestResult;
234using testing::TimeInMillis;
235using testing::UnitTest;
236using testing::kMaxStackTraceDepth;
237using testing::internal::AddReference;
238using testing::internal::AlwaysFalse;
239using testing::internal::AlwaysTrue;
240using testing::internal::AppendUserMessage;
241using testing::internal::ArrayAwareFind;
242using testing::internal::ArrayEq;
243using testing::internal::CodePointToUtf8;
244using testing::internal::CompileAssertTypesEqual;
245using testing::internal::CopyArray;
246using testing::internal::CountIf;
247using testing::internal::EqFailure;
248using testing::internal::FloatingPoint;
249using testing::internal::ForEach;
250using testing::internal::FormatEpochTimeInMillisAsIso8601;
251using testing::internal::FormatTimeInMillisAsSeconds;
252using testing::internal::GTestFlagSaver;
253using testing::internal::GetCurrentOsStackTraceExceptTop;
254using testing::internal::GetElementOr;
255using testing::internal::GetNextRandomSeed;
256using testing::internal::GetRandomSeedFromFlag;
257using testing::internal::GetTestTypeId;
258using testing::internal::GetTimeInMillis;
259using testing::internal::GetTypeId;
260using testing::internal::GetUnitTestImpl;
261using testing::internal::ImplicitlyConvertible;
262using testing::internal::Int32;
263using testing::internal::Int32FromEnvOrDie;
264using testing::internal::IsAProtocolMessage;
265using testing::internal::IsContainer;
266using testing::internal::IsContainerTest;
267using testing::internal::IsNotContainer;
268using testing::internal::NativeArray;
269using testing::internal::ParseInt32Flag;
270using testing::internal::RemoveConst;
271using testing::internal::RemoveReference;
272using testing::internal::ShouldRunTestOnShard;
273using testing::internal::ShouldShard;
274using testing::internal::ShouldUseColor;
275using testing::internal::Shuffle;
276using testing::internal::ShuffleRange;
277using testing::internal::SkipPrefix;
278using testing::internal::StreamableToString;
279using testing::internal::String;
280using testing::internal::TestEventListenersAccessor;
281using testing::internal::TestResultAccessor;
282using testing::internal::UInt32;
283using testing::internal::WideStringToUtf8;
284using testing::internal::kCopy;
285using testing::internal::kMaxRandomSeed;
286using testing::internal::kReference;
287using testing::internal::kTestTypeIdInGoogleTest;
288using testing::internal::scoped_ptr;
289
290#if GTEST_HAS_STREAM_REDIRECTION
291using testing::internal::CaptureStdout;
292using testing::internal::GetCapturedStdout;
293#endif
294
295#if GTEST_IS_THREADSAFE
296using testing::internal::ThreadWithParam;
297#endif
298
299class TestingVector : public std::vector<int> {
300};
301
302::std::ostream& operator<<(::std::ostream& os,
303                           const TestingVector& vector) {
304  os << "{ ";
305  for (size_t i = 0; i < vector.size(); i++) {
306    os << vector[i] << " ";
307  }
308  os << "}";
309  return os;
310}
311
312// This line tests that we can define tests in an unnamed namespace.
313namespace {
314
315TEST(GetRandomSeedFromFlagTest, HandlesZero) {
316  const int seed = GetRandomSeedFromFlag(0);
317  EXPECT_LE(1, seed);
318  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
319}
320
321TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
322  EXPECT_EQ(1, GetRandomSeedFromFlag(1));
323  EXPECT_EQ(2, GetRandomSeedFromFlag(2));
324  EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
325  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
326            GetRandomSeedFromFlag(kMaxRandomSeed));
327}
328
329TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
330  const int seed1 = GetRandomSeedFromFlag(-1);
331  EXPECT_LE(1, seed1);
332  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
333
334  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
335  EXPECT_LE(1, seed2);
336  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
337}
338
339TEST(GetNextRandomSeedTest, WorksForValidInput) {
340  EXPECT_EQ(2, GetNextRandomSeed(1));
341  EXPECT_EQ(3, GetNextRandomSeed(2));
342  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
343            GetNextRandomSeed(kMaxRandomSeed - 1));
344  EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
345
346  // We deliberately don't test GetNextRandomSeed() with invalid
347  // inputs, as that requires death tests, which are expensive.  This
348  // is fine as GetNextRandomSeed() is internal and has a
349  // straightforward definition.
350}
351
352static void ClearCurrentTestPartResults() {
353  TestResultAccessor::ClearTestPartResults(
354      GetUnitTestImpl()->current_test_result());
355}
356
357// Tests GetTypeId.
358
359TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
360  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
361  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
362}
363
364class SubClassOfTest : public Test {};
365class AnotherSubClassOfTest : public Test {};
366
367TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
368  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
369  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
370  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
371  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
372  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
373  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
374}
375
376// Verifies that GetTestTypeId() returns the same value, no matter it
377// is called from inside Google Test or outside of it.
378TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
379  EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
380}
381
382// Tests FormatTimeInMillisAsSeconds().
383
384TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
385  EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
386}
387
388TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
389  EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
390  EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
391  EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
392  EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
393  EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
394}
395
396TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
397  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
398  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
399  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
400  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
401  EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
402}
403
404// Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
405// for particular dates below was verified in Python using
406// datetime.datetime.fromutctimestamp(<timetamp>/1000).
407
408// FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
409// have to set up a particular timezone to obtain predictable results.
410class FormatEpochTimeInMillisAsIso8601Test : public Test {
411 public:
412  // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
413  // 32 bits, even when 64-bit integer types are available.  We have to
414  // force the constants to have a 64-bit type here.
415  static const TimeInMillis kMillisPerSec = 1000;
416
417 private:
418  virtual void SetUp() {
419    saved_tz_ = NULL;
420#if _MSC_VER
421# pragma warning(push)          // Saves the current warning state.
422# pragma warning(disable:4996)  // Temporarily disables warning 4996
423                                // (function or variable may be unsafe
424                                // for getenv, function is deprecated for
425                                // strdup).
426    if (getenv("TZ"))
427      saved_tz_ = strdup(getenv("TZ"));
428# pragma warning(pop)           // Restores the warning state again.
429#else
430    if (getenv("TZ"))
431      saved_tz_ = strdup(getenv("TZ"));
432#endif
433
434    // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
435    // cannot use the local time zone because the function's output depends
436    // on the time zone.
437    SetTimeZone("UTC+00");
438  }
439
440  virtual void TearDown() {
441    SetTimeZone(saved_tz_);
442    free(const_cast<char*>(saved_tz_));
443    saved_tz_ = NULL;
444  }
445
446  static void SetTimeZone(const char* time_zone) {
447    // tzset() distinguishes between the TZ variable being present and empty
448    // and not being present, so we have to consider the case of time_zone
449    // being NULL.
450#if _MSC_VER
451    // ...Unless it's MSVC, whose standard library's _putenv doesn't
452    // distinguish between an empty and a missing variable.
453    const std::string env_var =
454        std::string("TZ=") + (time_zone ? time_zone : "");
455    _putenv(env_var.c_str());
456# pragma warning(push)          // Saves the current warning state.
457# pragma warning(disable:4996)  // Temporarily disables warning 4996
458                                // (function is deprecated).
459    tzset();
460# pragma warning(pop)           // Restores the warning state again.
461#else
462    if (time_zone) {
463      setenv(("TZ"), time_zone, 1);
464    } else {
465      unsetenv("TZ");
466    }
467    tzset();
468#endif
469  }
470
471  const char* saved_tz_;
472};
473
474const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
475
476TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
477  EXPECT_EQ("2011-10-31T18:52:42",
478            FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
479}
480
481TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
482  EXPECT_EQ(
483      "2011-10-31T18:52:42",
484      FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
485}
486
487TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
488  EXPECT_EQ("2011-09-03T05:07:02",
489            FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
490}
491
492TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
493  EXPECT_EQ("2011-09-28T17:08:22",
494            FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
495}
496
497TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
498  EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
499}
500
501#if GTEST_CAN_COMPARE_NULL
502
503# ifdef __BORLANDC__
504// Silences warnings: "Condition is always true", "Unreachable code"
505#  pragma option push -w-ccc -w-rch
506# endif
507
508// Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
509// pointer literal.
510TEST(NullLiteralTest, IsTrueForNullLiterals) {
511  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
512  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
513  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
514  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
515
516# ifndef __BORLANDC__
517
518  // Some compilers may fail to detect some null pointer literals;
519  // as long as users of the framework don't use such literals, this
520  // is harmless.
521  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
522
523# endif
524}
525
526// Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
527// pointer literal.
528TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
529  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
530  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
531  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
532  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
533}
534
535# ifdef __BORLANDC__
536// Restores warnings after previous "#pragma option push" suppressed them.
537#  pragma option pop
538# endif
539
540#endif  // GTEST_CAN_COMPARE_NULL
541//
542// Tests CodePointToUtf8().
543
544// Tests that the NUL character L'\0' is encoded correctly.
545TEST(CodePointToUtf8Test, CanEncodeNul) {
546  EXPECT_EQ("", CodePointToUtf8(L'\0'));
547}
548
549// Tests that ASCII characters are encoded correctly.
550TEST(CodePointToUtf8Test, CanEncodeAscii) {
551  EXPECT_EQ("a", CodePointToUtf8(L'a'));
552  EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
553  EXPECT_EQ("&", CodePointToUtf8(L'&'));
554  EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
555}
556
557// Tests that Unicode code-points that have 8 to 11 bits are encoded
558// as 110xxxxx 10xxxxxx.
559TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
560  // 000 1101 0011 => 110-00011 10-010011
561  EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
562
563  // 101 0111 0110 => 110-10101 10-110110
564  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
565  // in wide strings and wide chars. In order to accomodate them, we have to
566  // introduce such character constants as integers.
567  EXPECT_EQ("\xD5\xB6",
568            CodePointToUtf8(static_cast<wchar_t>(0x576)));
569}
570
571// Tests that Unicode code-points that have 12 to 16 bits are encoded
572// as 1110xxxx 10xxxxxx 10xxxxxx.
573TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
574  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
575  EXPECT_EQ("\xE0\xA3\x93",
576            CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
577
578  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
579  EXPECT_EQ("\xEC\x9D\x8D",
580            CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
581}
582
583#if !GTEST_WIDE_STRING_USES_UTF16_
584// Tests in this group require a wchar_t to hold > 16 bits, and thus
585// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
586// 16-bit wide. This code may not compile on those systems.
587
588// Tests that Unicode code-points that have 17 to 21 bits are encoded
589// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
590TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
591  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
592  EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
593
594  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
595  EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
596
597  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
598  EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
599}
600
601// Tests that encoding an invalid code-point generates the expected result.
602TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
603  EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
604}
605
606#endif  // !GTEST_WIDE_STRING_USES_UTF16_
607
608// Tests WideStringToUtf8().
609
610// Tests that the NUL character L'\0' is encoded correctly.
611TEST(WideStringToUtf8Test, CanEncodeNul) {
612  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
613  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
614}
615
616// Tests that ASCII strings are encoded correctly.
617TEST(WideStringToUtf8Test, CanEncodeAscii) {
618  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
619  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
620  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
621  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
622}
623
624// Tests that Unicode code-points that have 8 to 11 bits are encoded
625// as 110xxxxx 10xxxxxx.
626TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
627  // 000 1101 0011 => 110-00011 10-010011
628  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
629  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
630
631  // 101 0111 0110 => 110-10101 10-110110
632  const wchar_t s[] = { 0x576, '\0' };
633  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
634  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
635}
636
637// Tests that Unicode code-points that have 12 to 16 bits are encoded
638// as 1110xxxx 10xxxxxx 10xxxxxx.
639TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
640  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
641  const wchar_t s1[] = { 0x8D3, '\0' };
642  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
643  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
644
645  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
646  const wchar_t s2[] = { 0xC74D, '\0' };
647  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
648  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
649}
650
651// Tests that the conversion stops when the function encounters \0 character.
652TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
653  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
654}
655
656// Tests that the conversion stops when the function reaches the limit
657// specified by the 'length' parameter.
658TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
659  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
660}
661
662#if !GTEST_WIDE_STRING_USES_UTF16_
663// Tests that Unicode code-points that have 17 to 21 bits are encoded
664// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
665// on the systems using UTF-16 encoding.
666TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
667  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
668  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
669  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
670
671  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
672  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
673  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
674}
675
676// Tests that encoding an invalid code-point generates the expected result.
677TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
678  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
679               WideStringToUtf8(L"\xABCDFF", -1).c_str());
680}
681#else  // !GTEST_WIDE_STRING_USES_UTF16_
682// Tests that surrogate pairs are encoded correctly on the systems using
683// UTF-16 encoding in the wide strings.
684TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
685  const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
686  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
687}
688
689// Tests that encoding an invalid UTF-16 surrogate pair
690// generates the expected result.
691TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
692  // Leading surrogate is at the end of the string.
693  const wchar_t s1[] = { 0xD800, '\0' };
694  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
695  // Leading surrogate is not followed by the trailing surrogate.
696  const wchar_t s2[] = { 0xD800, 'M', '\0' };
697  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
698  // Trailing surrogate appearas without a leading surrogate.
699  const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
700  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
701}
702#endif  // !GTEST_WIDE_STRING_USES_UTF16_
703
704// Tests that codepoint concatenation works correctly.
705#if !GTEST_WIDE_STRING_USES_UTF16_
706TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
707  const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
708  EXPECT_STREQ(
709      "\xF4\x88\x98\xB4"
710          "\xEC\x9D\x8D"
711          "\n"
712          "\xD5\xB6"
713          "\xE0\xA3\x93"
714          "\xF4\x88\x98\xB4",
715      WideStringToUtf8(s, -1).c_str());
716}
717#else
718TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
719  const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
720  EXPECT_STREQ(
721      "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
722      WideStringToUtf8(s, -1).c_str());
723}
724#endif  // !GTEST_WIDE_STRING_USES_UTF16_
725
726// Tests the Random class.
727
728TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
729  testing::internal::Random random(42);
730  EXPECT_DEATH_IF_SUPPORTED(
731      random.Generate(0),
732      "Cannot generate a number in the range \\[0, 0\\)");
733  EXPECT_DEATH_IF_SUPPORTED(
734      random.Generate(testing::internal::Random::kMaxRange + 1),
735      "Generation of a number in \\[0, 2147483649\\) was requested, "
736      "but this can only generate numbers in \\[0, 2147483648\\)");
737}
738
739TEST(RandomTest, GeneratesNumbersWithinRange) {
740  const UInt32 kRange = 10000;
741  testing::internal::Random random(12345);
742  for (int i = 0; i < 10; i++) {
743    EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
744  }
745
746  testing::internal::Random random2(testing::internal::Random::kMaxRange);
747  for (int i = 0; i < 10; i++) {
748    EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
749  }
750}
751
752TEST(RandomTest, RepeatsWhenReseeded) {
753  const int kSeed = 123;
754  const int kArraySize = 10;
755  const UInt32 kRange = 10000;
756  UInt32 values[kArraySize];
757
758  testing::internal::Random random(kSeed);
759  for (int i = 0; i < kArraySize; i++) {
760    values[i] = random.Generate(kRange);
761  }
762
763  random.Reseed(kSeed);
764  for (int i = 0; i < kArraySize; i++) {
765    EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
766  }
767}
768
769// Tests STL container utilities.
770
771// Tests CountIf().
772
773static bool IsPositive(int n) { return n > 0; }
774
775TEST(ContainerUtilityTest, CountIf) {
776  std::vector<int> v;
777  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
778
779  v.push_back(-1);
780  v.push_back(0);
781  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
782
783  v.push_back(2);
784  v.push_back(-10);
785  v.push_back(10);
786  EXPECT_EQ(2, CountIf(v, IsPositive));
787}
788
789// Tests ForEach().
790
791static int g_sum = 0;
792static void Accumulate(int n) { g_sum += n; }
793
794TEST(ContainerUtilityTest, ForEach) {
795  std::vector<int> v;
796  g_sum = 0;
797  ForEach(v, Accumulate);
798  EXPECT_EQ(0, g_sum);  // Works for an empty container;
799
800  g_sum = 0;
801  v.push_back(1);
802  ForEach(v, Accumulate);
803  EXPECT_EQ(1, g_sum);  // Works for a container with one element.
804
805  g_sum = 0;
806  v.push_back(20);
807  v.push_back(300);
808  ForEach(v, Accumulate);
809  EXPECT_EQ(321, g_sum);
810}
811
812// Tests GetElementOr().
813TEST(ContainerUtilityTest, GetElementOr) {
814  std::vector<char> a;
815  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
816
817  a.push_back('a');
818  a.push_back('b');
819  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
820  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
821  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
822  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
823}
824
825TEST(ContainerUtilityDeathTest, ShuffleRange) {
826  std::vector<int> a;
827  a.push_back(0);
828  a.push_back(1);
829  a.push_back(2);
830  testing::internal::Random random(1);
831
832  EXPECT_DEATH_IF_SUPPORTED(
833      ShuffleRange(&random, -1, 1, &a),
834      "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
835  EXPECT_DEATH_IF_SUPPORTED(
836      ShuffleRange(&random, 4, 4, &a),
837      "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
838  EXPECT_DEATH_IF_SUPPORTED(
839      ShuffleRange(&random, 3, 2, &a),
840      "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
841  EXPECT_DEATH_IF_SUPPORTED(
842      ShuffleRange(&random, 3, 4, &a),
843      "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
844}
845
846class VectorShuffleTest : public Test {
847 protected:
848  static const int kVectorSize = 20;
849
850  VectorShuffleTest() : random_(1) {
851    for (int i = 0; i < kVectorSize; i++) {
852      vector_.push_back(i);
853    }
854  }
855
856  static bool VectorIsCorrupt(const TestingVector& vector) {
857    if (kVectorSize != static_cast<int>(vector.size())) {
858      return true;
859    }
860
861    bool found_in_vector[kVectorSize] = { false };
862    for (size_t i = 0; i < vector.size(); i++) {
863      const int e = vector[i];
864      if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
865        return true;
866      }
867      found_in_vector[e] = true;
868    }
869
870    // Vector size is correct, elements' range is correct, no
871    // duplicate elements.  Therefore no corruption has occurred.
872    return false;
873  }
874
875  static bool VectorIsNotCorrupt(const TestingVector& vector) {
876    return !VectorIsCorrupt(vector);
877  }
878
879  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
880    for (int i = begin; i < end; i++) {
881      if (i != vector[i]) {
882        return true;
883      }
884    }
885    return false;
886  }
887
888  static bool RangeIsUnshuffled(
889      const TestingVector& vector, int begin, int end) {
890    return !RangeIsShuffled(vector, begin, end);
891  }
892
893  static bool VectorIsShuffled(const TestingVector& vector) {
894    return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
895  }
896
897  static bool VectorIsUnshuffled(const TestingVector& vector) {
898    return !VectorIsShuffled(vector);
899  }
900
901  testing::internal::Random random_;
902  TestingVector vector_;
903};  // class VectorShuffleTest
904
905const int VectorShuffleTest::kVectorSize;
906
907TEST_F(VectorShuffleTest, HandlesEmptyRange) {
908  // Tests an empty range at the beginning...
909  ShuffleRange(&random_, 0, 0, &vector_);
910  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
911  ASSERT_PRED1(VectorIsUnshuffled, vector_);
912
913  // ...in the middle...
914  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
915  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
916  ASSERT_PRED1(VectorIsUnshuffled, vector_);
917
918  // ...at the end...
919  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
920  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
921  ASSERT_PRED1(VectorIsUnshuffled, vector_);
922
923  // ...and past the end.
924  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
925  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
926  ASSERT_PRED1(VectorIsUnshuffled, vector_);
927}
928
929TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
930  // Tests a size one range at the beginning...
931  ShuffleRange(&random_, 0, 1, &vector_);
932  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
933  ASSERT_PRED1(VectorIsUnshuffled, vector_);
934
935  // ...in the middle...
936  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
937  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
938  ASSERT_PRED1(VectorIsUnshuffled, vector_);
939
940  // ...and at the end.
941  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
942  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
943  ASSERT_PRED1(VectorIsUnshuffled, vector_);
944}
945
946// Because we use our own random number generator and a fixed seed,
947// we can guarantee that the following "random" tests will succeed.
948
949TEST_F(VectorShuffleTest, ShufflesEntireVector) {
950  Shuffle(&random_, &vector_);
951  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
952  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
953
954  // Tests the first and last elements in particular to ensure that
955  // there are no off-by-one problems in our shuffle algorithm.
956  EXPECT_NE(0, vector_[0]);
957  EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
958}
959
960TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
961  const int kRangeSize = kVectorSize/2;
962
963  ShuffleRange(&random_, 0, kRangeSize, &vector_);
964
965  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
966  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
967  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
968}
969
970TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
971  const int kRangeSize = kVectorSize / 2;
972  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
973
974  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
976  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
977}
978
979TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
980  int kRangeSize = kVectorSize/3;
981  ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
982
983  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
984  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
985  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
986  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
987}
988
989TEST_F(VectorShuffleTest, ShufflesRepeatably) {
990  TestingVector vector2;
991  for (int i = 0; i < kVectorSize; i++) {
992    vector2.push_back(i);
993  }
994
995  random_.Reseed(1234);
996  Shuffle(&random_, &vector_);
997  random_.Reseed(1234);
998  Shuffle(&random_, &vector2);
999
1000  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1001  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1002
1003  for (int i = 0; i < kVectorSize; i++) {
1004    EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1005  }
1006}
1007
1008// Tests the size of the AssertHelper class.
1009
1010TEST(AssertHelperTest, AssertHelperIsSmall) {
1011  // To avoid breaking clients that use lots of assertions in one
1012  // function, we cannot grow the size of AssertHelper.
1013  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1014}
1015
1016// Tests String::EndsWithCaseInsensitive().
1017TEST(StringTest, EndsWithCaseInsensitive) {
1018  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1019  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1020  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1021  EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1022
1023  EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1024  EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1025  EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1026}
1027
1028// C++Builder's preprocessor is buggy; it fails to expand macros that
1029// appear in macro parameters after wide char literals.  Provide an alias
1030// for NULL as a workaround.
1031static const wchar_t* const kNull = NULL;
1032
1033// Tests String::CaseInsensitiveWideCStringEquals
1034TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1035  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1036  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1037  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1038  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1039  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1040  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1041  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1042  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1043}
1044
1045#if GTEST_OS_WINDOWS
1046
1047// Tests String::ShowWideCString().
1048TEST(StringTest, ShowWideCString) {
1049  EXPECT_STREQ("(null)",
1050               String::ShowWideCString(NULL).c_str());
1051  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1052  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1053}
1054
1055# if GTEST_OS_WINDOWS_MOBILE
1056TEST(StringTest, AnsiAndUtf16Null) {
1057  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1058  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1059}
1060
1061TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1062  const char* ansi = String::Utf16ToAnsi(L"str");
1063  EXPECT_STREQ("str", ansi);
1064  delete [] ansi;
1065  const WCHAR* utf16 = String::AnsiToUtf16("str");
1066  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1067  delete [] utf16;
1068}
1069
1070TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1071  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1072  EXPECT_STREQ(".:\\ \"*?", ansi);
1073  delete [] ansi;
1074  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1075  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1076  delete [] utf16;
1077}
1078# endif  // GTEST_OS_WINDOWS_MOBILE
1079
1080#endif  // GTEST_OS_WINDOWS
1081
1082// Tests TestProperty construction.
1083TEST(TestPropertyTest, StringValue) {
1084  TestProperty property("key", "1");
1085  EXPECT_STREQ("key", property.key());
1086  EXPECT_STREQ("1", property.value());
1087}
1088
1089// Tests TestProperty replacing a value.
1090TEST(TestPropertyTest, ReplaceStringValue) {
1091  TestProperty property("key", "1");
1092  EXPECT_STREQ("1", property.value());
1093  property.SetValue("2");
1094  EXPECT_STREQ("2", property.value());
1095}
1096
1097// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1098// functions (i.e. their definitions cannot be inlined at the call
1099// sites), or C++Builder won't compile the code.
1100static void AddFatalFailure() {
1101  FAIL() << "Expected fatal failure.";
1102}
1103
1104static void AddNonfatalFailure() {
1105  ADD_FAILURE() << "Expected non-fatal failure.";
1106}
1107
1108class ScopedFakeTestPartResultReporterTest : public Test {
1109 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1110  enum FailureMode {
1111    FATAL_FAILURE,
1112    NONFATAL_FAILURE
1113  };
1114  static void AddFailure(FailureMode failure) {
1115    if (failure == FATAL_FAILURE) {
1116      AddFatalFailure();
1117    } else {
1118      AddNonfatalFailure();
1119    }
1120  }
1121};
1122
1123// Tests that ScopedFakeTestPartResultReporter intercepts test
1124// failures.
1125TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1126  TestPartResultArray results;
1127  {
1128    ScopedFakeTestPartResultReporter reporter(
1129        ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1130        &results);
1131    AddFailure(NONFATAL_FAILURE);
1132    AddFailure(FATAL_FAILURE);
1133  }
1134
1135  EXPECT_EQ(2, results.size());
1136  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1137  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1138}
1139
1140TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1141  TestPartResultArray results;
1142  {
1143    // Tests, that the deprecated constructor still works.
1144    ScopedFakeTestPartResultReporter reporter(&results);
1145    AddFailure(NONFATAL_FAILURE);
1146  }
1147  EXPECT_EQ(1, results.size());
1148}
1149
1150#if GTEST_IS_THREADSAFE
1151
1152class ScopedFakeTestPartResultReporterWithThreadsTest
1153  : public ScopedFakeTestPartResultReporterTest {
1154 protected:
1155  static void AddFailureInOtherThread(FailureMode failure) {
1156    ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1157    thread.Join();
1158  }
1159};
1160
1161TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1162       InterceptsTestFailuresInAllThreads) {
1163  TestPartResultArray results;
1164  {
1165    ScopedFakeTestPartResultReporter reporter(
1166        ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1167    AddFailure(NONFATAL_FAILURE);
1168    AddFailure(FATAL_FAILURE);
1169    AddFailureInOtherThread(NONFATAL_FAILURE);
1170    AddFailureInOtherThread(FATAL_FAILURE);
1171  }
1172
1173  EXPECT_EQ(4, results.size());
1174  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1175  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1176  EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1177  EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1178}
1179
1180#endif  // GTEST_IS_THREADSAFE
1181
1182// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1183// work even if the failure is generated in a called function rather than
1184// the current context.
1185
1186typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1187
1188TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1189  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1190}
1191
1192#if GTEST_HAS_GLOBAL_STRING
1193TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1194  EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1195}
1196#endif
1197
1198TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1199  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1200                       ::std::string("Expected fatal failure."));
1201}
1202
1203TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1204  // We have another test below to verify that the macro catches fatal
1205  // failures generated on another thread.
1206  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1207                                      "Expected fatal failure.");
1208}
1209
1210#ifdef __BORLANDC__
1211// Silences warnings: "Condition is always true"
1212# pragma option push -w-ccc
1213#endif
1214
1215// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1216// function even when the statement in it contains ASSERT_*.
1217
1218int NonVoidFunction() {
1219  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1220  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1221  return 0;
1222}
1223
1224TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1225  NonVoidFunction();
1226}
1227
1228// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1229// current function even though 'statement' generates a fatal failure.
1230
1231void DoesNotAbortHelper(bool* aborted) {
1232  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1233  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1234
1235  *aborted = false;
1236}
1237
1238#ifdef __BORLANDC__
1239// Restores warnings after previous "#pragma option push" suppressed them.
1240# pragma option pop
1241#endif
1242
1243TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1244  bool aborted = true;
1245  DoesNotAbortHelper(&aborted);
1246  EXPECT_FALSE(aborted);
1247}
1248
1249// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1250// statement that contains a macro which expands to code containing an
1251// unprotected comma.
1252
1253static int global_var = 0;
1254#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1255
1256TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1257#ifndef __BORLANDC__
1258  // ICE's in C++Builder.
1259  EXPECT_FATAL_FAILURE({
1260    GTEST_USE_UNPROTECTED_COMMA_;
1261    AddFatalFailure();
1262  }, "");
1263#endif
1264
1265  EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1266    GTEST_USE_UNPROTECTED_COMMA_;
1267    AddFatalFailure();
1268  }, "");
1269}
1270
1271// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1272
1273typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1274
1275TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1276  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1277                          "Expected non-fatal failure.");
1278}
1279
1280#if GTEST_HAS_GLOBAL_STRING
1281TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1282  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1283                          ::string("Expected non-fatal failure."));
1284}
1285#endif
1286
1287TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1288  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1289                          ::std::string("Expected non-fatal failure."));
1290}
1291
1292TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1293  // We have another test below to verify that the macro catches
1294  // non-fatal failures generated on another thread.
1295  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1296                                         "Expected non-fatal failure.");
1297}
1298
1299// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1300// statement that contains a macro which expands to code containing an
1301// unprotected comma.
1302TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1303  EXPECT_NONFATAL_FAILURE({
1304    GTEST_USE_UNPROTECTED_COMMA_;
1305    AddNonfatalFailure();
1306  }, "");
1307
1308  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1309    GTEST_USE_UNPROTECTED_COMMA_;
1310    AddNonfatalFailure();
1311  }, "");
1312}
1313
1314#if GTEST_IS_THREADSAFE
1315
1316typedef ScopedFakeTestPartResultReporterWithThreadsTest
1317    ExpectFailureWithThreadsTest;
1318
1319TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1320  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1321                                      "Expected fatal failure.");
1322}
1323
1324TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1325  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1326      AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1327}
1328
1329#endif  // GTEST_IS_THREADSAFE
1330
1331// Tests the TestProperty class.
1332
1333TEST(TestPropertyTest, ConstructorWorks) {
1334  const TestProperty property("key", "value");
1335  EXPECT_STREQ("key", property.key());
1336  EXPECT_STREQ("value", property.value());
1337}
1338
1339TEST(TestPropertyTest, SetValue) {
1340  TestProperty property("key", "value_1");
1341  EXPECT_STREQ("key", property.key());
1342  property.SetValue("value_2");
1343  EXPECT_STREQ("key", property.key());
1344  EXPECT_STREQ("value_2", property.value());
1345}
1346
1347// Tests the TestResult class
1348
1349// The test fixture for testing TestResult.
1350class TestResultTest : public Test {
1351 protected:
1352  typedef std::vector<TestPartResult> TPRVector;
1353
1354  // We make use of 2 TestPartResult objects,
1355  TestPartResult * pr1, * pr2;
1356
1357  // ... and 3 TestResult objects.
1358  TestResult * r0, * r1, * r2;
1359
1360  virtual void SetUp() {
1361    // pr1 is for success.
1362    pr1 = new TestPartResult(TestPartResult::kSuccess,
1363                             "foo/bar.cc",
1364                             10,
1365                             "Success!");
1366
1367    // pr2 is for fatal failure.
1368    pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1369                             "foo/bar.cc",
1370                             -1,  // This line number means "unknown"
1371                             "Failure!");
1372
1373    // Creates the TestResult objects.
1374    r0 = new TestResult();
1375    r1 = new TestResult();
1376    r2 = new TestResult();
1377
1378    // In order to test TestResult, we need to modify its internal
1379    // state, in particular the TestPartResult vector it holds.
1380    // test_part_results() returns a const reference to this vector.
1381    // We cast it to a non-const object s.t. it can be modified (yes,
1382    // this is a hack).
1383    TPRVector* results1 = const_cast<TPRVector*>(
1384        &TestResultAccessor::test_part_results(*r1));
1385    TPRVector* results2 = const_cast<TPRVector*>(
1386        &TestResultAccessor::test_part_results(*r2));
1387
1388    // r0 is an empty TestResult.
1389
1390    // r1 contains a single SUCCESS TestPartResult.
1391    results1->push_back(*pr1);
1392
1393    // r2 contains a SUCCESS, and a FAILURE.
1394    results2->push_back(*pr1);
1395    results2->push_back(*pr2);
1396  }
1397
1398  virtual void TearDown() {
1399    delete pr1;
1400    delete pr2;
1401
1402    delete r0;
1403    delete r1;
1404    delete r2;
1405  }
1406
1407  // Helper that compares two two TestPartResults.
1408  static void CompareTestPartResult(const TestPartResult& expected,
1409                                    const TestPartResult& actual) {
1410    EXPECT_EQ(expected.type(), actual.type());
1411    EXPECT_STREQ(expected.file_name(), actual.file_name());
1412    EXPECT_EQ(expected.line_number(), actual.line_number());
1413    EXPECT_STREQ(expected.summary(), actual.summary());
1414    EXPECT_STREQ(expected.message(), actual.message());
1415    EXPECT_EQ(expected.passed(), actual.passed());
1416    EXPECT_EQ(expected.failed(), actual.failed());
1417    EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1418    EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1419  }
1420};
1421
1422// Tests TestResult::total_part_count().
1423TEST_F(TestResultTest, total_part_count) {
1424  ASSERT_EQ(0, r0->total_part_count());
1425  ASSERT_EQ(1, r1->total_part_count());
1426  ASSERT_EQ(2, r2->total_part_count());
1427}
1428
1429// Tests TestResult::Passed().
1430TEST_F(TestResultTest, Passed) {
1431  ASSERT_TRUE(r0->Passed());
1432  ASSERT_TRUE(r1->Passed());
1433  ASSERT_FALSE(r2->Passed());
1434}
1435
1436// Tests TestResult::Failed().
1437TEST_F(TestResultTest, Failed) {
1438  ASSERT_FALSE(r0->Failed());
1439  ASSERT_FALSE(r1->Failed());
1440  ASSERT_TRUE(r2->Failed());
1441}
1442
1443// Tests TestResult::GetTestPartResult().
1444
1445typedef TestResultTest TestResultDeathTest;
1446
1447TEST_F(TestResultDeathTest, GetTestPartResult) {
1448  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1449  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1450  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1451  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1452}
1453
1454// Tests TestResult has no properties when none are added.
1455TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1456  TestResult test_result;
1457  ASSERT_EQ(0, test_result.test_property_count());
1458}
1459
1460// Tests TestResult has the expected property when added.
1461TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1462  TestResult test_result;
1463  TestProperty property("key_1", "1");
1464  TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1465  ASSERT_EQ(1, test_result.test_property_count());
1466  const TestProperty& actual_property = test_result.GetTestProperty(0);
1467  EXPECT_STREQ("key_1", actual_property.key());
1468  EXPECT_STREQ("1", actual_property.value());
1469}
1470
1471// Tests TestResult has multiple properties when added.
1472TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1473  TestResult test_result;
1474  TestProperty property_1("key_1", "1");
1475  TestProperty property_2("key_2", "2");
1476  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1477  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1478  ASSERT_EQ(2, test_result.test_property_count());
1479  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1480  EXPECT_STREQ("key_1", actual_property_1.key());
1481  EXPECT_STREQ("1", actual_property_1.value());
1482
1483  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1484  EXPECT_STREQ("key_2", actual_property_2.key());
1485  EXPECT_STREQ("2", actual_property_2.value());
1486}
1487
1488// Tests TestResult::RecordProperty() overrides values for duplicate keys.
1489TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1490  TestResult test_result;
1491  TestProperty property_1_1("key_1", "1");
1492  TestProperty property_2_1("key_2", "2");
1493  TestProperty property_1_2("key_1", "12");
1494  TestProperty property_2_2("key_2", "22");
1495  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1496  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1497  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1498  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1499
1500  ASSERT_EQ(2, test_result.test_property_count());
1501  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1502  EXPECT_STREQ("key_1", actual_property_1.key());
1503  EXPECT_STREQ("12", actual_property_1.value());
1504
1505  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1506  EXPECT_STREQ("key_2", actual_property_2.key());
1507  EXPECT_STREQ("22", actual_property_2.value());
1508}
1509
1510// Tests TestResult::GetTestProperty().
1511TEST(TestResultPropertyTest, GetTestProperty) {
1512  TestResult test_result;
1513  TestProperty property_1("key_1", "1");
1514  TestProperty property_2("key_2", "2");
1515  TestProperty property_3("key_3", "3");
1516  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1517  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1518  TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1519
1520  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1521  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1522  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1523
1524  EXPECT_STREQ("key_1", fetched_property_1.key());
1525  EXPECT_STREQ("1", fetched_property_1.value());
1526
1527  EXPECT_STREQ("key_2", fetched_property_2.key());
1528  EXPECT_STREQ("2", fetched_property_2.value());
1529
1530  EXPECT_STREQ("key_3", fetched_property_3.key());
1531  EXPECT_STREQ("3", fetched_property_3.value());
1532
1533  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1534  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1535}
1536
1537// Tests that GTestFlagSaver works on Windows and Mac.
1538
1539class GTestFlagSaverTest : public Test {
1540 protected:
1541  // Saves the Google Test flags such that we can restore them later, and
1542  // then sets them to their default values.  This will be called
1543  // before the first test in this test case is run.
1544  static void SetUpTestCase() {
1545    saver_ = new GTestFlagSaver;
1546
1547    GTEST_FLAG(also_run_disabled_tests) = false;
1548    GTEST_FLAG(break_on_failure) = false;
1549    GTEST_FLAG(catch_exceptions) = false;
1550    GTEST_FLAG(death_test_use_fork) = false;
1551    GTEST_FLAG(color) = "auto";
1552    GTEST_FLAG(filter) = "";
1553    GTEST_FLAG(list_tests) = false;
1554    GTEST_FLAG(output) = "";
1555    GTEST_FLAG(print_time) = true;
1556    GTEST_FLAG(random_seed) = 0;
1557    GTEST_FLAG(repeat) = 1;
1558    GTEST_FLAG(shuffle) = false;
1559    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1560    GTEST_FLAG(stream_result_to) = "";
1561    GTEST_FLAG(throw_on_failure) = false;
1562  }
1563
1564  // Restores the Google Test flags that the tests have modified.  This will
1565  // be called after the last test in this test case is run.
1566  static void TearDownTestCase() {
1567    delete saver_;
1568    saver_ = NULL;
1569  }
1570
1571  // Verifies that the Google Test flags have their default values, and then
1572  // modifies each of them.
1573  void VerifyAndModifyFlags() {
1574    EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1575    EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1576    EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1577    EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1578    EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1579    EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1580    EXPECT_FALSE(GTEST_FLAG(list_tests));
1581    EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1582    EXPECT_TRUE(GTEST_FLAG(print_time));
1583    EXPECT_EQ(0, GTEST_FLAG(random_seed));
1584    EXPECT_EQ(1, GTEST_FLAG(repeat));
1585    EXPECT_FALSE(GTEST_FLAG(shuffle));
1586    EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1587    EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1588    EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1589
1590    GTEST_FLAG(also_run_disabled_tests) = true;
1591    GTEST_FLAG(break_on_failure) = true;
1592    GTEST_FLAG(catch_exceptions) = true;
1593    GTEST_FLAG(color) = "no";
1594    GTEST_FLAG(death_test_use_fork) = true;
1595    GTEST_FLAG(filter) = "abc";
1596    GTEST_FLAG(list_tests) = true;
1597    GTEST_FLAG(output) = "xml:foo.xml";
1598    GTEST_FLAG(print_time) = false;
1599    GTEST_FLAG(random_seed) = 1;
1600    GTEST_FLAG(repeat) = 100;
1601    GTEST_FLAG(shuffle) = true;
1602    GTEST_FLAG(stack_trace_depth) = 1;
1603    GTEST_FLAG(stream_result_to) = "localhost:1234";
1604    GTEST_FLAG(throw_on_failure) = true;
1605  }
1606
1607 private:
1608  // For saving Google Test flags during this test case.
1609  static GTestFlagSaver* saver_;
1610};
1611
1612GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1613
1614// Google Test doesn't guarantee the order of tests.  The following two
1615// tests are designed to work regardless of their order.
1616
1617// Modifies the Google Test flags in the test body.
1618TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1619  VerifyAndModifyFlags();
1620}
1621
1622// Verifies that the Google Test flags in the body of the previous test were
1623// restored to their original values.
1624TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1625  VerifyAndModifyFlags();
1626}
1627
1628// Sets an environment variable with the given name to the given
1629// value.  If the value argument is "", unsets the environment
1630// variable.  The caller must ensure that both arguments are not NULL.
1631static void SetEnv(const char* name, const char* value) {
1632#if GTEST_OS_WINDOWS_MOBILE
1633  // Environment variables are not supported on Windows CE.
1634  return;
1635#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1636  // C++Builder's putenv only stores a pointer to its parameter; we have to
1637  // ensure that the string remains valid as long as it might be needed.
1638  // We use an std::map to do so.
1639  static std::map<std::string, std::string*> added_env;
1640
1641  // Because putenv stores a pointer to the string buffer, we can't delete the
1642  // previous string (if present) until after it's replaced.
1643  std::string *prev_env = NULL;
1644  if (added_env.find(name) != added_env.end()) {
1645    prev_env = added_env[name];
1646  }
1647  added_env[name] = new std::string(
1648      (Message() << name << "=" << value).GetString());
1649
1650  // The standard signature of putenv accepts a 'char*' argument. Other
1651  // implementations, like C++Builder's, accept a 'const char*'.
1652  // We cast away the 'const' since that would work for both variants.
1653  putenv(const_cast<char*>(added_env[name]->c_str()));
1654  delete prev_env;
1655#elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1656  _putenv((Message() << name << "=" << value).GetString().c_str());
1657#else
1658  if (*value == '\0') {
1659    unsetenv(name);
1660  } else {
1661    setenv(name, value, 1);
1662  }
1663#endif  // GTEST_OS_WINDOWS_MOBILE
1664}
1665
1666#if !GTEST_OS_WINDOWS_MOBILE
1667// Environment variables are not supported on Windows CE.
1668
1669using testing::internal::Int32FromGTestEnv;
1670
1671// Tests Int32FromGTestEnv().
1672
1673// Tests that Int32FromGTestEnv() returns the default value when the
1674// environment variable is not set.
1675TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1676  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1677  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1678}
1679
1680// Tests that Int32FromGTestEnv() returns the default value when the
1681// environment variable overflows as an Int32.
1682TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1683  printf("(expecting 2 warnings)\n");
1684
1685  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1686  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1687
1688  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1689  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1690}
1691
1692// Tests that Int32FromGTestEnv() returns the default value when the
1693// environment variable does not represent a valid decimal integer.
1694TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1695  printf("(expecting 2 warnings)\n");
1696
1697  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1698  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1699
1700  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1701  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1702}
1703
1704// Tests that Int32FromGTestEnv() parses and returns the value of the
1705// environment variable when it represents a valid decimal integer in
1706// the range of an Int32.
1707TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1708  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1709  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1710
1711  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1712  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1713}
1714#endif  // !GTEST_OS_WINDOWS_MOBILE
1715
1716// Tests ParseInt32Flag().
1717
1718// Tests that ParseInt32Flag() returns false and doesn't change the
1719// output value when the flag has wrong format
1720TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1721  Int32 value = 123;
1722  EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1723  EXPECT_EQ(123, value);
1724
1725  EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1726  EXPECT_EQ(123, value);
1727}
1728
1729// Tests that ParseInt32Flag() returns false and doesn't change the
1730// output value when the flag overflows as an Int32.
1731TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1732  printf("(expecting 2 warnings)\n");
1733
1734  Int32 value = 123;
1735  EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1736  EXPECT_EQ(123, value);
1737
1738  EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1739  EXPECT_EQ(123, value);
1740}
1741
1742// Tests that ParseInt32Flag() returns false and doesn't change the
1743// output value when the flag does not represent a valid decimal
1744// integer.
1745TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1746  printf("(expecting 2 warnings)\n");
1747
1748  Int32 value = 123;
1749  EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1750  EXPECT_EQ(123, value);
1751
1752  EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1753  EXPECT_EQ(123, value);
1754}
1755
1756// Tests that ParseInt32Flag() parses the value of the flag and
1757// returns true when the flag represents a valid decimal integer in
1758// the range of an Int32.
1759TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1760  Int32 value = 123;
1761  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1762  EXPECT_EQ(456, value);
1763
1764  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1765                             "abc", &value));
1766  EXPECT_EQ(-789, value);
1767}
1768
1769// Tests that Int32FromEnvOrDie() parses the value of the var or
1770// returns the correct default.
1771// Environment variables are not supported on Windows CE.
1772#if !GTEST_OS_WINDOWS_MOBILE
1773TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1774  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1775  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1776  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1777  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1778  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1779}
1780#endif  // !GTEST_OS_WINDOWS_MOBILE
1781
1782// Tests that Int32FromEnvOrDie() aborts with an error message
1783// if the variable is not an Int32.
1784TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1785  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1786  EXPECT_DEATH_IF_SUPPORTED(
1787      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1788      ".*");
1789}
1790
1791// Tests that Int32FromEnvOrDie() aborts with an error message
1792// if the variable cannot be represnted by an Int32.
1793TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1794  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1795  EXPECT_DEATH_IF_SUPPORTED(
1796      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1797      ".*");
1798}
1799
1800// Tests that ShouldRunTestOnShard() selects all tests
1801// where there is 1 shard.
1802TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1803  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1804  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1805  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1806  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1807  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1808}
1809
1810class ShouldShardTest : public testing::Test {
1811 protected:
1812  virtual void SetUp() {
1813    index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1814    total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1815  }
1816
1817  virtual void TearDown() {
1818    SetEnv(index_var_, "");
1819    SetEnv(total_var_, "");
1820  }
1821
1822  const char* index_var_;
1823  const char* total_var_;
1824};
1825
1826// Tests that sharding is disabled if neither of the environment variables
1827// are set.
1828TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1829  SetEnv(index_var_, "");
1830  SetEnv(total_var_, "");
1831
1832  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1833  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1834}
1835
1836// Tests that sharding is not enabled if total_shards  == 1.
1837TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1838  SetEnv(index_var_, "0");
1839  SetEnv(total_var_, "1");
1840  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1841  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1842}
1843
1844// Tests that sharding is enabled if total_shards > 1 and
1845// we are not in a death test subprocess.
1846// Environment variables are not supported on Windows CE.
1847#if !GTEST_OS_WINDOWS_MOBILE
1848TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1849  SetEnv(index_var_, "4");
1850  SetEnv(total_var_, "22");
1851  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1852  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1853
1854  SetEnv(index_var_, "8");
1855  SetEnv(total_var_, "9");
1856  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1857  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1858
1859  SetEnv(index_var_, "0");
1860  SetEnv(total_var_, "9");
1861  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1862  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1863}
1864#endif  // !GTEST_OS_WINDOWS_MOBILE
1865
1866// Tests that we exit in error if the sharding values are not valid.
1867
1868typedef ShouldShardTest ShouldShardDeathTest;
1869
1870TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1871  SetEnv(index_var_, "4");
1872  SetEnv(total_var_, "4");
1873  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1874
1875  SetEnv(index_var_, "4");
1876  SetEnv(total_var_, "-2");
1877  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1878
1879  SetEnv(index_var_, "5");
1880  SetEnv(total_var_, "");
1881  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1882
1883  SetEnv(index_var_, "");
1884  SetEnv(total_var_, "5");
1885  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1886}
1887
1888// Tests that ShouldRunTestOnShard is a partition when 5
1889// shards are used.
1890TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1891  // Choose an arbitrary number of tests and shards.
1892  const int num_tests = 17;
1893  const int num_shards = 5;
1894
1895  // Check partitioning: each test should be on exactly 1 shard.
1896  for (int test_id = 0; test_id < num_tests; test_id++) {
1897    int prev_selected_shard_index = -1;
1898    for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1899      if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1900        if (prev_selected_shard_index < 0) {
1901          prev_selected_shard_index = shard_index;
1902        } else {
1903          ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1904            << shard_index << " are both selected to run test " << test_id;
1905        }
1906      }
1907    }
1908  }
1909
1910  // Check balance: This is not required by the sharding protocol, but is a
1911  // desirable property for performance.
1912  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1913    int num_tests_on_shard = 0;
1914    for (int test_id = 0; test_id < num_tests; test_id++) {
1915      num_tests_on_shard +=
1916        ShouldRunTestOnShard(num_shards, shard_index, test_id);
1917    }
1918    EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1919  }
1920}
1921
1922// For the same reason we are not explicitly testing everything in the
1923// Test class, there are no separate tests for the following classes
1924// (except for some trivial cases):
1925//
1926//   TestCase, UnitTest, UnitTestResultPrinter.
1927//
1928// Similarly, there are no separate tests for the following macros:
1929//
1930//   TEST, TEST_F, RUN_ALL_TESTS
1931
1932TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1933  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1934  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1935}
1936
1937TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1938  EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1939  EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1940}
1941
1942// When a property using a reserved key is supplied to this function, it
1943// tests that a non-fatal failure is added, a fatal failure is not added,
1944// and that the property is not recorded.
1945void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1946    const TestResult& test_result, const char* key) {
1947  EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1948  ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1949                                                  << "' recorded unexpectedly.";
1950}
1951
1952void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1953    const char* key) {
1954  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1955  ASSERT_TRUE(test_info != NULL);
1956  ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1957                                                        key);
1958}
1959
1960void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1961    const char* key) {
1962  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1963  ASSERT_TRUE(test_case != NULL);
1964  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1965      test_case->ad_hoc_test_result(), key);
1966}
1967
1968void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1969    const char* key) {
1970  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1971      UnitTest::GetInstance()->ad_hoc_test_result(), key);
1972}
1973
1974// Tests that property recording functions in UnitTest outside of tests
1975// functions correcly.  Creating a separate instance of UnitTest ensures it
1976// is in a state similar to the UnitTest's singleton's between tests.
1977class UnitTestRecordPropertyTest :
1978    public testing::internal::UnitTestRecordPropertyTestHelper {
1979 public:
1980  static void SetUpTestCase() {
1981    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1982        "disabled");
1983    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1984        "errors");
1985    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1986        "failures");
1987    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1988        "name");
1989    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1990        "tests");
1991    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1992        "time");
1993
1994    Test::RecordProperty("test_case_key_1", "1");
1995    const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1996    ASSERT_TRUE(test_case != NULL);
1997
1998    ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
1999    EXPECT_STREQ("test_case_key_1",
2000                 test_case->ad_hoc_test_result().GetTestProperty(0).key());
2001    EXPECT_STREQ("1",
2002                 test_case->ad_hoc_test_result().GetTestProperty(0).value());
2003  }
2004};
2005
2006// Tests TestResult has the expected property when added.
2007TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2008  UnitTestRecordProperty("key_1", "1");
2009
2010  ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2011
2012  EXPECT_STREQ("key_1",
2013               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2014  EXPECT_STREQ("1",
2015               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2016}
2017
2018// Tests TestResult has multiple properties when added.
2019TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2020  UnitTestRecordProperty("key_1", "1");
2021  UnitTestRecordProperty("key_2", "2");
2022
2023  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2024
2025  EXPECT_STREQ("key_1",
2026               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2027  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2028
2029  EXPECT_STREQ("key_2",
2030               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2031  EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2032}
2033
2034// Tests TestResult::RecordProperty() overrides values for duplicate keys.
2035TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2036  UnitTestRecordProperty("key_1", "1");
2037  UnitTestRecordProperty("key_2", "2");
2038  UnitTestRecordProperty("key_1", "12");
2039  UnitTestRecordProperty("key_2", "22");
2040
2041  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2042
2043  EXPECT_STREQ("key_1",
2044               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2045  EXPECT_STREQ("12",
2046               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2047
2048  EXPECT_STREQ("key_2",
2049               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2050  EXPECT_STREQ("22",
2051               unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2052}
2053
2054TEST_F(UnitTestRecordPropertyTest,
2055       AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2056  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2057      "name");
2058  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2059      "value_param");
2060  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2061      "type_param");
2062  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2063      "status");
2064  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2065      "time");
2066  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2067      "classname");
2068}
2069
2070TEST_F(UnitTestRecordPropertyTest,
2071       AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2072  EXPECT_NONFATAL_FAILURE(
2073      Test::RecordProperty("name", "1"),
2074      "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2075      " are reserved");
2076}
2077
2078class UnitTestRecordPropertyTestEnvironment : public Environment {
2079 public:
2080  virtual void TearDown() {
2081    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2082        "tests");
2083    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2084        "failures");
2085    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2086        "disabled");
2087    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2088        "errors");
2089    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2090        "name");
2091    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2092        "timestamp");
2093    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2094        "time");
2095    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2096        "random_seed");
2097  }
2098};
2099
2100// This will test property recording outside of any test or test case.
2101static Environment* record_property_env =
2102    AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2103
2104// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2105// of various arities.  They do not attempt to be exhaustive.  Rather,
2106// view them as smoke tests that can be easily reviewed and verified.
2107// A more complete set of tests for predicate assertions can be found
2108// in gtest_pred_impl_unittest.cc.
2109
2110// First, some predicates and predicate-formatters needed by the tests.
2111
2112// Returns true iff the argument is an even number.
2113bool IsEven(int n) {
2114  return (n % 2) == 0;
2115}
2116
2117// A functor that returns true iff the argument is an even number.
2118struct IsEvenFunctor {
2119  bool operator()(int n) { return IsEven(n); }
2120};
2121
2122// A predicate-formatter function that asserts the argument is an even
2123// number.
2124AssertionResult AssertIsEven(const char* expr, int n) {
2125  if (IsEven(n)) {
2126    return AssertionSuccess();
2127  }
2128
2129  Message msg;
2130  msg << expr << " evaluates to " << n << ", which is not even.";
2131  return AssertionFailure(msg);
2132}
2133
2134// A predicate function that returns AssertionResult for use in
2135// EXPECT/ASSERT_TRUE/FALSE.
2136AssertionResult ResultIsEven(int n) {
2137  if (IsEven(n))
2138    return AssertionSuccess() << n << " is even";
2139  else
2140    return AssertionFailure() << n << " is odd";
2141}
2142
2143// A predicate function that returns AssertionResult but gives no
2144// explanation why it succeeds. Needed for testing that
2145// EXPECT/ASSERT_FALSE handles such functions correctly.
2146AssertionResult ResultIsEvenNoExplanation(int n) {
2147  if (IsEven(n))
2148    return AssertionSuccess();
2149  else
2150    return AssertionFailure() << n << " is odd";
2151}
2152
2153// A predicate-formatter functor that asserts the argument is an even
2154// number.
2155struct AssertIsEvenFunctor {
2156  AssertionResult operator()(const char* expr, int n) {
2157    return AssertIsEven(expr, n);
2158  }
2159};
2160
2161// Returns true iff the sum of the arguments is an even number.
2162bool SumIsEven2(int n1, int n2) {
2163  return IsEven(n1 + n2);
2164}
2165
2166// A functor that returns true iff the sum of the arguments is an even
2167// number.
2168struct SumIsEven3Functor {
2169  bool operator()(int n1, int n2, int n3) {
2170    return IsEven(n1 + n2 + n3);
2171  }
2172};
2173
2174// A predicate-formatter function that asserts the sum of the
2175// arguments is an even number.
2176AssertionResult AssertSumIsEven4(
2177    const char* e1, const char* e2, const char* e3, const char* e4,
2178    int n1, int n2, int n3, int n4) {
2179  const int sum = n1 + n2 + n3 + n4;
2180  if (IsEven(sum)) {
2181    return AssertionSuccess();
2182  }
2183
2184  Message msg;
2185  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2186      << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2187      << ") evaluates to " << sum << ", which is not even.";
2188  return AssertionFailure(msg);
2189}
2190
2191// A predicate-formatter functor that asserts the sum of the arguments
2192// is an even number.
2193struct AssertSumIsEven5Functor {
2194  AssertionResult operator()(
2195      const char* e1, const char* e2, const char* e3, const char* e4,
2196      const char* e5, int n1, int n2, int n3, int n4, int n5) {
2197    const int sum = n1 + n2 + n3 + n4 + n5;
2198    if (IsEven(sum)) {
2199      return AssertionSuccess();
2200    }
2201
2202    Message msg;
2203    msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2204        << " ("
2205        << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2206        << ") evaluates to " << sum << ", which is not even.";
2207    return AssertionFailure(msg);
2208  }
2209};
2210
2211
2212// Tests unary predicate assertions.
2213
2214// Tests unary predicate assertions that don't use a custom formatter.
2215TEST(Pred1Test, WithoutFormat) {
2216  // Success cases.
2217  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2218  ASSERT_PRED1(IsEven, 4);
2219
2220  // Failure cases.
2221  EXPECT_NONFATAL_FAILURE({  // NOLINT
2222    EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2223  }, "This failure is expected.");
2224  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2225                       "evaluates to false");
2226}
2227
2228// Tests unary predicate assertions that use a custom formatter.
2229TEST(Pred1Test, WithFormat) {
2230  // Success cases.
2231  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2232  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2233    << "This failure is UNEXPECTED!";
2234
2235  // Failure cases.
2236  const int n = 5;
2237  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2238                          "n evaluates to 5, which is not even.");
2239  EXPECT_FATAL_FAILURE({  // NOLINT
2240    ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2241  }, "This failure is expected.");
2242}
2243
2244// Tests that unary predicate assertions evaluates their arguments
2245// exactly once.
2246TEST(Pred1Test, SingleEvaluationOnFailure) {
2247  // A success case.
2248  static int n = 0;
2249  EXPECT_PRED1(IsEven, n++);
2250  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2251
2252  // A failure case.
2253  EXPECT_FATAL_FAILURE({  // NOLINT
2254    ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2255        << "This failure is expected.";
2256  }, "This failure is expected.");
2257  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2258}
2259
2260
2261// Tests predicate assertions whose arity is >= 2.
2262
2263// Tests predicate assertions that don't use a custom formatter.
2264TEST(PredTest, WithoutFormat) {
2265  // Success cases.
2266  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2267  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2268
2269  // Failure cases.
2270  const int n1 = 1;
2271  const int n2 = 2;
2272  EXPECT_NONFATAL_FAILURE({  // NOLINT
2273    EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2274  }, "This failure is expected.");
2275  EXPECT_FATAL_FAILURE({  // NOLINT
2276    ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2277  }, "evaluates to false");
2278}
2279
2280// Tests predicate assertions that use a custom formatter.
2281TEST(PredTest, WithFormat) {
2282  // Success cases.
2283  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2284    "This failure is UNEXPECTED!";
2285  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2286
2287  // Failure cases.
2288  const int n1 = 1;
2289  const int n2 = 2;
2290  const int n3 = 4;
2291  const int n4 = 6;
2292  EXPECT_NONFATAL_FAILURE({  // NOLINT
2293    EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2294  }, "evaluates to 13, which is not even.");
2295  EXPECT_FATAL_FAILURE({  // NOLINT
2296    ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2297        << "This failure is expected.";
2298  }, "This failure is expected.");
2299}
2300
2301// Tests that predicate assertions evaluates their arguments
2302// exactly once.
2303TEST(PredTest, SingleEvaluationOnFailure) {
2304  // A success case.
2305  int n1 = 0;
2306  int n2 = 0;
2307  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2308  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2309  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2310
2311  // Another success case.
2312  n1 = n2 = 0;
2313  int n3 = 0;
2314  int n4 = 0;
2315  int n5 = 0;
2316  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2317                      n1++, n2++, n3++, n4++, n5++)
2318                        << "This failure is UNEXPECTED!";
2319  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2320  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2321  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2322  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2323  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2324
2325  // A failure case.
2326  n1 = n2 = n3 = 0;
2327  EXPECT_NONFATAL_FAILURE({  // NOLINT
2328    EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2329        << "This failure is expected.";
2330  }, "This failure is expected.");
2331  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2332  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2333  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2334
2335  // Another failure case.
2336  n1 = n2 = n3 = n4 = 0;
2337  EXPECT_NONFATAL_FAILURE({  // NOLINT
2338    EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2339  }, "evaluates to 1, which is not even.");
2340  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2341  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2342  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2343  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2344}
2345
2346
2347// Some helper functions for testing using overloaded/template
2348// functions with ASSERT_PREDn and EXPECT_PREDn.
2349
2350bool IsPositive(double x) {
2351  return x > 0;
2352}
2353
2354template <typename T>
2355bool IsNegative(T x) {
2356  return x < 0;
2357}
2358
2359template <typename T1, typename T2>
2360bool GreaterThan(T1 x1, T2 x2) {
2361  return x1 > x2;
2362}
2363
2364// Tests that overloaded functions can be used in *_PRED* as long as
2365// their types are explicitly specified.
2366TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2367  // C++Builder requires C-style casts rather than static_cast.
2368  EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2369  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2370}
2371
2372// Tests that template functions can be used in *_PRED* as long as
2373// their types are explicitly specified.
2374TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2375  EXPECT_PRED1(IsNegative<int>, -5);
2376  // Makes sure that we can handle templates with more than one
2377  // parameter.
2378  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2379}
2380
2381
2382// Some helper functions for testing using overloaded/template
2383// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2384
2385AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2386  return n > 0 ? AssertionSuccess() :
2387      AssertionFailure(Message() << "Failure");
2388}
2389
2390AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2391  return x > 0 ? AssertionSuccess() :
2392      AssertionFailure(Message() << "Failure");
2393}
2394
2395template <typename T>
2396AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2397  return x < 0 ? AssertionSuccess() :
2398      AssertionFailure(Message() << "Failure");
2399}
2400
2401template <typename T1, typename T2>
2402AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2403                             const T1& x1, const T2& x2) {
2404  return x1 == x2 ? AssertionSuccess() :
2405      AssertionFailure(Message() << "Failure");
2406}
2407
2408// Tests that overloaded functions can be used in *_PRED_FORMAT*
2409// without explicitly specifying their types.
2410TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2411  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2412  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2413}
2414
2415// Tests that template functions can be used in *_PRED_FORMAT* without
2416// explicitly specifying their types.
2417TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2418  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2419  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2420}
2421
2422
2423// Tests string assertions.
2424
2425// Tests ASSERT_STREQ with non-NULL arguments.
2426TEST(StringAssertionTest, ASSERT_STREQ) {
2427  const char * const p1 = "good";
2428  ASSERT_STREQ(p1, p1);
2429
2430  // Let p2 have the same content as p1, but be at a different address.
2431  const char p2[] = "good";
2432  ASSERT_STREQ(p1, p2);
2433
2434  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2435                       "Expected: \"bad\"");
2436}
2437
2438// Tests ASSERT_STREQ with NULL arguments.
2439TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2440  ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2441  EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2442                       "non-null");
2443}
2444
2445// Tests ASSERT_STREQ with NULL arguments.
2446TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2447  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2448                       "non-null");
2449}
2450
2451// Tests ASSERT_STRNE.
2452TEST(StringAssertionTest, ASSERT_STRNE) {
2453  ASSERT_STRNE("hi", "Hi");
2454  ASSERT_STRNE("Hi", NULL);
2455  ASSERT_STRNE(NULL, "Hi");
2456  ASSERT_STRNE("", NULL);
2457  ASSERT_STRNE(NULL, "");
2458  ASSERT_STRNE("", "Hi");
2459  ASSERT_STRNE("Hi", "");
2460  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2461                       "\"Hi\" vs \"Hi\"");
2462}
2463
2464// Tests ASSERT_STRCASEEQ.
2465TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2466  ASSERT_STRCASEEQ("hi", "Hi");
2467  ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2468
2469  ASSERT_STRCASEEQ("", "");
2470  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2471                       "(ignoring case)");
2472}
2473
2474// Tests ASSERT_STRCASENE.
2475TEST(StringAssertionTest, ASSERT_STRCASENE) {
2476  ASSERT_STRCASENE("hi1", "Hi2");
2477  ASSERT_STRCASENE("Hi", NULL);
2478  ASSERT_STRCASENE(NULL, "Hi");
2479  ASSERT_STRCASENE("", NULL);
2480  ASSERT_STRCASENE(NULL, "");
2481  ASSERT_STRCASENE("", "Hi");
2482  ASSERT_STRCASENE("Hi", "");
2483  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2484                       "(ignoring case)");
2485}
2486
2487// Tests *_STREQ on wide strings.
2488TEST(StringAssertionTest, STREQ_Wide) {
2489  // NULL strings.
2490  ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2491
2492  // Empty strings.
2493  ASSERT_STREQ(L"", L"");
2494
2495  // Non-null vs NULL.
2496  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2497                          "non-null");
2498
2499  // Equal strings.
2500  EXPECT_STREQ(L"Hi", L"Hi");
2501
2502  // Unequal strings.
2503  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2504                          "Abc");
2505
2506  // Strings containing wide characters.
2507  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2508                          "abc");
2509
2510  // The streaming variation.
2511  EXPECT_NONFATAL_FAILURE({  // NOLINT
2512    EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2513  }, "Expected failure");
2514}
2515
2516// Tests *_STRNE on wide strings.
2517TEST(StringAssertionTest, STRNE_Wide) {
2518  // NULL strings.
2519  EXPECT_NONFATAL_FAILURE({  // NOLINT
2520    EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2521  }, "");
2522
2523  // Empty strings.
2524  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2525                          "L\"\"");
2526
2527  // Non-null vs NULL.
2528  ASSERT_STRNE(L"non-null", NULL);
2529
2530  // Equal strings.
2531  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2532                          "L\"Hi\"");
2533
2534  // Unequal strings.
2535  EXPECT_STRNE(L"abc", L"Abc");
2536
2537  // Strings containing wide characters.
2538  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2539                          "abc");
2540
2541  // The streaming variation.
2542  ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2543}
2544
2545// Tests for ::testing::IsSubstring().
2546
2547// Tests that IsSubstring() returns the correct result when the input
2548// argument type is const char*.
2549TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2550  EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2551  EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2552  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2553
2554  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2555  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2556}
2557
2558// Tests that IsSubstring() returns the correct result when the input
2559// argument type is const wchar_t*.
2560TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2561  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2562  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2563  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2564
2565  EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2566  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2567}
2568
2569// Tests that IsSubstring() generates the correct message when the input
2570// argument type is const char*.
2571TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2572  EXPECT_STREQ("Value of: needle_expr\n"
2573               "  Actual: \"needle\"\n"
2574               "Expected: a substring of haystack_expr\n"
2575               "Which is: \"haystack\"",
2576               IsSubstring("needle_expr", "haystack_expr",
2577                           "needle", "haystack").failure_message());
2578}
2579
2580// Tests that IsSubstring returns the correct result when the input
2581// argument type is ::std::string.
2582TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2583  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2584  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2585}
2586
2587#if GTEST_HAS_STD_WSTRING
2588// Tests that IsSubstring returns the correct result when the input
2589// argument type is ::std::wstring.
2590TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2591  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2592  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2593}
2594
2595// Tests that IsSubstring() generates the correct message when the input
2596// argument type is ::std::wstring.
2597TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2598  EXPECT_STREQ("Value of: needle_expr\n"
2599               "  Actual: L\"needle\"\n"
2600               "Expected: a substring of haystack_expr\n"
2601               "Which is: L\"haystack\"",
2602               IsSubstring(
2603                   "needle_expr", "haystack_expr",
2604                   ::std::wstring(L"needle"), L"haystack").failure_message());
2605}
2606
2607#endif  // GTEST_HAS_STD_WSTRING
2608
2609// Tests for ::testing::IsNotSubstring().
2610
2611// Tests that IsNotSubstring() returns the correct result when the input
2612// argument type is const char*.
2613TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2614  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2615  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2616}
2617
2618// Tests that IsNotSubstring() returns the correct result when the input
2619// argument type is const wchar_t*.
2620TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2621  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2622  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2623}
2624
2625// Tests that IsNotSubstring() generates the correct message when the input
2626// argument type is const wchar_t*.
2627TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2628  EXPECT_STREQ("Value of: needle_expr\n"
2629               "  Actual: L\"needle\"\n"
2630               "Expected: not a substring of haystack_expr\n"
2631               "Which is: L\"two needles\"",
2632               IsNotSubstring(
2633                   "needle_expr", "haystack_expr",
2634                   L"needle", L"two needles").failure_message());
2635}
2636
2637// Tests that IsNotSubstring returns the correct result when the input
2638// argument type is ::std::string.
2639TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2640  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2641  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2642}
2643
2644// Tests that IsNotSubstring() generates the correct message when the input
2645// argument type is ::std::string.
2646TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2647  EXPECT_STREQ("Value of: needle_expr\n"
2648               "  Actual: \"needle\"\n"
2649               "Expected: not a substring of haystack_expr\n"
2650               "Which is: \"two needles\"",
2651               IsNotSubstring(
2652                   "needle_expr", "haystack_expr",
2653                   ::std::string("needle"), "two needles").failure_message());
2654}
2655
2656#if GTEST_HAS_STD_WSTRING
2657
2658// Tests that IsNotSubstring returns the correct result when the input
2659// argument type is ::std::wstring.
2660TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2661  EXPECT_FALSE(
2662      IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2663  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2664}
2665
2666#endif  // GTEST_HAS_STD_WSTRING
2667
2668// Tests floating-point assertions.
2669
2670template <typename RawType>
2671class FloatingPointTest : public Test {
2672 protected:
2673  // Pre-calculated numbers to be used by the tests.
2674  struct TestValues {
2675    RawType close_to_positive_zero;
2676    RawType close_to_negative_zero;
2677    RawType further_from_negative_zero;
2678
2679    RawType close_to_one;
2680    RawType further_from_one;
2681
2682    RawType infinity;
2683    RawType close_to_infinity;
2684    RawType further_from_infinity;
2685
2686    RawType nan1;
2687    RawType nan2;
2688  };
2689
2690  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2691  typedef typename Floating::Bits Bits;
2692
2693  virtual void SetUp() {
2694    const size_t max_ulps = Floating::kMaxUlps;
2695
2696    // The bits that represent 0.0.
2697    const Bits zero_bits = Floating(0).bits();
2698
2699    // Makes some numbers close to 0.0.
2700    values_.close_to_positive_zero = Floating::ReinterpretBits(
2701        zero_bits + max_ulps/2);
2702    values_.close_to_negative_zero = -Floating::ReinterpretBits(
2703        zero_bits + max_ulps - max_ulps/2);
2704    values_.further_from_negative_zero = -Floating::ReinterpretBits(
2705        zero_bits + max_ulps + 1 - max_ulps/2);
2706
2707    // The bits that represent 1.0.
2708    const Bits one_bits = Floating(1).bits();
2709
2710    // Makes some numbers close to 1.0.
2711    values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2712    values_.further_from_one = Floating::ReinterpretBits(
2713        one_bits + max_ulps + 1);
2714
2715    // +infinity.
2716    values_.infinity = Floating::Infinity();
2717
2718    // The bits that represent +infinity.
2719    const Bits infinity_bits = Floating(values_.infinity).bits();
2720
2721    // Makes some numbers close to infinity.
2722    values_.close_to_infinity = Floating::ReinterpretBits(
2723        infinity_bits - max_ulps);
2724    values_.further_from_infinity = Floating::ReinterpretBits(
2725        infinity_bits - max_ulps - 1);
2726
2727    // Makes some NAN's.  Sets the most significant bit of the fraction so that
2728    // our NaN's are quiet; trying to process a signaling NaN would raise an
2729    // exception if our environment enables floating point exceptions.
2730    values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2731        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2732    values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2733        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2734  }
2735
2736  void TestSize() {
2737    EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2738  }
2739
2740  static TestValues values_;
2741};
2742
2743template <typename RawType>
2744typename FloatingPointTest<RawType>::TestValues
2745    FloatingPointTest<RawType>::values_;
2746
2747// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2748typedef FloatingPointTest<float> FloatTest;
2749
2750// Tests that the size of Float::Bits matches the size of float.
2751TEST_F(FloatTest, Size) {
2752  TestSize();
2753}
2754
2755// Tests comparing with +0 and -0.
2756TEST_F(FloatTest, Zeros) {
2757  EXPECT_FLOAT_EQ(0.0, -0.0);
2758  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2759                          "1.0");
2760  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2761                       "1.5");
2762}
2763
2764// Tests comparing numbers close to 0.
2765//
2766// This ensures that *_FLOAT_EQ handles the sign correctly and no
2767// overflow occurs when comparing numbers whose absolute value is very
2768// small.
2769TEST_F(FloatTest, AlmostZeros) {
2770  // In C++Builder, names within local classes (such as used by
2771  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2772  // scoping class.  Use a static local alias as a workaround.
2773  // We use the assignment syntax since some compilers, like Sun Studio,
2774  // don't allow initializing references using construction syntax
2775  // (parentheses).
2776  static const FloatTest::TestValues& v = this->values_;
2777
2778  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2779  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2780  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2781
2782  EXPECT_FATAL_FAILURE({  // NOLINT
2783    ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2784                    v.further_from_negative_zero);
2785  }, "v.further_from_negative_zero");
2786}
2787
2788// Tests comparing numbers close to each other.
2789TEST_F(FloatTest, SmallDiff) {
2790  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2791  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2792                          "values_.further_from_one");
2793}
2794
2795// Tests comparing numbers far apart.
2796TEST_F(FloatTest, LargeDiff) {
2797  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2798                          "3.0");
2799}
2800
2801// Tests comparing with infinity.
2802//
2803// This ensures that no overflow occurs when comparing numbers whose
2804// absolute value is very large.
2805TEST_F(FloatTest, Infinity) {
2806  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2807  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2808#if !GTEST_OS_SYMBIAN
2809  // Nokia's STLport crashes if we try to output infinity or NaN.
2810  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2811                          "-values_.infinity");
2812
2813  // This is interesting as the representations of infinity and nan1
2814  // are only 1 DLP apart.
2815  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2816                          "values_.nan1");
2817#endif  // !GTEST_OS_SYMBIAN
2818}
2819
2820// Tests that comparing with NAN always returns false.
2821TEST_F(FloatTest, NaN) {
2822#if !GTEST_OS_SYMBIAN
2823// Nokia's STLport crashes if we try to output infinity or NaN.
2824
2825  // In C++Builder, names within local classes (such as used by
2826  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2827  // scoping class.  Use a static local alias as a workaround.
2828  // We use the assignment syntax since some compilers, like Sun Studio,
2829  // don't allow initializing references using construction syntax
2830  // (parentheses).
2831  static const FloatTest::TestValues& v = this->values_;
2832
2833  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2834                          "v.nan1");
2835  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2836                          "v.nan2");
2837  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2838                          "v.nan1");
2839
2840  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2841                       "v.infinity");
2842#endif  // !GTEST_OS_SYMBIAN
2843}
2844
2845// Tests that *_FLOAT_EQ are reflexive.
2846TEST_F(FloatTest, Reflexive) {
2847  EXPECT_FLOAT_EQ(0.0, 0.0);
2848  EXPECT_FLOAT_EQ(1.0, 1.0);
2849  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2850}
2851
2852// Tests that *_FLOAT_EQ are commutative.
2853TEST_F(FloatTest, Commutative) {
2854  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2855  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2856
2857  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2858  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2859                          "1.0");
2860}
2861
2862// Tests EXPECT_NEAR.
2863TEST_F(FloatTest, EXPECT_NEAR) {
2864  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2865  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2866  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2867                          "The difference between 1.0f and 1.5f is 0.5, "
2868                          "which exceeds 0.25f");
2869  // To work around a bug in gcc 2.95.0, there is intentionally no
2870  // space after the first comma in the previous line.
2871}
2872
2873// Tests ASSERT_NEAR.
2874TEST_F(FloatTest, ASSERT_NEAR) {
2875  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2876  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2877  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2878                       "The difference between 1.0f and 1.5f is 0.5, "
2879                       "which exceeds 0.25f");
2880  // To work around a bug in gcc 2.95.0, there is intentionally no
2881  // space after the first comma in the previous line.
2882}
2883
2884// Tests the cases where FloatLE() should succeed.
2885TEST_F(FloatTest, FloatLESucceeds) {
2886  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2887  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2888
2889  // or when val1 is greater than, but almost equals to, val2.
2890  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2891}
2892
2893// Tests the cases where FloatLE() should fail.
2894TEST_F(FloatTest, FloatLEFails) {
2895  // When val1 is greater than val2 by a large margin,
2896  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2897                          "(2.0f) <= (1.0f)");
2898
2899  // or by a small yet non-negligible margin,
2900  EXPECT_NONFATAL_FAILURE({  // NOLINT
2901    EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2902  }, "(values_.further_from_one) <= (1.0f)");
2903
2904#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2905  // Nokia's STLport crashes if we try to output infinity or NaN.
2906  // C++Builder gives bad results for ordered comparisons involving NaNs
2907  // due to compiler bugs.
2908  EXPECT_NONFATAL_FAILURE({  // NOLINT
2909    EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2910  }, "(values_.nan1) <= (values_.infinity)");
2911  EXPECT_NONFATAL_FAILURE({  // NOLINT
2912    EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2913  }, "(-values_.infinity) <= (values_.nan1)");
2914  EXPECT_FATAL_FAILURE({  // NOLINT
2915    ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2916  }, "(values_.nan1) <= (values_.nan1)");
2917#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2918}
2919
2920// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2921typedef FloatingPointTest<double> DoubleTest;
2922
2923// Tests that the size of Double::Bits matches the size of double.
2924TEST_F(DoubleTest, Size) {
2925  TestSize();
2926}
2927
2928// Tests comparing with +0 and -0.
2929TEST_F(DoubleTest, Zeros) {
2930  EXPECT_DOUBLE_EQ(0.0, -0.0);
2931  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2932                          "1.0");
2933  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2934                       "1.0");
2935}
2936
2937// Tests comparing numbers close to 0.
2938//
2939// This ensures that *_DOUBLE_EQ handles the sign correctly and no
2940// overflow occurs when comparing numbers whose absolute value is very
2941// small.
2942TEST_F(DoubleTest, AlmostZeros) {
2943  // In C++Builder, names within local classes (such as used by
2944  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2945  // scoping class.  Use a static local alias as a workaround.
2946  // We use the assignment syntax since some compilers, like Sun Studio,
2947  // don't allow initializing references using construction syntax
2948  // (parentheses).
2949  static const DoubleTest::TestValues& v = this->values_;
2950
2951  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2952  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2953  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2954
2955  EXPECT_FATAL_FAILURE({  // NOLINT
2956    ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2957                     v.further_from_negative_zero);
2958  }, "v.further_from_negative_zero");
2959}
2960
2961// Tests comparing numbers close to each other.
2962TEST_F(DoubleTest, SmallDiff) {
2963  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2964  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2965                          "values_.further_from_one");
2966}
2967
2968// Tests comparing numbers far apart.
2969TEST_F(DoubleTest, LargeDiff) {
2970  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2971                          "3.0");
2972}
2973
2974// Tests comparing with infinity.
2975//
2976// This ensures that no overflow occurs when comparing numbers whose
2977// absolute value is very large.
2978TEST_F(DoubleTest, Infinity) {
2979  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2980  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2981#if !GTEST_OS_SYMBIAN
2982  // Nokia's STLport crashes if we try to output infinity or NaN.
2983  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2984                          "-values_.infinity");
2985
2986  // This is interesting as the representations of infinity_ and nan1_
2987  // are only 1 DLP apart.
2988  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2989                          "values_.nan1");
2990#endif  // !GTEST_OS_SYMBIAN
2991}
2992
2993// Tests that comparing with NAN always returns false.
2994TEST_F(DoubleTest, NaN) {
2995#if !GTEST_OS_SYMBIAN
2996  // In C++Builder, names within local classes (such as used by
2997  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2998  // scoping class.  Use a static local alias as a workaround.
2999  // We use the assignment syntax since some compilers, like Sun Studio,
3000  // don't allow initializing references using construction syntax
3001  // (parentheses).
3002  static const DoubleTest::TestValues& v = this->values_;
3003
3004  // Nokia's STLport crashes if we try to output infinity or NaN.
3005  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3006                          "v.nan1");
3007  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3008  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3009  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3010                       "v.infinity");
3011#endif  // !GTEST_OS_SYMBIAN
3012}
3013
3014// Tests that *_DOUBLE_EQ are reflexive.
3015TEST_F(DoubleTest, Reflexive) {
3016  EXPECT_DOUBLE_EQ(0.0, 0.0);
3017  EXPECT_DOUBLE_EQ(1.0, 1.0);
3018#if !GTEST_OS_SYMBIAN
3019  // Nokia's STLport crashes if we try to output infinity or NaN.
3020  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3021#endif  // !GTEST_OS_SYMBIAN
3022}
3023
3024// Tests that *_DOUBLE_EQ are commutative.
3025TEST_F(DoubleTest, Commutative) {
3026  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3027  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3028
3029  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3030  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3031                          "1.0");
3032}
3033
3034// Tests EXPECT_NEAR.
3035TEST_F(DoubleTest, EXPECT_NEAR) {
3036  EXPECT_NEAR(-1.0, -1.1, 0.2);
3037  EXPECT_NEAR(2.0, 3.0, 1.0);
3038  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3039                          "The difference between 1.0 and 1.5 is 0.5, "
3040                          "which exceeds 0.25");
3041  // To work around a bug in gcc 2.95.0, there is intentionally no
3042  // space after the first comma in the previous statement.
3043}
3044
3045// Tests ASSERT_NEAR.
3046TEST_F(DoubleTest, ASSERT_NEAR) {
3047  ASSERT_NEAR(-1.0, -1.1, 0.2);
3048  ASSERT_NEAR(2.0, 3.0, 1.0);
3049  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3050                       "The difference between 1.0 and 1.5 is 0.5, "
3051                       "which exceeds 0.25");
3052  // To work around a bug in gcc 2.95.0, there is intentionally no
3053  // space after the first comma in the previous statement.
3054}
3055
3056// Tests the cases where DoubleLE() should succeed.
3057TEST_F(DoubleTest, DoubleLESucceeds) {
3058  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3059  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3060
3061  // or when val1 is greater than, but almost equals to, val2.
3062  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3063}
3064
3065// Tests the cases where DoubleLE() should fail.
3066TEST_F(DoubleTest, DoubleLEFails) {
3067  // When val1 is greater than val2 by a large margin,
3068  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3069                          "(2.0) <= (1.0)");
3070
3071  // or by a small yet non-negligible margin,
3072  EXPECT_NONFATAL_FAILURE({  // NOLINT
3073    EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3074  }, "(values_.further_from_one) <= (1.0)");
3075
3076#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3077  // Nokia's STLport crashes if we try to output infinity or NaN.
3078  // C++Builder gives bad results for ordered comparisons involving NaNs
3079  // due to compiler bugs.
3080  EXPECT_NONFATAL_FAILURE({  // NOLINT
3081    EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3082  }, "(values_.nan1) <= (values_.infinity)");
3083  EXPECT_NONFATAL_FAILURE({  // NOLINT
3084    EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3085  }, " (-values_.infinity) <= (values_.nan1)");
3086  EXPECT_FATAL_FAILURE({  // NOLINT
3087    ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3088  }, "(values_.nan1) <= (values_.nan1)");
3089#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3090}
3091
3092
3093// Verifies that a test or test case whose name starts with DISABLED_ is
3094// not run.
3095
3096// A test whose name starts with DISABLED_.
3097// Should not run.
3098TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3099  FAIL() << "Unexpected failure: Disabled test should not be run.";
3100}
3101
3102// A test whose name does not start with DISABLED_.
3103// Should run.
3104TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3105  EXPECT_EQ(1, 1);
3106}
3107
3108// A test case whose name starts with DISABLED_.
3109// Should not run.
3110TEST(DISABLED_TestCase, TestShouldNotRun) {
3111  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3112}
3113
3114// A test case and test whose names start with DISABLED_.
3115// Should not run.
3116TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3117  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3118}
3119
3120// Check that when all tests in a test case are disabled, SetupTestCase() and
3121// TearDownTestCase() are not called.
3122class DisabledTestsTest : public Test {
3123 protected:
3124  static void SetUpTestCase() {
3125    FAIL() << "Unexpected failure: All tests disabled in test case. "
3126              "SetupTestCase() should not be called.";
3127  }
3128
3129  static void TearDownTestCase() {
3130    FAIL() << "Unexpected failure: All tests disabled in test case. "
3131              "TearDownTestCase() should not be called.";
3132  }
3133};
3134
3135TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3136  FAIL() << "Unexpected failure: Disabled test should not be run.";
3137}
3138
3139TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3140  FAIL() << "Unexpected failure: Disabled test should not be run.";
3141}
3142
3143// Tests that disabled typed tests aren't run.
3144
3145#if GTEST_HAS_TYPED_TEST
3146
3147template <typename T>
3148class TypedTest : public Test {
3149};
3150
3151typedef testing::Types<int, double> NumericTypes;
3152TYPED_TEST_CASE(TypedTest, NumericTypes);
3153
3154TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3155  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3156}
3157
3158template <typename T>
3159class DISABLED_TypedTest : public Test {
3160};
3161
3162TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3163
3164TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3165  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3166}
3167
3168#endif  // GTEST_HAS_TYPED_TEST
3169
3170// Tests that disabled type-parameterized tests aren't run.
3171
3172#if GTEST_HAS_TYPED_TEST_P
3173
3174template <typename T>
3175class TypedTestP : public Test {
3176};
3177
3178TYPED_TEST_CASE_P(TypedTestP);
3179
3180TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3181  FAIL() << "Unexpected failure: "
3182         << "Disabled type-parameterized test should not run.";
3183}
3184
3185REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3186
3187INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3188
3189template <typename T>
3190class DISABLED_TypedTestP : public Test {
3191};
3192
3193TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3194
3195TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3196  FAIL() << "Unexpected failure: "
3197         << "Disabled type-parameterized test should not run.";
3198}
3199
3200REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3201
3202INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3203
3204#endif  // GTEST_HAS_TYPED_TEST_P
3205
3206// Tests that assertion macros evaluate their arguments exactly once.
3207
3208class SingleEvaluationTest : public Test {
3209 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3210  // This helper function is needed by the FailedASSERT_STREQ test
3211  // below.  It's public to work around C++Builder's bug with scoping local
3212  // classes.
3213  static void CompareAndIncrementCharPtrs() {
3214    ASSERT_STREQ(p1_++, p2_++);
3215  }
3216
3217  // This helper function is needed by the FailedASSERT_NE test below.  It's
3218  // public to work around C++Builder's bug with scoping local classes.
3219  static void CompareAndIncrementInts() {
3220    ASSERT_NE(a_++, b_++);
3221  }
3222
3223 protected:
3224  SingleEvaluationTest() {
3225    p1_ = s1_;
3226    p2_ = s2_;
3227    a_ = 0;
3228    b_ = 0;
3229  }
3230
3231  static const char* const s1_;
3232  static const char* const s2_;
3233  static const char* p1_;
3234  static const char* p2_;
3235
3236  static int a_;
3237  static int b_;
3238};
3239
3240const char* const SingleEvaluationTest::s1_ = "01234";
3241const char* const SingleEvaluationTest::s2_ = "abcde";
3242const char* SingleEvaluationTest::p1_;
3243const char* SingleEvaluationTest::p2_;
3244int SingleEvaluationTest::a_;
3245int SingleEvaluationTest::b_;
3246
3247// Tests that when ASSERT_STREQ fails, it evaluates its arguments
3248// exactly once.
3249TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3250  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3251                       "p2_++");
3252  EXPECT_EQ(s1_ + 1, p1_);
3253  EXPECT_EQ(s2_ + 1, p2_);
3254}
3255
3256// Tests that string assertion arguments are evaluated exactly once.
3257TEST_F(SingleEvaluationTest, ASSERT_STR) {
3258  // successful EXPECT_STRNE
3259  EXPECT_STRNE(p1_++, p2_++);
3260  EXPECT_EQ(s1_ + 1, p1_);
3261  EXPECT_EQ(s2_ + 1, p2_);
3262
3263  // failed EXPECT_STRCASEEQ
3264  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3265                          "ignoring case");
3266  EXPECT_EQ(s1_ + 2, p1_);
3267  EXPECT_EQ(s2_ + 2, p2_);
3268}
3269
3270// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3271// once.
3272TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3273  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3274                       "(a_++) != (b_++)");
3275  EXPECT_EQ(1, a_);
3276  EXPECT_EQ(1, b_);
3277}
3278
3279// Tests that assertion arguments are evaluated exactly once.
3280TEST_F(SingleEvaluationTest, OtherCases) {
3281  // successful EXPECT_TRUE
3282  EXPECT_TRUE(0 == a_++);  // NOLINT
3283  EXPECT_EQ(1, a_);
3284
3285  // failed EXPECT_TRUE
3286  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3287  EXPECT_EQ(2, a_);
3288
3289  // successful EXPECT_GT
3290  EXPECT_GT(a_++, b_++);
3291  EXPECT_EQ(3, a_);
3292  EXPECT_EQ(1, b_);
3293
3294  // failed EXPECT_LT
3295  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3296  EXPECT_EQ(4, a_);
3297  EXPECT_EQ(2, b_);
3298
3299  // successful ASSERT_TRUE
3300  ASSERT_TRUE(0 < a_++);  // NOLINT
3301  EXPECT_EQ(5, a_);
3302
3303  // successful ASSERT_GT
3304  ASSERT_GT(a_++, b_++);
3305  EXPECT_EQ(6, a_);
3306  EXPECT_EQ(3, b_);
3307}
3308
3309#if GTEST_HAS_EXCEPTIONS
3310
3311void ThrowAnInteger() {
3312  throw 1;
3313}
3314
3315// Tests that assertion arguments are evaluated exactly once.
3316TEST_F(SingleEvaluationTest, ExceptionTests) {
3317  // successful EXPECT_THROW
3318  EXPECT_THROW({  // NOLINT
3319    a_++;
3320    ThrowAnInteger();
3321  }, int);
3322  EXPECT_EQ(1, a_);
3323
3324  // failed EXPECT_THROW, throws different
3325  EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3326    a_++;
3327    ThrowAnInteger();
3328  }, bool), "throws a different type");
3329  EXPECT_EQ(2, a_);
3330
3331  // failed EXPECT_THROW, throws nothing
3332  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3333  EXPECT_EQ(3, a_);
3334
3335  // successful EXPECT_NO_THROW
3336  EXPECT_NO_THROW(a_++);
3337  EXPECT_EQ(4, a_);
3338
3339  // failed EXPECT_NO_THROW
3340  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3341    a_++;
3342    ThrowAnInteger();
3343  }), "it throws");
3344  EXPECT_EQ(5, a_);
3345
3346  // successful EXPECT_ANY_THROW
3347  EXPECT_ANY_THROW({  // NOLINT
3348    a_++;
3349    ThrowAnInteger();
3350  });
3351  EXPECT_EQ(6, a_);
3352
3353  // failed EXPECT_ANY_THROW
3354  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3355  EXPECT_EQ(7, a_);
3356}
3357
3358#endif  // GTEST_HAS_EXCEPTIONS
3359
3360// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3361class NoFatalFailureTest : public Test {
3362 protected:
3363  void Succeeds() {}
3364  void FailsNonFatal() {
3365    ADD_FAILURE() << "some non-fatal failure";
3366  }
3367  void Fails() {
3368    FAIL() << "some fatal failure";
3369  }
3370
3371  void DoAssertNoFatalFailureOnFails() {
3372    ASSERT_NO_FATAL_FAILURE(Fails());
3373    ADD_FAILURE() << "shold not reach here.";
3374  }
3375
3376  void DoExpectNoFatalFailureOnFails() {
3377    EXPECT_NO_FATAL_FAILURE(Fails());
3378    ADD_FAILURE() << "other failure";
3379  }
3380};
3381
3382TEST_F(NoFatalFailureTest, NoFailure) {
3383  EXPECT_NO_FATAL_FAILURE(Succeeds());
3384  ASSERT_NO_FATAL_FAILURE(Succeeds());
3385}
3386
3387TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3388  EXPECT_NONFATAL_FAILURE(
3389      EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3390      "some non-fatal failure");
3391  EXPECT_NONFATAL_FAILURE(
3392      ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3393      "some non-fatal failure");
3394}
3395
3396TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3397  TestPartResultArray gtest_failures;
3398  {
3399    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3400    DoAssertNoFatalFailureOnFails();
3401  }
3402  ASSERT_EQ(2, gtest_failures.size());
3403  EXPECT_EQ(TestPartResult::kFatalFailure,
3404            gtest_failures.GetTestPartResult(0).type());
3405  EXPECT_EQ(TestPartResult::kFatalFailure,
3406            gtest_failures.GetTestPartResult(1).type());
3407  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3408                      gtest_failures.GetTestPartResult(0).message());
3409  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3410                      gtest_failures.GetTestPartResult(1).message());
3411}
3412
3413TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3414  TestPartResultArray gtest_failures;
3415  {
3416    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3417    DoExpectNoFatalFailureOnFails();
3418  }
3419  ASSERT_EQ(3, gtest_failures.size());
3420  EXPECT_EQ(TestPartResult::kFatalFailure,
3421            gtest_failures.GetTestPartResult(0).type());
3422  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3423            gtest_failures.GetTestPartResult(1).type());
3424  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3425            gtest_failures.GetTestPartResult(2).type());
3426  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3427                      gtest_failures.GetTestPartResult(0).message());
3428  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3429                      gtest_failures.GetTestPartResult(1).message());
3430  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3431                      gtest_failures.GetTestPartResult(2).message());
3432}
3433
3434TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3435  TestPartResultArray gtest_failures;
3436  {
3437    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3438    EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3439  }
3440  ASSERT_EQ(2, gtest_failures.size());
3441  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3442            gtest_failures.GetTestPartResult(0).type());
3443  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3444            gtest_failures.GetTestPartResult(1).type());
3445  EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3446                      gtest_failures.GetTestPartResult(0).message());
3447  EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3448                      gtest_failures.GetTestPartResult(1).message());
3449}
3450
3451// Tests non-string assertions.
3452
3453// Tests EqFailure(), used for implementing *EQ* assertions.
3454TEST(AssertionTest, EqFailure) {
3455  const std::string foo_val("5"), bar_val("6");
3456  const std::string msg1(
3457      EqFailure("foo", "bar", foo_val, bar_val, false)
3458      .failure_message());
3459  EXPECT_STREQ(
3460      "Value of: bar\n"
3461      "  Actual: 6\n"
3462      "Expected: foo\n"
3463      "Which is: 5",
3464      msg1.c_str());
3465
3466  const std::string msg2(
3467      EqFailure("foo", "6", foo_val, bar_val, false)
3468      .failure_message());
3469  EXPECT_STREQ(
3470      "Value of: 6\n"
3471      "Expected: foo\n"
3472      "Which is: 5",
3473      msg2.c_str());
3474
3475  const std::string msg3(
3476      EqFailure("5", "bar", foo_val, bar_val, false)
3477      .failure_message());
3478  EXPECT_STREQ(
3479      "Value of: bar\n"
3480      "  Actual: 6\n"
3481      "Expected: 5",
3482      msg3.c_str());
3483
3484  const std::string msg4(
3485      EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3486  EXPECT_STREQ(
3487      "Value of: 6\n"
3488      "Expected: 5",
3489      msg4.c_str());
3490
3491  const std::string msg5(
3492      EqFailure("foo", "bar",
3493                std::string("\"x\""), std::string("\"y\""),
3494                true).failure_message());
3495  EXPECT_STREQ(
3496      "Value of: bar\n"
3497      "  Actual: \"y\"\n"
3498      "Expected: foo (ignoring case)\n"
3499      "Which is: \"x\"",
3500      msg5.c_str());
3501}
3502
3503// Tests AppendUserMessage(), used for implementing the *EQ* macros.
3504TEST(AssertionTest, AppendUserMessage) {
3505  const std::string foo("foo");
3506
3507  Message msg;
3508  EXPECT_STREQ("foo",
3509               AppendUserMessage(foo, msg).c_str());
3510
3511  msg << "bar";
3512  EXPECT_STREQ("foo\nbar",
3513               AppendUserMessage(foo, msg).c_str());
3514}
3515
3516#ifdef __BORLANDC__
3517// Silences warnings: "Condition is always true", "Unreachable code"
3518# pragma option push -w-ccc -w-rch
3519#endif
3520
3521// Tests ASSERT_TRUE.
3522TEST(AssertionTest, ASSERT_TRUE) {
3523  ASSERT_TRUE(2 > 1);  // NOLINT
3524  EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3525                       "2 < 1");
3526}
3527
3528// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3529TEST(AssertionTest, AssertTrueWithAssertionResult) {
3530  ASSERT_TRUE(ResultIsEven(2));
3531#ifndef __BORLANDC__
3532  // ICE's in C++Builder.
3533  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3534                       "Value of: ResultIsEven(3)\n"
3535                       "  Actual: false (3 is odd)\n"
3536                       "Expected: true");
3537#endif
3538  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3539  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3540                       "Value of: ResultIsEvenNoExplanation(3)\n"
3541                       "  Actual: false (3 is odd)\n"
3542                       "Expected: true");
3543}
3544
3545// Tests ASSERT_FALSE.
3546TEST(AssertionTest, ASSERT_FALSE) {
3547  ASSERT_FALSE(2 < 1);  // NOLINT
3548  EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3549                       "Value of: 2 > 1\n"
3550                       "  Actual: true\n"
3551                       "Expected: false");
3552}
3553
3554// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3555TEST(AssertionTest, AssertFalseWithAssertionResult) {
3556  ASSERT_FALSE(ResultIsEven(3));
3557#ifndef __BORLANDC__
3558  // ICE's in C++Builder.
3559  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3560                       "Value of: ResultIsEven(2)\n"
3561                       "  Actual: true (2 is even)\n"
3562                       "Expected: false");
3563#endif
3564  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3565  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3566                       "Value of: ResultIsEvenNoExplanation(2)\n"
3567                       "  Actual: true\n"
3568                       "Expected: false");
3569}
3570
3571#ifdef __BORLANDC__
3572// Restores warnings after previous "#pragma option push" supressed them
3573# pragma option pop
3574#endif
3575
3576// Tests using ASSERT_EQ on double values.  The purpose is to make
3577// sure that the specialization we did for integer and anonymous enums
3578// isn't used for double arguments.
3579TEST(ExpectTest, ASSERT_EQ_Double) {
3580  // A success.
3581  ASSERT_EQ(5.6, 5.6);
3582
3583  // A failure.
3584  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3585                       "5.1");
3586}
3587
3588// Tests ASSERT_EQ.
3589TEST(AssertionTest, ASSERT_EQ) {
3590  ASSERT_EQ(5, 2 + 3);
3591  EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3592                       "Value of: 2*3\n"
3593                       "  Actual: 6\n"
3594                       "Expected: 5");
3595}
3596
3597// Tests ASSERT_EQ(NULL, pointer).
3598#if GTEST_CAN_COMPARE_NULL
3599TEST(AssertionTest, ASSERT_EQ_NULL) {
3600  // A success.
3601  const char* p = NULL;
3602  // Some older GCC versions may issue a spurious waring in this or the next
3603  // assertion statement. This warning should not be suppressed with
3604  // static_cast since the test verifies the ability to use bare NULL as the
3605  // expected parameter to the macro.
3606  ASSERT_EQ(NULL, p);
3607
3608  // A failure.
3609  static int n = 0;
3610  EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3611                       "Value of: &n\n");
3612}
3613#endif  // GTEST_CAN_COMPARE_NULL
3614
3615// Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3616// treated as a null pointer by the compiler, we need to make sure
3617// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3618// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3619TEST(ExpectTest, ASSERT_EQ_0) {
3620  int n = 0;
3621
3622  // A success.
3623  ASSERT_EQ(0, n);
3624
3625  // A failure.
3626  EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3627                       "Expected: 0");
3628}
3629
3630// Tests ASSERT_NE.
3631TEST(AssertionTest, ASSERT_NE) {
3632  ASSERT_NE(6, 7);
3633  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3634                       "Expected: ('a') != ('a'), "
3635                       "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3636}
3637
3638// Tests ASSERT_LE.
3639TEST(AssertionTest, ASSERT_LE) {
3640  ASSERT_LE(2, 3);
3641  ASSERT_LE(2, 2);
3642  EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3643                       "Expected: (2) <= (0), actual: 2 vs 0");
3644}
3645
3646// Tests ASSERT_LT.
3647TEST(AssertionTest, ASSERT_LT) {
3648  ASSERT_LT(2, 3);
3649  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3650                       "Expected: (2) < (2), actual: 2 vs 2");
3651}
3652
3653// Tests ASSERT_GE.
3654TEST(AssertionTest, ASSERT_GE) {
3655  ASSERT_GE(2, 1);
3656  ASSERT_GE(2, 2);
3657  EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3658                       "Expected: (2) >= (3), actual: 2 vs 3");
3659}
3660
3661// Tests ASSERT_GT.
3662TEST(AssertionTest, ASSERT_GT) {
3663  ASSERT_GT(2, 1);
3664  EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3665                       "Expected: (2) > (2), actual: 2 vs 2");
3666}
3667
3668#if GTEST_HAS_EXCEPTIONS
3669
3670void ThrowNothing() {}
3671
3672// Tests ASSERT_THROW.
3673TEST(AssertionTest, ASSERT_THROW) {
3674  ASSERT_THROW(ThrowAnInteger(), int);
3675
3676# ifndef __BORLANDC__
3677
3678  // ICE's in C++Builder 2007 and 2009.
3679  EXPECT_FATAL_FAILURE(
3680      ASSERT_THROW(ThrowAnInteger(), bool),
3681      "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3682      "  Actual: it throws a different type.");
3683# endif
3684
3685  EXPECT_FATAL_FAILURE(
3686      ASSERT_THROW(ThrowNothing(), bool),
3687      "Expected: ThrowNothing() throws an exception of type bool.\n"
3688      "  Actual: it throws nothing.");
3689}
3690
3691// Tests ASSERT_NO_THROW.
3692TEST(AssertionTest, ASSERT_NO_THROW) {
3693  ASSERT_NO_THROW(ThrowNothing());
3694  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3695                       "Expected: ThrowAnInteger() doesn't throw an exception."
3696                       "\n  Actual: it throws.");
3697}
3698
3699// Tests ASSERT_ANY_THROW.
3700TEST(AssertionTest, ASSERT_ANY_THROW) {
3701  ASSERT_ANY_THROW(ThrowAnInteger());
3702  EXPECT_FATAL_FAILURE(
3703      ASSERT_ANY_THROW(ThrowNothing()),
3704      "Expected: ThrowNothing() throws an exception.\n"
3705      "  Actual: it doesn't.");
3706}
3707
3708#endif  // GTEST_HAS_EXCEPTIONS
3709
3710// Makes sure we deal with the precedence of <<.  This test should
3711// compile.
3712TEST(AssertionTest, AssertPrecedence) {
3713  ASSERT_EQ(1 < 2, true);
3714  bool false_value = false;
3715  ASSERT_EQ(true && false_value, false);
3716}
3717
3718// A subroutine used by the following test.
3719void TestEq1(int x) {
3720  ASSERT_EQ(1, x);
3721}
3722
3723// Tests calling a test subroutine that's not part of a fixture.
3724TEST(AssertionTest, NonFixtureSubroutine) {
3725  EXPECT_FATAL_FAILURE(TestEq1(2),
3726                       "Value of: x");
3727}
3728
3729// An uncopyable class.
3730class Uncopyable {
3731 public:
3732  explicit Uncopyable(int a_value) : value_(a_value) {}
3733
3734  int value() const { return value_; }
3735  bool operator==(const Uncopyable& rhs) const {
3736    return value() == rhs.value();
3737  }
3738 private:
3739  // This constructor deliberately has no implementation, as we don't
3740  // want this class to be copyable.
3741  Uncopyable(const Uncopyable&);  // NOLINT
3742
3743  int value_;
3744};
3745
3746::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3747  return os << value.value();
3748}
3749
3750
3751bool IsPositiveUncopyable(const Uncopyable& x) {
3752  return x.value() > 0;
3753}
3754
3755// A subroutine used by the following test.
3756void TestAssertNonPositive() {
3757  Uncopyable y(-1);
3758  ASSERT_PRED1(IsPositiveUncopyable, y);
3759}
3760// A subroutine used by the following test.
3761void TestAssertEqualsUncopyable() {
3762  Uncopyable x(5);
3763  Uncopyable y(-1);
3764  ASSERT_EQ(x, y);
3765}
3766
3767// Tests that uncopyable objects can be used in assertions.
3768TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3769  Uncopyable x(5);
3770  ASSERT_PRED1(IsPositiveUncopyable, x);
3771  ASSERT_EQ(x, x);
3772  EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3773    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3774  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3775    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3776}
3777
3778// Tests that uncopyable objects can be used in expects.
3779TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3780  Uncopyable x(5);
3781  EXPECT_PRED1(IsPositiveUncopyable, x);
3782  Uncopyable y(-1);
3783  EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3784    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3785  EXPECT_EQ(x, x);
3786  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3787    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3788}
3789
3790enum NamedEnum {
3791  kE1 = 0,
3792  kE2 = 1
3793};
3794
3795TEST(AssertionTest, NamedEnum) {
3796  EXPECT_EQ(kE1, kE1);
3797  EXPECT_LT(kE1, kE2);
3798  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3799  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3800}
3801
3802// The version of gcc used in XCode 2.2 has a bug and doesn't allow
3803// anonymous enums in assertions.  Therefore the following test is not
3804// done on Mac.
3805// Sun Studio and HP aCC also reject this code.
3806#if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3807
3808// Tests using assertions with anonymous enums.
3809enum {
3810  kCaseA = -1,
3811
3812# if GTEST_OS_LINUX
3813
3814  // We want to test the case where the size of the anonymous enum is
3815  // larger than sizeof(int), to make sure our implementation of the
3816  // assertions doesn't truncate the enums.  However, MSVC
3817  // (incorrectly) doesn't allow an enum value to exceed the range of
3818  // an int, so this has to be conditionally compiled.
3819  //
3820  // On Linux, kCaseB and kCaseA have the same value when truncated to
3821  // int size.  We want to test whether this will confuse the
3822  // assertions.
3823  kCaseB = testing::internal::kMaxBiggestInt,
3824
3825# else
3826
3827  kCaseB = INT_MAX,
3828
3829# endif  // GTEST_OS_LINUX
3830
3831  kCaseC = 42
3832};
3833
3834TEST(AssertionTest, AnonymousEnum) {
3835# if GTEST_OS_LINUX
3836
3837  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3838
3839# endif  // GTEST_OS_LINUX
3840
3841  EXPECT_EQ(kCaseA, kCaseA);
3842  EXPECT_NE(kCaseA, kCaseB);
3843  EXPECT_LT(kCaseA, kCaseB);
3844  EXPECT_LE(kCaseA, kCaseB);
3845  EXPECT_GT(kCaseB, kCaseA);
3846  EXPECT_GE(kCaseA, kCaseA);
3847  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3848                          "(kCaseA) >= (kCaseB)");
3849  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3850                          "-1 vs 42");
3851
3852  ASSERT_EQ(kCaseA, kCaseA);
3853  ASSERT_NE(kCaseA, kCaseB);
3854  ASSERT_LT(kCaseA, kCaseB);
3855  ASSERT_LE(kCaseA, kCaseB);
3856  ASSERT_GT(kCaseB, kCaseA);
3857  ASSERT_GE(kCaseA, kCaseA);
3858
3859# ifndef __BORLANDC__
3860
3861  // ICE's in C++Builder.
3862  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3863                       "Value of: kCaseB");
3864  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3865                       "Actual: 42");
3866# endif
3867
3868  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3869                       "Which is: -1");
3870}
3871
3872#endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3873
3874#if GTEST_OS_WINDOWS
3875
3876static HRESULT UnexpectedHRESULTFailure() {
3877  return E_UNEXPECTED;
3878}
3879
3880static HRESULT OkHRESULTSuccess() {
3881  return S_OK;
3882}
3883
3884static HRESULT FalseHRESULTSuccess() {
3885  return S_FALSE;
3886}
3887
3888// HRESULT assertion tests test both zero and non-zero
3889// success codes as well as failure message for each.
3890//
3891// Windows CE doesn't support message texts.
3892TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3893  EXPECT_HRESULT_SUCCEEDED(S_OK);
3894  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3895
3896  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3897    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3898    "  Actual: 0x8000FFFF");
3899}
3900
3901TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3902  ASSERT_HRESULT_SUCCEEDED(S_OK);
3903  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3904
3905  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3906    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3907    "  Actual: 0x8000FFFF");
3908}
3909
3910TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3911  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3912
3913  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3914    "Expected: (OkHRESULTSuccess()) fails.\n"
3915    "  Actual: 0x0");
3916  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3917    "Expected: (FalseHRESULTSuccess()) fails.\n"
3918    "  Actual: 0x1");
3919}
3920
3921TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3922  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3923
3924# ifndef __BORLANDC__
3925
3926  // ICE's in C++Builder 2007 and 2009.
3927  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3928    "Expected: (OkHRESULTSuccess()) fails.\n"
3929    "  Actual: 0x0");
3930# endif
3931
3932  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3933    "Expected: (FalseHRESULTSuccess()) fails.\n"
3934    "  Actual: 0x1");
3935}
3936
3937// Tests that streaming to the HRESULT macros works.
3938TEST(HRESULTAssertionTest, Streaming) {
3939  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3940  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3941  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3942  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3943
3944  EXPECT_NONFATAL_FAILURE(
3945      EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3946      "expected failure");
3947
3948# ifndef __BORLANDC__
3949
3950  // ICE's in C++Builder 2007 and 2009.
3951  EXPECT_FATAL_FAILURE(
3952      ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3953      "expected failure");
3954# endif
3955
3956  EXPECT_NONFATAL_FAILURE(
3957      EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3958      "expected failure");
3959
3960  EXPECT_FATAL_FAILURE(
3961      ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3962      "expected failure");
3963}
3964
3965#endif  // GTEST_OS_WINDOWS
3966
3967#ifdef __BORLANDC__
3968// Silences warnings: "Condition is always true", "Unreachable code"
3969# pragma option push -w-ccc -w-rch
3970#endif
3971
3972// Tests that the assertion macros behave like single statements.
3973TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3974  if (AlwaysFalse())
3975    ASSERT_TRUE(false) << "This should never be executed; "
3976                          "It's a compilation test only.";
3977
3978  if (AlwaysTrue())
3979    EXPECT_FALSE(false);
3980  else
3981    ;  // NOLINT
3982
3983  if (AlwaysFalse())
3984    ASSERT_LT(1, 3);
3985
3986  if (AlwaysFalse())
3987    ;  // NOLINT
3988  else
3989    EXPECT_GT(3, 2) << "";
3990}
3991
3992#if GTEST_HAS_EXCEPTIONS
3993// Tests that the compiler will not complain about unreachable code in the
3994// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
3995TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
3996  int n = 0;
3997
3998  EXPECT_THROW(throw 1, int);
3999  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4000  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4001  EXPECT_NO_THROW(n++);
4002  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4003  EXPECT_ANY_THROW(throw 1);
4004  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4005}
4006
4007TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4008  if (AlwaysFalse())
4009    EXPECT_THROW(ThrowNothing(), bool);
4010
4011  if (AlwaysTrue())
4012    EXPECT_THROW(ThrowAnInteger(), int);
4013  else
4014    ;  // NOLINT
4015
4016  if (AlwaysFalse())
4017    EXPECT_NO_THROW(ThrowAnInteger());
4018
4019  if (AlwaysTrue())
4020    EXPECT_NO_THROW(ThrowNothing());
4021  else
4022    ;  // NOLINT
4023
4024  if (AlwaysFalse())
4025    EXPECT_ANY_THROW(ThrowNothing());
4026
4027  if (AlwaysTrue())
4028    EXPECT_ANY_THROW(ThrowAnInteger());
4029  else
4030    ;  // NOLINT
4031}
4032#endif  // GTEST_HAS_EXCEPTIONS
4033
4034TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4035  if (AlwaysFalse())
4036    EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4037                                    << "It's a compilation test only.";
4038  else
4039    ;  // NOLINT
4040
4041  if (AlwaysFalse())
4042    ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4043  else
4044    ;  // NOLINT
4045
4046  if (AlwaysTrue())
4047    EXPECT_NO_FATAL_FAILURE(SUCCEED());
4048  else
4049    ;  // NOLINT
4050
4051  if (AlwaysFalse())
4052    ;  // NOLINT
4053  else
4054    ASSERT_NO_FATAL_FAILURE(SUCCEED());
4055}
4056
4057// Tests that the assertion macros work well with switch statements.
4058TEST(AssertionSyntaxTest, WorksWithSwitch) {
4059  switch (0) {
4060    case 1:
4061      break;
4062    default:
4063      ASSERT_TRUE(true);
4064  }
4065
4066  switch (0)
4067    case 0:
4068      EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4069
4070  // Binary assertions are implemented using a different code path
4071  // than the Boolean assertions.  Hence we test them separately.
4072  switch (0) {
4073    case 1:
4074    default:
4075      ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4076  }
4077
4078  switch (0)
4079    case 0:
4080      EXPECT_NE(1, 2);
4081}
4082
4083#if GTEST_HAS_EXCEPTIONS
4084
4085void ThrowAString() {
4086    throw "std::string";
4087}
4088
4089// Test that the exception assertion macros compile and work with const
4090// type qualifier.
4091TEST(AssertionSyntaxTest, WorksWithConst) {
4092    ASSERT_THROW(ThrowAString(), const char*);
4093
4094    EXPECT_THROW(ThrowAString(), const char*);
4095}
4096
4097#endif  // GTEST_HAS_EXCEPTIONS
4098
4099}  // namespace
4100
4101namespace testing {
4102
4103// Tests that Google Test tracks SUCCEED*.
4104TEST(SuccessfulAssertionTest, SUCCEED) {
4105  SUCCEED();
4106  SUCCEED() << "OK";
4107  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4108}
4109
4110// Tests that Google Test doesn't track successful EXPECT_*.
4111TEST(SuccessfulAssertionTest, EXPECT) {
4112  EXPECT_TRUE(true);
4113  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4114}
4115
4116// Tests that Google Test doesn't track successful EXPECT_STR*.
4117TEST(SuccessfulAssertionTest, EXPECT_STR) {
4118  EXPECT_STREQ("", "");
4119  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4120}
4121
4122// Tests that Google Test doesn't track successful ASSERT_*.
4123TEST(SuccessfulAssertionTest, ASSERT) {
4124  ASSERT_TRUE(true);
4125  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4126}
4127
4128// Tests that Google Test doesn't track successful ASSERT_STR*.
4129TEST(SuccessfulAssertionTest, ASSERT_STR) {
4130  ASSERT_STREQ("", "");
4131  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4132}
4133
4134}  // namespace testing
4135
4136namespace {
4137
4138// Tests the message streaming variation of assertions.
4139
4140TEST(AssertionWithMessageTest, EXPECT) {
4141  EXPECT_EQ(1, 1) << "This should succeed.";
4142  EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4143                          "Expected failure #1");
4144  EXPECT_LE(1, 2) << "This should succeed.";
4145  EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4146                          "Expected failure #2.");
4147  EXPECT_GE(1, 0) << "This should succeed.";
4148  EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4149                          "Expected failure #3.");
4150
4151  EXPECT_STREQ("1", "1") << "This should succeed.";
4152  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4153                          "Expected failure #4.");
4154  EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4155  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4156                          "Expected failure #5.");
4157
4158  EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4159  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4160                          "Expected failure #6.");
4161  EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4162}
4163
4164TEST(AssertionWithMessageTest, ASSERT) {
4165  ASSERT_EQ(1, 1) << "This should succeed.";
4166  ASSERT_NE(1, 2) << "This should succeed.";
4167  ASSERT_LE(1, 2) << "This should succeed.";
4168  ASSERT_LT(1, 2) << "This should succeed.";
4169  ASSERT_GE(1, 0) << "This should succeed.";
4170  EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4171                       "Expected failure.");
4172}
4173
4174TEST(AssertionWithMessageTest, ASSERT_STR) {
4175  ASSERT_STREQ("1", "1") << "This should succeed.";
4176  ASSERT_STRNE("1", "2") << "This should succeed.";
4177  ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4178  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4179                       "Expected failure.");
4180}
4181
4182TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4183  ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4184  ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4185  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4186                       "Expect failure.");
4187  // To work around a bug in gcc 2.95.0, there is intentionally no
4188  // space after the first comma in the previous statement.
4189}
4190
4191// Tests using ASSERT_FALSE with a streamed message.
4192TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4193  ASSERT_FALSE(false) << "This shouldn't fail.";
4194  EXPECT_FATAL_FAILURE({  // NOLINT
4195    ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4196                       << " evaluates to " << true;
4197  }, "Expected failure");
4198}
4199
4200// Tests using FAIL with a streamed message.
4201TEST(AssertionWithMessageTest, FAIL) {
4202  EXPECT_FATAL_FAILURE(FAIL() << 0,
4203                       "0");
4204}
4205
4206// Tests using SUCCEED with a streamed message.
4207TEST(AssertionWithMessageTest, SUCCEED) {
4208  SUCCEED() << "Success == " << 1;
4209}
4210
4211// Tests using ASSERT_TRUE with a streamed message.
4212TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4213  ASSERT_TRUE(true) << "This should succeed.";
4214  ASSERT_TRUE(true) << true;
4215  EXPECT_FATAL_FAILURE({  // NOLINT
4216    ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4217                       << static_cast<char *>(NULL);
4218  }, "(null)(null)");
4219}
4220
4221#if GTEST_OS_WINDOWS
4222// Tests using wide strings in assertion messages.
4223TEST(AssertionWithMessageTest, WideStringMessage) {
4224  EXPECT_NONFATAL_FAILURE({  // NOLINT
4225    EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4226  }, "This failure is expected.");
4227  EXPECT_FATAL_FAILURE({  // NOLINT
4228    ASSERT_EQ(1, 2) << "This failure is "
4229                    << L"expected too.\x8120";
4230  }, "This failure is expected too.");
4231}
4232#endif  // GTEST_OS_WINDOWS
4233
4234// Tests EXPECT_TRUE.
4235TEST(ExpectTest, EXPECT_TRUE) {
4236  EXPECT_TRUE(true) << "Intentional success";
4237  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4238                          "Intentional failure #1.");
4239  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4240                          "Intentional failure #2.");
4241  EXPECT_TRUE(2 > 1);  // NOLINT
4242  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4243                          "Value of: 2 < 1\n"
4244                          "  Actual: false\n"
4245                          "Expected: true");
4246  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4247                          "2 > 3");
4248}
4249
4250// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4251TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4252  EXPECT_TRUE(ResultIsEven(2));
4253  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4254                          "Value of: ResultIsEven(3)\n"
4255                          "  Actual: false (3 is odd)\n"
4256                          "Expected: true");
4257  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4258  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4259                          "Value of: ResultIsEvenNoExplanation(3)\n"
4260                          "  Actual: false (3 is odd)\n"
4261                          "Expected: true");
4262}
4263
4264// Tests EXPECT_FALSE with a streamed message.
4265TEST(ExpectTest, EXPECT_FALSE) {
4266  EXPECT_FALSE(2 < 1);  // NOLINT
4267  EXPECT_FALSE(false) << "Intentional success";
4268  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4269                          "Intentional failure #1.");
4270  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4271                          "Intentional failure #2.");
4272  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4273                          "Value of: 2 > 1\n"
4274                          "  Actual: true\n"
4275                          "Expected: false");
4276  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4277                          "2 < 3");
4278}
4279
4280// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4281TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4282  EXPECT_FALSE(ResultIsEven(3));
4283  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4284                          "Value of: ResultIsEven(2)\n"
4285                          "  Actual: true (2 is even)\n"
4286                          "Expected: false");
4287  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4288  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4289                          "Value of: ResultIsEvenNoExplanation(2)\n"
4290                          "  Actual: true\n"
4291                          "Expected: false");
4292}
4293
4294#ifdef __BORLANDC__
4295// Restores warnings after previous "#pragma option push" supressed them
4296# pragma option pop
4297#endif
4298
4299// Tests EXPECT_EQ.
4300TEST(ExpectTest, EXPECT_EQ) {
4301  EXPECT_EQ(5, 2 + 3);
4302  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4303                          "Value of: 2*3\n"
4304                          "  Actual: 6\n"
4305                          "Expected: 5");
4306  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4307                          "2 - 3");
4308}
4309
4310// Tests using EXPECT_EQ on double values.  The purpose is to make
4311// sure that the specialization we did for integer and anonymous enums
4312// isn't used for double arguments.
4313TEST(ExpectTest, EXPECT_EQ_Double) {
4314  // A success.
4315  EXPECT_EQ(5.6, 5.6);
4316
4317  // A failure.
4318  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4319                          "5.1");
4320}
4321
4322#if GTEST_CAN_COMPARE_NULL
4323// Tests EXPECT_EQ(NULL, pointer).
4324TEST(ExpectTest, EXPECT_EQ_NULL) {
4325  // A success.
4326  const char* p = NULL;
4327  // Some older GCC versions may issue a spurious warning in this or the next
4328  // assertion statement. This warning should not be suppressed with
4329  // static_cast since the test verifies the ability to use bare NULL as the
4330  // expected parameter to the macro.
4331  EXPECT_EQ(NULL, p);
4332
4333  // A failure.
4334  int n = 0;
4335  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4336                          "Value of: &n\n");
4337}
4338#endif  // GTEST_CAN_COMPARE_NULL
4339
4340// Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4341// treated as a null pointer by the compiler, we need to make sure
4342// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4343// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4344TEST(ExpectTest, EXPECT_EQ_0) {
4345  int n = 0;
4346
4347  // A success.
4348  EXPECT_EQ(0, n);
4349
4350  // A failure.
4351  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4352                          "Expected: 0");
4353}
4354
4355// Tests EXPECT_NE.
4356TEST(ExpectTest, EXPECT_NE) {
4357  EXPECT_NE(6, 7);
4358
4359  EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4360                          "Expected: ('a') != ('a'), "
4361                          "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4362  EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4363                          "2");
4364  char* const p0 = NULL;
4365  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4366                          "p0");
4367  // Only way to get the Nokia compiler to compile the cast
4368  // is to have a separate void* variable first. Putting
4369  // the two casts on the same line doesn't work, neither does
4370  // a direct C-style to char*.
4371  void* pv1 = (void*)0x1234;  // NOLINT
4372  char* const p1 = reinterpret_cast<char*>(pv1);
4373  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4374                          "p1");
4375}
4376
4377// Tests EXPECT_LE.
4378TEST(ExpectTest, EXPECT_LE) {
4379  EXPECT_LE(2, 3);
4380  EXPECT_LE(2, 2);
4381  EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4382                          "Expected: (2) <= (0), actual: 2 vs 0");
4383  EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4384                          "(1.1) <= (0.9)");
4385}
4386
4387// Tests EXPECT_LT.
4388TEST(ExpectTest, EXPECT_LT) {
4389  EXPECT_LT(2, 3);
4390  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4391                          "Expected: (2) < (2), actual: 2 vs 2");
4392  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4393                          "(2) < (1)");
4394}
4395
4396// Tests EXPECT_GE.
4397TEST(ExpectTest, EXPECT_GE) {
4398  EXPECT_GE(2, 1);
4399  EXPECT_GE(2, 2);
4400  EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4401                          "Expected: (2) >= (3), actual: 2 vs 3");
4402  EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4403                          "(0.9) >= (1.1)");
4404}
4405
4406// Tests EXPECT_GT.
4407TEST(ExpectTest, EXPECT_GT) {
4408  EXPECT_GT(2, 1);
4409  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4410                          "Expected: (2) > (2), actual: 2 vs 2");
4411  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4412                          "(2) > (3)");
4413}
4414
4415#if GTEST_HAS_EXCEPTIONS
4416
4417// Tests EXPECT_THROW.
4418TEST(ExpectTest, EXPECT_THROW) {
4419  EXPECT_THROW(ThrowAnInteger(), int);
4420  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4421                          "Expected: ThrowAnInteger() throws an exception of "
4422                          "type bool.\n  Actual: it throws a different type.");
4423  EXPECT_NONFATAL_FAILURE(
4424      EXPECT_THROW(ThrowNothing(), bool),
4425      "Expected: ThrowNothing() throws an exception of type bool.\n"
4426      "  Actual: it throws nothing.");
4427}
4428
4429// Tests EXPECT_NO_THROW.
4430TEST(ExpectTest, EXPECT_NO_THROW) {
4431  EXPECT_NO_THROW(ThrowNothing());
4432  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4433                          "Expected: ThrowAnInteger() doesn't throw an "
4434                          "exception.\n  Actual: it throws.");
4435}
4436
4437// Tests EXPECT_ANY_THROW.
4438TEST(ExpectTest, EXPECT_ANY_THROW) {
4439  EXPECT_ANY_THROW(ThrowAnInteger());
4440  EXPECT_NONFATAL_FAILURE(
4441      EXPECT_ANY_THROW(ThrowNothing()),
4442      "Expected: ThrowNothing() throws an exception.\n"
4443      "  Actual: it doesn't.");
4444}
4445
4446#endif  // GTEST_HAS_EXCEPTIONS
4447
4448// Make sure we deal with the precedence of <<.
4449TEST(ExpectTest, ExpectPrecedence) {
4450  EXPECT_EQ(1 < 2, true);
4451  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4452                          "Value of: true && false");
4453}
4454
4455
4456// Tests the StreamableToString() function.
4457
4458// Tests using StreamableToString() on a scalar.
4459TEST(StreamableToStringTest, Scalar) {
4460  EXPECT_STREQ("5", StreamableToString(5).c_str());
4461}
4462
4463// Tests using StreamableToString() on a non-char pointer.
4464TEST(StreamableToStringTest, Pointer) {
4465  int n = 0;
4466  int* p = &n;
4467  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4468}
4469
4470// Tests using StreamableToString() on a NULL non-char pointer.
4471TEST(StreamableToStringTest, NullPointer) {
4472  int* p = NULL;
4473  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4474}
4475
4476// Tests using StreamableToString() on a C string.
4477TEST(StreamableToStringTest, CString) {
4478  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4479}
4480
4481// Tests using StreamableToString() on a NULL C string.
4482TEST(StreamableToStringTest, NullCString) {
4483  char* p = NULL;
4484  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4485}
4486
4487// Tests using streamable values as assertion messages.
4488
4489// Tests using std::string as an assertion message.
4490TEST(StreamableTest, string) {
4491  static const std::string str(
4492      "This failure message is a std::string, and is expected.");
4493  EXPECT_FATAL_FAILURE(FAIL() << str,
4494                       str.c_str());
4495}
4496
4497// Tests that we can output strings containing embedded NULs.
4498// Limited to Linux because we can only do this with std::string's.
4499TEST(StreamableTest, stringWithEmbeddedNUL) {
4500  static const char char_array_with_nul[] =
4501      "Here's a NUL\0 and some more string";
4502  static const std::string string_with_nul(char_array_with_nul,
4503                                           sizeof(char_array_with_nul)
4504                                           - 1);  // drops the trailing NUL
4505  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4506                       "Here's a NUL\\0 and some more string");
4507}
4508
4509// Tests that we can output a NUL char.
4510TEST(StreamableTest, NULChar) {
4511  EXPECT_FATAL_FAILURE({  // NOLINT
4512    FAIL() << "A NUL" << '\0' << " and some more string";
4513  }, "A NUL\\0 and some more string");
4514}
4515
4516// Tests using int as an assertion message.
4517TEST(StreamableTest, int) {
4518  EXPECT_FATAL_FAILURE(FAIL() << 900913,
4519                       "900913");
4520}
4521
4522// Tests using NULL char pointer as an assertion message.
4523//
4524// In MSVC, streaming a NULL char * causes access violation.  Google Test
4525// implemented a workaround (substituting "(null)" for NULL).  This
4526// tests whether the workaround works.
4527TEST(StreamableTest, NullCharPtr) {
4528  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4529                       "(null)");
4530}
4531
4532// Tests that basic IO manipulators (endl, ends, and flush) can be
4533// streamed to testing::Message.
4534TEST(StreamableTest, BasicIoManip) {
4535  EXPECT_FATAL_FAILURE({  // NOLINT
4536    FAIL() << "Line 1." << std::endl
4537           << "A NUL char " << std::ends << std::flush << " in line 2.";
4538  }, "Line 1.\nA NUL char \\0 in line 2.");
4539}
4540
4541// Tests the macros that haven't been covered so far.
4542
4543void AddFailureHelper(bool* aborted) {
4544  *aborted = true;
4545  ADD_FAILURE() << "Intentional failure.";
4546  *aborted = false;
4547}
4548
4549// Tests ADD_FAILURE.
4550TEST(MacroTest, ADD_FAILURE) {
4551  bool aborted = true;
4552  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4553                          "Intentional failure.");
4554  EXPECT_FALSE(aborted);
4555}
4556
4557// Tests ADD_FAILURE_AT.
4558TEST(MacroTest, ADD_FAILURE_AT) {
4559  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4560  // the failure message contains the user-streamed part.
4561  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4562
4563  // Verifies that the user-streamed part is optional.
4564  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4565
4566  // Unfortunately, we cannot verify that the failure message contains
4567  // the right file path and line number the same way, as
4568  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4569  // line number.  Instead, we do that in gtest_output_test_.cc.
4570}
4571
4572// Tests FAIL.
4573TEST(MacroTest, FAIL) {
4574  EXPECT_FATAL_FAILURE(FAIL(),
4575                       "Failed");
4576  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4577                       "Intentional failure.");
4578}
4579
4580// Tests SUCCEED
4581TEST(MacroTest, SUCCEED) {
4582  SUCCEED();
4583  SUCCEED() << "Explicit success.";
4584}
4585
4586// Tests for EXPECT_EQ() and ASSERT_EQ().
4587//
4588// These tests fail *intentionally*, s.t. the failure messages can be
4589// generated and tested.
4590//
4591// We have different tests for different argument types.
4592
4593// Tests using bool values in {EXPECT|ASSERT}_EQ.
4594TEST(EqAssertionTest, Bool) {
4595  EXPECT_EQ(true,  true);
4596  EXPECT_FATAL_FAILURE({
4597      bool false_value = false;
4598      ASSERT_EQ(false_value, true);
4599    }, "Value of: true");
4600}
4601
4602// Tests using int values in {EXPECT|ASSERT}_EQ.
4603TEST(EqAssertionTest, Int) {
4604  ASSERT_EQ(32, 32);
4605  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4606                          "33");
4607}
4608
4609// Tests using time_t values in {EXPECT|ASSERT}_EQ.
4610TEST(EqAssertionTest, Time_T) {
4611  EXPECT_EQ(static_cast<time_t>(0),
4612            static_cast<time_t>(0));
4613  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4614                                 static_cast<time_t>(1234)),
4615                       "1234");
4616}
4617
4618// Tests using char values in {EXPECT|ASSERT}_EQ.
4619TEST(EqAssertionTest, Char) {
4620  ASSERT_EQ('z', 'z');
4621  const char ch = 'b';
4622  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4623                          "ch");
4624  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4625                          "ch");
4626}
4627
4628// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4629TEST(EqAssertionTest, WideChar) {
4630  EXPECT_EQ(L'b', L'b');
4631
4632  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4633                          "Value of: L'x'\n"
4634                          "  Actual: L'x' (120, 0x78)\n"
4635                          "Expected: L'\0'\n"
4636                          "Which is: L'\0' (0, 0x0)");
4637
4638  static wchar_t wchar;
4639  wchar = L'b';
4640  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4641                          "wchar");
4642  wchar = 0x8119;
4643  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4644                       "Value of: wchar");
4645}
4646
4647// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4648TEST(EqAssertionTest, StdString) {
4649  // Compares a const char* to an std::string that has identical
4650  // content.
4651  ASSERT_EQ("Test", ::std::string("Test"));
4652
4653  // Compares two identical std::strings.
4654  static const ::std::string str1("A * in the middle");
4655  static const ::std::string str2(str1);
4656  EXPECT_EQ(str1, str2);
4657
4658  // Compares a const char* to an std::string that has different
4659  // content
4660  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4661                          "\"test\"");
4662
4663  // Compares an std::string to a char* that has different content.
4664  char* const p1 = const_cast<char*>("foo");
4665  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4666                          "p1");
4667
4668  // Compares two std::strings that have different contents, one of
4669  // which having a NUL character in the middle.  This should fail.
4670  static ::std::string str3(str1);
4671  str3.at(2) = '\0';
4672  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4673                       "Value of: str3\n"
4674                       "  Actual: \"A \\0 in the middle\"");
4675}
4676
4677#if GTEST_HAS_STD_WSTRING
4678
4679// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4680TEST(EqAssertionTest, StdWideString) {
4681  // Compares two identical std::wstrings.
4682  const ::std::wstring wstr1(L"A * in the middle");
4683  const ::std::wstring wstr2(wstr1);
4684  ASSERT_EQ(wstr1, wstr2);
4685
4686  // Compares an std::wstring to a const wchar_t* that has identical
4687  // content.
4688  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4689  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4690
4691  // Compares an std::wstring to a const wchar_t* that has different
4692  // content.
4693  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4694  EXPECT_NONFATAL_FAILURE({  // NOLINT
4695    EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4696  }, "kTestX8120");
4697
4698  // Compares two std::wstrings that have different contents, one of
4699  // which having a NUL character in the middle.
4700  ::std::wstring wstr3(wstr1);
4701  wstr3.at(2) = L'\0';
4702  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4703                          "wstr3");
4704
4705  // Compares a wchar_t* to an std::wstring that has different
4706  // content.
4707  EXPECT_FATAL_FAILURE({  // NOLINT
4708    ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4709  }, "");
4710}
4711
4712#endif  // GTEST_HAS_STD_WSTRING
4713
4714#if GTEST_HAS_GLOBAL_STRING
4715// Tests using ::string values in {EXPECT|ASSERT}_EQ.
4716TEST(EqAssertionTest, GlobalString) {
4717  // Compares a const char* to a ::string that has identical content.
4718  EXPECT_EQ("Test", ::string("Test"));
4719
4720  // Compares two identical ::strings.
4721  const ::string str1("A * in the middle");
4722  const ::string str2(str1);
4723  ASSERT_EQ(str1, str2);
4724
4725  // Compares a ::string to a const char* that has different content.
4726  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4727                          "test");
4728
4729  // Compares two ::strings that have different contents, one of which
4730  // having a NUL character in the middle.
4731  ::string str3(str1);
4732  str3.at(2) = '\0';
4733  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4734                          "str3");
4735
4736  // Compares a ::string to a char* that has different content.
4737  EXPECT_FATAL_FAILURE({  // NOLINT
4738    ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4739  }, "");
4740}
4741
4742#endif  // GTEST_HAS_GLOBAL_STRING
4743
4744#if GTEST_HAS_GLOBAL_WSTRING
4745
4746// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
4747TEST(EqAssertionTest, GlobalWideString) {
4748  // Compares two identical ::wstrings.
4749  static const ::wstring wstr1(L"A * in the middle");
4750  static const ::wstring wstr2(wstr1);
4751  EXPECT_EQ(wstr1, wstr2);
4752
4753  // Compares a const wchar_t* to a ::wstring that has identical content.
4754  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4755  ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4756
4757  // Compares a const wchar_t* to a ::wstring that has different
4758  // content.
4759  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4760  EXPECT_NONFATAL_FAILURE({  // NOLINT
4761    EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4762  }, "Test\\x8119");
4763
4764  // Compares a wchar_t* to a ::wstring that has different content.
4765  wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4766  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4767                          "bar");
4768
4769  // Compares two ::wstrings that have different contents, one of which
4770  // having a NUL character in the middle.
4771  static ::wstring wstr3;
4772  wstr3 = wstr1;
4773  wstr3.at(2) = L'\0';
4774  EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4775                       "wstr3");
4776}
4777
4778#endif  // GTEST_HAS_GLOBAL_WSTRING
4779
4780// Tests using char pointers in {EXPECT|ASSERT}_EQ.
4781TEST(EqAssertionTest, CharPointer) {
4782  char* const p0 = NULL;
4783  // Only way to get the Nokia compiler to compile the cast
4784  // is to have a separate void* variable first. Putting
4785  // the two casts on the same line doesn't work, neither does
4786  // a direct C-style to char*.
4787  void* pv1 = (void*)0x1234;  // NOLINT
4788  void* pv2 = (void*)0xABC0;  // NOLINT
4789  char* const p1 = reinterpret_cast<char*>(pv1);
4790  char* const p2 = reinterpret_cast<char*>(pv2);
4791  ASSERT_EQ(p1, p1);
4792
4793  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4794                          "Value of: p2");
4795  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4796                          "p2");
4797  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4798                                 reinterpret_cast<char*>(0xABC0)),
4799                       "ABC0");
4800}
4801
4802// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4803TEST(EqAssertionTest, WideCharPointer) {
4804  wchar_t* const p0 = NULL;
4805  // Only way to get the Nokia compiler to compile the cast
4806  // is to have a separate void* variable first. Putting
4807  // the two casts on the same line doesn't work, neither does
4808  // a direct C-style to char*.
4809  void* pv1 = (void*)0x1234;  // NOLINT
4810  void* pv2 = (void*)0xABC0;  // NOLINT
4811  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4812  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4813  EXPECT_EQ(p0, p0);
4814
4815  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4816                          "Value of: p2");
4817  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4818                          "p2");
4819  void* pv3 = (void*)0x1234;  // NOLINT
4820  void* pv4 = (void*)0xABC0;  // NOLINT
4821  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4822  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4823  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4824                          "p4");
4825}
4826
4827// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4828TEST(EqAssertionTest, OtherPointer) {
4829  ASSERT_EQ(static_cast<const int*>(NULL),
4830            static_cast<const int*>(NULL));
4831  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4832                                 reinterpret_cast<const int*>(0x1234)),
4833                       "0x1234");
4834}
4835
4836// A class that supports binary comparison operators but not streaming.
4837class UnprintableChar {
4838 public:
4839  explicit UnprintableChar(char ch) : char_(ch) {}
4840
4841  bool operator==(const UnprintableChar& rhs) const {
4842    return char_ == rhs.char_;
4843  }
4844  bool operator!=(const UnprintableChar& rhs) const {
4845    return char_ != rhs.char_;
4846  }
4847  bool operator<(const UnprintableChar& rhs) const {
4848    return char_ < rhs.char_;
4849  }
4850  bool operator<=(const UnprintableChar& rhs) const {
4851    return char_ <= rhs.char_;
4852  }
4853  bool operator>(const UnprintableChar& rhs) const {
4854    return char_ > rhs.char_;
4855  }
4856  bool operator>=(const UnprintableChar& rhs) const {
4857    return char_ >= rhs.char_;
4858  }
4859
4860 private:
4861  char char_;
4862};
4863
4864// Tests that ASSERT_EQ() and friends don't require the arguments to
4865// be printable.
4866TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4867  const UnprintableChar x('x'), y('y');
4868  ASSERT_EQ(x, x);
4869  EXPECT_NE(x, y);
4870  ASSERT_LT(x, y);
4871  EXPECT_LE(x, y);
4872  ASSERT_GT(y, x);
4873  EXPECT_GE(x, x);
4874
4875  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4876  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4877  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4878  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4879  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4880
4881  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4882  // variables, so we have to write UnprintableChar('x') instead of x.
4883#ifndef __BORLANDC__
4884  // ICE's in C++Builder.
4885  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4886                       "1-byte object <78>");
4887  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4888                       "1-byte object <78>");
4889#endif
4890  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4891                       "1-byte object <79>");
4892  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4893                       "1-byte object <78>");
4894  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4895                       "1-byte object <79>");
4896}
4897
4898// Tests the FRIEND_TEST macro.
4899
4900// This class has a private member we want to test.  We will test it
4901// both in a TEST and in a TEST_F.
4902class Foo {
4903 public:
4904  Foo() {}
4905
4906 private:
4907  int Bar() const { return 1; }
4908
4909  // Declares the friend tests that can access the private member
4910  // Bar().
4911  FRIEND_TEST(FRIEND_TEST_Test, TEST);
4912  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4913};
4914
4915// Tests that the FRIEND_TEST declaration allows a TEST to access a
4916// class's private members.  This should compile.
4917TEST(FRIEND_TEST_Test, TEST) {
4918  ASSERT_EQ(1, Foo().Bar());
4919}
4920
4921// The fixture needed to test using FRIEND_TEST with TEST_F.
4922class FRIEND_TEST_Test2 : public Test {
4923 protected:
4924  Foo foo;
4925};
4926
4927// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4928// class's private members.  This should compile.
4929TEST_F(FRIEND_TEST_Test2, TEST_F) {
4930  ASSERT_EQ(1, foo.Bar());
4931}
4932
4933// Tests the life cycle of Test objects.
4934
4935// The test fixture for testing the life cycle of Test objects.
4936//
4937// This class counts the number of live test objects that uses this
4938// fixture.
4939class TestLifeCycleTest : public Test {
4940 protected:
4941  // Constructor.  Increments the number of test objects that uses
4942  // this fixture.
4943  TestLifeCycleTest() { count_++; }
4944
4945  // Destructor.  Decrements the number of test objects that uses this
4946  // fixture.
4947  ~TestLifeCycleTest() { count_--; }
4948
4949  // Returns the number of live test objects that uses this fixture.
4950  int count() const { return count_; }
4951
4952 private:
4953  static int count_;
4954};
4955
4956int TestLifeCycleTest::count_ = 0;
4957
4958// Tests the life cycle of test objects.
4959TEST_F(TestLifeCycleTest, Test1) {
4960  // There should be only one test object in this test case that's
4961  // currently alive.
4962  ASSERT_EQ(1, count());
4963}
4964
4965// Tests the life cycle of test objects.
4966TEST_F(TestLifeCycleTest, Test2) {
4967  // After Test1 is done and Test2 is started, there should still be
4968  // only one live test object, as the object for Test1 should've been
4969  // deleted.
4970  ASSERT_EQ(1, count());
4971}
4972
4973}  // namespace
4974
4975// Tests that the copy constructor works when it is NOT optimized away by
4976// the compiler.
4977TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4978  // Checks that the copy constructor doesn't try to dereference NULL pointers
4979  // in the source object.
4980  AssertionResult r1 = AssertionSuccess();
4981  AssertionResult r2 = r1;
4982  // The following line is added to prevent the compiler from optimizing
4983  // away the constructor call.
4984  r1 << "abc";
4985
4986  AssertionResult r3 = r1;
4987  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4988  EXPECT_STREQ("abc", r1.message());
4989}
4990
4991// Tests that AssertionSuccess and AssertionFailure construct
4992// AssertionResult objects as expected.
4993TEST(AssertionResultTest, ConstructionWorks) {
4994  AssertionResult r1 = AssertionSuccess();
4995  EXPECT_TRUE(r1);
4996  EXPECT_STREQ("", r1.message());
4997
4998  AssertionResult r2 = AssertionSuccess() << "abc";
4999  EXPECT_TRUE(r2);
5000  EXPECT_STREQ("abc", r2.message());
5001
5002  AssertionResult r3 = AssertionFailure();
5003  EXPECT_FALSE(r3);
5004  EXPECT_STREQ("", r3.message());
5005
5006  AssertionResult r4 = AssertionFailure() << "def";
5007  EXPECT_FALSE(r4);
5008  EXPECT_STREQ("def", r4.message());
5009
5010  AssertionResult r5 = AssertionFailure(Message() << "ghi");
5011  EXPECT_FALSE(r5);
5012  EXPECT_STREQ("ghi", r5.message());
5013}
5014
5015// Tests that the negation flips the predicate result but keeps the message.
5016TEST(AssertionResultTest, NegationWorks) {
5017  AssertionResult r1 = AssertionSuccess() << "abc";
5018  EXPECT_FALSE(!r1);
5019  EXPECT_STREQ("abc", (!r1).message());
5020
5021  AssertionResult r2 = AssertionFailure() << "def";
5022  EXPECT_TRUE(!r2);
5023  EXPECT_STREQ("def", (!r2).message());
5024}
5025
5026TEST(AssertionResultTest, StreamingWorks) {
5027  AssertionResult r = AssertionSuccess();
5028  r << "abc" << 'd' << 0 << true;
5029  EXPECT_STREQ("abcd0true", r.message());
5030}
5031
5032TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5033  AssertionResult r = AssertionSuccess();
5034  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5035  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5036}
5037
5038// Tests streaming a user type whose definition and operator << are
5039// both in the global namespace.
5040class Base {
5041 public:
5042  explicit Base(int an_x) : x_(an_x) {}
5043  int x() const { return x_; }
5044 private:
5045  int x_;
5046};
5047std::ostream& operator<<(std::ostream& os,
5048                         const Base& val) {
5049  return os << val.x();
5050}
5051std::ostream& operator<<(std::ostream& os,
5052                         const Base* pointer) {
5053  return os << "(" << pointer->x() << ")";
5054}
5055
5056TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5057  Message msg;
5058  Base a(1);
5059
5060  msg << a << &a;  // Uses ::operator<<.
5061  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5062}
5063
5064// Tests streaming a user type whose definition and operator<< are
5065// both in an unnamed namespace.
5066namespace {
5067class MyTypeInUnnamedNameSpace : public Base {
5068 public:
5069  explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5070};
5071std::ostream& operator<<(std::ostream& os,
5072                         const MyTypeInUnnamedNameSpace& val) {
5073  return os << val.x();
5074}
5075std::ostream& operator<<(std::ostream& os,
5076                         const MyTypeInUnnamedNameSpace* pointer) {
5077  return os << "(" << pointer->x() << ")";
5078}
5079}  // namespace
5080
5081TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5082  Message msg;
5083  MyTypeInUnnamedNameSpace a(1);
5084
5085  msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5086  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5087}
5088
5089// Tests streaming a user type whose definition and operator<< are
5090// both in a user namespace.
5091namespace namespace1 {
5092class MyTypeInNameSpace1 : public Base {
5093 public:
5094  explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5095};
5096std::ostream& operator<<(std::ostream& os,
5097                         const MyTypeInNameSpace1& val) {
5098  return os << val.x();
5099}
5100std::ostream& operator<<(std::ostream& os,
5101                         const MyTypeInNameSpace1* pointer) {
5102  return os << "(" << pointer->x() << ")";
5103}
5104}  // namespace namespace1
5105
5106TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5107  Message msg;
5108  namespace1::MyTypeInNameSpace1 a(1);
5109
5110  msg << a << &a;  // Uses namespace1::operator<<.
5111  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5112}
5113
5114// Tests streaming a user type whose definition is in a user namespace
5115// but whose operator<< is in the global namespace.
5116namespace namespace2 {
5117class MyTypeInNameSpace2 : public ::Base {
5118 public:
5119  explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5120};
5121}  // namespace namespace2
5122std::ostream& operator<<(std::ostream& os,
5123                         const namespace2::MyTypeInNameSpace2& val) {
5124  return os << val.x();
5125}
5126std::ostream& operator<<(std::ostream& os,
5127                         const namespace2::MyTypeInNameSpace2* pointer) {
5128  return os << "(" << pointer->x() << ")";
5129}
5130
5131TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5132  Message msg;
5133  namespace2::MyTypeInNameSpace2 a(1);
5134
5135  msg << a << &a;  // Uses ::operator<<.
5136  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5137}
5138
5139// Tests streaming NULL pointers to testing::Message.
5140TEST(MessageTest, NullPointers) {
5141  Message msg;
5142  char* const p1 = NULL;
5143  unsigned char* const p2 = NULL;
5144  int* p3 = NULL;
5145  double* p4 = NULL;
5146  bool* p5 = NULL;
5147  Message* p6 = NULL;
5148
5149  msg << p1 << p2 << p3 << p4 << p5 << p6;
5150  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5151               msg.GetString().c_str());
5152}
5153
5154// Tests streaming wide strings to testing::Message.
5155TEST(MessageTest, WideStrings) {
5156  // Streams a NULL of type const wchar_t*.
5157  const wchar_t* const_wstr = NULL;
5158  EXPECT_STREQ("(null)",
5159               (Message() << const_wstr).GetString().c_str());
5160
5161  // Streams a NULL of type wchar_t*.
5162  wchar_t* wstr = NULL;
5163  EXPECT_STREQ("(null)",
5164               (Message() << wstr).GetString().c_str());
5165
5166  // Streams a non-NULL of type const wchar_t*.
5167  const_wstr = L"abc\x8119";
5168  EXPECT_STREQ("abc\xe8\x84\x99",
5169               (Message() << const_wstr).GetString().c_str());
5170
5171  // Streams a non-NULL of type wchar_t*.
5172  wstr = const_cast<wchar_t*>(const_wstr);
5173  EXPECT_STREQ("abc\xe8\x84\x99",
5174               (Message() << wstr).GetString().c_str());
5175}
5176
5177
5178// This line tests that we can define tests in the testing namespace.
5179namespace testing {
5180
5181// Tests the TestInfo class.
5182
5183class TestInfoTest : public Test {
5184 protected:
5185  static const TestInfo* GetTestInfo(const char* test_name) {
5186    const TestCase* const test_case = GetUnitTestImpl()->
5187        GetTestCase("TestInfoTest", "", NULL, NULL);
5188
5189    for (int i = 0; i < test_case->total_test_count(); ++i) {
5190      const TestInfo* const test_info = test_case->GetTestInfo(i);
5191      if (strcmp(test_name, test_info->name()) == 0)
5192        return test_info;
5193    }
5194    return NULL;
5195  }
5196
5197  static const TestResult* GetTestResult(
5198      const TestInfo* test_info) {
5199    return test_info->result();
5200  }
5201};
5202
5203// Tests TestInfo::test_case_name() and TestInfo::name().
5204TEST_F(TestInfoTest, Names) {
5205  const TestInfo* const test_info = GetTestInfo("Names");
5206
5207  ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5208  ASSERT_STREQ("Names", test_info->name());
5209}
5210
5211// Tests TestInfo::result().
5212TEST_F(TestInfoTest, result) {
5213  const TestInfo* const test_info = GetTestInfo("result");
5214
5215  // Initially, there is no TestPartResult for this test.
5216  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5217
5218  // After the previous assertion, there is still none.
5219  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5220}
5221
5222// Tests setting up and tearing down a test case.
5223
5224class SetUpTestCaseTest : public Test {
5225 protected:
5226  // This will be called once before the first test in this test case
5227  // is run.
5228  static void SetUpTestCase() {
5229    printf("Setting up the test case . . .\n");
5230
5231    // Initializes some shared resource.  In this simple example, we
5232    // just create a C string.  More complex stuff can be done if
5233    // desired.
5234    shared_resource_ = "123";
5235
5236    // Increments the number of test cases that have been set up.
5237    counter_++;
5238
5239    // SetUpTestCase() should be called only once.
5240    EXPECT_EQ(1, counter_);
5241  }
5242
5243  // This will be called once after the last test in this test case is
5244  // run.
5245  static void TearDownTestCase() {
5246    printf("Tearing down the test case . . .\n");
5247
5248    // Decrements the number of test cases that have been set up.
5249    counter_--;
5250
5251    // TearDownTestCase() should be called only once.
5252    EXPECT_EQ(0, counter_);
5253
5254    // Cleans up the shared resource.
5255    shared_resource_ = NULL;
5256  }
5257
5258  // This will be called before each test in this test case.
5259  virtual void SetUp() {
5260    // SetUpTestCase() should be called only once, so counter_ should
5261    // always be 1.
5262    EXPECT_EQ(1, counter_);
5263  }
5264
5265  // Number of test cases that have been set up.
5266  static int counter_;
5267
5268  // Some resource to be shared by all tests in this test case.
5269  static const char* shared_resource_;
5270};
5271
5272int SetUpTestCaseTest::counter_ = 0;
5273const char* SetUpTestCaseTest::shared_resource_ = NULL;
5274
5275// A test that uses the shared resource.
5276TEST_F(SetUpTestCaseTest, Test1) {
5277  EXPECT_STRNE(NULL, shared_resource_);
5278}
5279
5280// Another test that uses the shared resource.
5281TEST_F(SetUpTestCaseTest, Test2) {
5282  EXPECT_STREQ("123", shared_resource_);
5283}
5284
5285// The InitGoogleTestTest test case tests testing::InitGoogleTest().
5286
5287// The Flags struct stores a copy of all Google Test flags.
5288struct Flags {
5289  // Constructs a Flags struct where each flag has its default value.
5290  Flags() : also_run_disabled_tests(false),
5291            break_on_failure(false),
5292            catch_exceptions(false),
5293            death_test_use_fork(false),
5294            filter(""),
5295            list_tests(false),
5296            output(""),
5297            print_time(true),
5298            random_seed(0),
5299            repeat(1),
5300            shuffle(false),
5301            stack_trace_depth(kMaxStackTraceDepth),
5302            stream_result_to(""),
5303            throw_on_failure(false) {}
5304
5305  // Factory methods.
5306
5307  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5308  // the given value.
5309  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5310    Flags flags;
5311    flags.also_run_disabled_tests = also_run_disabled_tests;
5312    return flags;
5313  }
5314
5315  // Creates a Flags struct where the gtest_break_on_failure flag has
5316  // the given value.
5317  static Flags BreakOnFailure(bool break_on_failure) {
5318    Flags flags;
5319    flags.break_on_failure = break_on_failure;
5320    return flags;
5321  }
5322
5323  // Creates a Flags struct where the gtest_catch_exceptions flag has
5324  // the given value.
5325  static Flags CatchExceptions(bool catch_exceptions) {
5326    Flags flags;
5327    flags.catch_exceptions = catch_exceptions;
5328    return flags;
5329  }
5330
5331  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5332  // the given value.
5333  static Flags DeathTestUseFork(bool death_test_use_fork) {
5334    Flags flags;
5335    flags.death_test_use_fork = death_test_use_fork;
5336    return flags;
5337  }
5338
5339  // Creates a Flags struct where the gtest_filter flag has the given
5340  // value.
5341  static Flags Filter(const char* filter) {
5342    Flags flags;
5343    flags.filter = filter;
5344    return flags;
5345  }
5346
5347  // Creates a Flags struct where the gtest_list_tests flag has the
5348  // given value.
5349  static Flags ListTests(bool list_tests) {
5350    Flags flags;
5351    flags.list_tests = list_tests;
5352    return flags;
5353  }
5354
5355  // Creates a Flags struct where the gtest_output flag has the given
5356  // value.
5357  static Flags Output(const char* output) {
5358    Flags flags;
5359    flags.output = output;
5360    return flags;
5361  }
5362
5363  // Creates a Flags struct where the gtest_print_time flag has the given
5364  // value.
5365  static Flags PrintTime(bool print_time) {
5366    Flags flags;
5367    flags.print_time = print_time;
5368    return flags;
5369  }
5370
5371  // Creates a Flags struct where the gtest_random_seed flag has
5372  // the given value.
5373  static Flags RandomSeed(Int32 random_seed) {
5374    Flags flags;
5375    flags.random_seed = random_seed;
5376    return flags;
5377  }
5378
5379  // Creates a Flags struct where the gtest_repeat flag has the given
5380  // value.
5381  static Flags Repeat(Int32 repeat) {
5382    Flags flags;
5383    flags.repeat = repeat;
5384    return flags;
5385  }
5386
5387  // Creates a Flags struct where the gtest_shuffle flag has
5388  // the given value.
5389  static Flags Shuffle(bool shuffle) {
5390    Flags flags;
5391    flags.shuffle = shuffle;
5392    return flags;
5393  }
5394
5395  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5396  // the given value.
5397  static Flags StackTraceDepth(Int32 stack_trace_depth) {
5398    Flags flags;
5399    flags.stack_trace_depth = stack_trace_depth;
5400    return flags;
5401  }
5402
5403  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5404  // the given value.
5405  static Flags StreamResultTo(const char* stream_result_to) {
5406    Flags flags;
5407    flags.stream_result_to = stream_result_to;
5408    return flags;
5409  }
5410
5411  // Creates a Flags struct where the gtest_throw_on_failure flag has
5412  // the given value.
5413  static Flags ThrowOnFailure(bool throw_on_failure) {
5414    Flags flags;
5415    flags.throw_on_failure = throw_on_failure;
5416    return flags;
5417  }
5418
5419  // These fields store the flag values.
5420  bool also_run_disabled_tests;
5421  bool break_on_failure;
5422  bool catch_exceptions;
5423  bool death_test_use_fork;
5424  const char* filter;
5425  bool list_tests;
5426  const char* output;
5427  bool print_time;
5428  Int32 random_seed;
5429  Int32 repeat;
5430  bool shuffle;
5431  Int32 stack_trace_depth;
5432  const char* stream_result_to;
5433  bool throw_on_failure;
5434};
5435
5436// Fixture for testing InitGoogleTest().
5437class InitGoogleTestTest : public Test {
5438 protected:
5439  // Clears the flags before each test.
5440  virtual void SetUp() {
5441    GTEST_FLAG(also_run_disabled_tests) = false;
5442    GTEST_FLAG(break_on_failure) = false;
5443    GTEST_FLAG(catch_exceptions) = false;
5444    GTEST_FLAG(death_test_use_fork) = false;
5445    GTEST_FLAG(filter) = "";
5446    GTEST_FLAG(list_tests) = false;
5447    GTEST_FLAG(output) = "";
5448    GTEST_FLAG(print_time) = true;
5449    GTEST_FLAG(random_seed) = 0;
5450    GTEST_FLAG(repeat) = 1;
5451    GTEST_FLAG(shuffle) = false;
5452    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5453    GTEST_FLAG(stream_result_to) = "";
5454    GTEST_FLAG(throw_on_failure) = false;
5455  }
5456
5457  // Asserts that two narrow or wide string arrays are equal.
5458  template <typename CharType>
5459  static void AssertStringArrayEq(size_t size1, CharType** array1,
5460                                  size_t size2, CharType** array2) {
5461    ASSERT_EQ(size1, size2) << " Array sizes different.";
5462
5463    for (size_t i = 0; i != size1; i++) {
5464      ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5465    }
5466  }
5467
5468  // Verifies that the flag values match the expected values.
5469  static void CheckFlags(const Flags& expected) {
5470    EXPECT_EQ(expected.also_run_disabled_tests,
5471              GTEST_FLAG(also_run_disabled_tests));
5472    EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5473    EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5474    EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5475    EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5476    EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5477    EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5478    EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5479    EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5480    EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5481    EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5482    EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5483    EXPECT_STREQ(expected.stream_result_to,
5484                 GTEST_FLAG(stream_result_to).c_str());
5485    EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5486  }
5487
5488  // Parses a command line (specified by argc1 and argv1), then
5489  // verifies that the flag values are expected and that the
5490  // recognized flags are removed from the command line.
5491  template <typename CharType>
5492  static void TestParsingFlags(int argc1, const CharType** argv1,
5493                               int argc2, const CharType** argv2,
5494                               const Flags& expected, bool should_print_help) {
5495    const bool saved_help_flag = ::testing::internal::g_help_flag;
5496    ::testing::internal::g_help_flag = false;
5497
5498#if GTEST_HAS_STREAM_REDIRECTION
5499    CaptureStdout();
5500#endif
5501
5502    // Parses the command line.
5503    internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5504
5505#if GTEST_HAS_STREAM_REDIRECTION
5506    const std::string captured_stdout = GetCapturedStdout();
5507#endif
5508
5509    // Verifies the flag values.
5510    CheckFlags(expected);
5511
5512    // Verifies that the recognized flags are removed from the command
5513    // line.
5514    AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5515
5516    // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5517    // help message for the flags it recognizes.
5518    EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5519
5520#if GTEST_HAS_STREAM_REDIRECTION
5521    const char* const expected_help_fragment =
5522        "This program contains tests written using";
5523    if (should_print_help) {
5524      EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5525    } else {
5526      EXPECT_PRED_FORMAT2(IsNotSubstring,
5527                          expected_help_fragment, captured_stdout);
5528    }
5529#endif  // GTEST_HAS_STREAM_REDIRECTION
5530
5531    ::testing::internal::g_help_flag = saved_help_flag;
5532  }
5533
5534  // This macro wraps TestParsingFlags s.t. the user doesn't need
5535  // to specify the array sizes.
5536
5537#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5538  TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5539                   sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5540                   expected, should_print_help)
5541};
5542
5543// Tests parsing an empty command line.
5544TEST_F(InitGoogleTestTest, Empty) {
5545  const char* argv[] = {
5546    NULL
5547  };
5548
5549  const char* argv2[] = {
5550    NULL
5551  };
5552
5553  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5554}
5555
5556// Tests parsing a command line that has no flag.
5557TEST_F(InitGoogleTestTest, NoFlag) {
5558  const char* argv[] = {
5559    "foo.exe",
5560    NULL
5561  };
5562
5563  const char* argv2[] = {
5564    "foo.exe",
5565    NULL
5566  };
5567
5568  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5569}
5570
5571// Tests parsing a bad --gtest_filter flag.
5572TEST_F(InitGoogleTestTest, FilterBad) {
5573  const char* argv[] = {
5574    "foo.exe",
5575    "--gtest_filter",
5576    NULL
5577  };
5578
5579  const char* argv2[] = {
5580    "foo.exe",
5581    "--gtest_filter",
5582    NULL
5583  };
5584
5585  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5586}
5587
5588// Tests parsing an empty --gtest_filter flag.
5589TEST_F(InitGoogleTestTest, FilterEmpty) {
5590  const char* argv[] = {
5591    "foo.exe",
5592    "--gtest_filter=",
5593    NULL
5594  };
5595
5596  const char* argv2[] = {
5597    "foo.exe",
5598    NULL
5599  };
5600
5601  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5602}
5603
5604// Tests parsing a non-empty --gtest_filter flag.
5605TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5606  const char* argv[] = {
5607    "foo.exe",
5608    "--gtest_filter=abc",
5609    NULL
5610  };
5611
5612  const char* argv2[] = {
5613    "foo.exe",
5614    NULL
5615  };
5616
5617  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5618}
5619
5620// Tests parsing --gtest_break_on_failure.
5621TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5622  const char* argv[] = {
5623    "foo.exe",
5624    "--gtest_break_on_failure",
5625    NULL
5626};
5627
5628  const char* argv2[] = {
5629    "foo.exe",
5630    NULL
5631  };
5632
5633  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5634}
5635
5636// Tests parsing --gtest_break_on_failure=0.
5637TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5638  const char* argv[] = {
5639    "foo.exe",
5640    "--gtest_break_on_failure=0",
5641    NULL
5642  };
5643
5644  const char* argv2[] = {
5645    "foo.exe",
5646    NULL
5647  };
5648
5649  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5650}
5651
5652// Tests parsing --gtest_break_on_failure=f.
5653TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5654  const char* argv[] = {
5655    "foo.exe",
5656    "--gtest_break_on_failure=f",
5657    NULL
5658  };
5659
5660  const char* argv2[] = {
5661    "foo.exe",
5662    NULL
5663  };
5664
5665  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5666}
5667
5668// Tests parsing --gtest_break_on_failure=F.
5669TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5670  const char* argv[] = {
5671    "foo.exe",
5672    "--gtest_break_on_failure=F",
5673    NULL
5674  };
5675
5676  const char* argv2[] = {
5677    "foo.exe",
5678    NULL
5679  };
5680
5681  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5682}
5683
5684// Tests parsing a --gtest_break_on_failure flag that has a "true"
5685// definition.
5686TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5687  const char* argv[] = {
5688    "foo.exe",
5689    "--gtest_break_on_failure=1",
5690    NULL
5691  };
5692
5693  const char* argv2[] = {
5694    "foo.exe",
5695    NULL
5696  };
5697
5698  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5699}
5700
5701// Tests parsing --gtest_catch_exceptions.
5702TEST_F(InitGoogleTestTest, CatchExceptions) {
5703  const char* argv[] = {
5704    "foo.exe",
5705    "--gtest_catch_exceptions",
5706    NULL
5707  };
5708
5709  const char* argv2[] = {
5710    "foo.exe",
5711    NULL
5712  };
5713
5714  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5715}
5716
5717// Tests parsing --gtest_death_test_use_fork.
5718TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5719  const char* argv[] = {
5720    "foo.exe",
5721    "--gtest_death_test_use_fork",
5722    NULL
5723  };
5724
5725  const char* argv2[] = {
5726    "foo.exe",
5727    NULL
5728  };
5729
5730  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5731}
5732
5733// Tests having the same flag twice with different values.  The
5734// expected behavior is that the one coming last takes precedence.
5735TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5736  const char* argv[] = {
5737    "foo.exe",
5738    "--gtest_filter=a",
5739    "--gtest_filter=b",
5740    NULL
5741  };
5742
5743  const char* argv2[] = {
5744    "foo.exe",
5745    NULL
5746  };
5747
5748  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5749}
5750
5751// Tests having an unrecognized flag on the command line.
5752TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5753  const char* argv[] = {
5754    "foo.exe",
5755    "--gtest_break_on_failure",
5756    "bar",  // Unrecognized by Google Test.
5757    "--gtest_filter=b",
5758    NULL
5759  };
5760
5761  const char* argv2[] = {
5762    "foo.exe",
5763    "bar",
5764    NULL
5765  };
5766
5767  Flags flags;
5768  flags.break_on_failure = true;
5769  flags.filter = "b";
5770  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5771}
5772
5773// Tests having a --gtest_list_tests flag
5774TEST_F(InitGoogleTestTest, ListTestsFlag) {
5775    const char* argv[] = {
5776      "foo.exe",
5777      "--gtest_list_tests",
5778      NULL
5779    };
5780
5781    const char* argv2[] = {
5782      "foo.exe",
5783      NULL
5784    };
5785
5786    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5787}
5788
5789// Tests having a --gtest_list_tests flag with a "true" value
5790TEST_F(InitGoogleTestTest, ListTestsTrue) {
5791    const char* argv[] = {
5792      "foo.exe",
5793      "--gtest_list_tests=1",
5794      NULL
5795    };
5796
5797    const char* argv2[] = {
5798      "foo.exe",
5799      NULL
5800    };
5801
5802    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5803}
5804
5805// Tests having a --gtest_list_tests flag with a "false" value
5806TEST_F(InitGoogleTestTest, ListTestsFalse) {
5807    const char* argv[] = {
5808      "foo.exe",
5809      "--gtest_list_tests=0",
5810      NULL
5811    };
5812
5813    const char* argv2[] = {
5814      "foo.exe",
5815      NULL
5816    };
5817
5818    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5819}
5820
5821// Tests parsing --gtest_list_tests=f.
5822TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5823  const char* argv[] = {
5824    "foo.exe",
5825    "--gtest_list_tests=f",
5826    NULL
5827  };
5828
5829  const char* argv2[] = {
5830    "foo.exe",
5831    NULL
5832  };
5833
5834  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5835}
5836
5837// Tests parsing --gtest_list_tests=F.
5838TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5839  const char* argv[] = {
5840    "foo.exe",
5841    "--gtest_list_tests=F",
5842    NULL
5843  };
5844
5845  const char* argv2[] = {
5846    "foo.exe",
5847    NULL
5848  };
5849
5850  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5851}
5852
5853// Tests parsing --gtest_output (invalid).
5854TEST_F(InitGoogleTestTest, OutputEmpty) {
5855  const char* argv[] = {
5856    "foo.exe",
5857    "--gtest_output",
5858    NULL
5859  };
5860
5861  const char* argv2[] = {
5862    "foo.exe",
5863    "--gtest_output",
5864    NULL
5865  };
5866
5867  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5868}
5869
5870// Tests parsing --gtest_output=xml
5871TEST_F(InitGoogleTestTest, OutputXml) {
5872  const char* argv[] = {
5873    "foo.exe",
5874    "--gtest_output=xml",
5875    NULL
5876  };
5877
5878  const char* argv2[] = {
5879    "foo.exe",
5880    NULL
5881  };
5882
5883  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5884}
5885
5886// Tests parsing --gtest_output=xml:file
5887TEST_F(InitGoogleTestTest, OutputXmlFile) {
5888  const char* argv[] = {
5889    "foo.exe",
5890    "--gtest_output=xml:file",
5891    NULL
5892  };
5893
5894  const char* argv2[] = {
5895    "foo.exe",
5896    NULL
5897  };
5898
5899  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5900}
5901
5902// Tests parsing --gtest_output=xml:directory/path/
5903TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5904  const char* argv[] = {
5905    "foo.exe",
5906    "--gtest_output=xml:directory/path/",
5907    NULL
5908  };
5909
5910  const char* argv2[] = {
5911    "foo.exe",
5912    NULL
5913  };
5914
5915  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5916                            Flags::Output("xml:directory/path/"), false);
5917}
5918
5919// Tests having a --gtest_print_time flag
5920TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5921    const char* argv[] = {
5922      "foo.exe",
5923      "--gtest_print_time",
5924      NULL
5925    };
5926
5927    const char* argv2[] = {
5928      "foo.exe",
5929      NULL
5930    };
5931
5932    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5933}
5934
5935// Tests having a --gtest_print_time flag with a "true" value
5936TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5937    const char* argv[] = {
5938      "foo.exe",
5939      "--gtest_print_time=1",
5940      NULL
5941    };
5942
5943    const char* argv2[] = {
5944      "foo.exe",
5945      NULL
5946    };
5947
5948    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5949}
5950
5951// Tests having a --gtest_print_time flag with a "false" value
5952TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5953    const char* argv[] = {
5954      "foo.exe",
5955      "--gtest_print_time=0",
5956      NULL
5957    };
5958
5959    const char* argv2[] = {
5960      "foo.exe",
5961      NULL
5962    };
5963
5964    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5965}
5966
5967// Tests parsing --gtest_print_time=f.
5968TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5969  const char* argv[] = {
5970    "foo.exe",
5971    "--gtest_print_time=f",
5972    NULL
5973  };
5974
5975  const char* argv2[] = {
5976    "foo.exe",
5977    NULL
5978  };
5979
5980  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5981}
5982
5983// Tests parsing --gtest_print_time=F.
5984TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5985  const char* argv[] = {
5986    "foo.exe",
5987    "--gtest_print_time=F",
5988    NULL
5989  };
5990
5991  const char* argv2[] = {
5992    "foo.exe",
5993    NULL
5994  };
5995
5996  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5997}
5998
5999// Tests parsing --gtest_random_seed=number
6000TEST_F(InitGoogleTestTest, RandomSeed) {
6001  const char* argv[] = {
6002    "foo.exe",
6003    "--gtest_random_seed=1000",
6004    NULL
6005  };
6006
6007  const char* argv2[] = {
6008    "foo.exe",
6009    NULL
6010  };
6011
6012  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6013}
6014
6015// Tests parsing --gtest_repeat=number
6016TEST_F(InitGoogleTestTest, Repeat) {
6017  const char* argv[] = {
6018    "foo.exe",
6019    "--gtest_repeat=1000",
6020    NULL
6021  };
6022
6023  const char* argv2[] = {
6024    "foo.exe",
6025    NULL
6026  };
6027
6028  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6029}
6030
6031// Tests having a --gtest_also_run_disabled_tests flag
6032TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6033    const char* argv[] = {
6034      "foo.exe",
6035      "--gtest_also_run_disabled_tests",
6036      NULL
6037    };
6038
6039    const char* argv2[] = {
6040      "foo.exe",
6041      NULL
6042    };
6043
6044    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6045                              Flags::AlsoRunDisabledTests(true), false);
6046}
6047
6048// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6049TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6050    const char* argv[] = {
6051      "foo.exe",
6052      "--gtest_also_run_disabled_tests=1",
6053      NULL
6054    };
6055
6056    const char* argv2[] = {
6057      "foo.exe",
6058      NULL
6059    };
6060
6061    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6062                              Flags::AlsoRunDisabledTests(true), false);
6063}
6064
6065// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6066TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6067    const char* argv[] = {
6068      "foo.exe",
6069      "--gtest_also_run_disabled_tests=0",
6070      NULL
6071    };
6072
6073    const char* argv2[] = {
6074      "foo.exe",
6075      NULL
6076    };
6077
6078    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6079                              Flags::AlsoRunDisabledTests(false), false);
6080}
6081
6082// Tests parsing --gtest_shuffle.
6083TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6084  const char* argv[] = {
6085    "foo.exe",
6086    "--gtest_shuffle",
6087    NULL
6088};
6089
6090  const char* argv2[] = {
6091    "foo.exe",
6092    NULL
6093  };
6094
6095  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6096}
6097
6098// Tests parsing --gtest_shuffle=0.
6099TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6100  const char* argv[] = {
6101    "foo.exe",
6102    "--gtest_shuffle=0",
6103    NULL
6104  };
6105
6106  const char* argv2[] = {
6107    "foo.exe",
6108    NULL
6109  };
6110
6111  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6112}
6113
6114// Tests parsing a --gtest_shuffle flag that has a "true"
6115// definition.
6116TEST_F(InitGoogleTestTest, ShuffleTrue) {
6117  const char* argv[] = {
6118    "foo.exe",
6119    "--gtest_shuffle=1",
6120    NULL
6121  };
6122
6123  const char* argv2[] = {
6124    "foo.exe",
6125    NULL
6126  };
6127
6128  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6129}
6130
6131// Tests parsing --gtest_stack_trace_depth=number.
6132TEST_F(InitGoogleTestTest, StackTraceDepth) {
6133  const char* argv[] = {
6134    "foo.exe",
6135    "--gtest_stack_trace_depth=5",
6136    NULL
6137  };
6138
6139  const char* argv2[] = {
6140    "foo.exe",
6141    NULL
6142  };
6143
6144  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6145}
6146
6147TEST_F(InitGoogleTestTest, StreamResultTo) {
6148  const char* argv[] = {
6149    "foo.exe",
6150    "--gtest_stream_result_to=localhost:1234",
6151    NULL
6152  };
6153
6154  const char* argv2[] = {
6155    "foo.exe",
6156    NULL
6157  };
6158
6159  GTEST_TEST_PARSING_FLAGS_(
6160      argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6161}
6162
6163// Tests parsing --gtest_throw_on_failure.
6164TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6165  const char* argv[] = {
6166    "foo.exe",
6167    "--gtest_throw_on_failure",
6168    NULL
6169};
6170
6171  const char* argv2[] = {
6172    "foo.exe",
6173    NULL
6174  };
6175
6176  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6177}
6178
6179// Tests parsing --gtest_throw_on_failure=0.
6180TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6181  const char* argv[] = {
6182    "foo.exe",
6183    "--gtest_throw_on_failure=0",
6184    NULL
6185  };
6186
6187  const char* argv2[] = {
6188    "foo.exe",
6189    NULL
6190  };
6191
6192  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6193}
6194
6195// Tests parsing a --gtest_throw_on_failure flag that has a "true"
6196// definition.
6197TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6198  const char* argv[] = {
6199    "foo.exe",
6200    "--gtest_throw_on_failure=1",
6201    NULL
6202  };
6203
6204  const char* argv2[] = {
6205    "foo.exe",
6206    NULL
6207  };
6208
6209  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6210}
6211
6212#if GTEST_OS_WINDOWS
6213// Tests parsing wide strings.
6214TEST_F(InitGoogleTestTest, WideStrings) {
6215  const wchar_t* argv[] = {
6216    L"foo.exe",
6217    L"--gtest_filter=Foo*",
6218    L"--gtest_list_tests=1",
6219    L"--gtest_break_on_failure",
6220    L"--non_gtest_flag",
6221    NULL
6222  };
6223
6224  const wchar_t* argv2[] = {
6225    L"foo.exe",
6226    L"--non_gtest_flag",
6227    NULL
6228  };
6229
6230  Flags expected_flags;
6231  expected_flags.break_on_failure = true;
6232  expected_flags.filter = "Foo*";
6233  expected_flags.list_tests = true;
6234
6235  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6236}
6237#endif  // GTEST_OS_WINDOWS
6238
6239// Tests current_test_info() in UnitTest.
6240class CurrentTestInfoTest : public Test {
6241 protected:
6242  // Tests that current_test_info() returns NULL before the first test in
6243  // the test case is run.
6244  static void SetUpTestCase() {
6245    // There should be no tests running at this point.
6246    const TestInfo* test_info =
6247      UnitTest::GetInstance()->current_test_info();
6248    EXPECT_TRUE(test_info == NULL)
6249        << "There should be no tests running at this point.";
6250  }
6251
6252  // Tests that current_test_info() returns NULL after the last test in
6253  // the test case has run.
6254  static void TearDownTestCase() {
6255    const TestInfo* test_info =
6256      UnitTest::GetInstance()->current_test_info();
6257    EXPECT_TRUE(test_info == NULL)
6258        << "There should be no tests running at this point.";
6259  }
6260};
6261
6262// Tests that current_test_info() returns TestInfo for currently running
6263// test by checking the expected test name against the actual one.
6264TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6265  const TestInfo* test_info =
6266    UnitTest::GetInstance()->current_test_info();
6267  ASSERT_TRUE(NULL != test_info)
6268      << "There is a test running so we should have a valid TestInfo.";
6269  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6270      << "Expected the name of the currently running test case.";
6271  EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6272      << "Expected the name of the currently running test.";
6273}
6274
6275// Tests that current_test_info() returns TestInfo for currently running
6276// test by checking the expected test name against the actual one.  We
6277// use this test to see that the TestInfo object actually changed from
6278// the previous invocation.
6279TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6280  const TestInfo* test_info =
6281    UnitTest::GetInstance()->current_test_info();
6282  ASSERT_TRUE(NULL != test_info)
6283      << "There is a test running so we should have a valid TestInfo.";
6284  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6285      << "Expected the name of the currently running test case.";
6286  EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6287      << "Expected the name of the currently running test.";
6288}
6289
6290}  // namespace testing
6291
6292// These two lines test that we can define tests in a namespace that
6293// has the name "testing" and is nested in another namespace.
6294namespace my_namespace {
6295namespace testing {
6296
6297// Makes sure that TEST knows to use ::testing::Test instead of
6298// ::my_namespace::testing::Test.
6299class Test {};
6300
6301// Makes sure that an assertion knows to use ::testing::Message instead of
6302// ::my_namespace::testing::Message.
6303class Message {};
6304
6305// Makes sure that an assertion knows to use
6306// ::testing::AssertionResult instead of
6307// ::my_namespace::testing::AssertionResult.
6308class AssertionResult {};
6309
6310// Tests that an assertion that should succeed works as expected.
6311TEST(NestedTestingNamespaceTest, Success) {
6312  EXPECT_EQ(1, 1) << "This shouldn't fail.";
6313}
6314
6315// Tests that an assertion that should fail works as expected.
6316TEST(NestedTestingNamespaceTest, Failure) {
6317  EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6318                       "This failure is expected.");
6319}
6320
6321}  // namespace testing
6322}  // namespace my_namespace
6323
6324// Tests that one can call superclass SetUp and TearDown methods--
6325// that is, that they are not private.
6326// No tests are based on this fixture; the test "passes" if it compiles
6327// successfully.
6328class ProtectedFixtureMethodsTest : public Test {
6329 protected:
6330  virtual void SetUp() {
6331    Test::SetUp();
6332  }
6333  virtual void TearDown() {
6334    Test::TearDown();
6335  }
6336};
6337
6338// StreamingAssertionsTest tests the streaming versions of a representative
6339// sample of assertions.
6340TEST(StreamingAssertionsTest, Unconditional) {
6341  SUCCEED() << "expected success";
6342  EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6343                          "expected failure");
6344  EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6345                       "expected failure");
6346}
6347
6348#ifdef __BORLANDC__
6349// Silences warnings: "Condition is always true", "Unreachable code"
6350# pragma option push -w-ccc -w-rch
6351#endif
6352
6353TEST(StreamingAssertionsTest, Truth) {
6354  EXPECT_TRUE(true) << "unexpected failure";
6355  ASSERT_TRUE(true) << "unexpected failure";
6356  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6357                          "expected failure");
6358  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6359                       "expected failure");
6360}
6361
6362TEST(StreamingAssertionsTest, Truth2) {
6363  EXPECT_FALSE(false) << "unexpected failure";
6364  ASSERT_FALSE(false) << "unexpected failure";
6365  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6366                          "expected failure");
6367  EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6368                       "expected failure");
6369}
6370
6371#ifdef __BORLANDC__
6372// Restores warnings after previous "#pragma option push" supressed them
6373# pragma option pop
6374#endif
6375
6376TEST(StreamingAssertionsTest, IntegerEquals) {
6377  EXPECT_EQ(1, 1) << "unexpected failure";
6378  ASSERT_EQ(1, 1) << "unexpected failure";
6379  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6380                          "expected failure");
6381  EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6382                       "expected failure");
6383}
6384
6385TEST(StreamingAssertionsTest, IntegerLessThan) {
6386  EXPECT_LT(1, 2) << "unexpected failure";
6387  ASSERT_LT(1, 2) << "unexpected failure";
6388  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6389                          "expected failure");
6390  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6391                       "expected failure");
6392}
6393
6394TEST(StreamingAssertionsTest, StringsEqual) {
6395  EXPECT_STREQ("foo", "foo") << "unexpected failure";
6396  ASSERT_STREQ("foo", "foo") << "unexpected failure";
6397  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6398                          "expected failure");
6399  EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6400                       "expected failure");
6401}
6402
6403TEST(StreamingAssertionsTest, StringsNotEqual) {
6404  EXPECT_STRNE("foo", "bar") << "unexpected failure";
6405  ASSERT_STRNE("foo", "bar") << "unexpected failure";
6406  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6407                          "expected failure");
6408  EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6409                       "expected failure");
6410}
6411
6412TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6413  EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6414  ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6415  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6416                          "expected failure");
6417  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6418                       "expected failure");
6419}
6420
6421TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6422  EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6423  ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6424  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6425                          "expected failure");
6426  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6427                       "expected failure");
6428}
6429
6430TEST(StreamingAssertionsTest, FloatingPointEquals) {
6431  EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6432  ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6433  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6434                          "expected failure");
6435  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6436                       "expected failure");
6437}
6438
6439#if GTEST_HAS_EXCEPTIONS
6440
6441TEST(StreamingAssertionsTest, Throw) {
6442  EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6443  ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6444  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6445                          "expected failure", "expected failure");
6446  EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6447                       "expected failure", "expected failure");
6448}
6449
6450TEST(StreamingAssertionsTest, NoThrow) {
6451  EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6452  ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6453  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6454                          "expected failure", "expected failure");
6455  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6456                       "expected failure", "expected failure");
6457}
6458
6459TEST(StreamingAssertionsTest, AnyThrow) {
6460  EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6461  ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6462  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6463                          "expected failure", "expected failure");
6464  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6465                       "expected failure", "expected failure");
6466}
6467
6468#endif  // GTEST_HAS_EXCEPTIONS
6469
6470// Tests that Google Test correctly decides whether to use colors in the output.
6471
6472TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6473  GTEST_FLAG(color) = "yes";
6474
6475  SetEnv("TERM", "xterm");  // TERM supports colors.
6476  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6477  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6478
6479  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6480  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6481  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6482}
6483
6484TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6485  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6486
6487  GTEST_FLAG(color) = "True";
6488  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6489
6490  GTEST_FLAG(color) = "t";
6491  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6492
6493  GTEST_FLAG(color) = "1";
6494  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6495}
6496
6497TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6498  GTEST_FLAG(color) = "no";
6499
6500  SetEnv("TERM", "xterm");  // TERM supports colors.
6501  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6502  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6503
6504  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6505  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6506  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6507}
6508
6509TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6510  SetEnv("TERM", "xterm");  // TERM supports colors.
6511
6512  GTEST_FLAG(color) = "F";
6513  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6514
6515  GTEST_FLAG(color) = "0";
6516  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6517
6518  GTEST_FLAG(color) = "unknown";
6519  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6520}
6521
6522TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6523  GTEST_FLAG(color) = "auto";
6524
6525  SetEnv("TERM", "xterm");  // TERM supports colors.
6526  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6527  EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6528}
6529
6530TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6531  GTEST_FLAG(color) = "auto";
6532
6533#if GTEST_OS_WINDOWS
6534  // On Windows, we ignore the TERM variable as it's usually not set.
6535
6536  SetEnv("TERM", "dumb");
6537  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6538
6539  SetEnv("TERM", "");
6540  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6541
6542  SetEnv("TERM", "xterm");
6543  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6544#else
6545  // On non-Windows platforms, we rely on TERM to determine if the
6546  // terminal supports colors.
6547
6548  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6549  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6550
6551  SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6552  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6553
6554  SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6555  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6556
6557  SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6558  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6559
6560  SetEnv("TERM", "xterm");  // TERM supports colors.
6561  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6562
6563  SetEnv("TERM", "xterm-color");  // TERM supports colors.
6564  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6565
6566  SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6567  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6568
6569  SetEnv("TERM", "screen");  // TERM supports colors.
6570  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6571
6572  SetEnv("TERM", "screen-256color");  // TERM supports colors.
6573  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6574
6575  SetEnv("TERM", "linux");  // TERM supports colors.
6576  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6577
6578  SetEnv("TERM", "cygwin");  // TERM supports colors.
6579  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6580#endif  // GTEST_OS_WINDOWS
6581}
6582
6583// Verifies that StaticAssertTypeEq works in a namespace scope.
6584
6585static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6586static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6587    StaticAssertTypeEq<const int, const int>();
6588
6589// Verifies that StaticAssertTypeEq works in a class.
6590
6591template <typename T>
6592class StaticAssertTypeEqTestHelper {
6593 public:
6594  StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6595};
6596
6597TEST(StaticAssertTypeEqTest, WorksInClass) {
6598  StaticAssertTypeEqTestHelper<bool>();
6599}
6600
6601// Verifies that StaticAssertTypeEq works inside a function.
6602
6603typedef int IntAlias;
6604
6605TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6606  StaticAssertTypeEq<int, IntAlias>();
6607  StaticAssertTypeEq<int*, IntAlias*>();
6608}
6609
6610TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6611  testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6612
6613  // We don't have a stack walker in Google Test yet.
6614  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6615  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6616}
6617
6618TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6619  EXPECT_FALSE(HasNonfatalFailure());
6620}
6621
6622static void FailFatally() { FAIL(); }
6623
6624TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6625  FailFatally();
6626  const bool has_nonfatal_failure = HasNonfatalFailure();
6627  ClearCurrentTestPartResults();
6628  EXPECT_FALSE(has_nonfatal_failure);
6629}
6630
6631TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6632  ADD_FAILURE();
6633  const bool has_nonfatal_failure = HasNonfatalFailure();
6634  ClearCurrentTestPartResults();
6635  EXPECT_TRUE(has_nonfatal_failure);
6636}
6637
6638TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6639  FailFatally();
6640  ADD_FAILURE();
6641  const bool has_nonfatal_failure = HasNonfatalFailure();
6642  ClearCurrentTestPartResults();
6643  EXPECT_TRUE(has_nonfatal_failure);
6644}
6645
6646// A wrapper for calling HasNonfatalFailure outside of a test body.
6647static bool HasNonfatalFailureHelper() {
6648  return testing::Test::HasNonfatalFailure();
6649}
6650
6651TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6652  EXPECT_FALSE(HasNonfatalFailureHelper());
6653}
6654
6655TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6656  ADD_FAILURE();
6657  const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6658  ClearCurrentTestPartResults();
6659  EXPECT_TRUE(has_nonfatal_failure);
6660}
6661
6662TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6663  EXPECT_FALSE(HasFailure());
6664}
6665
6666TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6667  FailFatally();
6668  const bool has_failure = HasFailure();
6669  ClearCurrentTestPartResults();
6670  EXPECT_TRUE(has_failure);
6671}
6672
6673TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6674  ADD_FAILURE();
6675  const bool has_failure = HasFailure();
6676  ClearCurrentTestPartResults();
6677  EXPECT_TRUE(has_failure);
6678}
6679
6680TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6681  FailFatally();
6682  ADD_FAILURE();
6683  const bool has_failure = HasFailure();
6684  ClearCurrentTestPartResults();
6685  EXPECT_TRUE(has_failure);
6686}
6687
6688// A wrapper for calling HasFailure outside of a test body.
6689static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6690
6691TEST(HasFailureTest, WorksOutsideOfTestBody) {
6692  EXPECT_FALSE(HasFailureHelper());
6693}
6694
6695TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6696  ADD_FAILURE();
6697  const bool has_failure = HasFailureHelper();
6698  ClearCurrentTestPartResults();
6699  EXPECT_TRUE(has_failure);
6700}
6701
6702class TestListener : public EmptyTestEventListener {
6703 public:
6704  TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
6705  TestListener(int* on_start_counter, bool* is_destroyed)
6706      : on_start_counter_(on_start_counter),
6707        is_destroyed_(is_destroyed) {}
6708
6709  virtual ~TestListener() {
6710    if (is_destroyed_)
6711      *is_destroyed_ = true;
6712  }
6713
6714 protected:
6715  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6716    if (on_start_counter_ != NULL)
6717      (*on_start_counter_)++;
6718  }
6719
6720 private:
6721  int* on_start_counter_;
6722  bool* is_destroyed_;
6723};
6724
6725// Tests the constructor.
6726TEST(TestEventListenersTest, ConstructionWorks) {
6727  TestEventListeners listeners;
6728
6729  EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
6730  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6731  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6732}
6733
6734// Tests that the TestEventListeners destructor deletes all the listeners it
6735// owns.
6736TEST(TestEventListenersTest, DestructionWorks) {
6737  bool default_result_printer_is_destroyed = false;
6738  bool default_xml_printer_is_destroyed = false;
6739  bool extra_listener_is_destroyed = false;
6740  TestListener* default_result_printer = new TestListener(
6741      NULL, &default_result_printer_is_destroyed);
6742  TestListener* default_xml_printer = new TestListener(
6743      NULL, &default_xml_printer_is_destroyed);
6744  TestListener* extra_listener = new TestListener(
6745      NULL, &extra_listener_is_destroyed);
6746
6747  {
6748    TestEventListeners listeners;
6749    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6750                                                        default_result_printer);
6751    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6752                                                       default_xml_printer);
6753    listeners.Append(extra_listener);
6754  }
6755  EXPECT_TRUE(default_result_printer_is_destroyed);
6756  EXPECT_TRUE(default_xml_printer_is_destroyed);
6757  EXPECT_TRUE(extra_listener_is_destroyed);
6758}
6759
6760// Tests that a listener Append'ed to a TestEventListeners list starts
6761// receiving events.
6762TEST(TestEventListenersTest, Append) {
6763  int on_start_counter = 0;
6764  bool is_destroyed = false;
6765  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6766  {
6767    TestEventListeners listeners;
6768    listeners.Append(listener);
6769    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6770        *UnitTest::GetInstance());
6771    EXPECT_EQ(1, on_start_counter);
6772  }
6773  EXPECT_TRUE(is_destroyed);
6774}
6775
6776// Tests that listeners receive events in the order they were appended to
6777// the list, except for *End requests, which must be received in the reverse
6778// order.
6779class SequenceTestingListener : public EmptyTestEventListener {
6780 public:
6781  SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6782      : vector_(vector), id_(id) {}
6783
6784 protected:
6785  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6786    vector_->push_back(GetEventDescription("OnTestProgramStart"));
6787  }
6788
6789  virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6790    vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6791  }
6792
6793  virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6794                                    int /*iteration*/) {
6795    vector_->push_back(GetEventDescription("OnTestIterationStart"));
6796  }
6797
6798  virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6799                                  int /*iteration*/) {
6800    vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6801  }
6802
6803 private:
6804  std::string GetEventDescription(const char* method) {
6805    Message message;
6806    message << id_ << "." << method;
6807    return message.GetString();
6808  }
6809
6810  std::vector<std::string>* vector_;
6811  const char* const id_;
6812
6813  GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6814};
6815
6816TEST(EventListenerTest, AppendKeepsOrder) {
6817  std::vector<std::string> vec;
6818  TestEventListeners listeners;
6819  listeners.Append(new SequenceTestingListener(&vec, "1st"));
6820  listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6821  listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6822
6823  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6824      *UnitTest::GetInstance());
6825  ASSERT_EQ(3U, vec.size());
6826  EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6827  EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6828  EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6829
6830  vec.clear();
6831  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6832      *UnitTest::GetInstance());
6833  ASSERT_EQ(3U, vec.size());
6834  EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6835  EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6836  EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6837
6838  vec.clear();
6839  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6840      *UnitTest::GetInstance(), 0);
6841  ASSERT_EQ(3U, vec.size());
6842  EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6843  EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6844  EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6845
6846  vec.clear();
6847  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6848      *UnitTest::GetInstance(), 0);
6849  ASSERT_EQ(3U, vec.size());
6850  EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6851  EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6852  EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6853}
6854
6855// Tests that a listener removed from a TestEventListeners list stops receiving
6856// events and is not deleted when the list is destroyed.
6857TEST(TestEventListenersTest, Release) {
6858  int on_start_counter = 0;
6859  bool is_destroyed = false;
6860  // Although Append passes the ownership of this object to the list,
6861  // the following calls release it, and we need to delete it before the
6862  // test ends.
6863  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6864  {
6865    TestEventListeners listeners;
6866    listeners.Append(listener);
6867    EXPECT_EQ(listener, listeners.Release(listener));
6868    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6869        *UnitTest::GetInstance());
6870    EXPECT_TRUE(listeners.Release(listener) == NULL);
6871  }
6872  EXPECT_EQ(0, on_start_counter);
6873  EXPECT_FALSE(is_destroyed);
6874  delete listener;
6875}
6876
6877// Tests that no events are forwarded when event forwarding is disabled.
6878TEST(EventListenerTest, SuppressEventForwarding) {
6879  int on_start_counter = 0;
6880  TestListener* listener = new TestListener(&on_start_counter, NULL);
6881
6882  TestEventListeners listeners;
6883  listeners.Append(listener);
6884  ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6885  TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6886  ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6887  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6888      *UnitTest::GetInstance());
6889  EXPECT_EQ(0, on_start_counter);
6890}
6891
6892// Tests that events generated by Google Test are not forwarded in
6893// death test subprocesses.
6894TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6895  EXPECT_DEATH_IF_SUPPORTED({
6896      GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6897          *GetUnitTestImpl()->listeners())) << "expected failure";},
6898      "expected failure");
6899}
6900
6901// Tests that a listener installed via SetDefaultResultPrinter() starts
6902// receiving events and is returned via default_result_printer() and that
6903// the previous default_result_printer is removed from the list and deleted.
6904TEST(EventListenerTest, default_result_printer) {
6905  int on_start_counter = 0;
6906  bool is_destroyed = false;
6907  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6908
6909  TestEventListeners listeners;
6910  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6911
6912  EXPECT_EQ(listener, listeners.default_result_printer());
6913
6914  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6915      *UnitTest::GetInstance());
6916
6917  EXPECT_EQ(1, on_start_counter);
6918
6919  // Replacing default_result_printer with something else should remove it
6920  // from the list and destroy it.
6921  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
6922
6923  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6924  EXPECT_TRUE(is_destroyed);
6925
6926  // After broadcasting an event the counter is still the same, indicating
6927  // the listener is not in the list anymore.
6928  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6929      *UnitTest::GetInstance());
6930  EXPECT_EQ(1, on_start_counter);
6931}
6932
6933// Tests that the default_result_printer listener stops receiving events
6934// when removed via Release and that is not owned by the list anymore.
6935TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
6936  int on_start_counter = 0;
6937  bool is_destroyed = false;
6938  // Although Append passes the ownership of this object to the list,
6939  // the following calls release it, and we need to delete it before the
6940  // test ends.
6941  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6942  {
6943    TestEventListeners listeners;
6944    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6945
6946    EXPECT_EQ(listener, listeners.Release(listener));
6947    EXPECT_TRUE(listeners.default_result_printer() == NULL);
6948    EXPECT_FALSE(is_destroyed);
6949
6950    // Broadcasting events now should not affect default_result_printer.
6951    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6952        *UnitTest::GetInstance());
6953    EXPECT_EQ(0, on_start_counter);
6954  }
6955  // Destroying the list should not affect the listener now, too.
6956  EXPECT_FALSE(is_destroyed);
6957  delete listener;
6958}
6959
6960// Tests that a listener installed via SetDefaultXmlGenerator() starts
6961// receiving events and is returned via default_xml_generator() and that
6962// the previous default_xml_generator is removed from the list and deleted.
6963TEST(EventListenerTest, default_xml_generator) {
6964  int on_start_counter = 0;
6965  bool is_destroyed = false;
6966  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6967
6968  TestEventListeners listeners;
6969  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6970
6971  EXPECT_EQ(listener, listeners.default_xml_generator());
6972
6973  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6974      *UnitTest::GetInstance());
6975
6976  EXPECT_EQ(1, on_start_counter);
6977
6978  // Replacing default_xml_generator with something else should remove it
6979  // from the list and destroy it.
6980  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
6981
6982  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6983  EXPECT_TRUE(is_destroyed);
6984
6985  // After broadcasting an event the counter is still the same, indicating
6986  // the listener is not in the list anymore.
6987  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6988      *UnitTest::GetInstance());
6989  EXPECT_EQ(1, on_start_counter);
6990}
6991
6992// Tests that the default_xml_generator listener stops receiving events
6993// when removed via Release and that is not owned by the list anymore.
6994TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
6995  int on_start_counter = 0;
6996  bool is_destroyed = false;
6997  // Although Append passes the ownership of this object to the list,
6998  // the following calls release it, and we need to delete it before the
6999  // test ends.
7000  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7001  {
7002    TestEventListeners listeners;
7003    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7004
7005    EXPECT_EQ(listener, listeners.Release(listener));
7006    EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7007    EXPECT_FALSE(is_destroyed);
7008
7009    // Broadcasting events now should not affect default_xml_generator.
7010    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7011        *UnitTest::GetInstance());
7012    EXPECT_EQ(0, on_start_counter);
7013  }
7014  // Destroying the list should not affect the listener now, too.
7015  EXPECT_FALSE(is_destroyed);
7016  delete listener;
7017}
7018
7019// Sanity tests to ensure that the alternative, verbose spellings of
7020// some of the macros work.  We don't test them thoroughly as that
7021// would be quite involved.  Since their implementations are
7022// straightforward, and they are rarely used, we'll just rely on the
7023// users to tell us when they are broken.
7024GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7025  GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7026
7027  // GTEST_FAIL is the same as FAIL.
7028  EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7029                       "An expected failure");
7030
7031  // GTEST_ASSERT_XY is the same as ASSERT_XY.
7032
7033  GTEST_ASSERT_EQ(0, 0);
7034  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7035                       "An expected failure");
7036  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7037                       "An expected failure");
7038
7039  GTEST_ASSERT_NE(0, 1);
7040  GTEST_ASSERT_NE(1, 0);
7041  EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7042                       "An expected failure");
7043
7044  GTEST_ASSERT_LE(0, 0);
7045  GTEST_ASSERT_LE(0, 1);
7046  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7047                       "An expected failure");
7048
7049  GTEST_ASSERT_LT(0, 1);
7050  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7051                       "An expected failure");
7052  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7053                       "An expected failure");
7054
7055  GTEST_ASSERT_GE(0, 0);
7056  GTEST_ASSERT_GE(1, 0);
7057  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7058                       "An expected failure");
7059
7060  GTEST_ASSERT_GT(1, 0);
7061  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7062                       "An expected failure");
7063  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7064                       "An expected failure");
7065}
7066
7067// Tests for internal utilities necessary for implementation of the universal
7068// printing.
7069// TODO(vladl@google.com): Find a better home for them.
7070
7071class ConversionHelperBase {};
7072class ConversionHelperDerived : public ConversionHelperBase {};
7073
7074// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
7075TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7076  GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7077                        const_true);
7078  GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7079}
7080
7081// Tests that IsAProtocolMessage<T>::value is true when T is
7082// proto2::Message or a sub-class of it.
7083TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7084  EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7085  EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7086}
7087
7088// Tests that IsAProtocolMessage<T>::value is false when T is neither
7089// ProtocolMessage nor a sub-class of it.
7090TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7091  EXPECT_FALSE(IsAProtocolMessage<int>::value);
7092  EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7093}
7094
7095// Tests that CompileAssertTypesEqual compiles when the type arguments are
7096// equal.
7097TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7098  CompileAssertTypesEqual<void, void>();
7099  CompileAssertTypesEqual<int*, int*>();
7100}
7101
7102// Tests that RemoveReference does not affect non-reference types.
7103TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7104  CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7105  CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7106}
7107
7108// Tests that RemoveReference removes reference from reference types.
7109TEST(RemoveReferenceTest, RemovesReference) {
7110  CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7111  CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7112}
7113
7114// Tests GTEST_REMOVE_REFERENCE_.
7115
7116template <typename T1, typename T2>
7117void TestGTestRemoveReference() {
7118  CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7119}
7120
7121TEST(RemoveReferenceTest, MacroVersion) {
7122  TestGTestRemoveReference<int, int>();
7123  TestGTestRemoveReference<const char, const char&>();
7124}
7125
7126
7127// Tests that RemoveConst does not affect non-const types.
7128TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7129  CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7130  CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7131}
7132
7133// Tests that RemoveConst removes const from const types.
7134TEST(RemoveConstTest, RemovesConst) {
7135  CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7136  CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7137  CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7138}
7139
7140// Tests GTEST_REMOVE_CONST_.
7141
7142template <typename T1, typename T2>
7143void TestGTestRemoveConst() {
7144  CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7145}
7146
7147TEST(RemoveConstTest, MacroVersion) {
7148  TestGTestRemoveConst<int, int>();
7149  TestGTestRemoveConst<double&, double&>();
7150  TestGTestRemoveConst<char, const char>();
7151}
7152
7153// Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7154
7155template <typename T1, typename T2>
7156void TestGTestRemoveReferenceAndConst() {
7157  CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7158}
7159
7160TEST(RemoveReferenceToConstTest, Works) {
7161  TestGTestRemoveReferenceAndConst<int, int>();
7162  TestGTestRemoveReferenceAndConst<double, double&>();
7163  TestGTestRemoveReferenceAndConst<char, const char>();
7164  TestGTestRemoveReferenceAndConst<char, const char&>();
7165  TestGTestRemoveReferenceAndConst<const char*, const char*>();
7166}
7167
7168// Tests that AddReference does not affect reference types.
7169TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7170  CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7171  CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7172}
7173
7174// Tests that AddReference adds reference to non-reference types.
7175TEST(AddReferenceTest, AddsReference) {
7176  CompileAssertTypesEqual<int&, AddReference<int>::type>();
7177  CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7178}
7179
7180// Tests GTEST_ADD_REFERENCE_.
7181
7182template <typename T1, typename T2>
7183void TestGTestAddReference() {
7184  CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7185}
7186
7187TEST(AddReferenceTest, MacroVersion) {
7188  TestGTestAddReference<int&, int>();
7189  TestGTestAddReference<const char&, const char&>();
7190}
7191
7192// Tests GTEST_REFERENCE_TO_CONST_.
7193
7194template <typename T1, typename T2>
7195void TestGTestReferenceToConst() {
7196  CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7197}
7198
7199TEST(GTestReferenceToConstTest, Works) {
7200  TestGTestReferenceToConst<const char&, char>();
7201  TestGTestReferenceToConst<const int&, const int>();
7202  TestGTestReferenceToConst<const double&, double>();
7203  TestGTestReferenceToConst<const std::string&, const std::string&>();
7204}
7205
7206// Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
7207TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7208  GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7209  GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7210                        const_false);
7211}
7212
7213// Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7214// be implicitly converted to T2.
7215TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7216  EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7217  EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7218  EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7219  EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7220  EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7221                                     const ConversionHelperBase&>::value));
7222  EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7223                                     ConversionHelperBase>::value));
7224}
7225
7226// Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7227// cannot be implicitly converted to T2.
7228TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7229  EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7230  EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7231  EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7232  EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7233                                      ConversionHelperDerived&>::value));
7234}
7235
7236// Tests IsContainerTest.
7237
7238class NonContainer {};
7239
7240TEST(IsContainerTestTest, WorksForNonContainer) {
7241  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7242  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7243  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7244}
7245
7246TEST(IsContainerTestTest, WorksForContainer) {
7247  EXPECT_EQ(sizeof(IsContainer),
7248            sizeof(IsContainerTest<std::vector<bool> >(0)));
7249  EXPECT_EQ(sizeof(IsContainer),
7250            sizeof(IsContainerTest<std::map<int, double> >(0)));
7251}
7252
7253// Tests ArrayEq().
7254
7255TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7256  EXPECT_TRUE(ArrayEq(5, 5L));
7257  EXPECT_FALSE(ArrayEq('a', 0));
7258}
7259
7260TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7261  // Note that a and b are distinct but compatible types.
7262  const int a[] = { 0, 1 };
7263  long b[] = { 0, 1 };
7264  EXPECT_TRUE(ArrayEq(a, b));
7265  EXPECT_TRUE(ArrayEq(a, 2, b));
7266
7267  b[0] = 2;
7268  EXPECT_FALSE(ArrayEq(a, b));
7269  EXPECT_FALSE(ArrayEq(a, 1, b));
7270}
7271
7272TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7273  const char a[][3] = { "hi", "lo" };
7274  const char b[][3] = { "hi", "lo" };
7275  const char c[][3] = { "hi", "li" };
7276
7277  EXPECT_TRUE(ArrayEq(a, b));
7278  EXPECT_TRUE(ArrayEq(a, 2, b));
7279
7280  EXPECT_FALSE(ArrayEq(a, c));
7281  EXPECT_FALSE(ArrayEq(a, 2, c));
7282}
7283
7284// Tests ArrayAwareFind().
7285
7286TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7287  const char a[] = "hello";
7288  EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7289  EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7290}
7291
7292TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7293  int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7294  const int b[2] = { 2, 3 };
7295  EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7296
7297  const int c[2] = { 6, 7 };
7298  EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7299}
7300
7301// Tests CopyArray().
7302
7303TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7304  int n = 0;
7305  CopyArray('a', &n);
7306  EXPECT_EQ('a', n);
7307}
7308
7309TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7310  const char a[3] = "hi";
7311  int b[3];
7312#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7313  CopyArray(a, &b);
7314  EXPECT_TRUE(ArrayEq(a, b));
7315#endif
7316
7317  int c[3];
7318  CopyArray(a, 3, c);
7319  EXPECT_TRUE(ArrayEq(a, c));
7320}
7321
7322TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7323  const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7324  int b[2][3];
7325#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7326  CopyArray(a, &b);
7327  EXPECT_TRUE(ArrayEq(a, b));
7328#endif
7329
7330  int c[2][3];
7331  CopyArray(a, 2, c);
7332  EXPECT_TRUE(ArrayEq(a, c));
7333}
7334
7335// Tests NativeArray.
7336
7337TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7338  const int a[3] = { 0, 1, 2 };
7339  NativeArray<int> na(a, 3, kReference);
7340  EXPECT_EQ(3U, na.size());
7341  EXPECT_EQ(a, na.begin());
7342}
7343
7344TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7345  typedef int Array[2];
7346  Array* a = new Array[1];
7347  (*a)[0] = 0;
7348  (*a)[1] = 1;
7349  NativeArray<int> na(*a, 2, kCopy);
7350  EXPECT_NE(*a, na.begin());
7351  delete[] a;
7352  EXPECT_EQ(0, na.begin()[0]);
7353  EXPECT_EQ(1, na.begin()[1]);
7354
7355  // We rely on the heap checker to verify that na deletes the copy of
7356  // array.
7357}
7358
7359TEST(NativeArrayTest, TypeMembersAreCorrect) {
7360  StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7361  StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7362
7363  StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7364  StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7365}
7366
7367TEST(NativeArrayTest, MethodsWork) {
7368  const int a[3] = { 0, 1, 2 };
7369  NativeArray<int> na(a, 3, kCopy);
7370  ASSERT_EQ(3U, na.size());
7371  EXPECT_EQ(3, na.end() - na.begin());
7372
7373  NativeArray<int>::const_iterator it = na.begin();
7374  EXPECT_EQ(0, *it);
7375  ++it;
7376  EXPECT_EQ(1, *it);
7377  it++;
7378  EXPECT_EQ(2, *it);
7379  ++it;
7380  EXPECT_EQ(na.end(), it);
7381
7382  EXPECT_TRUE(na == na);
7383
7384  NativeArray<int> na2(a, 3, kReference);
7385  EXPECT_TRUE(na == na2);
7386
7387  const int b1[3] = { 0, 1, 1 };
7388  const int b2[4] = { 0, 1, 2, 3 };
7389  EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7390  EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7391}
7392
7393TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7394  const char a[2][3] = { "hi", "lo" };
7395  NativeArray<char[3]> na(a, 2, kReference);
7396  ASSERT_EQ(2U, na.size());
7397  EXPECT_EQ(a, na.begin());
7398}
7399
7400// Tests SkipPrefix().
7401
7402TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7403  const char* const str = "hello";
7404
7405  const char* p = str;
7406  EXPECT_TRUE(SkipPrefix("", &p));
7407  EXPECT_EQ(str, p);
7408
7409  p = str;
7410  EXPECT_TRUE(SkipPrefix("hell", &p));
7411  EXPECT_EQ(str + 4, p);
7412}
7413
7414TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7415  const char* const str = "world";
7416
7417  const char* p = str;
7418  EXPECT_FALSE(SkipPrefix("W", &p));
7419  EXPECT_EQ(str, p);
7420
7421  p = str;
7422  EXPECT_FALSE(SkipPrefix("world!", &p));
7423  EXPECT_EQ(str, p);
7424}
7425