1/* 2** Copyright 2010 The Android Open Source Project 3** 4** Licensed under the Apache License, Version 2.0 (the "License"); 5** you may not use this file except in compliance with the License. 6** You may obtain a copy of the License at 7** 8** http://www.apache.org/licenses/LICENSE-2.0 9** 10** Unless required by applicable law or agreed to in writing, software 11** distributed under the License is distributed on an "AS IS" BASIS, 12** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13** See the License for the specific language governing permissions and 14** limitations under the License. 15*/ 16 17/* 18 * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp. 19 */ 20 21#include <stdio.h> 22#include <stdlib.h> 23#include <string.h> 24#include <ctype.h> 25#include <math.h> 26#include <sched.h> 27#include <sys/resource.h> 28#include <time.h> 29#include <unistd.h> 30 31// The default size of data that will be manipulated in each iteration of 32// a memory benchmark. Can be modified with the --data_size option. 33#define DEFAULT_DATA_SIZE 1000000000 34 35// The amount of memory allocated for the cold benchmarks to use. 36#define DEFAULT_COLD_DATA_SIZE 128*1024*1024 37 38// The default size of the stride between each buffer for cold benchmarks. 39#define DEFAULT_COLD_STRIDE_SIZE 4096 40 41// Number of nanoseconds in a second. 42#define NS_PER_SEC 1000000000 43 44// The maximum number of arguments that a benchmark will accept. 45#define MAX_ARGS 2 46 47// Default memory alignment of malloc. 48#define DEFAULT_MALLOC_MEMORY_ALIGNMENT 8 49 50// Contains information about benchmark options. 51typedef struct { 52 bool print_average; 53 bool print_each_iter; 54 55 int dst_align; 56 int dst_or_mask; 57 int src_align; 58 int src_or_mask; 59 60 int cpu_to_lock; 61 62 int data_size; 63 int dst_str_size; 64 int cold_data_size; 65 int cold_stride_size; 66 67 int args[MAX_ARGS]; 68 int num_args; 69} command_data_t; 70 71typedef void *(*void_func_t)(); 72typedef void *(*memcpy_func_t)(void *, const void *, size_t); 73typedef void *(*memset_func_t)(void *, int, size_t); 74typedef int (*strcmp_func_t)(const char *, const char *); 75typedef char *(*str_func_t)(char *, const char *); 76typedef size_t (*strlen_func_t)(const char *); 77 78// Struct that contains a mapping of benchmark name to benchmark function. 79typedef struct { 80 const char *name; 81 int (*ptr)(const char *, const command_data_t &, void_func_t func); 82 void_func_t func; 83} function_t; 84 85// Get the current time in nanoseconds. 86uint64_t nanoTime() { 87 struct timespec t; 88 89 t.tv_sec = t.tv_nsec = 0; 90 clock_gettime(CLOCK_MONOTONIC, &t); 91 return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec; 92} 93 94// Allocate memory with a specific alignment and return that pointer. 95// This function assumes an alignment value that is a power of 2. 96// If the alignment is 0, then use the pointer returned by malloc. 97uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) { 98 uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr); 99 if (alignment > 0) { 100 // When setting the alignment, set it to exactly the alignment chosen. 101 // The pointer returned will be guaranteed not to be aligned to anything 102 // more than that. 103 ptr += alignment - (ptr & (alignment - 1)); 104 ptr |= alignment | or_mask; 105 } 106 107 return reinterpret_cast<uint8_t*>(ptr); 108} 109 110// Allocate memory with a specific alignment and return that pointer. 111// This function assumes an alignment value that is a power of 2. 112// If the alignment is 0, then use the pointer returned by malloc. 113uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) { 114 uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment)); 115 if (!ptr) 116 return NULL; 117 return getAlignedMemory((uint8_t*)ptr, alignment, or_mask); 118} 119 120void initString(uint8_t *buf, size_t size) { 121 for (size_t i = 0; i < size - 1; i++) { 122 buf[i] = static_cast<char>(32 + (i % 96)); 123 } 124 buf[size-1] = '\0'; 125} 126 127static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) { 128 return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC); 129} 130 131static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) { 132 return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)); 133} 134 135static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) { 136 return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg; 137} 138 139static inline double computeStdDev(double square_avg, double running_avg) { 140 return sqrt(square_avg - running_avg * running_avg); 141} 142 143static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) { 144 printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n", 145 name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0); 146} 147 148static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) { 149 printf(" %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n", 150 name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0, 151 max/1024.0); 152} 153 154// For the cold benchmarks, a large buffer will be created which 155// contains many "size" buffers. This function will figure out the increment 156// needed between each buffer so that each one is aligned to "alignment". 157int getAlignmentIncrement(size_t size, int alignment) { 158 if (alignment == 0) { 159 alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT; 160 } 161 alignment *= 2; 162 return size + alignment - (size % alignment); 163} 164 165uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) { 166 uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment)); 167 if (!buffers) { 168 return NULL; 169 } 170 return getAlignedMemory(buffers, alignment, or_mask); 171} 172 173static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) { 174 return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC); 175} 176 177static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) { 178 printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n", 179 name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0); 180} 181 182static void inline printColdSummary( 183 uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers, 184 double running_avg, double square_avg, double min, double max) { 185 printf(" %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n", 186 name, copies, num_buffers, size, running_avg/1024.0, 187 computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0); 188} 189 190#define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \ 191 uint64_t time_ns; \ 192 int iters = cmd_data.args[1]; \ 193 bool print_average = cmd_data.print_average; \ 194 bool print_each_iter = cmd_data.print_each_iter; \ 195 double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \ 196 double avg; \ 197 for (int i = 0; iters == -1 || i < iters; i++) { \ 198 time_ns = nanoTime(); \ 199 BENCH; \ 200 time_ns = nanoTime() - time_ns; \ 201 avg = COMPUTE_AVG; \ 202 if (print_average) { \ 203 running_avg = computeRunningAvg(avg, running_avg, i); \ 204 square_avg = computeRunningSquareAvg(avg, square_avg, i); \ 205 if (min == 0.0 || avg < min) { \ 206 min = avg; \ 207 } \ 208 if (avg > max) { \ 209 max = avg; \ 210 } \ 211 } \ 212 if (print_each_iter) { \ 213 PRINT_ITER; \ 214 } \ 215 } \ 216 if (print_average) { \ 217 PRINT_AVG; \ 218 } 219 220#define MAINLOOP_DATA(name, cmd_data, size, BENCH) \ 221 size_t copies = cmd_data.data_size/size; \ 222 size_t j; \ 223 MAINLOOP(cmd_data, \ 224 for (j = 0; j < copies; j++) { \ 225 BENCH; \ 226 }, \ 227 computeAverage(time_ns, size, copies), \ 228 printIter(time_ns, name, size, copies, avg), \ 229 double std_dev = computeStdDev(square_avg, running_avg); \ 230 printSummary(time_ns, name, size, copies, running_avg, \ 231 std_dev, min, max)); 232 233#define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH) \ 234 size_t num_strides = num_buffers / num_incrs; \ 235 if ((num_buffers % num_incrs) != 0) { \ 236 num_strides--; \ 237 } \ 238 size_t copies = 1; \ 239 num_buffers = num_incrs * num_strides; \ 240 if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) { \ 241 copies = cmd_data.data_size / (num_buffers * size); \ 242 } \ 243 if (num_strides == 0) { \ 244 printf("%s: Chosen options lead to no copies, aborting.\n", name); \ 245 return -1; \ 246 } \ 247 size_t j, k; \ 248 MAINLOOP(cmd_data, \ 249 for (j = 0; j < copies; j++) { \ 250 for (k = 0; k < num_incrs; k++) { \ 251 BENCH; \ 252 } \ 253 }, \ 254 computeColdAverage(time_ns, size, copies, num_buffers), \ 255 printColdIter(time_ns, name, size, copies, num_buffers, avg), \ 256 printColdSummary(time_ns, name, size, copies, num_buffers, \ 257 running_avg, square_avg, min, max)); 258 259// This version of the macro creates a single buffer of the given size and 260// alignment. The variable "buf" will be a pointer to the buffer and should 261// be used by the BENCH code. 262// INIT - Any specialized code needed to initialize the data. This will only 263// be executed once. 264// BENCH - The actual code to benchmark and is timed. 265#define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH) \ 266 size_t size = cmd_data.args[0]; \ 267 uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \ 268 if (!buf) \ 269 return -1; \ 270 INIT; \ 271 MAINLOOP_DATA(name, cmd_data, size, BENCH); 272 273// This version of the macro creates two buffers of the given sizes and 274// alignments. The variables "buf1" and "buf2" will be pointers to the 275// buffers and should be used by the BENCH code. 276// INIT - Any specialized code needed to initialize the data. This will only 277// be executed once. 278// BENCH - The actual code to benchmark and is timed. 279#define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH) \ 280 size_t size = cmd_data.args[0]; \ 281 uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \ 282 if (!buf1) \ 283 return -1; \ 284 size_t total_size = size; \ 285 if (cmd_data.dst_str_size > 0) \ 286 total_size += cmd_data.dst_str_size; \ 287 uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \ 288 if (!buf2) \ 289 return -1; \ 290 INIT; \ 291 MAINLOOP_DATA(name, cmd_data, size, BENCH); 292 293// This version of the macro attempts to benchmark code when the data 294// being manipulated is not in the cache, thus the cache is cold. It does 295// this by creating a single large buffer that is designed to be larger than 296// the largest cache in the system. The variable "buf" will be one slice 297// of the buffer that the BENCH code should use that is of the correct size 298// and alignment. In order to avoid any algorithms that prefetch past the end 299// of their "buf" and into the next sequential buffer, the code strides 300// through the buffer. Specifically, as "buf" values are iterated in BENCH 301// code, the end of "buf" is guaranteed to be at least "stride_size" away 302// from the next "buf". 303// INIT - Any specialized code needed to initialize the data. This will only 304// be executed once. 305// BENCH - The actual code to benchmark and is timed. 306#define COLD_ONE_BUF(name, cmd_data, INIT, BENCH) \ 307 size_t size = cmd_data.args[0]; \ 308 size_t incr = getAlignmentIncrement(size, cmd_data.dst_align); \ 309 size_t num_buffers = cmd_data.cold_data_size / incr; \ 310 size_t buffer_size = num_buffers * incr; \ 311 uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \ 312 if (!buffer) \ 313 return -1; \ 314 size_t num_incrs = cmd_data.cold_stride_size / incr + 1; \ 315 size_t stride_incr = incr * num_incrs; \ 316 uint8_t *buf; \ 317 size_t l; \ 318 INIT; \ 319 MAINLOOP_COLD(name, cmd_data, size, num_incrs, \ 320 buf = buffer + k * incr; \ 321 for (l = 0; l < num_strides; l++) { \ 322 BENCH; \ 323 buf += stride_incr; \ 324 }); 325 326// This version of the macro attempts to benchmark code when the data 327// being manipulated is not in the cache, thus the cache is cold. It does 328// this by creating two large buffers each of which is designed to be 329// larger than the largest cache in the system. Two variables "buf1" and 330// "buf2" will be the two buffers that BENCH code should use. In order 331// to avoid any algorithms that prefetch past the end of either "buf1" 332// or "buf2" and into the next sequential buffer, the code strides through 333// both buffers. Specifically, as "buf1" and "buf2" values are iterated in 334// BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least 335// "stride_size" away from the next "buf1" and "buf2". 336// INIT - Any specialized code needed to initialize the data. This will only 337// be executed once. 338// BENCH - The actual code to benchmark and is timed. 339#define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH) \ 340 size_t size = cmd_data.args[0]; \ 341 size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align); \ 342 size_t total_size = size; \ 343 if (cmd_data.dst_str_size > 0) \ 344 total_size += cmd_data.dst_str_size; \ 345 size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \ 346 size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr; \ 347 size_t num_buffers = cmd_data.cold_data_size / max_incr; \ 348 size_t buffer1_size = num_buffers * buf1_incr; \ 349 size_t buffer2_size = num_buffers * buf2_incr; \ 350 uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \ 351 if (!buffer1) \ 352 return -1; \ 353 uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \ 354 if (!buffer2) \ 355 return -1; \ 356 size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr; \ 357 size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1; \ 358 size_t buf1_stride_incr = buf1_incr * num_incrs; \ 359 size_t buf2_stride_incr = buf2_incr * num_incrs; \ 360 size_t l; \ 361 uint8_t *buf1; \ 362 uint8_t *buf2; \ 363 INIT; \ 364 MAINLOOP_COLD(name, cmd_data, size, num_incrs, \ 365 buf1 = buffer1 + k * buf1_incr; \ 366 buf2 = buffer2 + k * buf2_incr; \ 367 for (l = 0; l < num_strides; l++) { \ 368 BENCH; \ 369 buf1 += buf1_stride_incr; \ 370 buf2 += buf2_stride_incr; \ 371 }); 372 373int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) { 374 int delay = cmd_data.args[0]; 375 MAINLOOP(cmd_data, sleep(delay), 376 (double)time_ns/NS_PER_SEC, 377 printf("sleep(%d) took %.06f seconds\n", delay, avg);, 378 printf(" sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \ 379 delay, running_avg, computeStdDev(square_avg, running_avg), \ 380 min, max)); 381 382 return 0; 383} 384 385int benchmarkCpu(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) { 386 // Use volatile so that the loop is not optimized away by the compiler. 387 volatile int cpu_foo; 388 389 MAINLOOP(cmd_data, 390 for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++), 391 (double)time_ns/NS_PER_SEC, 392 printf("cpu took %.06f seconds\n", avg), 393 printf(" cpu average %.06f seconds std dev %f min %0.6f seconds max %0.6f seconds\n", \ 394 running_avg, computeStdDev(square_avg, running_avg), min, max)); 395 396 return 0; 397} 398 399int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) { 400 memset_func_t memset_func = reinterpret_cast<memset_func_t>(func); 401 BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size)); 402 403 return 0; 404} 405 406int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) { 407 memset_func_t memset_func = reinterpret_cast<memset_func_t>(func); 408 COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size)); 409 410 return 0; 411} 412 413int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) { 414 memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func); 415 416 BENCH_TWO_BUFS(name, cmd_data, 417 memset(buf1, 0xff, size); \ 418 memset(buf2, 0, size), 419 memcpy_func(buf2, buf1, size)); 420 421 return 0; 422} 423 424int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) { 425 memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func); 426 427 COLD_TWO_BUFS(name, cmd_data, 428 memset(buffer1, 0xff, buffer1_size); \ 429 memset(buffer2, 0x0, buffer2_size), 430 memcpy_func(buf2, buf1, size)); 431 432 return 0; 433} 434 435int benchmarkMemmoveBackwards(const char *name, const command_data_t &cmd_data, void_func_t func) { 436 memcpy_func_t memmove_func = reinterpret_cast<memcpy_func_t>(func); 437 438 size_t size = cmd_data.args[0]; 439 size_t alloc_size = size * 2 + 3 * cmd_data.dst_align; 440 uint8_t* src = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); 441 if (!src) 442 return -1; 443 // Force memmove to do a backwards copy by getting a pointer into the source buffer. 444 uint8_t* dst = getAlignedMemory(src+1, cmd_data.dst_align, cmd_data.dst_or_mask); 445 if (!dst) 446 return -1; 447 MAINLOOP_DATA(name, cmd_data, size, memmove_func(dst, src, size)); 448 return 0; 449} 450 451int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) { 452 int size = cmd_data.args[0]; 453 454 uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size)); 455 if (!src) 456 return -1; 457 memset(src, 0xff, size); 458 459 // Use volatile so the compiler does not optimize away the reads. 460 volatile int foo; 461 size_t k; 462 MAINLOOP_DATA(name, cmd_data, size, 463 for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]); 464 465 return 0; 466} 467 468int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) { 469 strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func); 470 471 int retval; 472 BENCH_TWO_BUFS(name, cmd_data, 473 initString(buf1, size); \ 474 initString(buf2, size), 475 retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \ 476 if (retval != 0) printf("%s failed, return value %d\n", name, retval)); 477 478 return 0; 479} 480 481int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) { 482 strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func); 483 484 int retval; 485 COLD_TWO_BUFS(name, cmd_data, 486 memset(buffer1, 'a', buffer1_size); \ 487 memset(buffer2, 'a', buffer2_size); \ 488 for (size_t i =0; i < num_buffers; i++) { \ 489 buffer1[size-1+buf1_incr*i] = '\0'; \ 490 buffer2[size-1+buf2_incr*i] = '\0'; \ 491 }, 492 retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \ 493 if (retval != 0) printf("%s failed, return value %d\n", name, retval)); 494 495 return 0; 496} 497 498int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) { 499 size_t real_size; 500 strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func); 501 BENCH_ONE_BUF(name, cmd_data, 502 initString(buf, size), 503 real_size = strlen_func(reinterpret_cast<char*>(buf)); \ 504 if (real_size + 1 != size) { \ 505 printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \ 506 return -1; \ 507 }); 508 509 return 0; 510} 511 512int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) { 513 strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func); 514 size_t real_size; 515 COLD_ONE_BUF(name, cmd_data, 516 memset(buffer, 'a', buffer_size); \ 517 for (size_t i = 0; i < num_buffers; i++) { \ 518 buffer[size-1+incr*i] = '\0'; \ 519 }, 520 real_size = strlen_func(reinterpret_cast<char*>(buf)); \ 521 if (real_size + 1 != size) { \ 522 printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \ 523 return -1; \ 524 }); 525 return 0; 526} 527 528int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) { 529 str_func_t str_func = reinterpret_cast<str_func_t>(func); 530 531 int dst_str_size = cmd_data.dst_str_size; 532 if (dst_str_size <= 0) { 533 printf("%s requires --dst_str_size to be set to a non-zero value.\n", 534 name); 535 return -1; 536 } 537 BENCH_TWO_BUFS(name, cmd_data, 538 initString(buf1, size); \ 539 initString(buf2, dst_str_size), 540 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0'); 541 542 return 0; 543} 544 545int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) { 546 str_func_t str_func = reinterpret_cast<str_func_t>(func); 547 548 int dst_str_size = cmd_data.dst_str_size; 549 if (dst_str_size <= 0) { 550 printf("%s requires --dst_str_size to be set to a non-zero value.\n", 551 name); 552 return -1; 553 } 554 COLD_TWO_BUFS(name, cmd_data, 555 memset(buffer1, 'a', buffer1_size); \ 556 memset(buffer2, 'b', buffer2_size); \ 557 for (size_t i = 0; i < num_buffers; i++) { \ 558 buffer1[size-1+buf1_incr*i] = '\0'; \ 559 buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \ 560 }, 561 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0'); 562 563 return 0; 564} 565 566 567int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) { 568 str_func_t str_func = reinterpret_cast<str_func_t>(func); 569 570 BENCH_TWO_BUFS(name, cmd_data, 571 initString(buf1, size); \ 572 memset(buf2, 0, size), 573 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1))); 574 575 return 0; 576} 577 578int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) { 579 str_func_t str_func = reinterpret_cast<str_func_t>(func); 580 581 COLD_TWO_BUFS(name, cmd_data, 582 memset(buffer1, 'a', buffer1_size); \ 583 for (size_t i = 0; i < num_buffers; i++) { \ 584 buffer1[size-1+buf1_incr*i] = '\0'; \ 585 } \ 586 memset(buffer2, 0, buffer2_size), 587 str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1))); 588 589 return 0; 590} 591 592// Create the mapping structure. 593function_t function_table[] = { 594 { "cpu", benchmarkCpu, NULL }, 595 { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) }, 596 { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) }, 597 { "memmove_forward", benchmarkMemcpy, reinterpret_cast<void_func_t>(memmove) }, 598 { "memmove_backward", benchmarkMemmoveBackwards, reinterpret_cast<void_func_t>(memmove) }, 599 { "memread", benchmarkMemread, NULL }, 600 { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) }, 601 { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) }, 602 { "sleep", benchmarkSleep, NULL }, 603 { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) }, 604 { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) }, 605 { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) }, 606 { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) }, 607 { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) }, 608 { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) }, 609 { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) }, 610 { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) }, 611}; 612 613void usage() { 614 printf("Usage:\n"); 615 printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n"); 616 printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n"); 617 printf(" [--src_align ALIGN] [--src_or_mask OR_MASK]\n"); 618 printf(" [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n"); 619 printf(" [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n"); 620 printf(" [--cold_stride_size SIZE]\n"); 621 printf(" --data_size DATA_BYTES\n"); 622 printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n"); 623 printf(" size of data, in bytes, that will be manipulated in each iteration.\n"); 624 printf(" --print_average\n"); 625 printf(" Print the average and standard deviation of all iterations.\n"); 626 printf(" --no_print_each_iter\n"); 627 printf(" Do not print any values in each iteration.\n"); 628 printf(" --lock_to_cpu CORE\n"); 629 printf(" Lock to the specified CORE. The default is to use the last core found.\n"); 630 printf(" --dst_align ALIGN\n"); 631 printf(" If the command supports it, align the destination pointer to ALIGN.\n"); 632 printf(" The default is to use the value returned by malloc.\n"); 633 printf(" --dst_or_mask OR_MASK\n"); 634 printf(" If the command supports it, or in the OR_MASK on to the destination pointer.\n"); 635 printf(" The OR_MASK must be smaller than the dst_align value.\n"); 636 printf(" The default value is 0.\n"); 637 638 printf(" --src_align ALIGN\n"); 639 printf(" If the command supports it, align the source pointer to ALIGN. The default is to use the\n"); 640 printf(" value returned by malloc.\n"); 641 printf(" --src_or_mask OR_MASK\n"); 642 printf(" If the command supports it, or in the OR_MASK on to the source pointer.\n"); 643 printf(" The OR_MASK must be smaller than the src_align value.\n"); 644 printf(" The default value is 0.\n"); 645 printf(" --dst_str_size SIZE\n"); 646 printf(" If the command supports it, create a destination string of this length.\n"); 647 printf(" The default is to not update the destination string.\n"); 648 printf(" --cold_data_size DATA_SIZE\n"); 649 printf(" For _cold benchmarks, use this as the total amount of memory to use.\n"); 650 printf(" The default is 128MB, and the number should be larger than the cache on the chip.\n"); 651 printf(" This value is specified in bytes.\n"); 652 printf(" --cold_stride_size SIZE\n"); 653 printf(" For _cold benchmarks, use this as the minimum stride between iterations.\n"); 654 printf(" The default is 4096 bytes and the number should be larger than the amount of data\n"); 655 printf(" pulled in to the cache by each run of the benchmark.\n"); 656 printf(" ITERS\n"); 657 printf(" The number of iterations to execute each benchmark. If not\n"); 658 printf(" passed in then run forever.\n"); 659 printf(" micro_bench cpu UNUSED [ITERS]\n"); 660 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n"); 661 printf(" micro_bench memread NUM_BYTES [ITERS]\n"); 662 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n"); 663 printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n"); 664 printf(" TIME_TO_SLEEP\n"); 665 printf(" The time in seconds to sleep.\n"); 666 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n"); 667 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n"); 668 printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n"); 669 printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n"); 670 printf("\n"); 671 printf(" In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n"); 672 printf(" that will execute the function on a buffer not in the cache.\n"); 673} 674 675function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) { 676 function_t *command = NULL; 677 678 // Initialize the command_flags. 679 cmd_data->print_average = false; 680 cmd_data->print_each_iter = true; 681 cmd_data->dst_align = 0; 682 cmd_data->src_align = 0; 683 cmd_data->src_or_mask = 0; 684 cmd_data->dst_or_mask = 0; 685 cmd_data->num_args = 0; 686 cmd_data->cpu_to_lock = -1; 687 cmd_data->data_size = DEFAULT_DATA_SIZE; 688 cmd_data->dst_str_size = -1; 689 cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE; 690 cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE; 691 for (int i = 0; i < MAX_ARGS; i++) { 692 cmd_data->args[i] = -1; 693 } 694 695 for (int i = 1; i < argc; i++) { 696 if (argv[i][0] == '-') { 697 int *save_value = NULL; 698 if (strcmp(argv[i], "--print_average") == 0) { 699 cmd_data->print_average = true; 700 } else if (strcmp(argv[i], "--no_print_each_iter") == 0) { 701 cmd_data->print_each_iter = false; 702 } else if (strcmp(argv[i], "--dst_align") == 0) { 703 save_value = &cmd_data->dst_align; 704 } else if (strcmp(argv[i], "--src_align") == 0) { 705 save_value = &cmd_data->src_align; 706 } else if (strcmp(argv[i], "--dst_or_mask") == 0) { 707 save_value = &cmd_data->dst_or_mask; 708 } else if (strcmp(argv[i], "--src_or_mask") == 0) { 709 save_value = &cmd_data->src_or_mask; 710 } else if (strcmp(argv[i], "--lock_to_cpu") == 0) { 711 save_value = &cmd_data->cpu_to_lock; 712 } else if (strcmp(argv[i], "--data_size") == 0) { 713 save_value = &cmd_data->data_size; 714 } else if (strcmp(argv[i], "--dst_str_size") == 0) { 715 save_value = &cmd_data->dst_str_size; 716 } else if (strcmp(argv[i], "--cold_data_size") == 0) { 717 save_value = &cmd_data->cold_data_size; 718 } else if (strcmp(argv[i], "--cold_stride_size") == 0) { 719 save_value = &cmd_data->cold_stride_size; 720 } else { 721 printf("Unknown option %s\n", argv[i]); 722 return NULL; 723 } 724 if (save_value) { 725 // Checking both characters without a strlen() call should be 726 // safe since as long as the argument exists, one character will 727 // be present (\0). And if the first character is '-', then 728 // there will always be a second character (\0 again). 729 if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) { 730 printf("The option %s requires one argument.\n", 731 argv[i]); 732 return NULL; 733 } 734 *save_value = (int)strtol(argv[++i], NULL, 0); 735 } 736 } else if (!command) { 737 for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) { 738 if (strcmp(argv[i], function_table[j].name) == 0) { 739 command = &function_table[j]; 740 break; 741 } 742 } 743 if (!command) { 744 printf("Uknown command %s\n", argv[i]); 745 return NULL; 746 } 747 } else if (cmd_data->num_args > MAX_ARGS) { 748 printf("More than %d number arguments passed in.\n", MAX_ARGS); 749 return NULL; 750 } else { 751 cmd_data->args[cmd_data->num_args++] = atoi(argv[i]); 752 } 753 } 754 755 // Check the arguments passed in make sense. 756 if (cmd_data->num_args != 1 && cmd_data->num_args != 2) { 757 printf("Not enough arguments passed in.\n"); 758 return NULL; 759 } else if (cmd_data->dst_align < 0) { 760 printf("The --dst_align option must be greater than or equal to 0.\n"); 761 return NULL; 762 } else if (cmd_data->src_align < 0) { 763 printf("The --src_align option must be greater than or equal to 0.\n"); 764 return NULL; 765 } else if (cmd_data->data_size <= 0) { 766 printf("The --data_size option must be a positive number.\n"); 767 return NULL; 768 } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) { 769 printf("The --dst_align option must be a power of 2.\n"); 770 return NULL; 771 } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) { 772 printf("The --src_align option must be a power of 2.\n"); 773 return NULL; 774 } else if (!cmd_data->src_align && cmd_data->src_or_mask) { 775 printf("The --src_or_mask option requires that --src_align be set.\n"); 776 return NULL; 777 } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) { 778 printf("The --dst_or_mask option requires that --dst_align be set.\n"); 779 return NULL; 780 } else if (cmd_data->src_or_mask > cmd_data->src_align) { 781 printf("The value of --src_or_mask cannot be larger that --src_align.\n"); 782 return NULL; 783 } else if (cmd_data->dst_or_mask > cmd_data->dst_align) { 784 printf("The value of --src_or_mask cannot be larger that --src_align.\n"); 785 return NULL; 786 } 787 788 return command; 789} 790 791bool raisePriorityAndLock(int cpu_to_lock) { 792 cpu_set_t cpuset; 793 794 if (setpriority(PRIO_PROCESS, 0, -20)) { 795 perror("Unable to raise priority of process.\n"); 796 return false; 797 } 798 799 CPU_ZERO(&cpuset); 800 if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) { 801 perror("sched_getaffinity failed"); 802 return false; 803 } 804 805 if (cpu_to_lock < 0) { 806 // Lock to the last active core we find. 807 for (int i = 0; i < CPU_SETSIZE; i++) { 808 if (CPU_ISSET(i, &cpuset)) { 809 cpu_to_lock = i; 810 } 811 } 812 } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) { 813 printf("Cpu %d does not exist.\n", cpu_to_lock); 814 return false; 815 } 816 817 if (cpu_to_lock < 0) { 818 printf("Cannot find any valid cpu to lock.\n"); 819 return false; 820 } 821 822 CPU_ZERO(&cpuset); 823 CPU_SET(cpu_to_lock, &cpuset); 824 if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) { 825 perror("sched_setaffinity failed"); 826 return false; 827 } 828 829 return true; 830} 831 832int main(int argc, char **argv) { 833 command_data_t cmd_data; 834 835 function_t *command = processOptions(argc, argv, &cmd_data); 836 if (!command) { 837 usage(); 838 return -1; 839 } 840 841 if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) { 842 return -1; 843 } 844 845 printf("%s\n", command->name); 846 return (*command->ptr)(command->name, cmd_data, command->func); 847} 848