1/* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_ 18#define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_ 19 20#include <cstring> 21#include <map> 22 23#include "arch/instruction_set.h" 24#include "compiled_method.h" 25#include "debug/dwarf/debug_info_entry_writer.h" 26#include "debug/dwarf/register.h" 27#include "debug/method_debug_info.h" 28#include "stack_map.h" 29 30namespace art { 31namespace debug { 32using Reg = dwarf::Reg; 33 34static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) { 35 switch (isa) { 36 case kArm: 37 case kThumb2: 38 return Reg::ArmCore(machine_reg); 39 case kArm64: 40 return Reg::Arm64Core(machine_reg); 41 case kX86: 42 return Reg::X86Core(machine_reg); 43 case kX86_64: 44 return Reg::X86_64Core(machine_reg); 45 case kMips: 46 return Reg::MipsCore(machine_reg); 47 case kMips64: 48 return Reg::Mips64Core(machine_reg); 49 case kNone: 50 LOG(FATAL) << "No instruction set"; 51 } 52 UNREACHABLE(); 53} 54 55static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) { 56 switch (isa) { 57 case kArm: 58 case kThumb2: 59 return Reg::ArmFp(machine_reg); 60 case kArm64: 61 return Reg::Arm64Fp(machine_reg); 62 case kX86: 63 return Reg::X86Fp(machine_reg); 64 case kX86_64: 65 return Reg::X86_64Fp(machine_reg); 66 case kMips: 67 return Reg::MipsFp(machine_reg); 68 case kMips64: 69 return Reg::Mips64Fp(machine_reg); 70 case kNone: 71 LOG(FATAL) << "No instruction set"; 72 } 73 UNREACHABLE(); 74} 75 76struct VariableLocation { 77 uint32_t low_pc; // Relative to compilation unit. 78 uint32_t high_pc; // Relative to compilation unit. 79 DexRegisterLocation reg_lo; // May be None if the location is unknown. 80 DexRegisterLocation reg_hi; // Most significant bits of 64-bit value. 81}; 82 83// Get the location of given dex register (e.g. stack or machine register). 84// Note that the location might be different based on the current pc. 85// The result will cover all ranges where the variable is in scope. 86// PCs corresponding to stackmap with dex register map are accurate, 87// all other PCs are best-effort only. 88std::vector<VariableLocation> GetVariableLocations( 89 const MethodDebugInfo* method_info, 90 const std::vector<DexRegisterMap>& dex_register_maps, 91 uint16_t vreg, 92 bool is64bitValue, 93 uint64_t compilation_unit_code_address, 94 uint32_t dex_pc_low, 95 uint32_t dex_pc_high) { 96 std::vector<VariableLocation> variable_locations; 97 98 // Get stack maps sorted by pc (they might not be sorted internally). 99 // TODO(dsrbecky) Remove this once stackmaps get sorted by pc. 100 const CodeInfo code_info(method_info->code_info); 101 const CodeInfoEncoding encoding = code_info.ExtractEncoding(); 102 std::map<uint32_t, uint32_t> stack_maps; // low_pc -> stack_map_index. 103 for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); s++) { 104 StackMap stack_map = code_info.GetStackMapAt(s, encoding); 105 DCHECK(stack_map.IsValid()); 106 if (!stack_map.HasDexRegisterMap(encoding.stack_map_encoding)) { 107 // The compiler creates stackmaps without register maps at the start of 108 // basic blocks in order to keep instruction-accurate line number mapping. 109 // However, we never stop at those (breakpoint locations always have map). 110 // Therefore, for the purpose of local variables, we ignore them. 111 // The main reason for this is to save space by avoiding undefined gaps. 112 continue; 113 } 114 const uint32_t pc_offset = stack_map.GetNativePcOffset(encoding.stack_map_encoding); 115 DCHECK_LE(pc_offset, method_info->code_size); 116 DCHECK_LE(compilation_unit_code_address, method_info->code_address); 117 const uint32_t low_pc = dchecked_integral_cast<uint32_t>( 118 method_info->code_address + pc_offset - compilation_unit_code_address); 119 stack_maps.emplace(low_pc, s); 120 } 121 122 // Create entries for the requested register based on stack map data. 123 for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) { 124 const uint32_t low_pc = it->first; 125 const uint32_t stack_map_index = it->second; 126 const StackMap& stack_map = code_info.GetStackMapAt(stack_map_index, encoding); 127 auto next_it = it; 128 next_it++; 129 const uint32_t high_pc = next_it != stack_maps.end() 130 ? next_it->first 131 : method_info->code_address + method_info->code_size - compilation_unit_code_address; 132 DCHECK_LE(low_pc, high_pc); 133 if (low_pc == high_pc) { 134 continue; // Ignore if the address range is empty. 135 } 136 137 // Check that the stack map is in the requested range. 138 uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map_encoding); 139 if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) { 140 // The variable is not in scope at this PC. Therefore omit the entry. 141 // Note that this is different to None() entry which means in scope, but unknown location. 142 continue; 143 } 144 145 // Find the location of the dex register. 146 DexRegisterLocation reg_lo = DexRegisterLocation::None(); 147 DexRegisterLocation reg_hi = DexRegisterLocation::None(); 148 DCHECK_LT(stack_map_index, dex_register_maps.size()); 149 DexRegisterMap dex_register_map = dex_register_maps[stack_map_index]; 150 DCHECK(dex_register_map.IsValid()); 151 reg_lo = dex_register_map.GetDexRegisterLocation( 152 vreg, method_info->code_item->registers_size_, code_info, encoding); 153 if (is64bitValue) { 154 reg_hi = dex_register_map.GetDexRegisterLocation( 155 vreg + 1, method_info->code_item->registers_size_, code_info, encoding); 156 } 157 158 // Add location entry for this address range. 159 if (!variable_locations.empty() && 160 variable_locations.back().reg_lo == reg_lo && 161 variable_locations.back().reg_hi == reg_hi && 162 variable_locations.back().high_pc == low_pc) { 163 // Merge with the previous entry (extend its range). 164 variable_locations.back().high_pc = high_pc; 165 } else { 166 variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi}); 167 } 168 } 169 170 return variable_locations; 171} 172 173// Write table into .debug_loc which describes location of dex register. 174// The dex register might be valid only at some points and it might 175// move between machine registers and stack. 176static void WriteDebugLocEntry(const MethodDebugInfo* method_info, 177 const std::vector<DexRegisterMap>& dex_register_maps, 178 uint16_t vreg, 179 bool is64bitValue, 180 uint64_t compilation_unit_code_address, 181 uint32_t dex_pc_low, 182 uint32_t dex_pc_high, 183 InstructionSet isa, 184 dwarf::DebugInfoEntryWriter<>* debug_info, 185 std::vector<uint8_t>* debug_loc_buffer, 186 std::vector<uint8_t>* debug_ranges_buffer) { 187 using Kind = DexRegisterLocation::Kind; 188 if (method_info->code_info == nullptr || dex_register_maps.empty()) { 189 return; 190 } 191 192 std::vector<VariableLocation> variable_locations = GetVariableLocations( 193 method_info, 194 dex_register_maps, 195 vreg, 196 is64bitValue, 197 compilation_unit_code_address, 198 dex_pc_low, 199 dex_pc_high); 200 201 // Write .debug_loc entries. 202 dwarf::Writer<> debug_loc(debug_loc_buffer); 203 const size_t debug_loc_offset = debug_loc.size(); 204 const bool is64bit = Is64BitInstructionSet(isa); 205 std::vector<uint8_t> expr_buffer; 206 for (const VariableLocation& variable_location : variable_locations) { 207 // Translate dex register location to DWARF expression. 208 // Note that 64-bit value might be split to two distinct locations. 209 // (for example, two 32-bit machine registers, or even stack and register) 210 dwarf::Expression expr(&expr_buffer); 211 DexRegisterLocation reg_lo = variable_location.reg_lo; 212 DexRegisterLocation reg_hi = variable_location.reg_hi; 213 for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) { 214 DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi); 215 const Kind kind = reg_loc.GetKind(); 216 const int32_t value = reg_loc.GetValue(); 217 if (kind == Kind::kInStack) { 218 // The stack offset is relative to SP. Make it relative to CFA. 219 expr.WriteOpFbreg(value - method_info->frame_size_in_bytes); 220 if (piece == 0 && reg_hi.GetKind() == Kind::kInStack && 221 reg_hi.GetValue() == value + 4) { 222 break; // the high word is correctly implied by the low word. 223 } 224 } else if (kind == Kind::kInRegister) { 225 expr.WriteOpReg(GetDwarfCoreReg(isa, value).num()); 226 if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh && 227 reg_hi.GetValue() == value) { 228 break; // the high word is correctly implied by the low word. 229 } 230 } else if (kind == Kind::kInFpuRegister) { 231 if ((isa == kArm || isa == kThumb2) && 232 piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister && 233 reg_hi.GetValue() == value + 1 && value % 2 == 0) { 234 // Translate S register pair to D register (e.g. S4+S5 to D2). 235 expr.WriteOpReg(Reg::ArmDp(value / 2).num()); 236 break; 237 } 238 expr.WriteOpReg(GetDwarfFpReg(isa, value).num()); 239 if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh && 240 reg_hi.GetValue() == reg_lo.GetValue()) { 241 break; // the high word is correctly implied by the low word. 242 } 243 } else if (kind == Kind::kConstant) { 244 expr.WriteOpConsts(value); 245 expr.WriteOpStackValue(); 246 } else if (kind == Kind::kNone) { 247 break; 248 } else { 249 // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind(). 250 // kInRegisterHigh and kInFpuRegisterHigh should be handled by 251 // the special cases above and they should not occur alone. 252 LOG(ERROR) << "Unexpected register location kind: " << kind; 253 break; 254 } 255 if (is64bitValue) { 256 // Write the marker which is needed by split 64-bit values. 257 // This code is skipped by the special cases. 258 expr.WriteOpPiece(4); 259 } 260 } 261 262 if (expr.size() > 0) { 263 if (is64bit) { 264 debug_loc.PushUint64(variable_location.low_pc); 265 debug_loc.PushUint64(variable_location.high_pc); 266 } else { 267 debug_loc.PushUint32(variable_location.low_pc); 268 debug_loc.PushUint32(variable_location.high_pc); 269 } 270 // Write the expression. 271 debug_loc.PushUint16(expr.size()); 272 debug_loc.PushData(expr.data()); 273 } else { 274 // Do not generate .debug_loc if the location is not known. 275 } 276 } 277 // Write end-of-list entry. 278 if (is64bit) { 279 debug_loc.PushUint64(0); 280 debug_loc.PushUint64(0); 281 } else { 282 debug_loc.PushUint32(0); 283 debug_loc.PushUint32(0); 284 } 285 286 // Write .debug_ranges entries. 287 // This includes ranges where the variable is in scope but the location is not known. 288 dwarf::Writer<> debug_ranges(debug_ranges_buffer); 289 size_t debug_ranges_offset = debug_ranges.size(); 290 for (size_t i = 0; i < variable_locations.size(); i++) { 291 uint32_t low_pc = variable_locations[i].low_pc; 292 uint32_t high_pc = variable_locations[i].high_pc; 293 while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) { 294 // Merge address range with the next entry. 295 high_pc = variable_locations[++i].high_pc; 296 } 297 if (is64bit) { 298 debug_ranges.PushUint64(low_pc); 299 debug_ranges.PushUint64(high_pc); 300 } else { 301 debug_ranges.PushUint32(low_pc); 302 debug_ranges.PushUint32(high_pc); 303 } 304 } 305 // Write end-of-list entry. 306 if (is64bit) { 307 debug_ranges.PushUint64(0); 308 debug_ranges.PushUint64(0); 309 } else { 310 debug_ranges.PushUint32(0); 311 debug_ranges.PushUint32(0); 312 } 313 314 // Simple de-duplication - check whether this entry is same as the last one (or tail of it). 315 size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset; 316 if (debug_ranges_offset >= debug_ranges_entry_size) { 317 size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size; 318 if (memcmp(debug_ranges_buffer->data() + previous_offset, 319 debug_ranges_buffer->data() + debug_ranges_offset, 320 debug_ranges_entry_size) == 0) { 321 // Remove what we have just written and use the last entry instead. 322 debug_ranges_buffer->resize(debug_ranges_offset); 323 debug_ranges_offset = previous_offset; 324 } 325 } 326 327 // Write attributes to .debug_info. 328 debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset); 329 debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset); 330} 331 332} // namespace debug 333} // namespace art 334 335#endif // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_ 336 337