1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "image_writer.h"
18
19#include <sys/stat.h>
20#include <lz4.h>
21#include <lz4hc.h>
22
23#include <memory>
24#include <numeric>
25#include <unordered_set>
26#include <vector>
27
28#include "art_field-inl.h"
29#include "art_method-inl.h"
30#include "base/logging.h"
31#include "base/unix_file/fd_file.h"
32#include "class_linker-inl.h"
33#include "compiled_method.h"
34#include "dex_file-inl.h"
35#include "driver/compiler_driver.h"
36#include "elf_file.h"
37#include "elf_utils.h"
38#include "elf_writer.h"
39#include "gc/accounting/card_table-inl.h"
40#include "gc/accounting/heap_bitmap.h"
41#include "gc/accounting/space_bitmap-inl.h"
42#include "gc/heap.h"
43#include "gc/space/large_object_space.h"
44#include "gc/space/space-inl.h"
45#include "globals.h"
46#include "image.h"
47#include "intern_table.h"
48#include "linear_alloc.h"
49#include "lock_word.h"
50#include "mirror/abstract_method.h"
51#include "mirror/array-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/class_loader.h"
54#include "mirror/dex_cache-inl.h"
55#include "mirror/method.h"
56#include "mirror/object-inl.h"
57#include "mirror/object_array-inl.h"
58#include "mirror/string-inl.h"
59#include "oat.h"
60#include "oat_file.h"
61#include "oat_file_manager.h"
62#include "runtime.h"
63#include "scoped_thread_state_change.h"
64#include "handle_scope-inl.h"
65#include "utils/dex_cache_arrays_layout-inl.h"
66
67using ::art::mirror::Class;
68using ::art::mirror::DexCache;
69using ::art::mirror::Object;
70using ::art::mirror::ObjectArray;
71using ::art::mirror::String;
72
73namespace art {
74
75// Separate objects into multiple bins to optimize dirty memory use.
76static constexpr bool kBinObjects = true;
77
78// Return true if an object is already in an image space.
79bool ImageWriter::IsInBootImage(const void* obj) const {
80  gc::Heap* const heap = Runtime::Current()->GetHeap();
81  if (!compile_app_image_) {
82    DCHECK(heap->GetBootImageSpaces().empty());
83    return false;
84  }
85  for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
86    const uint8_t* image_begin = boot_image_space->Begin();
87    // Real image end including ArtMethods and ArtField sections.
88    const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
89    if (image_begin <= obj && obj < image_end) {
90      return true;
91    }
92  }
93  return false;
94}
95
96bool ImageWriter::IsInBootOatFile(const void* ptr) const {
97  gc::Heap* const heap = Runtime::Current()->GetHeap();
98  if (!compile_app_image_) {
99    DCHECK(heap->GetBootImageSpaces().empty());
100    return false;
101  }
102  for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
103    const ImageHeader& image_header = boot_image_space->GetImageHeader();
104    if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
105      return true;
106    }
107  }
108  return false;
109}
110
111static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
112    SHARED_REQUIRES(Locks::mutator_lock_) {
113  Class* klass = obj->GetClass();
114  CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
115}
116
117static void CheckNoDexObjects() {
118  ScopedObjectAccess soa(Thread::Current());
119  Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
120}
121
122bool ImageWriter::PrepareImageAddressSpace() {
123  target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
124  gc::Heap* const heap = Runtime::Current()->GetHeap();
125  {
126    ScopedObjectAccess soa(Thread::Current());
127    PruneNonImageClasses();  // Remove junk
128    if (!compile_app_image_) {
129      // Avoid for app image since this may increase RAM and image size.
130      ComputeLazyFieldsForImageClasses();  // Add useful information
131    }
132  }
133  heap->CollectGarbage(false);  // Remove garbage.
134
135  // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
136  // dex files.
137  //
138  // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
139  // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
140  // true.
141  if (kIsDebugBuild) {
142    CheckNoDexObjects();
143  }
144
145  if (kIsDebugBuild) {
146    ScopedObjectAccess soa(Thread::Current());
147    CheckNonImageClassesRemoved();
148  }
149
150  {
151    ScopedObjectAccess soa(Thread::Current());
152    CalculateNewObjectOffsets();
153  }
154
155  // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
156  // bin size sums being calculated.
157  if (!AllocMemory()) {
158    return false;
159  }
160
161  return true;
162}
163
164bool ImageWriter::Write(int image_fd,
165                        const std::vector<const char*>& image_filenames,
166                        const std::vector<const char*>& oat_filenames) {
167  // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
168  // oat_filenames.
169  CHECK(!image_filenames.empty());
170  if (image_fd != kInvalidFd) {
171    CHECK_EQ(image_filenames.size(), 1u);
172  }
173  CHECK(!oat_filenames.empty());
174  CHECK_EQ(image_filenames.size(), oat_filenames.size());
175
176  {
177    ScopedObjectAccess soa(Thread::Current());
178    for (size_t i = 0; i < oat_filenames.size(); ++i) {
179      CreateHeader(i);
180      CopyAndFixupNativeData(i);
181    }
182  }
183
184  {
185    // TODO: heap validation can't handle these fix up passes.
186    ScopedObjectAccess soa(Thread::Current());
187    Runtime::Current()->GetHeap()->DisableObjectValidation();
188    CopyAndFixupObjects();
189  }
190
191  for (size_t i = 0; i < image_filenames.size(); ++i) {
192    const char* image_filename = image_filenames[i];
193    ImageInfo& image_info = GetImageInfo(i);
194    std::unique_ptr<File> image_file;
195    if (image_fd != kInvalidFd) {
196      if (strlen(image_filename) == 0u) {
197        image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
198        // Empty the file in case it already exists.
199        if (image_file != nullptr) {
200          TEMP_FAILURE_RETRY(image_file->SetLength(0));
201          TEMP_FAILURE_RETRY(image_file->Flush());
202        }
203      } else {
204        LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
205      }
206    } else {
207      image_file.reset(OS::CreateEmptyFile(image_filename));
208    }
209
210    if (image_file == nullptr) {
211      LOG(ERROR) << "Failed to open image file " << image_filename;
212      return false;
213    }
214
215    if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
216      PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
217      image_file->Erase();
218      return EXIT_FAILURE;
219    }
220
221    std::unique_ptr<char[]> compressed_data;
222    // Image data size excludes the bitmap and the header.
223    ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
224    const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
225    char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
226    size_t data_size;
227    const char* image_data_to_write;
228    const uint64_t compress_start_time = NanoTime();
229
230    CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
231    switch (image_storage_mode_) {
232      case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
233      case ImageHeader::kStorageModeLZ4: {
234        const size_t compressed_max_size = LZ4_compressBound(image_data_size);
235        compressed_data.reset(new char[compressed_max_size]);
236        data_size = LZ4_compress(
237            reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
238            &compressed_data[0],
239            image_data_size);
240
241        break;
242      }
243      /*
244       * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
245      case ImageHeader::kStorageModeLZ4HC: {
246        // Bound is same as non HC.
247        const size_t compressed_max_size = LZ4_compressBound(image_data_size);
248        compressed_data.reset(new char[compressed_max_size]);
249        data_size = LZ4_compressHC(
250            reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
251            &compressed_data[0],
252            image_data_size);
253        break;
254      }
255      */
256      case ImageHeader::kStorageModeUncompressed: {
257        data_size = image_data_size;
258        image_data_to_write = image_data;
259        break;
260      }
261      default: {
262        LOG(FATAL) << "Unsupported";
263        UNREACHABLE();
264      }
265    }
266
267    if (compressed_data != nullptr) {
268      image_data_to_write = &compressed_data[0];
269      VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
270                     << PrettyDuration(NanoTime() - compress_start_time);
271      if (kIsDebugBuild) {
272        std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
273        const size_t decompressed_size = LZ4_decompress_safe(
274            reinterpret_cast<char*>(&compressed_data[0]),
275            reinterpret_cast<char*>(&temp[0]),
276            data_size,
277            image_data_size);
278        CHECK_EQ(decompressed_size, image_data_size);
279        CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
280      }
281    }
282
283    // Write out the image + fields + methods.
284    const bool is_compressed = compressed_data != nullptr;
285    if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
286      PLOG(ERROR) << "Failed to write image file data " << image_filename;
287      image_file->Erase();
288      return false;
289    }
290
291    // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
292    // convenience.
293    const ImageSection& bitmap_section = image_header->GetImageSection(
294        ImageHeader::kSectionImageBitmap);
295    // Align up since data size may be unaligned if the image is compressed.
296    size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
297    if (!is_compressed) {
298      CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
299    }
300    if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
301                                 bitmap_section.Size(),
302                                 bitmap_position_in_file)) {
303      PLOG(ERROR) << "Failed to write image file " << image_filename;
304      image_file->Erase();
305      return false;
306    }
307
308    int err = image_file->Flush();
309    if (err < 0) {
310      PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
311      image_file->Erase();
312      return false;
313    }
314
315    // Write header last in case the compiler gets killed in the middle of image writing.
316    // We do not want to have a corrupted image with a valid header.
317    // The header is uncompressed since it contains whether the image is compressed or not.
318    image_header->data_size_ = data_size;
319    if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
320                                 sizeof(ImageHeader),
321                                 0)) {
322      PLOG(ERROR) << "Failed to write image file header " << image_filename;
323      image_file->Erase();
324      return false;
325    }
326
327    CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
328             static_cast<size_t>(image_file->GetLength()));
329    if (image_file->FlushCloseOrErase() != 0) {
330      PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
331      return false;
332    }
333  }
334  return true;
335}
336
337void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
338  DCHECK(object != nullptr);
339  DCHECK_NE(offset, 0U);
340
341  // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
342  object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
343  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
344  DCHECK(IsImageOffsetAssigned(object));
345}
346
347void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
348  DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
349  obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
350  DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
351}
352
353void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
354  DCHECK(object != nullptr);
355  DCHECK_NE(image_objects_offset_begin_, 0u);
356
357  size_t oat_index = GetOatIndex(object);
358  ImageInfo& image_info = GetImageInfo(oat_index);
359  size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
360  size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
361  DCHECK_ALIGNED(new_offset, kObjectAlignment);
362
363  SetImageOffset(object, new_offset);
364  DCHECK_LT(new_offset, image_info.image_end_);
365}
366
367bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
368  // Will also return true if the bin slot was assigned since we are reusing the lock word.
369  DCHECK(object != nullptr);
370  return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
371}
372
373size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
374  DCHECK(object != nullptr);
375  DCHECK(IsImageOffsetAssigned(object));
376  LockWord lock_word = object->GetLockWord(false);
377  size_t offset = lock_word.ForwardingAddress();
378  size_t oat_index = GetOatIndex(object);
379  const ImageInfo& image_info = GetImageInfo(oat_index);
380  DCHECK_LT(offset, image_info.image_end_);
381  return offset;
382}
383
384void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
385  DCHECK(object != nullptr);
386  DCHECK(!IsImageOffsetAssigned(object));
387  DCHECK(!IsImageBinSlotAssigned(object));
388
389  // Before we stomp over the lock word, save the hash code for later.
390  Monitor::Deflate(Thread::Current(), object);;
391  LockWord lw(object->GetLockWord(false));
392  switch (lw.GetState()) {
393    case LockWord::kFatLocked: {
394      LOG(FATAL) << "Fat locked object " << object << " found during object copy";
395      break;
396    }
397    case LockWord::kThinLocked: {
398      LOG(FATAL) << "Thin locked object " << object << " found during object copy";
399      break;
400    }
401    case LockWord::kUnlocked:
402      // No hash, don't need to save it.
403      break;
404    case LockWord::kHashCode:
405      DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
406      saved_hashcode_map_.emplace(object, lw.GetHashCode());
407      break;
408    default:
409      LOG(FATAL) << "Unreachable.";
410      UNREACHABLE();
411  }
412  object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
413  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
414  DCHECK(IsImageBinSlotAssigned(object));
415}
416
417void ImageWriter::PrepareDexCacheArraySlots() {
418  // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
419  // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
420  // when AssignImageBinSlot() assigns their indexes out or order.
421  for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
422    auto it = dex_file_oat_index_map_.find(dex_file);
423    DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
424    ImageInfo& image_info = GetImageInfo(it->second);
425    image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
426    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
427    image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
428  }
429
430  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
431  Thread* const self = Thread::Current();
432  ReaderMutexLock mu(self, *class_linker->DexLock());
433  for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
434    mirror::DexCache* dex_cache =
435        down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
436    if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
437      continue;
438    }
439    const DexFile* dex_file = dex_cache->GetDexFile();
440    CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
441        << "Dex cache should have been pruned " << dex_file->GetLocation()
442        << "; possibly in class path";
443    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
444    DCHECK(layout.Valid());
445    size_t oat_index = GetOatIndexForDexCache(dex_cache);
446    ImageInfo& image_info = GetImageInfo(oat_index);
447    uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
448    DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
449    AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
450                               start + layout.TypesOffset(),
451                               dex_cache);
452    DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
453    AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
454                               start + layout.MethodsOffset(),
455                               dex_cache);
456    DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
457    AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
458                               start + layout.FieldsOffset(),
459                               dex_cache);
460    DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
461    AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
462  }
463}
464
465void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
466  if (array != nullptr) {
467    DCHECK(!IsInBootImage(array));
468    size_t oat_index = GetOatIndexForDexCache(dex_cache);
469    native_object_relocations_.emplace(array,
470        NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
471  }
472}
473
474void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
475  DCHECK(arr != nullptr);
476  if (kIsDebugBuild) {
477    for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
478      ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
479      if (method != nullptr && !method->IsRuntimeMethod()) {
480        mirror::Class* klass = method->GetDeclaringClass();
481        CHECK(klass == nullptr || KeepClass(klass))
482            << PrettyClass(klass) << " should be a kept class";
483      }
484    }
485  }
486  // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
487  // ArtMethods.
488  pointer_arrays_.emplace(arr, kBinArtMethodClean);
489}
490
491void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
492  DCHECK(object != nullptr);
493  size_t object_size = object->SizeOf();
494
495  // The magic happens here. We segregate objects into different bins based
496  // on how likely they are to get dirty at runtime.
497  //
498  // Likely-to-dirty objects get packed together into the same bin so that
499  // at runtime their page dirtiness ratio (how many dirty objects a page has) is
500  // maximized.
501  //
502  // This means more pages will stay either clean or shared dirty (with zygote) and
503  // the app will use less of its own (private) memory.
504  Bin bin = kBinRegular;
505  size_t current_offset = 0u;
506
507  if (kBinObjects) {
508    //
509    // Changing the bin of an object is purely a memory-use tuning.
510    // It has no change on runtime correctness.
511    //
512    // Memory analysis has determined that the following types of objects get dirtied
513    // the most:
514    //
515    // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
516    //   a fixed layout which helps improve generated code (using PC-relative addressing),
517    //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
518    //   Since these arrays are huge, most pages do not overlap other objects and it's not
519    //   really important where they are for the clean/dirty separation. Due to their
520    //   special PC-relative addressing, we arbitrarily keep them at the end.
521    // * Class'es which are verified [their clinit runs only at runtime]
522    //   - classes in general [because their static fields get overwritten]
523    //   - initialized classes with all-final statics are unlikely to be ever dirty,
524    //     so bin them separately
525    // * Art Methods that are:
526    //   - native [their native entry point is not looked up until runtime]
527    //   - have declaring classes that aren't initialized
528    //            [their interpreter/quick entry points are trampolines until the class
529    //             becomes initialized]
530    //
531    // We also assume the following objects get dirtied either never or extremely rarely:
532    //  * Strings (they are immutable)
533    //  * Art methods that aren't native and have initialized declared classes
534    //
535    // We assume that "regular" bin objects are highly unlikely to become dirtied,
536    // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
537    //
538    if (object->IsClass()) {
539      bin = kBinClassVerified;
540      mirror::Class* klass = object->AsClass();
541
542      // Add non-embedded vtable to the pointer array table if there is one.
543      auto* vtable = klass->GetVTable();
544      if (vtable != nullptr) {
545        AddMethodPointerArray(vtable);
546      }
547      auto* iftable = klass->GetIfTable();
548      if (iftable != nullptr) {
549        for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
550          if (iftable->GetMethodArrayCount(i) > 0) {
551            AddMethodPointerArray(iftable->GetMethodArray(i));
552          }
553        }
554      }
555
556      if (klass->GetStatus() == Class::kStatusInitialized) {
557        bin = kBinClassInitialized;
558
559        // If the class's static fields are all final, put it into a separate bin
560        // since it's very likely it will stay clean.
561        uint32_t num_static_fields = klass->NumStaticFields();
562        if (num_static_fields == 0) {
563          bin = kBinClassInitializedFinalStatics;
564        } else {
565          // Maybe all the statics are final?
566          bool all_final = true;
567          for (uint32_t i = 0; i < num_static_fields; ++i) {
568            ArtField* field = klass->GetStaticField(i);
569            if (!field->IsFinal()) {
570              all_final = false;
571              break;
572            }
573          }
574
575          if (all_final) {
576            bin = kBinClassInitializedFinalStatics;
577          }
578        }
579      }
580    } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
581      bin = kBinString;  // Strings are almost always immutable (except for object header).
582    } else if (object->GetClass<kVerifyNone>() ==
583        Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
584      // Instance of java lang object, probably a lock object. This means it will be dirty when we
585      // synchronize on it.
586      bin = kBinMiscDirty;
587    } else if (object->IsDexCache()) {
588      // Dex file field becomes dirty when the image is loaded.
589      bin = kBinMiscDirty;
590    }
591    // else bin = kBinRegular
592  }
593
594  size_t oat_index = GetOatIndex(object);
595  ImageInfo& image_info = GetImageInfo(oat_index);
596
597  size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
598  current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
599  // Move the current bin size up to accommodate the object we just assigned a bin slot.
600  image_info.bin_slot_sizes_[bin] += offset_delta;
601
602  BinSlot new_bin_slot(bin, current_offset);
603  SetImageBinSlot(object, new_bin_slot);
604
605  ++image_info.bin_slot_count_[bin];
606
607  // Grow the image closer to the end by the object we just assigned.
608  image_info.image_end_ += offset_delta;
609}
610
611bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
612  if (m->IsNative()) {
613    return true;
614  }
615  mirror::Class* declaring_class = m->GetDeclaringClass();
616  // Initialized is highly unlikely to dirty since there's no entry points to mutate.
617  return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
618}
619
620bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
621  DCHECK(object != nullptr);
622
623  // We always stash the bin slot into a lockword, in the 'forwarding address' state.
624  // If it's in some other state, then we haven't yet assigned an image bin slot.
625  if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
626    return false;
627  } else if (kIsDebugBuild) {
628    LockWord lock_word = object->GetLockWord(false);
629    size_t offset = lock_word.ForwardingAddress();
630    BinSlot bin_slot(offset);
631    size_t oat_index = GetOatIndex(object);
632    const ImageInfo& image_info = GetImageInfo(oat_index);
633    DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
634        << "bin slot offset should not exceed the size of that bin";
635  }
636  return true;
637}
638
639ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
640  DCHECK(object != nullptr);
641  DCHECK(IsImageBinSlotAssigned(object));
642
643  LockWord lock_word = object->GetLockWord(false);
644  size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
645  DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
646
647  BinSlot bin_slot(static_cast<uint32_t>(offset));
648  size_t oat_index = GetOatIndex(object);
649  const ImageInfo& image_info = GetImageInfo(oat_index);
650  DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
651
652  return bin_slot;
653}
654
655bool ImageWriter::AllocMemory() {
656  for (ImageInfo& image_info : image_infos_) {
657    ImageSection unused_sections[ImageHeader::kSectionCount];
658    const size_t length = RoundUp(
659        image_info.CreateImageSections(unused_sections), kPageSize);
660
661    std::string error_msg;
662    image_info.image_.reset(MemMap::MapAnonymous("image writer image",
663                                                 nullptr,
664                                                 length,
665                                                 PROT_READ | PROT_WRITE,
666                                                 false,
667                                                 false,
668                                                 &error_msg));
669    if (UNLIKELY(image_info.image_.get() == nullptr)) {
670      LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
671      return false;
672    }
673
674    // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
675    CHECK_LE(image_info.image_end_, length);
676    image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
677        "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
678    if (image_info.image_bitmap_.get() == nullptr) {
679      LOG(ERROR) << "Failed to allocate memory for image bitmap";
680      return false;
681    }
682  }
683  return true;
684}
685
686class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
687 public:
688  bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
689    StackHandleScope<1> hs(Thread::Current());
690    mirror::Class::ComputeName(hs.NewHandle(c));
691    return true;
692  }
693};
694
695void ImageWriter::ComputeLazyFieldsForImageClasses() {
696  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
697  ComputeLazyFieldsForClassesVisitor visitor;
698  class_linker->VisitClassesWithoutClassesLock(&visitor);
699}
700
701static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
702  return klass->GetClassLoader() == nullptr;
703}
704
705bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
706  return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
707}
708
709bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
710  bool early_exit = false;
711  std::unordered_set<mirror::Class*> visited;
712  return PruneAppImageClassInternal(klass, &early_exit, &visited);
713}
714
715bool ImageWriter::PruneAppImageClassInternal(
716    mirror::Class* klass,
717    bool* early_exit,
718    std::unordered_set<mirror::Class*>* visited) {
719  DCHECK(early_exit != nullptr);
720  DCHECK(visited != nullptr);
721  DCHECK(compile_app_image_);
722  if (klass == nullptr || IsInBootImage(klass)) {
723    return false;
724  }
725  auto found = prune_class_memo_.find(klass);
726  if (found != prune_class_memo_.end()) {
727    // Already computed, return the found value.
728    return found->second;
729  }
730  // Circular dependencies, return false but do not store the result in the memoization table.
731  if (visited->find(klass) != visited->end()) {
732    *early_exit = true;
733    return false;
734  }
735  visited->emplace(klass);
736  bool result = IsBootClassLoaderClass(klass);
737  std::string temp;
738  // Prune if not an image class, this handles any broken sets of image classes such as having a
739  // class in the set but not it's superclass.
740  result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
741  bool my_early_exit = false;  // Only for ourselves, ignore caller.
742  // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
743  // app image.
744  if (klass->GetStatus() == mirror::Class::kStatusError) {
745    result = true;
746  } else {
747    CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
748  }
749  if (!result) {
750    // Check interfaces since these wont be visited through VisitReferences.)
751    mirror::IfTable* if_table = klass->GetIfTable();
752    for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
753      result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
754                                                    &my_early_exit,
755                                                    visited);
756    }
757  }
758  if (klass->IsObjectArrayClass()) {
759    result = result || PruneAppImageClassInternal(klass->GetComponentType(),
760                                                  &my_early_exit,
761                                                  visited);
762  }
763  // Check static fields and their classes.
764  size_t num_static_fields = klass->NumReferenceStaticFields();
765  if (num_static_fields != 0 && klass->IsResolved()) {
766    // Presumably GC can happen when we are cross compiling, it should not cause performance
767    // problems to do pointer size logic.
768    MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
769        Runtime::Current()->GetClassLinker()->GetImagePointerSize());
770    for (size_t i = 0u; i < num_static_fields; ++i) {
771      mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
772      if (ref != nullptr) {
773        if (ref->IsClass()) {
774          result = result || PruneAppImageClassInternal(ref->AsClass(),
775                                                        &my_early_exit,
776                                                        visited);
777        } else {
778          result = result || PruneAppImageClassInternal(ref->GetClass(),
779                                                        &my_early_exit,
780                                                        visited);
781        }
782      }
783      field_offset = MemberOffset(field_offset.Uint32Value() +
784                                  sizeof(mirror::HeapReference<mirror::Object>));
785    }
786  }
787  result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
788                                                &my_early_exit,
789                                                visited);
790  // Erase the element we stored earlier since we are exiting the function.
791  auto it = visited->find(klass);
792  DCHECK(it != visited->end());
793  visited->erase(it);
794  // Only store result if it is true or none of the calls early exited due to circular
795  // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
796  // a child call and we can remember the result.
797  if (result == true || !my_early_exit || visited->empty()) {
798    prune_class_memo_[klass] = result;
799  }
800  *early_exit |= my_early_exit;
801  return result;
802}
803
804bool ImageWriter::KeepClass(Class* klass) {
805  if (klass == nullptr) {
806    return false;
807  }
808  if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
809    // Already in boot image, return true.
810    return true;
811  }
812  std::string temp;
813  if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
814    return false;
815  }
816  if (compile_app_image_) {
817    // For app images, we need to prune boot loader classes that are not in the boot image since
818    // these may have already been loaded when the app image is loaded.
819    // Keep classes in the boot image space since we don't want to re-resolve these.
820    return !PruneAppImageClass(klass);
821  }
822  return true;
823}
824
825class NonImageClassesVisitor : public ClassVisitor {
826 public:
827  explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
828
829  bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
830    if (!image_writer_->KeepClass(klass)) {
831      classes_to_prune_.insert(klass);
832    }
833    return true;
834  }
835
836  std::unordered_set<mirror::Class*> classes_to_prune_;
837  ImageWriter* const image_writer_;
838};
839
840void ImageWriter::PruneNonImageClasses() {
841  Runtime* runtime = Runtime::Current();
842  ClassLinker* class_linker = runtime->GetClassLinker();
843  Thread* self = Thread::Current();
844
845  // Clear class table strong roots so that dex caches can get pruned. We require pruning the class
846  // path dex caches.
847  class_linker->ClearClassTableStrongRoots();
848
849  // Make a list of classes we would like to prune.
850  NonImageClassesVisitor visitor(this);
851  class_linker->VisitClasses(&visitor);
852
853  // Remove the undesired classes from the class roots.
854  VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
855  for (mirror::Class* klass : visitor.classes_to_prune_) {
856    std::string temp;
857    const char* name = klass->GetDescriptor(&temp);
858    VLOG(compiler) << "Pruning class " << name;
859    if (!compile_app_image_) {
860      DCHECK(IsBootClassLoaderClass(klass));
861    }
862    bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
863    DCHECK(result);
864  }
865
866  // Clear references to removed classes from the DexCaches.
867  ArtMethod* resolution_method = runtime->GetResolutionMethod();
868
869  ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
870  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
871  ReaderMutexLock mu2(self, *class_linker->DexLock());
872  for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
873    if (self->IsJWeakCleared(data.weak_root)) {
874      continue;
875    }
876    mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
877    for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
878      Class* klass = dex_cache->GetResolvedType(i);
879      if (klass != nullptr && !KeepClass(klass)) {
880        dex_cache->SetResolvedType(i, nullptr);
881      }
882    }
883    ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
884    for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
885      ArtMethod* method =
886          mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
887      DCHECK(method != nullptr) << "Expected resolution method instead of null method";
888      mirror::Class* declaring_class = method->GetDeclaringClass();
889      // Copied methods may be held live by a class which was not an image class but have a
890      // declaring class which is an image class. Set it to the resolution method to be safe and
891      // prevent dangling pointers.
892      if (method->IsCopied() || !KeepClass(declaring_class)) {
893        mirror::DexCache::SetElementPtrSize(resolved_methods,
894                                            i,
895                                            resolution_method,
896                                            target_ptr_size_);
897      } else {
898        // Check that the class is still in the classes table.
899        DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
900            << PrettyClass(declaring_class) << " not in class linker table";
901      }
902    }
903    ArtField** resolved_fields = dex_cache->GetResolvedFields();
904    for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
905      ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
906      if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
907        dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
908      }
909    }
910    // Clean the dex field. It might have been populated during the initialization phase, but
911    // contains data only valid during a real run.
912    dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
913  }
914
915  // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
916  class_linker->DropFindArrayClassCache();
917
918  // Clear to save RAM.
919  prune_class_memo_.clear();
920}
921
922void ImageWriter::CheckNonImageClassesRemoved() {
923  if (compiler_driver_.GetImageClasses() != nullptr) {
924    gc::Heap* heap = Runtime::Current()->GetHeap();
925    heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
926  }
927}
928
929void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
930  ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
931  if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
932    Class* klass = obj->AsClass();
933    if (!image_writer->KeepClass(klass)) {
934      image_writer->DumpImageClasses();
935      std::string temp;
936      CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
937                                            << " " << PrettyDescriptor(klass);
938    }
939  }
940}
941
942void ImageWriter::DumpImageClasses() {
943  auto image_classes = compiler_driver_.GetImageClasses();
944  CHECK(image_classes != nullptr);
945  for (const std::string& image_class : *image_classes) {
946    LOG(INFO) << " " << image_class;
947  }
948}
949
950mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
951  Thread* const self = Thread::Current();
952  for (const ImageInfo& image_info : image_infos_) {
953    mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
954    DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
955        << string->ToModifiedUtf8();
956    if (found != nullptr) {
957      return found;
958    }
959  }
960  if (compile_app_image_) {
961    Runtime* const runtime = Runtime::Current();
962    mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
963    // If we found it in the runtime intern table it could either be in the boot image or interned
964    // during app image compilation. If it was in the boot image return that, otherwise return null
965    // since it belongs to another image space.
966    if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
967      return found;
968    }
969    DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
970        << string->ToModifiedUtf8();
971  }
972  return nullptr;
973}
974
975void ImageWriter::CalculateObjectBinSlots(Object* obj) {
976  DCHECK(obj != nullptr);
977  // if it is a string, we want to intern it if its not interned.
978  if (obj->GetClass()->IsStringClass()) {
979    size_t oat_index = GetOatIndex(obj);
980    ImageInfo& image_info = GetImageInfo(oat_index);
981
982    // we must be an interned string that was forward referenced and already assigned
983    if (IsImageBinSlotAssigned(obj)) {
984      DCHECK_EQ(obj, FindInternedString(obj->AsString()));
985      return;
986    }
987    // Need to check if the string is already interned in another image info so that we don't have
988    // the intern tables of two different images contain the same string.
989    mirror::String* interned = FindInternedString(obj->AsString());
990    if (interned == nullptr) {
991      // Not in another image space, insert to our table.
992      interned = image_info.intern_table_->InternStrongImageString(obj->AsString());
993    }
994    if (obj != interned) {
995      if (!IsImageBinSlotAssigned(interned)) {
996        // interned obj is after us, allocate its location early
997        AssignImageBinSlot(interned);
998      }
999      // point those looking for this object to the interned version.
1000      SetImageBinSlot(obj, GetImageBinSlot(interned));
1001      return;
1002    }
1003    // else (obj == interned), nothing to do but fall through to the normal case
1004  }
1005
1006  AssignImageBinSlot(obj);
1007}
1008
1009ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
1010  Runtime* runtime = Runtime::Current();
1011  ClassLinker* class_linker = runtime->GetClassLinker();
1012  Thread* self = Thread::Current();
1013  StackHandleScope<3> hs(self);
1014  Handle<Class> object_array_class(hs.NewHandle(
1015      class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
1016
1017  std::unordered_set<const DexFile*> image_dex_files;
1018  for (auto& pair : dex_file_oat_index_map_) {
1019    const DexFile* image_dex_file = pair.first;
1020    size_t image_oat_index = pair.second;
1021    if (oat_index == image_oat_index) {
1022      image_dex_files.insert(image_dex_file);
1023    }
1024  }
1025
1026  // build an Object[] of all the DexCaches used in the source_space_.
1027  // Since we can't hold the dex lock when allocating the dex_caches
1028  // ObjectArray, we lock the dex lock twice, first to get the number
1029  // of dex caches first and then lock it again to copy the dex
1030  // caches. We check that the number of dex caches does not change.
1031  size_t dex_cache_count = 0;
1032  {
1033    ReaderMutexLock mu(self, *class_linker->DexLock());
1034    // Count number of dex caches not in the boot image.
1035    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1036      mirror::DexCache* dex_cache =
1037          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1038      if (dex_cache == nullptr) {
1039        continue;
1040      }
1041      const DexFile* dex_file = dex_cache->GetDexFile();
1042      if (!IsInBootImage(dex_cache)) {
1043        dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1044      }
1045    }
1046  }
1047  Handle<ObjectArray<Object>> dex_caches(
1048      hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1049  CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
1050  {
1051    ReaderMutexLock mu(self, *class_linker->DexLock());
1052    size_t non_image_dex_caches = 0;
1053    // Re-count number of non image dex caches.
1054    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1055      mirror::DexCache* dex_cache =
1056          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1057      if (dex_cache == nullptr) {
1058        continue;
1059      }
1060      const DexFile* dex_file = dex_cache->GetDexFile();
1061      if (!IsInBootImage(dex_cache)) {
1062        non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1063      }
1064    }
1065    CHECK_EQ(dex_cache_count, non_image_dex_caches)
1066        << "The number of non-image dex caches changed.";
1067    size_t i = 0;
1068    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1069      mirror::DexCache* dex_cache =
1070          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1071      if (dex_cache == nullptr) {
1072        continue;
1073      }
1074      const DexFile* dex_file = dex_cache->GetDexFile();
1075      if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
1076        dex_caches->Set<false>(i, dex_cache);
1077        ++i;
1078      }
1079    }
1080  }
1081
1082  // build an Object[] of the roots needed to restore the runtime
1083  auto image_roots(hs.NewHandle(
1084      ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
1085  image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1086  image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1087  for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
1088    CHECK(image_roots->Get(i) != nullptr);
1089  }
1090  return image_roots.Get();
1091}
1092
1093// Walk instance fields of the given Class. Separate function to allow recursion on the super
1094// class.
1095void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
1096  // Visit fields of parent classes first.
1097  StackHandleScope<1> hs(Thread::Current());
1098  Handle<mirror::Class> h_class(hs.NewHandle(klass));
1099  mirror::Class* super = h_class->GetSuperClass();
1100  if (super != nullptr) {
1101    WalkInstanceFields(obj, super);
1102  }
1103  //
1104  size_t num_reference_fields = h_class->NumReferenceInstanceFields();
1105  MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
1106  for (size_t i = 0; i < num_reference_fields; ++i) {
1107    mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
1108    if (value != nullptr) {
1109      WalkFieldsInOrder(value);
1110    }
1111    field_offset = MemberOffset(field_offset.Uint32Value() +
1112                                sizeof(mirror::HeapReference<mirror::Object>));
1113  }
1114}
1115
1116// For an unvisited object, visit it then all its children found via fields.
1117void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
1118  if (IsInBootImage(obj)) {
1119    // Object is in the image, don't need to fix it up.
1120    return;
1121  }
1122  // Use our own visitor routine (instead of GC visitor) to get better locality between
1123  // an object and its fields
1124  if (!IsImageBinSlotAssigned(obj)) {
1125    // Walk instance fields of all objects
1126    StackHandleScope<2> hs(Thread::Current());
1127    Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1128    Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
1129    // visit the object itself.
1130    CalculateObjectBinSlots(h_obj.Get());
1131    WalkInstanceFields(h_obj.Get(), klass.Get());
1132    // Walk static fields of a Class.
1133    if (h_obj->IsClass()) {
1134      size_t num_reference_static_fields = klass->NumReferenceStaticFields();
1135      MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
1136      for (size_t i = 0; i < num_reference_static_fields; ++i) {
1137        mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
1138        if (value != nullptr) {
1139          WalkFieldsInOrder(value);
1140        }
1141        field_offset = MemberOffset(field_offset.Uint32Value() +
1142                                    sizeof(mirror::HeapReference<mirror::Object>));
1143      }
1144      // Visit and assign offsets for fields and field arrays.
1145      auto* as_klass = h_obj->AsClass();
1146      mirror::DexCache* dex_cache = as_klass->GetDexCache();
1147      DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1148      if (compile_app_image_) {
1149        // Extra sanity, no boot loader classes should be left!
1150        CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
1151      }
1152      LengthPrefixedArray<ArtField>* fields[] = {
1153          as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1154      };
1155      size_t oat_index = GetOatIndexForDexCache(dex_cache);
1156      ImageInfo& image_info = GetImageInfo(oat_index);
1157      {
1158        // Note: This table is only accessed from the image writer, so the lock is technically
1159        // unnecessary.
1160        WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1161        // Insert in the class table for this iamge.
1162        image_info.class_table_->Insert(as_klass);
1163      }
1164      for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1165        // Total array length including header.
1166        if (cur_fields != nullptr) {
1167          const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1168          // Forward the entire array at once.
1169          auto it = native_object_relocations_.find(cur_fields);
1170          CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1171                                                  << " already forwarded";
1172          size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1173          DCHECK(!IsInBootImage(cur_fields));
1174          native_object_relocations_.emplace(
1175              cur_fields,
1176              NativeObjectRelocation {
1177                  oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1178              });
1179          offset += header_size;
1180          // Forward individual fields so that we can quickly find where they belong.
1181          for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1182            // Need to forward arrays separate of fields.
1183            ArtField* field = &cur_fields->At(i);
1184            auto it2 = native_object_relocations_.find(field);
1185            CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1186                << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
1187            DCHECK(!IsInBootImage(field));
1188            native_object_relocations_.emplace(
1189                field,
1190                NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1191            offset += sizeof(ArtField);
1192          }
1193        }
1194      }
1195      // Visit and assign offsets for methods.
1196      size_t num_methods = as_klass->NumMethods();
1197      if (num_methods != 0) {
1198        bool any_dirty = false;
1199        for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1200          if (WillMethodBeDirty(&m)) {
1201            any_dirty = true;
1202            break;
1203          }
1204        }
1205        NativeObjectRelocationType type = any_dirty
1206            ? kNativeObjectRelocationTypeArtMethodDirty
1207            : kNativeObjectRelocationTypeArtMethodClean;
1208        Bin bin_type = BinTypeForNativeRelocationType(type);
1209        // Forward the entire array at once, but header first.
1210        const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1211        const size_t method_size = ArtMethod::Size(target_ptr_size_);
1212        const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1213                                                                               method_size,
1214                                                                               method_alignment);
1215        LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1216        auto it = native_object_relocations_.find(array);
1217        CHECK(it == native_object_relocations_.end())
1218            << "Method array " << array << " already forwarded";
1219        size_t& offset = image_info.bin_slot_sizes_[bin_type];
1220        DCHECK(!IsInBootImage(array));
1221        native_object_relocations_.emplace(array,
1222            NativeObjectRelocation {
1223                oat_index,
1224                offset,
1225                any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1226                          : kNativeObjectRelocationTypeArtMethodArrayClean });
1227        offset += header_size;
1228        for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1229          AssignMethodOffset(&m, type, oat_index);
1230        }
1231        (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1232      }
1233      // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1234      // live.
1235      if (as_klass->ShouldHaveEmbeddedImtAndVTable()) {
1236        for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
1237          ArtMethod* imt_method = as_klass->GetEmbeddedImTableEntry(i, target_ptr_size_);
1238          DCHECK(imt_method != nullptr);
1239          if (imt_method->IsRuntimeMethod() &&
1240              !IsInBootImage(imt_method) &&
1241              !NativeRelocationAssigned(imt_method)) {
1242            AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1243          }
1244        }
1245      }
1246    } else if (h_obj->IsObjectArray()) {
1247      // Walk elements of an object array.
1248      int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
1249      for (int32_t i = 0; i < length; i++) {
1250        mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
1251        mirror::Object* value = obj_array->Get(i);
1252        if (value != nullptr) {
1253          WalkFieldsInOrder(value);
1254        }
1255      }
1256    } else if (h_obj->IsClassLoader()) {
1257      // Register the class loader if it has a class table.
1258      // The fake boot class loader should not get registered and we should end up with only one
1259      // class loader.
1260      mirror::ClassLoader* class_loader = h_obj->AsClassLoader();
1261      if (class_loader->GetClassTable() != nullptr) {
1262        class_loaders_.insert(class_loader);
1263      }
1264    }
1265  }
1266}
1267
1268bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1269  return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1270}
1271
1272void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1273  // No offset, or already assigned.
1274  if (table == nullptr || NativeRelocationAssigned(table)) {
1275    return;
1276  }
1277  CHECK(!IsInBootImage(table));
1278  // If the method is a conflict method we also want to assign the conflict table offset.
1279  ImageInfo& image_info = GetImageInfo(oat_index);
1280  const size_t size = table->ComputeSize(target_ptr_size_);
1281  native_object_relocations_.emplace(
1282      table,
1283      NativeObjectRelocation {
1284          oat_index,
1285          image_info.bin_slot_sizes_[kBinIMTConflictTable],
1286          kNativeObjectRelocationTypeIMTConflictTable});
1287  image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1288}
1289
1290void ImageWriter::AssignMethodOffset(ArtMethod* method,
1291                                     NativeObjectRelocationType type,
1292                                     size_t oat_index) {
1293  DCHECK(!IsInBootImage(method));
1294  CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1295      << PrettyMethod(method);
1296  if (method->IsRuntimeMethod()) {
1297    TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1298  }
1299  ImageInfo& image_info = GetImageInfo(oat_index);
1300  size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1301  native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1302  offset += ArtMethod::Size(target_ptr_size_);
1303}
1304
1305void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
1306  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1307  DCHECK(writer != nullptr);
1308  writer->WalkFieldsInOrder(obj);
1309}
1310
1311void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
1312  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1313  DCHECK(writer != nullptr);
1314  if (!writer->IsInBootImage(obj)) {
1315    writer->UnbinObjectsIntoOffset(obj);
1316  }
1317}
1318
1319void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1320  DCHECK(!IsInBootImage(obj));
1321  CHECK(obj != nullptr);
1322
1323  // We know the bin slot, and the total bin sizes for all objects by now,
1324  // so calculate the object's final image offset.
1325
1326  DCHECK(IsImageBinSlotAssigned(obj));
1327  BinSlot bin_slot = GetImageBinSlot(obj);
1328  // Change the lockword from a bin slot into an offset
1329  AssignImageOffset(obj, bin_slot);
1330}
1331
1332void ImageWriter::CalculateNewObjectOffsets() {
1333  Thread* const self = Thread::Current();
1334  StackHandleScopeCollection handles(self);
1335  std::vector<Handle<ObjectArray<Object>>> image_roots;
1336  for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1337    image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1338  }
1339
1340  auto* runtime = Runtime::Current();
1341  auto* heap = runtime->GetHeap();
1342
1343  // Leave space for the header, but do not write it yet, we need to
1344  // know where image_roots is going to end up
1345  image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
1346
1347  const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1348  // Write the image runtime methods.
1349  image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1350  image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1351  image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1352  image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
1353  image_methods_[ImageHeader::kRefsOnlySaveMethod] =
1354      runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
1355  image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
1356      runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
1357  // Visit image methods first to have the main runtime methods in the first image.
1358  for (auto* m : image_methods_) {
1359    CHECK(m != nullptr);
1360    CHECK(m->IsRuntimeMethod());
1361    DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1362    if (!IsInBootImage(m)) {
1363      AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1364    }
1365  }
1366
1367  // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
1368  heap->VisitObjects(WalkFieldsCallback, this);
1369
1370  // Calculate size of the dex cache arrays slot and prepare offsets.
1371  PrepareDexCacheArraySlots();
1372
1373  // Calculate the sizes of the intern tables and class tables.
1374  for (ImageInfo& image_info : image_infos_) {
1375    // Calculate how big the intern table will be after being serialized.
1376    InternTable* const intern_table = image_info.intern_table_.get();
1377    CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1378    image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1379    // Calculate the size of the class table.
1380    ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1381    image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1382  }
1383
1384  // Calculate bin slot offsets.
1385  for (ImageInfo& image_info : image_infos_) {
1386    size_t bin_offset = image_objects_offset_begin_;
1387    for (size_t i = 0; i != kBinSize; ++i) {
1388      switch (i) {
1389        case kBinArtMethodClean:
1390        case kBinArtMethodDirty: {
1391          bin_offset = RoundUp(bin_offset, method_alignment);
1392          break;
1393        }
1394        case kBinIMTConflictTable: {
1395          bin_offset = RoundUp(bin_offset, target_ptr_size_);
1396          break;
1397        }
1398        default: {
1399          // Normal alignment.
1400        }
1401      }
1402      image_info.bin_slot_offsets_[i] = bin_offset;
1403      bin_offset += image_info.bin_slot_sizes_[i];
1404    }
1405    // NOTE: There may be additional padding between the bin slots and the intern table.
1406    DCHECK_EQ(image_info.image_end_,
1407              GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1408  }
1409
1410  // Calculate image offsets.
1411  size_t image_offset = 0;
1412  for (ImageInfo& image_info : image_infos_) {
1413    image_info.image_begin_ = global_image_begin_ + image_offset;
1414    image_info.image_offset_ = image_offset;
1415    ImageSection unused_sections[ImageHeader::kSectionCount];
1416    image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1417    // There should be no gaps until the next image.
1418    image_offset += image_info.image_size_;
1419  }
1420
1421  // Transform each object's bin slot into an offset which will be used to do the final copy.
1422  heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
1423
1424  // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
1425
1426  size_t i = 0;
1427  for (ImageInfo& image_info : image_infos_) {
1428    image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1429    i++;
1430  }
1431
1432  // Update the native relocations by adding their bin sums.
1433  for (auto& pair : native_object_relocations_) {
1434    NativeObjectRelocation& relocation = pair.second;
1435    Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1436    ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1437    relocation.offset += image_info.bin_slot_offsets_[bin_type];
1438  }
1439
1440  // Note that image_info.image_end_ is left at end of used mirror object section.
1441}
1442
1443size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1444  DCHECK(out_sections != nullptr);
1445
1446  // Do not round up any sections here that are represented by the bins since it will break
1447  // offsets.
1448
1449  // Objects section
1450  ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1451  *objects_section = ImageSection(0u, image_end_);
1452
1453  // Add field section.
1454  ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1455  *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1456  CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1457
1458  // Add method section.
1459  ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1460  *methods_section = ImageSection(
1461      bin_slot_offsets_[kBinArtMethodClean],
1462      bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1463
1464  // Conflict tables section.
1465  ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1466  *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1467                                              bin_slot_sizes_[kBinIMTConflictTable]);
1468
1469  // Runtime methods section.
1470  ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1471  *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1472                                          bin_slot_sizes_[kBinRuntimeMethod]);
1473
1474  // Add dex cache arrays section.
1475  ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1476  *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1477                                           bin_slot_sizes_[kBinDexCacheArray]);
1478
1479  // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1480  size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1481  // Calculate the size of the interned strings.
1482  ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1483  *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1484  cur_pos = interned_strings_section->End();
1485  // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1486  cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1487  // Calculate the size of the class table section.
1488  ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1489  *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1490  cur_pos = class_table_section->End();
1491  // Image end goes right before the start of the image bitmap.
1492  return cur_pos;
1493}
1494
1495void ImageWriter::CreateHeader(size_t oat_index) {
1496  ImageInfo& image_info = GetImageInfo(oat_index);
1497  const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1498  const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1499  const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1500
1501  // Create the image sections.
1502  ImageSection sections[ImageHeader::kSectionCount];
1503  const size_t image_end = image_info.CreateImageSections(sections);
1504
1505  // Finally bitmap section.
1506  const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1507  auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
1508  *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1509  if (VLOG_IS_ON(compiler)) {
1510    LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1511    size_t idx = 0;
1512    for (const ImageSection& section : sections) {
1513      LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1514      ++idx;
1515    }
1516    LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1517    LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1518    LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1519              << " Image offset=" << image_info.image_offset_ << std::dec;
1520    LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1521              << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1522              << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1523              << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1524  }
1525  // Store boot image info for app image so that we can relocate.
1526  uint32_t boot_image_begin = 0;
1527  uint32_t boot_image_end = 0;
1528  uint32_t boot_oat_begin = 0;
1529  uint32_t boot_oat_end = 0;
1530  gc::Heap* const heap = Runtime::Current()->GetHeap();
1531  heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1532
1533  // Create the header, leave 0 for data size since we will fill this in as we are writing the
1534  // image.
1535  new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1536                                               image_end,
1537                                               sections,
1538                                               image_info.image_roots_address_,
1539                                               image_info.oat_checksum_,
1540                                               PointerToLowMemUInt32(oat_file_begin),
1541                                               PointerToLowMemUInt32(image_info.oat_data_begin_),
1542                                               PointerToLowMemUInt32(oat_data_end),
1543                                               PointerToLowMemUInt32(oat_file_end),
1544                                               boot_image_begin,
1545                                               boot_image_end - boot_image_begin,
1546                                               boot_oat_begin,
1547                                               boot_oat_end - boot_oat_begin,
1548                                               target_ptr_size_,
1549                                               compile_pic_,
1550                                               /*is_pic*/compile_app_image_,
1551                                               image_storage_mode_,
1552                                               /*data_size*/0u);
1553}
1554
1555ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1556  auto it = native_object_relocations_.find(method);
1557  CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
1558  size_t oat_index = GetOatIndex(method->GetDexCache());
1559  ImageInfo& image_info = GetImageInfo(oat_index);
1560  CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1561  return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1562}
1563
1564class FixupRootVisitor : public RootVisitor {
1565 public:
1566  explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1567  }
1568
1569  void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1570      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1571    for (size_t i = 0; i < count; ++i) {
1572      *roots[i] = image_writer_->GetImageAddress(*roots[i]);
1573    }
1574  }
1575
1576  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1577                  const RootInfo& info ATTRIBUTE_UNUSED)
1578      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1579    for (size_t i = 0; i < count; ++i) {
1580      roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
1581    }
1582  }
1583
1584 private:
1585  ImageWriter* const image_writer_;
1586};
1587
1588void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
1589  const size_t count = orig->NumEntries(target_ptr_size_);
1590  for (size_t i = 0; i < count; ++i) {
1591    ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
1592    ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
1593    copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
1594    copy->SetImplementationMethod(i,
1595                                  target_ptr_size_,
1596                                  NativeLocationInImage(implementation_method));
1597  }
1598}
1599
1600void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
1601  const ImageInfo& image_info = GetImageInfo(oat_index);
1602  // Copy ArtFields and methods to their locations and update the array for convenience.
1603  for (auto& pair : native_object_relocations_) {
1604    NativeObjectRelocation& relocation = pair.second;
1605    // Only work with fields and methods that are in the current oat file.
1606    if (relocation.oat_index != oat_index) {
1607      continue;
1608    }
1609    auto* dest = image_info.image_->Begin() + relocation.offset;
1610    DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
1611    DCHECK(!IsInBootImage(pair.first));
1612    switch (relocation.type) {
1613      case kNativeObjectRelocationTypeArtField: {
1614        memcpy(dest, pair.first, sizeof(ArtField));
1615        reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1616            GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1617        break;
1618      }
1619      case kNativeObjectRelocationTypeRuntimeMethod:
1620      case kNativeObjectRelocationTypeArtMethodClean:
1621      case kNativeObjectRelocationTypeArtMethodDirty: {
1622        CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1623                           reinterpret_cast<ArtMethod*>(dest),
1624                           image_info);
1625        break;
1626      }
1627      // For arrays, copy just the header since the elements will get copied by their corresponding
1628      // relocations.
1629      case kNativeObjectRelocationTypeArtFieldArray: {
1630        memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
1631        break;
1632      }
1633      case kNativeObjectRelocationTypeArtMethodArrayClean:
1634      case kNativeObjectRelocationTypeArtMethodArrayDirty: {
1635        size_t size = ArtMethod::Size(target_ptr_size_);
1636        size_t alignment = ArtMethod::Alignment(target_ptr_size_);
1637        memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
1638        // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
1639        reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
1640        break;
1641      }
1642      case kNativeObjectRelocationTypeDexCacheArray:
1643        // Nothing to copy here, everything is done in FixupDexCache().
1644        break;
1645      case kNativeObjectRelocationTypeIMTConflictTable: {
1646        auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
1647        CopyAndFixupImtConflictTable(
1648            orig_table,
1649            new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
1650        break;
1651      }
1652    }
1653  }
1654  // Fixup the image method roots.
1655  auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
1656  for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1657    ArtMethod* method = image_methods_[i];
1658    CHECK(method != nullptr);
1659    if (!IsInBootImage(method)) {
1660      method = NativeLocationInImage(method);
1661    }
1662    image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
1663  }
1664  FixupRootVisitor root_visitor(this);
1665
1666  // Write the intern table into the image.
1667  if (image_info.intern_table_bytes_ > 0) {
1668    const ImageSection& intern_table_section = image_header->GetImageSection(
1669        ImageHeader::kSectionInternedStrings);
1670    InternTable* const intern_table = image_info.intern_table_.get();
1671    uint8_t* const intern_table_memory_ptr =
1672        image_info.image_->Begin() + intern_table_section.Offset();
1673    const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
1674    CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
1675    // Fixup the pointers in the newly written intern table to contain image addresses.
1676    InternTable temp_intern_table;
1677    // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1678    // the VisitRoots() will update the memory directly rather than the copies.
1679    // This also relies on visit roots not doing any verification which could fail after we update
1680    // the roots to be the image addresses.
1681    temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
1682    CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
1683    temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
1684  }
1685  // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
1686  // class loaders. Writing multiple class tables into the image is currently unsupported.
1687  if (image_info.class_table_bytes_ > 0u) {
1688    const ImageSection& class_table_section = image_header->GetImageSection(
1689        ImageHeader::kSectionClassTable);
1690    uint8_t* const class_table_memory_ptr =
1691        image_info.image_->Begin() + class_table_section.Offset();
1692    ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1693
1694    ClassTable* table = image_info.class_table_.get();
1695    CHECK(table != nullptr);
1696    const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
1697    CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
1698    // Fixup the pointers in the newly written class table to contain image addresses. See
1699    // above comment for intern tables.
1700    ClassTable temp_class_table;
1701    temp_class_table.ReadFromMemory(class_table_memory_ptr);
1702    CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
1703             table->NumZygoteClasses());
1704    BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
1705                                                                    RootInfo(kRootUnknown));
1706    temp_class_table.VisitRoots(buffered_visitor);
1707  }
1708}
1709
1710void ImageWriter::CopyAndFixupObjects() {
1711  gc::Heap* heap = Runtime::Current()->GetHeap();
1712  heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1713  // Fix up the object previously had hash codes.
1714  for (const auto& hash_pair : saved_hashcode_map_) {
1715    Object* obj = hash_pair.first;
1716    DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
1717    obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
1718  }
1719  saved_hashcode_map_.clear();
1720}
1721
1722void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1723  DCHECK(obj != nullptr);
1724  DCHECK(arg != nullptr);
1725  reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1726}
1727
1728void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1729                                    mirror::Class* klass, Bin array_type) {
1730  CHECK(klass->IsArrayClass());
1731  CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1732  // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1733  const size_t num_elements = arr->GetLength();
1734  dst->SetClass(GetImageAddress(arr->GetClass()));
1735  auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1736  for (size_t i = 0, count = num_elements; i < count; ++i) {
1737    void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1738    if (elem != nullptr && !IsInBootImage(elem)) {
1739      auto it = native_object_relocations_.find(elem);
1740      if (UNLIKELY(it == native_object_relocations_.end())) {
1741        if (it->second.IsArtMethodRelocation()) {
1742          auto* method = reinterpret_cast<ArtMethod*>(elem);
1743          LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1744              << method << " idx=" << i << "/" << num_elements << " with declaring class "
1745              << PrettyClass(method->GetDeclaringClass());
1746        } else {
1747          CHECK_EQ(array_type, kBinArtField);
1748          auto* field = reinterpret_cast<ArtField*>(elem);
1749          LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1750              << field << " idx=" << i << "/" << num_elements << " with declaring class "
1751              << PrettyClass(field->GetDeclaringClass());
1752        }
1753        UNREACHABLE();
1754      } else {
1755        ImageInfo& image_info = GetImageInfo(it->second.oat_index);
1756        elem = image_info.image_begin_ + it->second.offset;
1757      }
1758    }
1759    dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1760  }
1761}
1762
1763void ImageWriter::CopyAndFixupObject(Object* obj) {
1764  if (IsInBootImage(obj)) {
1765    return;
1766  }
1767  size_t offset = GetImageOffset(obj);
1768  size_t oat_index = GetOatIndex(obj);
1769  ImageInfo& image_info = GetImageInfo(oat_index);
1770  auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
1771  DCHECK_LT(offset, image_info.image_end_);
1772  const auto* src = reinterpret_cast<const uint8_t*>(obj);
1773
1774  image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
1775
1776  const size_t n = obj->SizeOf();
1777  DCHECK_LE(offset + n, image_info.image_->Size());
1778  memcpy(dst, src, n);
1779
1780  // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1781  // word.
1782  const auto it = saved_hashcode_map_.find(obj);
1783  dst->SetLockWord(it != saved_hashcode_map_.end() ?
1784      LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1785  FixupObject(obj, dst);
1786}
1787
1788// Rewrite all the references in the copied object to point to their image address equivalent
1789class FixupVisitor {
1790 public:
1791  FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1792  }
1793
1794  // Ignore class roots since we don't have a way to map them to the destination. These are handled
1795  // with other logic.
1796  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1797      const {}
1798  void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1799
1800
1801  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1802      REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1803    Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1804    // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1805    // image.
1806    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1807        offset,
1808        image_writer_->GetImageAddress(ref));
1809  }
1810
1811  // java.lang.ref.Reference visitor.
1812  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1813      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1814    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1815        mirror::Reference::ReferentOffset(),
1816        image_writer_->GetImageAddress(ref->GetReferent()));
1817  }
1818
1819 protected:
1820  ImageWriter* const image_writer_;
1821  mirror::Object* const copy_;
1822};
1823
1824class FixupClassVisitor FINAL : public FixupVisitor {
1825 public:
1826  FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1827  }
1828
1829  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1830      REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1831    DCHECK(obj->IsClass());
1832    FixupVisitor::operator()(obj, offset, /*is_static*/false);
1833  }
1834
1835  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1836                  mirror::Reference* ref ATTRIBUTE_UNUSED) const
1837      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1838    LOG(FATAL) << "Reference not expected here.";
1839  }
1840};
1841
1842uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
1843  DCHECK(obj != nullptr);
1844  DCHECK(!IsInBootImage(obj));
1845  auto it = native_object_relocations_.find(obj);
1846  CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1847      << Runtime::Current()->GetHeap()->DumpSpaces();
1848  const NativeObjectRelocation& relocation = it->second;
1849  return relocation.offset;
1850}
1851
1852template <typename T>
1853T* ImageWriter::NativeLocationInImage(T* obj) {
1854  if (obj == nullptr || IsInBootImage(obj)) {
1855    return obj;
1856  } else {
1857    auto it = native_object_relocations_.find(obj);
1858    CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1859        << Runtime::Current()->GetHeap()->DumpSpaces();
1860    const NativeObjectRelocation& relocation = it->second;
1861    ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1862    return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
1863  }
1864}
1865
1866template <typename T>
1867T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
1868  if (obj == nullptr || IsInBootImage(obj)) {
1869    return obj;
1870  } else {
1871    size_t oat_index = GetOatIndexForDexCache(dex_cache);
1872    ImageInfo& image_info = GetImageInfo(oat_index);
1873    return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
1874  }
1875}
1876
1877class NativeLocationVisitor {
1878 public:
1879  explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1880
1881  template <typename T>
1882  T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1883    return image_writer_->NativeLocationInImage(ptr);
1884  }
1885
1886 private:
1887  ImageWriter* const image_writer_;
1888};
1889
1890void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
1891  orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
1892  FixupClassVisitor visitor(this, copy);
1893  static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
1894
1895  // Remove the clinitThreadId. This is required for image determinism.
1896  copy->SetClinitThreadId(static_cast<pid_t>(0));
1897}
1898
1899void ImageWriter::FixupObject(Object* orig, Object* copy) {
1900  DCHECK(orig != nullptr);
1901  DCHECK(copy != nullptr);
1902  if (kUseBakerOrBrooksReadBarrier) {
1903    orig->AssertReadBarrierPointer();
1904    if (kUseBrooksReadBarrier) {
1905      // Note the address 'copy' isn't the same as the image address of 'orig'.
1906      copy->SetReadBarrierPointer(GetImageAddress(orig));
1907      DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
1908    }
1909  }
1910  auto* klass = orig->GetClass();
1911  if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
1912    // Is this a native pointer array?
1913    auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
1914    if (it != pointer_arrays_.end()) {
1915      // Should only need to fixup every pointer array exactly once.
1916      FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
1917      pointer_arrays_.erase(it);
1918      return;
1919    }
1920  }
1921  if (orig->IsClass()) {
1922    FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
1923  } else {
1924    if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
1925      // Need to go update the ArtMethod.
1926      auto* dest = down_cast<mirror::AbstractMethod*>(copy);
1927      auto* src = down_cast<mirror::AbstractMethod*>(orig);
1928      ArtMethod* src_method = src->GetArtMethod();
1929      auto it = native_object_relocations_.find(src_method);
1930      CHECK(it != native_object_relocations_.end())
1931          << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
1932      dest->SetArtMethod(
1933          reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
1934    } else if (!klass->IsArrayClass()) {
1935      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1936      if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
1937        FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
1938      } else if (klass->IsClassLoaderClass()) {
1939        mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
1940        // If src is a ClassLoader, set the class table to null so that it gets recreated by the
1941        // ClassLoader.
1942        copy_loader->SetClassTable(nullptr);
1943        // Also set allocator to null to be safe. The allocator is created when we create the class
1944        // table. We also never expect to unload things in the image since they are held live as
1945        // roots.
1946        copy_loader->SetAllocator(nullptr);
1947      }
1948    }
1949    FixupVisitor visitor(this, copy);
1950    orig->VisitReferences(visitor, visitor);
1951  }
1952}
1953
1954
1955class ImageAddressVisitor {
1956 public:
1957  explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1958
1959  template <typename T>
1960  T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1961    return image_writer_->GetImageAddress(ptr);
1962  }
1963
1964 private:
1965  ImageWriter* const image_writer_;
1966};
1967
1968
1969void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
1970                                mirror::DexCache* copy_dex_cache) {
1971  // Though the DexCache array fields are usually treated as native pointers, we set the full
1972  // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
1973  // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
1974  //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
1975  GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
1976  if (orig_strings != nullptr) {
1977    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
1978                                               NativeLocationInImage(orig_strings),
1979                                               /*pointer size*/8u);
1980    orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
1981                                 ImageAddressVisitor(this));
1982  }
1983  GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
1984  if (orig_types != nullptr) {
1985    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
1986                                               NativeLocationInImage(orig_types),
1987                                               /*pointer size*/8u);
1988    orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
1989                                       ImageAddressVisitor(this));
1990  }
1991  ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
1992  if (orig_methods != nullptr) {
1993    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
1994                                               NativeLocationInImage(orig_methods),
1995                                               /*pointer size*/8u);
1996    ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
1997    for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
1998      ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
1999      // NativeLocationInImage also handles runtime methods since these have relocation info.
2000      ArtMethod* copy = NativeLocationInImage(orig);
2001      mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
2002    }
2003  }
2004  ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
2005  if (orig_fields != nullptr) {
2006    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
2007                                               NativeLocationInImage(orig_fields),
2008                                               /*pointer size*/8u);
2009    ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
2010    for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
2011      ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
2012      ArtField* copy = NativeLocationInImage(orig);
2013      mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
2014    }
2015  }
2016
2017  // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2018  // compiler pointers in here will make the output non-deterministic.
2019  copy_dex_cache->SetDexFile(nullptr);
2020}
2021
2022const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2023  DCHECK_LT(type, kOatAddressCount);
2024  // If we are compiling an app image, we need to use the stubs of the boot image.
2025  if (compile_app_image_) {
2026    // Use the current image pointers.
2027    const std::vector<gc::space::ImageSpace*>& image_spaces =
2028        Runtime::Current()->GetHeap()->GetBootImageSpaces();
2029    DCHECK(!image_spaces.empty());
2030    const OatFile* oat_file = image_spaces[0]->GetOatFile();
2031    CHECK(oat_file != nullptr);
2032    const OatHeader& header = oat_file->GetOatHeader();
2033    switch (type) {
2034      // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2035      case kOatAddressQuickGenericJNITrampoline:
2036        return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2037      case kOatAddressInterpreterToInterpreterBridge:
2038        return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2039      case kOatAddressInterpreterToCompiledCodeBridge:
2040        return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2041      case kOatAddressJNIDlsymLookup:
2042        return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2043      case kOatAddressQuickIMTConflictTrampoline:
2044        return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2045      case kOatAddressQuickResolutionTrampoline:
2046        return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2047      case kOatAddressQuickToInterpreterBridge:
2048        return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2049      default:
2050        UNREACHABLE();
2051    }
2052  }
2053  const ImageInfo& primary_image_info = GetImageInfo(0);
2054  return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2055}
2056
2057const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2058                                         const ImageInfo& image_info,
2059                                         bool* quick_is_interpreted) {
2060  DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
2061  DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
2062  DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
2063  DCHECK(method->IsInvokable()) << PrettyMethod(method);
2064  DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
2065
2066  // Use original code if it exists. Otherwise, set the code pointer to the resolution
2067  // trampoline.
2068
2069  // Quick entrypoint:
2070  const void* quick_oat_entry_point =
2071      method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2072  const uint8_t* quick_code;
2073
2074  if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2075    DCHECK(method->IsCopied());
2076    // If the code is not in the oat file corresponding to this image (e.g. default methods)
2077    quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2078  } else {
2079    uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2080    quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2081  }
2082
2083  *quick_is_interpreted = false;
2084  if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2085      method->GetDeclaringClass()->IsInitialized())) {
2086    // We have code for a non-static or initialized method, just use the code.
2087  } else if (quick_code == nullptr && method->IsNative() &&
2088      (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2089    // Non-static or initialized native method missing compiled code, use generic JNI version.
2090    quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2091  } else if (quick_code == nullptr && !method->IsNative()) {
2092    // We don't have code at all for a non-native method, use the interpreter.
2093    quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2094    *quick_is_interpreted = true;
2095  } else {
2096    CHECK(!method->GetDeclaringClass()->IsInitialized());
2097    // We have code for a static method, but need to go through the resolution stub for class
2098    // initialization.
2099    quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2100  }
2101  if (!IsInBootOatFile(quick_code)) {
2102    // DCHECK_GE(quick_code, oat_data_begin_);
2103  }
2104  return quick_code;
2105}
2106
2107void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2108                                     ArtMethod* copy,
2109                                     const ImageInfo& image_info) {
2110  memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2111
2112  copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
2113  ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
2114  copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2115  GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
2116  copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
2117
2118  // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2119  // oat_begin_
2120
2121  // The resolution method has a special trampoline to call.
2122  Runtime* runtime = Runtime::Current();
2123  if (orig->IsRuntimeMethod()) {
2124    ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2125    if (orig_table != nullptr) {
2126      // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2127      copy->SetEntryPointFromQuickCompiledCodePtrSize(
2128          GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2129      copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2130    } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2131      copy->SetEntryPointFromQuickCompiledCodePtrSize(
2132          GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2133    } else {
2134      bool found_one = false;
2135      for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
2136        auto idx = static_cast<Runtime::CalleeSaveType>(i);
2137        if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2138          found_one = true;
2139          break;
2140        }
2141      }
2142      CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
2143      CHECK(copy->IsRuntimeMethod());
2144    }
2145  } else {
2146    // We assume all methods have code. If they don't currently then we set them to the use the
2147    // resolution trampoline. Abstract methods never have code and so we need to make sure their
2148    // use results in an AbstractMethodError. We use the interpreter to achieve this.
2149    if (UNLIKELY(!orig->IsInvokable())) {
2150      copy->SetEntryPointFromQuickCompiledCodePtrSize(
2151          GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2152    } else {
2153      bool quick_is_interpreted;
2154      const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2155      copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2156
2157      // JNI entrypoint:
2158      if (orig->IsNative()) {
2159        // The native method's pointer is set to a stub to lookup via dlsym.
2160        // Note this is not the code_ pointer, that is handled above.
2161        copy->SetEntryPointFromJniPtrSize(
2162            GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2163      }
2164    }
2165  }
2166}
2167
2168size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2169  DCHECK_LE(up_to, kBinSize);
2170  return std::accumulate(&image_info.bin_slot_sizes_[0],
2171                         &image_info.bin_slot_sizes_[up_to],
2172                         /*init*/0);
2173}
2174
2175ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2176  // These values may need to get updated if more bins are added to the enum Bin
2177  static_assert(kBinBits == 3, "wrong number of bin bits");
2178  static_assert(kBinShift == 27, "wrong number of shift");
2179  static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2180
2181  DCHECK_LT(GetBin(), kBinSize);
2182  DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2183}
2184
2185ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2186    : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2187  DCHECK_EQ(index, GetIndex());
2188}
2189
2190ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2191  return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2192}
2193
2194uint32_t ImageWriter::BinSlot::GetIndex() const {
2195  return lockword_ & ~kBinMask;
2196}
2197
2198ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2199  switch (type) {
2200    case kNativeObjectRelocationTypeArtField:
2201    case kNativeObjectRelocationTypeArtFieldArray:
2202      return kBinArtField;
2203    case kNativeObjectRelocationTypeArtMethodClean:
2204    case kNativeObjectRelocationTypeArtMethodArrayClean:
2205      return kBinArtMethodClean;
2206    case kNativeObjectRelocationTypeArtMethodDirty:
2207    case kNativeObjectRelocationTypeArtMethodArrayDirty:
2208      return kBinArtMethodDirty;
2209    case kNativeObjectRelocationTypeDexCacheArray:
2210      return kBinDexCacheArray;
2211    case kNativeObjectRelocationTypeRuntimeMethod:
2212      return kBinRuntimeMethod;
2213    case kNativeObjectRelocationTypeIMTConflictTable:
2214      return kBinIMTConflictTable;
2215  }
2216  UNREACHABLE();
2217}
2218
2219size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2220  if (compile_app_image_) {
2221    return GetDefaultOatIndex();
2222  } else {
2223    mirror::DexCache* dex_cache =
2224        obj->IsDexCache() ? obj->AsDexCache()
2225                          : obj->IsClass() ? obj->AsClass()->GetDexCache()
2226                                           : obj->GetClass()->GetDexCache();
2227    return GetOatIndexForDexCache(dex_cache);
2228  }
2229}
2230
2231size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2232  if (compile_app_image_) {
2233    return GetDefaultOatIndex();
2234  } else {
2235    auto it = dex_file_oat_index_map_.find(dex_file);
2236    DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2237    return it->second;
2238  }
2239}
2240
2241size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
2242  if (dex_cache == nullptr) {
2243    return GetDefaultOatIndex();
2244  } else {
2245    return GetOatIndexForDexFile(dex_cache->GetDexFile());
2246  }
2247}
2248
2249void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2250                                      size_t oat_loaded_size,
2251                                      size_t oat_data_offset,
2252                                      size_t oat_data_size) {
2253  const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2254  for (const ImageInfo& info : image_infos_) {
2255    DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2256  }
2257  DCHECK(images_end != nullptr);  // Image space must be ready.
2258
2259  ImageInfo& cur_image_info = GetImageInfo(oat_index);
2260  cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2261  cur_image_info.oat_loaded_size_ = oat_loaded_size;
2262  cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2263  cur_image_info.oat_size_ = oat_data_size;
2264
2265  if (compile_app_image_) {
2266    CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2267    return;
2268  }
2269
2270  // Update the oat_offset of the next image info.
2271  if (oat_index + 1u != oat_filenames_.size()) {
2272    // There is a following one.
2273    ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2274    next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2275  }
2276}
2277
2278void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2279  ImageInfo& cur_image_info = GetImageInfo(oat_index);
2280  cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2281
2282  if (oat_index == GetDefaultOatIndex()) {
2283    // Primary oat file, read the trampolines.
2284    cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2285        oat_header.GetInterpreterToInterpreterBridgeOffset();
2286    cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2287        oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2288    cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2289        oat_header.GetJniDlsymLookupOffset();
2290    cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2291        oat_header.GetQuickGenericJniTrampolineOffset();
2292    cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2293        oat_header.GetQuickImtConflictTrampolineOffset();
2294    cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2295        oat_header.GetQuickResolutionTrampolineOffset();
2296    cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2297        oat_header.GetQuickToInterpreterBridgeOffset();
2298  }
2299}
2300
2301ImageWriter::ImageWriter(
2302    const CompilerDriver& compiler_driver,
2303    uintptr_t image_begin,
2304    bool compile_pic,
2305    bool compile_app_image,
2306    ImageHeader::StorageMode image_storage_mode,
2307    const std::vector<const char*>& oat_filenames,
2308    const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
2309    : compiler_driver_(compiler_driver),
2310      global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2311      image_objects_offset_begin_(0),
2312      compile_pic_(compile_pic),
2313      compile_app_image_(compile_app_image),
2314      target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2315      image_infos_(oat_filenames.size()),
2316      dirty_methods_(0u),
2317      clean_methods_(0u),
2318      image_storage_mode_(image_storage_mode),
2319      oat_filenames_(oat_filenames),
2320      dex_file_oat_index_map_(dex_file_oat_index_map) {
2321  CHECK_NE(image_begin, 0U);
2322  std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2323  CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2324      << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2325}
2326
2327ImageWriter::ImageInfo::ImageInfo()
2328    : intern_table_(new InternTable),
2329      class_table_(new ClassTable) {}
2330
2331}  // namespace art
2332