1/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "induction_var_analysis.h"
18#include "induction_var_range.h"
19
20namespace art {
21
22/**
23 * Since graph traversal may enter a SCC at any position, an initial representation may be rotated,
24 * along dependences, viz. any of (a, b, c, d), (d, a, b, c)  (c, d, a, b), (b, c, d, a) assuming
25 * a chain of dependences (mutual independent items may occur in arbitrary order). For proper
26 * classification, the lexicographically first entry-phi is rotated to the front.
27 */
28static void RotateEntryPhiFirst(HLoopInformation* loop,
29                                ArenaVector<HInstruction*>* scc,
30                                ArenaVector<HInstruction*>* new_scc) {
31  // Find very first entry-phi.
32  const HInstructionList& phis = loop->GetHeader()->GetPhis();
33  HInstruction* phi = nullptr;
34  size_t phi_pos = -1;
35  const size_t size = scc->size();
36  for (size_t i = 0; i < size; i++) {
37    HInstruction* other = (*scc)[i];
38    if (other->IsLoopHeaderPhi() && (phi == nullptr || phis.FoundBefore(other, phi))) {
39      phi = other;
40      phi_pos = i;
41    }
42  }
43
44  // If found, bring that entry-phi to front.
45  if (phi != nullptr) {
46    new_scc->clear();
47    for (size_t i = 0; i < size; i++) {
48      new_scc->push_back((*scc)[phi_pos]);
49      if (++phi_pos >= size) phi_pos = 0;
50    }
51    DCHECK_EQ(size, new_scc->size());
52    scc->swap(*new_scc);
53  }
54}
55
56/**
57 * Returns true if the from/to types denote a narrowing, integral conversion (precision loss).
58 */
59static bool IsNarrowingIntegralConversion(Primitive::Type from, Primitive::Type to) {
60  switch (from) {
61    case Primitive::kPrimLong:
62      return to == Primitive::kPrimByte || to == Primitive::kPrimShort
63          || to == Primitive::kPrimChar || to == Primitive::kPrimInt;
64    case Primitive::kPrimInt:
65      return to == Primitive::kPrimByte || to == Primitive::kPrimShort
66          || to == Primitive::kPrimChar;
67    case Primitive::kPrimChar:
68    case Primitive::kPrimShort:
69      return to == Primitive::kPrimByte;
70    default:
71      return false;
72  }
73}
74
75/**
76 * Returns narrowest data type.
77 */
78static Primitive::Type Narrowest(Primitive::Type type1, Primitive::Type type2) {
79  return Primitive::ComponentSize(type1) <= Primitive::ComponentSize(type2) ? type1 : type2;
80}
81
82//
83// Class methods.
84//
85
86HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
87    : HOptimization(graph, kInductionPassName),
88      global_depth_(0),
89      stack_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
90      scc_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
91      map_(std::less<HInstruction*>(),
92           graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
93      cycle_(std::less<HInstruction*>(),
94             graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
95      induction_(std::less<HLoopInformation*>(),
96                 graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)) {
97}
98
99void HInductionVarAnalysis::Run() {
100  // Detects sequence variables (generalized induction variables) during an outer to inner
101  // traversal of all loops using Gerlek's algorithm. The order is important to enable
102  // range analysis on outer loop while visiting inner loops.
103  for (HReversePostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) {
104    HBasicBlock* graph_block = it_graph.Current();
105    // Don't analyze irreducible loops.
106    // TODO(ajcbik): could/should we remove this restriction?
107    if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) {
108      VisitLoop(graph_block->GetLoopInformation());
109    }
110  }
111}
112
113void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
114  // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
115  // algorithm. Due to the descendant-first nature, classification happens "on-demand".
116  global_depth_ = 0;
117  DCHECK(stack_.empty());
118  map_.clear();
119
120  for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
121    HBasicBlock* loop_block = it_loop.Current();
122    DCHECK(loop_block->IsInLoop());
123    if (loop_block->GetLoopInformation() != loop) {
124      continue;  // Inner loops already visited.
125    }
126    // Visit phi-operations and instructions.
127    for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
128      HInstruction* instruction = it.Current();
129      if (!IsVisitedNode(instruction)) {
130        VisitNode(loop, instruction);
131      }
132    }
133    for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
134      HInstruction* instruction = it.Current();
135      if (!IsVisitedNode(instruction)) {
136        VisitNode(loop, instruction);
137      }
138    }
139  }
140
141  DCHECK(stack_.empty());
142  map_.clear();
143
144  // Determine the loop's trip-count.
145  VisitControl(loop);
146}
147
148void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
149  const uint32_t d1 = ++global_depth_;
150  map_.Put(instruction, NodeInfo(d1));
151  stack_.push_back(instruction);
152
153  // Visit all descendants.
154  uint32_t low = d1;
155  for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) {
156    low = std::min(low, VisitDescendant(loop, instruction->InputAt(i)));
157  }
158
159  // Lower or found SCC?
160  if (low < d1) {
161    map_.find(instruction)->second.depth = low;
162  } else {
163    scc_.clear();
164    cycle_.clear();
165
166    // Pop the stack to build the SCC for classification.
167    while (!stack_.empty()) {
168      HInstruction* x = stack_.back();
169      scc_.push_back(x);
170      stack_.pop_back();
171      map_.find(x)->second.done = true;
172      if (x == instruction) {
173        break;
174      }
175    }
176
177    // Type of induction.
178    type_ = scc_[0]->GetType();
179
180    // Classify the SCC.
181    if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) {
182      ClassifyTrivial(loop, scc_[0]);
183    } else {
184      ClassifyNonTrivial(loop);
185    }
186
187    scc_.clear();
188    cycle_.clear();
189  }
190}
191
192uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
193  // If the definition is either outside the loop (loop invariant entry value)
194  // or assigned in inner loop (inner exit value), the traversal stops.
195  HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
196  if (otherLoop != loop) {
197    return global_depth_;
198  }
199
200  // Inspect descendant node.
201  if (!IsVisitedNode(instruction)) {
202    VisitNode(loop, instruction);
203    return map_.find(instruction)->second.depth;
204  } else {
205    auto it = map_.find(instruction);
206    return it->second.done ? global_depth_ : it->second.depth;
207  }
208}
209
210void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
211  InductionInfo* info = nullptr;
212  if (instruction->IsPhi()) {
213    info = TransferPhi(loop, instruction, /* input_index */ 0);
214  } else if (instruction->IsAdd()) {
215    info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
216                          LookupInfo(loop, instruction->InputAt(1)), kAdd);
217  } else if (instruction->IsSub()) {
218    info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
219                          LookupInfo(loop, instruction->InputAt(1)), kSub);
220  } else if (instruction->IsMul()) {
221    info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
222                       LookupInfo(loop, instruction->InputAt(1)));
223  } else if (instruction->IsShl()) {
224    info = TransferShl(LookupInfo(loop, instruction->InputAt(0)),
225                       LookupInfo(loop, instruction->InputAt(1)),
226                       instruction->InputAt(0)->GetType());
227  } else if (instruction->IsNeg()) {
228    info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
229  } else if (instruction->IsTypeConversion()) {
230    info = TransferCnv(LookupInfo(loop, instruction->InputAt(0)),
231                       instruction->AsTypeConversion()->GetInputType(),
232                       instruction->AsTypeConversion()->GetResultType());
233
234  } else if (instruction->IsBoundsCheck()) {
235    info = LookupInfo(loop, instruction->InputAt(0));  // Pass-through.
236  }
237
238  // Successfully classified?
239  if (info != nullptr) {
240    AssignInfo(loop, instruction, info);
241  }
242}
243
244void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
245  const size_t size = scc_.size();
246  DCHECK_GE(size, 1u);
247
248  // Rotate proper entry-phi to front.
249  if (size > 1) {
250    ArenaVector<HInstruction*> other(graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis));
251    RotateEntryPhiFirst(loop, &scc_, &other);
252  }
253
254  // Analyze from entry-phi onwards.
255  HInstruction* phi = scc_[0];
256  if (!phi->IsLoopHeaderPhi()) {
257    return;
258  }
259
260  // External link should be loop invariant.
261  InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
262  if (initial == nullptr || initial->induction_class != kInvariant) {
263    return;
264  }
265
266  // Singleton is wrap-around induction if all internal links have the same meaning.
267  if (size == 1) {
268    InductionInfo* update = TransferPhi(loop, phi, /* input_index */ 1);
269    if (update != nullptr) {
270      AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update, type_));
271    }
272    return;
273  }
274
275  // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
276  // temporary meaning to its nodes, seeded from the phi instruction and back.
277  for (size_t i = 1; i < size; i++) {
278    HInstruction* instruction = scc_[i];
279    InductionInfo* update = nullptr;
280    if (instruction->IsPhi()) {
281      update = SolvePhiAllInputs(loop, phi, instruction);
282    } else if (instruction->IsAdd()) {
283      update = SolveAddSub(
284          loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true);
285    } else if (instruction->IsSub()) {
286      update = SolveAddSub(
287          loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
288    } else if (instruction->IsTypeConversion()) {
289      update = SolveCnv(instruction->AsTypeConversion());
290    }
291    if (update == nullptr) {
292      return;
293    }
294    cycle_.Put(instruction, update);
295  }
296
297  // Success if all internal links received the same temporary meaning.
298  InductionInfo* induction = SolvePhi(phi, /* input_index */ 1);
299  if (induction != nullptr) {
300    switch (induction->induction_class) {
301      case kInvariant:
302        // Classify first phi and then the rest of the cycle "on-demand".
303        // Statements are scanned in order.
304        AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial, type_));
305        for (size_t i = 1; i < size; i++) {
306          ClassifyTrivial(loop, scc_[i]);
307        }
308        break;
309      case kPeriodic:
310        // Classify all elements in the cycle with the found periodic induction while
311        // rotating each first element to the end. Lastly, phi is classified.
312        // Statements are scanned in reverse order.
313        for (size_t i = size - 1; i >= 1; i--) {
314          AssignInfo(loop, scc_[i], induction);
315          induction = RotatePeriodicInduction(induction->op_b, induction->op_a);
316        }
317        AssignInfo(loop, phi, induction);
318        break;
319      default:
320        break;
321    }
322  }
323}
324
325HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
326    InductionInfo* induction,
327    InductionInfo* last) {
328  // Rotates a periodic induction of the form
329  //   (a, b, c, d, e)
330  // into
331  //   (b, c, d, e, a)
332  // in preparation of assigning this to the previous variable in the sequence.
333  if (induction->induction_class == kInvariant) {
334    return CreateInduction(kPeriodic, induction, last, type_);
335  }
336  return CreateInduction(
337      kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last), type_);
338}
339
340HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop,
341                                                                         HInstruction* phi,
342                                                                         size_t input_index) {
343  // Match all phi inputs from input_index onwards exactly.
344  const size_t count = phi->InputCount();
345  DCHECK_LT(input_index, count);
346  InductionInfo* a = LookupInfo(loop, phi->InputAt(input_index));
347  for (size_t i = input_index + 1; i < count; i++) {
348    InductionInfo* b = LookupInfo(loop, phi->InputAt(i));
349    if (!InductionEqual(a, b)) {
350      return nullptr;
351    }
352  }
353  return a;
354}
355
356HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
357                                                                            InductionInfo* b,
358                                                                            InductionOp op) {
359  // Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic
360  // can be combined with an invariant to yield a similar result. Even two linear inputs can
361  // be combined. All other combinations fail, however.
362  if (a != nullptr && b != nullptr) {
363    if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
364      return CreateInvariantOp(op, a, b);
365    } else if (a->induction_class == kLinear && b->induction_class == kLinear) {
366      return CreateInduction(kLinear,
367                             TransferAddSub(a->op_a, b->op_a, op),
368                             TransferAddSub(a->op_b, b->op_b, op),
369                             type_);
370    } else if (a->induction_class == kInvariant) {
371      InductionInfo* new_a = b->op_a;
372      InductionInfo* new_b = TransferAddSub(a, b->op_b, op);
373      if (b->induction_class != kLinear) {
374        DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic);
375        new_a = TransferAddSub(a, new_a, op);
376      } else if (op == kSub) {  // Negation required.
377        new_a = TransferNeg(new_a);
378      }
379      return CreateInduction(b->induction_class, new_a, new_b, type_);
380    } else if (b->induction_class == kInvariant) {
381      InductionInfo* new_a = a->op_a;
382      InductionInfo* new_b = TransferAddSub(a->op_b, b, op);
383      if (a->induction_class != kLinear) {
384        DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic);
385        new_a = TransferAddSub(new_a, b, op);
386      }
387      return CreateInduction(a->induction_class, new_a, new_b, type_);
388    }
389  }
390  return nullptr;
391}
392
393HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
394                                                                         InductionInfo* b) {
395  // Transfer over a multiplication: any invariant, linear, wrap-around, or periodic
396  // can be multiplied with an invariant to yield a similar but multiplied result.
397  // Two non-invariant inputs cannot be multiplied, however.
398  if (a != nullptr && b != nullptr) {
399    if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
400      return CreateInvariantOp(kMul, a, b);
401    } else if (a->induction_class == kInvariant) {
402      return CreateInduction(b->induction_class,
403                             TransferMul(a, b->op_a),
404                             TransferMul(a, b->op_b),
405                             type_);
406    } else if (b->induction_class == kInvariant) {
407      return CreateInduction(a->induction_class,
408                             TransferMul(a->op_a, b),
409                             TransferMul(a->op_b, b),
410                             type_);
411    }
412  }
413  return nullptr;
414}
415
416HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a,
417                                                                         InductionInfo* b,
418                                                                         Primitive::Type type) {
419  // Transfer over a shift left: treat shift by restricted constant as equivalent multiplication.
420  int64_t value = -1;
421  if (a != nullptr && IsExact(b, &value)) {
422    // Obtain the constant needed for the multiplication. This yields an existing instruction
423    // if the constants is already there. Otherwise, this has a side effect on the HIR.
424    // The restriction on the shift factor avoids generating a negative constant
425    // (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization
426    // for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification.
427    if ((type == Primitive::kPrimInt  && 0 <= value && value < 31) ||
428        (type == Primitive::kPrimLong && 0 <= value && value < 63)) {
429      return TransferMul(a, CreateConstant(1 << value, type));
430    }
431  }
432  return nullptr;
433}
434
435HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
436  // Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input
437  // yields a similar but negated induction as result.
438  if (a != nullptr) {
439    if (a->induction_class == kInvariant) {
440      return CreateInvariantOp(kNeg, nullptr, a);
441    }
442    return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b), type_);
443  }
444  return nullptr;
445}
446
447HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCnv(InductionInfo* a,
448                                                                         Primitive::Type from,
449                                                                         Primitive::Type to) {
450  if (a != nullptr) {
451    // Allow narrowing conversion in certain cases.
452    if (IsNarrowingIntegralConversion(from, to)) {
453      if (a->induction_class == kLinear) {
454        if (a->type == to || (a->type == from && IsNarrowingIntegralConversion(from, to))) {
455          return CreateInduction(kLinear, a->op_a, a->op_b, to);
456        }
457      }
458      // TODO: other cases useful too?
459    }
460  }
461  return nullptr;
462}
463
464HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HInstruction* phi,
465                                                                      size_t input_index) {
466  // Match all phi inputs from input_index onwards exactly.
467  const size_t count = phi->InputCount();
468  DCHECK_LT(input_index, count);
469  auto ita = cycle_.find(phi->InputAt(input_index));
470  if (ita != cycle_.end()) {
471    for (size_t i = input_index + 1; i < count; i++) {
472      auto itb = cycle_.find(phi->InputAt(i));
473      if (itb == cycle_.end() ||
474          !HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) {
475        return nullptr;
476      }
477    }
478    return ita->second;
479  }
480  return nullptr;
481}
482
483HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs(
484    HLoopInformation* loop,
485    HInstruction* entry_phi,
486    HInstruction* phi) {
487  // Match all phi inputs.
488  InductionInfo* match = SolvePhi(phi, /* input_index */ 0);
489  if (match != nullptr) {
490    return match;
491  }
492
493  // Otherwise, try to solve for a periodic seeded from phi onward.
494  // Only tight multi-statement cycles are considered in order to
495  // simplify rotating the periodic during the final classification.
496  if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) {
497    InductionInfo* a = LookupInfo(loop, phi->InputAt(0));
498    if (a != nullptr && a->induction_class == kInvariant) {
499      if (phi->InputAt(1) == entry_phi) {
500        InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
501        return CreateInduction(kPeriodic, a, initial, type_);
502      }
503      InductionInfo* b = SolvePhi(phi, /* input_index */ 1);
504      if (b != nullptr && b->induction_class == kPeriodic) {
505        return CreateInduction(kPeriodic, a, b, type_);
506      }
507    }
508  }
509  return nullptr;
510}
511
512HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop,
513                                                                         HInstruction* entry_phi,
514                                                                         HInstruction* instruction,
515                                                                         HInstruction* x,
516                                                                         HInstruction* y,
517                                                                         InductionOp op,
518                                                                         bool is_first_call) {
519  // Solve within a cycle over an addition or subtraction: adding or subtracting an
520  // invariant value, seeded from phi, keeps adding to the stride of the induction.
521  InductionInfo* b = LookupInfo(loop, y);
522  if (b != nullptr && b->induction_class == kInvariant) {
523    if (x == entry_phi) {
524      return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
525    }
526    auto it = cycle_.find(x);
527    if (it != cycle_.end()) {
528      InductionInfo* a = it->second;
529      if (a->induction_class == kInvariant) {
530        return CreateInvariantOp(op, a, b);
531      }
532    }
533  }
534
535  // Try some alternatives before failing.
536  if (op == kAdd) {
537    // Try the other way around for an addition if considered for first time.
538    if (is_first_call) {
539      return SolveAddSub(loop, entry_phi, instruction, y, x, op, false);
540    }
541  } else if (op == kSub) {
542    // Solve within a tight cycle that is formed by exactly two instructions,
543    // one phi and one update, for a periodic idiom of the form k = c - k;
544    if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
545      InductionInfo* a = LookupInfo(loop, x);
546      if (a != nullptr && a->induction_class == kInvariant) {
547        InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
548        return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial, type_);
549      }
550    }
551  }
552
553  return nullptr;
554}
555
556HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveCnv(HTypeConversion* conversion) {
557  Primitive::Type from = conversion->GetInputType();
558  Primitive::Type to = conversion->GetResultType();
559  // A narrowing conversion is allowed within the cycle of a linear induction, provided that the
560  // narrowest encountered type is recorded with the induction to account for the precision loss.
561  if (IsNarrowingIntegralConversion(from, to)) {
562    auto it = cycle_.find(conversion->GetInput());
563    if (it != cycle_.end() && it->second->induction_class == kInvariant) {
564      type_ = Narrowest(type_, to);
565      return it->second;
566    }
567  }
568  return nullptr;
569}
570
571void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) {
572  HInstruction* control = loop->GetHeader()->GetLastInstruction();
573  if (control->IsIf()) {
574    HIf* ifs = control->AsIf();
575    HBasicBlock* if_true = ifs->IfTrueSuccessor();
576    HBasicBlock* if_false = ifs->IfFalseSuccessor();
577    HInstruction* if_expr = ifs->InputAt(0);
578    // Determine if loop has following structure in header.
579    // loop-header: ....
580    //              if (condition) goto X
581    if (if_expr->IsCondition()) {
582      HCondition* condition = if_expr->AsCondition();
583      InductionInfo* a = LookupInfo(loop, condition->InputAt(0));
584      InductionInfo* b = LookupInfo(loop, condition->InputAt(1));
585      Primitive::Type type = condition->InputAt(0)->GetType();
586      // Determine if the loop control uses a known sequence on an if-exit (X outside) or on
587      // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition().
588      if (a == nullptr || b == nullptr) {
589        return;  // Loop control is not a sequence.
590      } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) {
591        VisitCondition(loop, a, b, type, condition->GetOppositeCondition());
592      } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) {
593        VisitCondition(loop, a, b, type, condition->GetCondition());
594      }
595    }
596  }
597}
598
599void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop,
600                                           InductionInfo* a,
601                                           InductionInfo* b,
602                                           Primitive::Type type,
603                                           IfCondition cmp) {
604  if (a->induction_class == kInvariant && b->induction_class == kLinear) {
605    // Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U).
606    switch (cmp) {
607      case kCondLT: VisitCondition(loop, b, a, type, kCondGT); break;
608      case kCondLE: VisitCondition(loop, b, a, type, kCondGE); break;
609      case kCondGT: VisitCondition(loop, b, a, type, kCondLT); break;
610      case kCondGE: VisitCondition(loop, b, a, type, kCondLE); break;
611      case kCondNE: VisitCondition(loop, b, a, type, kCondNE); break;
612      default: break;
613    }
614  } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
615    // Analyze condition with induction at left-hand-side (e.g. i < U).
616    InductionInfo* lower_expr = a->op_b;
617    InductionInfo* upper_expr = b;
618    InductionInfo* stride_expr = a->op_a;
619    // Constant stride?
620    int64_t stride_value = 0;
621    if (!IsExact(stride_expr, &stride_value)) {
622      return;
623    }
624    // Rewrite condition i != U into strict end condition i < U or i > U if this end condition
625    // is reached exactly (tested by verifying if the loop has a unit stride and the non-strict
626    // condition would be always taken).
627    if (cmp == kCondNE && ((stride_value == +1 && IsTaken(lower_expr, upper_expr, kCondLE)) ||
628                           (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) {
629      cmp = stride_value > 0 ? kCondLT : kCondGT;
630    }
631    // Only accept integral condition. A mismatch between the type of condition and the induction
632    // is only allowed if the, necessarily narrower, induction range fits the narrower control.
633    if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) {
634      return;  // not integral
635    } else if (type != a->type &&
636               !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) {
637      return;  // mismatched type
638    }
639    // Normalize a linear loop control with a nonzero stride:
640    //   stride > 0, either i < U or i <= U
641    //   stride < 0, either i > U or i >= U
642    if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) ||
643        (stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) {
644      VisitTripCount(loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp);
645    }
646  }
647}
648
649void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop,
650                                           InductionInfo* lower_expr,
651                                           InductionInfo* upper_expr,
652                                           InductionInfo* stride_expr,
653                                           int64_t stride_value,
654                                           Primitive::Type type,
655                                           IfCondition cmp) {
656  // Any loop of the general form:
657  //
658  //    for (i = L; i <= U; i += S) // S > 0
659  // or for (i = L; i >= U; i += S) // S < 0
660  //      .. i ..
661  //
662  // can be normalized into:
663  //
664  //    for (n = 0; n < TC; n++) // where TC = (U + S - L) / S
665  //      .. L + S * n ..
666  //
667  // taking the following into consideration:
668  //
669  // (1) Using the same precision, the TC (trip-count) expression should be interpreted as
670  //     an unsigned entity, for example, as in the following loop that uses the full range:
671  //     for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX
672  // (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in:
673  //     for (int i = 12; i < U; i++) // TC = 0 when U < 12
674  //     If this cannot be determined at compile-time, the TC is only valid within the
675  //     loop-body proper, not the loop-header unless enforced with an explicit taken-test.
676  // (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in:
677  //     for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX
678  //     If this cannot be determined at compile-time, the TC is only valid when enforced
679  //     with an explicit finite-test.
680  // (4) For loops which early-exits, the TC forms an upper bound, as in:
681  //     for (int i = 0; i < 10 && ....; i++) // TC <= 10
682  InductionInfo* trip_count = upper_expr;
683  const bool is_taken = IsTaken(lower_expr, upper_expr, cmp);
684  const bool is_finite = IsFinite(upper_expr, stride_value, type, cmp);
685  const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1;
686  if (!cancels) {
687    // Convert exclusive integral inequality into inclusive integral inequality,
688    // viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1.
689    if (cmp == kCondLT) {
690      trip_count = CreateInvariantOp(kSub, trip_count, CreateConstant(1, type));
691    } else if (cmp == kCondGT) {
692      trip_count = CreateInvariantOp(kAdd, trip_count, CreateConstant(1, type));
693    }
694    // Compensate for stride.
695    trip_count = CreateInvariantOp(kAdd, trip_count, stride_expr);
696  }
697  trip_count = CreateInvariantOp(
698      kDiv, CreateInvariantOp(kSub, trip_count, lower_expr), stride_expr);
699  // Assign the trip-count expression to the loop control. Clients that use the information
700  // should be aware that the expression is only valid under the conditions listed above.
701  InductionOp tcKind = kTripCountInBodyUnsafe;  // needs both tests
702  if (is_taken && is_finite) {
703    tcKind = kTripCountInLoop;  // needs neither test
704  } else if (is_finite) {
705    tcKind = kTripCountInBody;  // needs taken-test
706  } else if (is_taken) {
707    tcKind = kTripCountInLoopUnsafe;  // needs finite-test
708  }
709  InductionOp op = kNop;
710  switch (cmp) {
711    case kCondLT: op = kLT; break;
712    case kCondLE: op = kLE; break;
713    case kCondGT: op = kGT; break;
714    case kCondGE: op = kGE; break;
715    default:      LOG(FATAL) << "CONDITION UNREACHABLE";
716  }
717  InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr);
718  AssignInfo(loop,
719             loop->GetHeader()->GetLastInstruction(),
720             CreateTripCount(tcKind, trip_count, taken_test, type));
721}
722
723bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr,
724                                    InductionInfo* upper_expr,
725                                    IfCondition cmp) {
726  int64_t lower_value;
727  int64_t upper_value;
728  switch (cmp) {
729    case kCondLT:
730      return IsAtMost(lower_expr, &lower_value)
731          && IsAtLeast(upper_expr, &upper_value)
732          && lower_value < upper_value;
733    case kCondLE:
734      return IsAtMost(lower_expr, &lower_value)
735          && IsAtLeast(upper_expr, &upper_value)
736          && lower_value <= upper_value;
737    case kCondGT:
738      return IsAtLeast(lower_expr, &lower_value)
739          && IsAtMost(upper_expr, &upper_value)
740          && lower_value > upper_value;
741    case kCondGE:
742      return IsAtLeast(lower_expr, &lower_value)
743          && IsAtMost(upper_expr, &upper_value)
744          && lower_value >= upper_value;
745    default:
746      LOG(FATAL) << "CONDITION UNREACHABLE";
747  }
748  return false;  // not certain, may be untaken
749}
750
751bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr,
752                                     int64_t stride_value,
753                                     Primitive::Type type,
754                                     IfCondition cmp) {
755  const int64_t min = Primitive::MinValueOfIntegralType(type);
756  const int64_t max = Primitive::MaxValueOfIntegralType(type);
757  // Some rules under which it is certain at compile-time that the loop is finite.
758  int64_t value;
759  switch (cmp) {
760    case kCondLT:
761      return stride_value == 1 ||
762          (IsAtMost(upper_expr, &value) && value <= (max - stride_value + 1));
763    case kCondLE:
764      return (IsAtMost(upper_expr, &value) && value <= (max - stride_value));
765    case kCondGT:
766      return stride_value == -1 ||
767          (IsAtLeast(upper_expr, &value) && value >= (min - stride_value - 1));
768    case kCondGE:
769      return (IsAtLeast(upper_expr, &value) && value >= (min - stride_value));
770    default:
771      LOG(FATAL) << "CONDITION UNREACHABLE";
772  }
773  return false;  // not certain, may be infinite
774}
775
776bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr,
777                                                InductionInfo* upper_expr,
778                                                int64_t stride_value,
779                                                Primitive::Type type,
780                                                IfCondition cmp) {
781  int64_t min = Primitive::MinValueOfIntegralType(type);
782  int64_t max = Primitive::MaxValueOfIntegralType(type);
783  // Inclusive test need one extra.
784  if (stride_value != 1 && stride_value != -1) {
785    return false;  // non-unit stride
786  } else if (cmp == kCondLE) {
787    max--;
788  } else if (cmp == kCondGE) {
789    min++;
790  }
791  // Do both bounds fit the range?
792  // Note: The `value` is initialized to please valgrind - the compiler can reorder
793  // the return value check with the `value` check, b/27651442 .
794  int64_t value = 0;
795  return IsAtLeast(lower_expr, &value) && value >= min &&
796         IsAtMost(lower_expr, &value)  && value <= max &&
797         IsAtLeast(upper_expr, &value) && value >= min &&
798         IsAtMost(upper_expr, &value)  && value <= max;
799}
800
801void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
802                                       HInstruction* instruction,
803                                       InductionInfo* info) {
804  auto it = induction_.find(loop);
805  if (it == induction_.end()) {
806    it = induction_.Put(loop,
807                        ArenaSafeMap<HInstruction*, InductionInfo*>(
808                            std::less<HInstruction*>(),
809                            graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)));
810  }
811  it->second.Put(instruction, info);
812}
813
814HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
815                                                                        HInstruction* instruction) {
816  auto it = induction_.find(loop);
817  if (it != induction_.end()) {
818    auto loop_it = it->second.find(instruction);
819    if (loop_it != it->second.end()) {
820      return loop_it->second;
821    }
822  }
823  if (loop->IsDefinedOutOfTheLoop(instruction)) {
824    InductionInfo* info = CreateInvariantFetch(instruction);
825    AssignInfo(loop, instruction, info);
826    return info;
827  }
828  return nullptr;
829}
830
831HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value,
832                                                                            Primitive::Type type) {
833  if (type == Primitive::kPrimInt) {
834    return CreateInvariantFetch(graph_->GetIntConstant(value));
835  }
836  DCHECK_EQ(type, Primitive::kPrimLong);
837  return CreateInvariantFetch(graph_->GetLongConstant(value));
838}
839
840HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
841    InductionOp op,
842    InductionInfo* a,
843    InductionInfo* b) {
844  // Perform some light-weight simplifications during construction of a new invariant.
845  // This often safes memory and yields a more concise representation of the induction.
846  // More exhaustive simplifications are done by later phases once induction nodes are
847  // translated back into HIR code (e.g. by loop optimizations or BCE).
848  int64_t value = -1;
849  if (IsExact(a, &value)) {
850    if (value == 0) {
851      // Simplify 0 + b = b, 0 * b = 0.
852      if (op == kAdd) {
853        return b;
854      } else if (op == kMul) {
855        return a;
856      }
857    } else if (op == kMul) {
858      // Simplify 1 * b = b, -1 * b = -b
859      if (value == 1) {
860        return b;
861      } else if (value == -1) {
862        return CreateSimplifiedInvariant(kNeg, nullptr, b);
863      }
864    }
865  }
866  if (IsExact(b, &value)) {
867    if (value == 0) {
868      // Simplify a + 0 = a, a - 0 = a, a * 0 = 0, -0 = 0.
869      if (op == kAdd || op == kSub) {
870        return a;
871      } else if (op == kMul || op == kNeg) {
872        return b;
873      }
874    } else if (op == kMul || op == kDiv) {
875      // Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a
876      if (value == 1) {
877        return a;
878      } else if (value == -1) {
879        return CreateSimplifiedInvariant(kNeg, nullptr, a);
880      }
881    }
882  } else if (b->operation == kNeg) {
883    // Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b.
884    if (op == kAdd) {
885      return CreateSimplifiedInvariant(kSub, a, b->op_b);
886    } else if (op == kSub) {
887      return CreateSimplifiedInvariant(kAdd, a, b->op_b);
888    } else if (op == kNeg) {
889      return b->op_b;
890    }
891  } else if (b->operation == kSub) {
892    // Simplify - (a - b) = b - a.
893    if (op == kNeg) {
894      return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a);
895    }
896  }
897  return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr, b->type);
898}
899
900bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) {
901  return InductionVarRange(this).IsConstant(info, InductionVarRange::kExact, value);
902}
903
904bool HInductionVarAnalysis::IsAtMost(InductionInfo* info, int64_t* value) {
905  return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtMost, value);
906}
907
908bool HInductionVarAnalysis::IsAtLeast(InductionInfo* info, int64_t* value) {
909  return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtLeast, value);
910}
911
912bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
913                                           InductionInfo* info2) {
914  // Test structural equality only, without accounting for simplifications.
915  if (info1 != nullptr && info2 != nullptr) {
916    return
917        info1->induction_class == info2->induction_class &&
918        info1->operation       == info2->operation       &&
919        info1->fetch           == info2->fetch           &&
920        info1->type            == info2->type            &&
921        InductionEqual(info1->op_a, info2->op_a)         &&
922        InductionEqual(info1->op_b, info2->op_b);
923  }
924  // Otherwise only two nullptrs are considered equal.
925  return info1 == info2;
926}
927
928std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
929  if (info != nullptr) {
930    if (info->induction_class == kInvariant) {
931      std::string inv = "(";
932      inv += InductionToString(info->op_a);
933      switch (info->operation) {
934        case kNop:   inv += " @ ";  break;
935        case kAdd:   inv += " + ";  break;
936        case kSub:
937        case kNeg:   inv += " - ";  break;
938        case kMul:   inv += " * ";  break;
939        case kDiv:   inv += " / ";  break;
940        case kLT:    inv += " < ";  break;
941        case kLE:    inv += " <= "; break;
942        case kGT:    inv += " > ";  break;
943        case kGE:    inv += " >= "; break;
944        case kFetch:
945          DCHECK(info->fetch);
946          if (info->fetch->IsIntConstant()) {
947            inv += std::to_string(info->fetch->AsIntConstant()->GetValue());
948          } else if (info->fetch->IsLongConstant()) {
949            inv += std::to_string(info->fetch->AsLongConstant()->GetValue());
950          } else {
951            inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName();
952          }
953          break;
954        case kTripCountInLoop:       inv += " (TC-loop) ";        break;
955        case kTripCountInBody:       inv += " (TC-body) ";        break;
956        case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break;
957        case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break;
958      }
959      inv += InductionToString(info->op_b);
960      inv += ")";
961      return inv;
962    } else {
963      DCHECK(info->operation == kNop);
964      if (info->induction_class == kLinear) {
965        return "(" + InductionToString(info->op_a) + " * i + " +
966                     InductionToString(info->op_b) + "):" +
967                     Primitive::PrettyDescriptor(info->type);
968      } else if (info->induction_class == kWrapAround) {
969        return "wrap(" + InductionToString(info->op_a) + ", " +
970                         InductionToString(info->op_b) + "):" +
971                         Primitive::PrettyDescriptor(info->type);
972      } else if (info->induction_class == kPeriodic) {
973        return "periodic(" + InductionToString(info->op_a) + ", " +
974                             InductionToString(info->op_b) + "):" +
975                             Primitive::PrettyDescriptor(info->type);
976      }
977    }
978  }
979  return "";
980}
981
982}  // namespace art
983