register_allocator_test.cc revision 8030c4100d2586fac39ed4007c61ee91d4ea4f25
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "arch/x86/instruction_set_features_x86.h"
18#include "base/arena_allocator.h"
19#include "builder.h"
20#include "code_generator.h"
21#include "code_generator_x86.h"
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "driver/compiler_options.h"
25#include "nodes.h"
26#include "optimizing_unit_test.h"
27#include "register_allocator.h"
28#include "ssa_liveness_analysis.h"
29#include "ssa_phi_elimination.h"
30
31#include "gtest/gtest.h"
32
33namespace art {
34
35// Note: the register allocator tests rely on the fact that constants have live
36// intervals and registers get allocated to them.
37
38static bool Check(const uint16_t* data) {
39  ArenaPool pool;
40  ArenaAllocator allocator(&pool);
41  HGraph* graph = CreateGraph(&allocator);
42  HGraphBuilder builder(graph);
43  const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data);
44  builder.BuildGraph(*item);
45  graph->TryBuildingSsa();
46  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
47      X86InstructionSetFeatures::FromCppDefines());
48  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
49  SsaLivenessAnalysis liveness(graph, &codegen);
50  liveness.Analyze();
51  RegisterAllocator register_allocator(&allocator, &codegen, liveness);
52  register_allocator.AllocateRegisters();
53  return register_allocator.Validate(false);
54}
55
56/**
57 * Unit testing of RegisterAllocator::ValidateIntervals. Register allocator
58 * tests are based on this validation method.
59 */
60TEST(RegisterAllocatorTest, ValidateIntervals) {
61  ArenaPool pool;
62  ArenaAllocator allocator(&pool);
63  HGraph* graph = CreateGraph(&allocator);
64  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
65      X86InstructionSetFeatures::FromCppDefines());
66  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
67  ArenaVector<LiveInterval*> intervals(allocator.Adapter());
68
69  // Test with two intervals of the same range.
70  {
71    static constexpr size_t ranges[][2] = {{0, 42}};
72    intervals.push_back(BuildInterval(ranges, arraysize(ranges), &allocator, 0));
73    intervals.push_back(BuildInterval(ranges, arraysize(ranges), &allocator, 1));
74    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
75        intervals, 0, 0, codegen, &allocator, true, false));
76
77    intervals[1]->SetRegister(0);
78    ASSERT_FALSE(RegisterAllocator::ValidateIntervals(
79        intervals, 0, 0, codegen, &allocator, true, false));
80    intervals.clear();
81  }
82
83  // Test with two non-intersecting intervals.
84  {
85    static constexpr size_t ranges1[][2] = {{0, 42}};
86    intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
87    static constexpr size_t ranges2[][2] = {{42, 43}};
88    intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
89    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
90        intervals, 0, 0, codegen, &allocator, true, false));
91
92    intervals[1]->SetRegister(0);
93    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
94        intervals, 0, 0, codegen, &allocator, true, false));
95    intervals.clear();
96  }
97
98  // Test with two non-intersecting intervals, with one with a lifetime hole.
99  {
100    static constexpr size_t ranges1[][2] = {{0, 42}, {45, 48}};
101    intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
102    static constexpr size_t ranges2[][2] = {{42, 43}};
103    intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
104    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
105        intervals, 0, 0, codegen, &allocator, true, false));
106
107    intervals[1]->SetRegister(0);
108    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
109        intervals, 0, 0, codegen, &allocator, true, false));
110    intervals.clear();
111  }
112
113  // Test with intersecting intervals.
114  {
115    static constexpr size_t ranges1[][2] = {{0, 42}, {44, 48}};
116    intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
117    static constexpr size_t ranges2[][2] = {{42, 47}};
118    intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
119    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
120        intervals, 0, 0, codegen, &allocator, true, false));
121
122    intervals[1]->SetRegister(0);
123    ASSERT_FALSE(RegisterAllocator::ValidateIntervals(
124        intervals, 0, 0, codegen, &allocator, true, false));
125    intervals.clear();
126  }
127
128  // Test with siblings.
129  {
130    static constexpr size_t ranges1[][2] = {{0, 42}, {44, 48}};
131    intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
132    intervals[0]->SplitAt(43);
133    static constexpr size_t ranges2[][2] = {{42, 47}};
134    intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
135    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
136        intervals, 0, 0, codegen, &allocator, true, false));
137
138    intervals[1]->SetRegister(0);
139    // Sibling of the first interval has no register allocated to it.
140    ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
141        intervals, 0, 0, codegen, &allocator, true, false));
142
143    intervals[0]->GetNextSibling()->SetRegister(0);
144    ASSERT_FALSE(RegisterAllocator::ValidateIntervals(
145        intervals, 0, 0, codegen, &allocator, true, false));
146  }
147}
148
149TEST(RegisterAllocatorTest, CFG1) {
150  /*
151   * Test the following snippet:
152   *  return 0;
153   *
154   * Which becomes the following graph:
155   *       constant0
156   *       goto
157   *        |
158   *       return
159   *        |
160   *       exit
161   */
162  const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
163    Instruction::CONST_4 | 0 | 0,
164    Instruction::RETURN);
165
166  ASSERT_TRUE(Check(data));
167}
168
169TEST(RegisterAllocatorTest, Loop1) {
170  /*
171   * Test the following snippet:
172   *  int a = 0;
173   *  while (a == a) {
174   *    a = 4;
175   *  }
176   *  return 5;
177   *
178   * Which becomes the following graph:
179   *       constant0
180   *       constant4
181   *       constant5
182   *       goto
183   *        |
184   *       goto
185   *        |
186   *       phi
187   *       equal
188   *       if +++++
189   *        |       \ +
190   *        |     goto
191   *        |
192   *       return
193   *        |
194   *       exit
195   */
196
197  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
198    Instruction::CONST_4 | 0 | 0,
199    Instruction::IF_EQ, 4,
200    Instruction::CONST_4 | 4 << 12 | 0,
201    Instruction::GOTO | 0xFD00,
202    Instruction::CONST_4 | 5 << 12 | 1 << 8,
203    Instruction::RETURN | 1 << 8);
204
205  ASSERT_TRUE(Check(data));
206}
207
208TEST(RegisterAllocatorTest, Loop2) {
209  /*
210   * Test the following snippet:
211   *  int a = 0;
212   *  while (a == 8) {
213   *    a = 4 + 5;
214   *  }
215   *  return 6 + 7;
216   *
217   * Which becomes the following graph:
218   *       constant0
219   *       constant4
220   *       constant5
221   *       constant6
222   *       constant7
223   *       constant8
224   *       goto
225   *        |
226   *       goto
227   *        |
228   *       phi
229   *       equal
230   *       if +++++
231   *        |       \ +
232   *        |      4 + 5
233   *        |      goto
234   *        |
235   *       6 + 7
236   *       return
237   *        |
238   *       exit
239   */
240
241  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
242    Instruction::CONST_4 | 0 | 0,
243    Instruction::CONST_4 | 8 << 12 | 1 << 8,
244    Instruction::IF_EQ | 1 << 8, 7,
245    Instruction::CONST_4 | 4 << 12 | 0 << 8,
246    Instruction::CONST_4 | 5 << 12 | 1 << 8,
247    Instruction::ADD_INT, 1 << 8 | 0,
248    Instruction::GOTO | 0xFA00,
249    Instruction::CONST_4 | 6 << 12 | 1 << 8,
250    Instruction::CONST_4 | 7 << 12 | 1 << 8,
251    Instruction::ADD_INT, 1 << 8 | 0,
252    Instruction::RETURN | 1 << 8);
253
254  ASSERT_TRUE(Check(data));
255}
256
257static HGraph* BuildSSAGraph(const uint16_t* data, ArenaAllocator* allocator) {
258  HGraph* graph = CreateGraph(allocator);
259  HGraphBuilder builder(graph);
260  const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data);
261  builder.BuildGraph(*item);
262  graph->TryBuildingSsa();
263  return graph;
264}
265
266TEST(RegisterAllocatorTest, Loop3) {
267  /*
268   * Test the following snippet:
269   *  int a = 0
270   *  do {
271   *    b = a;
272   *    a++;
273   *  } while (a != 5)
274   *  return b;
275   *
276   * Which becomes the following graph:
277   *       constant0
278   *       constant1
279   *       constant5
280   *       goto
281   *        |
282   *       goto
283   *        |++++++++++++
284   *       phi          +
285   *       a++          +
286   *       equals       +
287   *       if           +
288   *        |++++++++++++
289   *       return
290   *        |
291   *       exit
292   */
293
294  const uint16_t data[] = THREE_REGISTERS_CODE_ITEM(
295    Instruction::CONST_4 | 0 | 0,
296    Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8,
297    Instruction::CONST_4 | 5 << 12 | 2 << 8,
298    Instruction::IF_NE | 1 << 8 | 2 << 12, 3,
299    Instruction::RETURN | 0 << 8,
300    Instruction::MOVE | 1 << 12 | 0 << 8,
301    Instruction::GOTO | 0xF900);
302
303  ArenaPool pool;
304  ArenaAllocator allocator(&pool);
305  HGraph* graph = BuildSSAGraph(data, &allocator);
306  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
307      X86InstructionSetFeatures::FromCppDefines());
308  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
309  SsaLivenessAnalysis liveness(graph, &codegen);
310  liveness.Analyze();
311  RegisterAllocator register_allocator(&allocator, &codegen, liveness);
312  register_allocator.AllocateRegisters();
313  ASSERT_TRUE(register_allocator.Validate(false));
314
315  HBasicBlock* loop_header = graph->GetBlocks()[2];
316  HPhi* phi = loop_header->GetFirstPhi()->AsPhi();
317
318  LiveInterval* phi_interval = phi->GetLiveInterval();
319  LiveInterval* loop_update = phi->InputAt(1)->GetLiveInterval();
320  ASSERT_TRUE(phi_interval->HasRegister());
321  ASSERT_TRUE(loop_update->HasRegister());
322  ASSERT_NE(phi_interval->GetRegister(), loop_update->GetRegister());
323
324  HBasicBlock* return_block = graph->GetBlocks()[3];
325  HReturn* ret = return_block->GetLastInstruction()->AsReturn();
326  ASSERT_EQ(phi_interval->GetRegister(), ret->InputAt(0)->GetLiveInterval()->GetRegister());
327}
328
329TEST(RegisterAllocatorTest, FirstRegisterUse) {
330  const uint16_t data[] = THREE_REGISTERS_CODE_ITEM(
331    Instruction::CONST_4 | 0 | 0,
332    Instruction::XOR_INT_LIT8 | 1 << 8, 1 << 8,
333    Instruction::XOR_INT_LIT8 | 0 << 8, 1 << 8,
334    Instruction::XOR_INT_LIT8 | 1 << 8, 1 << 8 | 1,
335    Instruction::RETURN_VOID);
336
337  ArenaPool pool;
338  ArenaAllocator allocator(&pool);
339  HGraph* graph = BuildSSAGraph(data, &allocator);
340  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
341      X86InstructionSetFeatures::FromCppDefines());
342  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
343  SsaLivenessAnalysis liveness(graph, &codegen);
344  liveness.Analyze();
345
346  HXor* first_xor = graph->GetBlocks()[1]->GetFirstInstruction()->AsXor();
347  HXor* last_xor = graph->GetBlocks()[1]->GetLastInstruction()->GetPrevious()->AsXor();
348  ASSERT_EQ(last_xor->InputAt(0), first_xor);
349  LiveInterval* interval = first_xor->GetLiveInterval();
350  ASSERT_EQ(interval->GetEnd(), last_xor->GetLifetimePosition());
351  ASSERT_TRUE(interval->GetNextSibling() == nullptr);
352
353  // We need a register for the output of the instruction.
354  ASSERT_EQ(interval->FirstRegisterUse(), first_xor->GetLifetimePosition());
355
356  // Split at the next instruction.
357  interval = interval->SplitAt(first_xor->GetLifetimePosition() + 2);
358  // The user of the split is the last add.
359  ASSERT_EQ(interval->FirstRegisterUse(), last_xor->GetLifetimePosition());
360
361  // Split before the last add.
362  LiveInterval* new_interval = interval->SplitAt(last_xor->GetLifetimePosition() - 1);
363  // Ensure the current interval has no register use...
364  ASSERT_EQ(interval->FirstRegisterUse(), kNoLifetime);
365  // And the new interval has it for the last add.
366  ASSERT_EQ(new_interval->FirstRegisterUse(), last_xor->GetLifetimePosition());
367}
368
369TEST(RegisterAllocatorTest, DeadPhi) {
370  /* Test for a dead loop phi taking as back-edge input a phi that also has
371   * this loop phi as input. Walking backwards in SsaDeadPhiElimination
372   * does not solve the problem because the loop phi will be visited last.
373   *
374   * Test the following snippet:
375   *  int a = 0
376   *  do {
377   *    if (true) {
378   *      a = 2;
379   *    }
380   *  } while (true);
381   */
382
383  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
384    Instruction::CONST_4 | 0 | 0,
385    Instruction::CONST_4 | 1 << 8 | 0,
386    Instruction::IF_NE | 1 << 8 | 1 << 12, 3,
387    Instruction::CONST_4 | 2 << 12 | 0 << 8,
388    Instruction::GOTO | 0xFD00,
389    Instruction::RETURN_VOID);
390
391  ArenaPool pool;
392  ArenaAllocator allocator(&pool);
393  HGraph* graph = BuildSSAGraph(data, &allocator);
394  SsaDeadPhiElimination(graph).Run();
395  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
396      X86InstructionSetFeatures::FromCppDefines());
397  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
398  SsaLivenessAnalysis liveness(graph, &codegen);
399  liveness.Analyze();
400  RegisterAllocator register_allocator(&allocator, &codegen, liveness);
401  register_allocator.AllocateRegisters();
402  ASSERT_TRUE(register_allocator.Validate(false));
403}
404
405/**
406 * Test that the TryAllocateFreeReg method works in the presence of inactive intervals
407 * that share the same register. It should split the interval it is currently
408 * allocating for at the minimum lifetime position between the two inactive intervals.
409 */
410TEST(RegisterAllocatorTest, FreeUntil) {
411  const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
412    Instruction::CONST_4 | 0 | 0,
413    Instruction::RETURN);
414
415  ArenaPool pool;
416  ArenaAllocator allocator(&pool);
417  HGraph* graph = BuildSSAGraph(data, &allocator);
418  SsaDeadPhiElimination(graph).Run();
419  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
420      X86InstructionSetFeatures::FromCppDefines());
421  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
422  SsaLivenessAnalysis liveness(graph, &codegen);
423  liveness.Analyze();
424  RegisterAllocator register_allocator(&allocator, &codegen, liveness);
425
426  // Add an artifical range to cover the temps that will be put in the unhandled list.
427  LiveInterval* unhandled = graph->GetEntryBlock()->GetFirstInstruction()->GetLiveInterval();
428  unhandled->AddLoopRange(0, 60);
429
430  // Populate the instructions in the liveness object, to please the register allocator.
431  for (size_t i = 0; i < 60; ++i) {
432    liveness.instructions_from_lifetime_position_.push_back(
433        graph->GetEntryBlock()->GetFirstInstruction());
434  }
435
436  // For SSA value intervals, only an interval resulted from a split may intersect
437  // with inactive intervals.
438  unhandled = register_allocator.Split(unhandled, 5);
439
440  // Add three temps holding the same register, and starting at different positions.
441  // Put the one that should be picked in the middle of the inactive list to ensure
442  // we do not depend on an order.
443  LiveInterval* interval = LiveInterval::MakeFixedInterval(&allocator, 0, Primitive::kPrimInt);
444  interval->AddRange(40, 50);
445  register_allocator.inactive_.push_back(interval);
446
447  interval = LiveInterval::MakeFixedInterval(&allocator, 0, Primitive::kPrimInt);
448  interval->AddRange(20, 30);
449  register_allocator.inactive_.push_back(interval);
450
451  interval = LiveInterval::MakeFixedInterval(&allocator, 0, Primitive::kPrimInt);
452  interval->AddRange(60, 70);
453  register_allocator.inactive_.push_back(interval);
454
455  register_allocator.number_of_registers_ = 1;
456  register_allocator.registers_array_ = allocator.AllocArray<size_t>(1);
457  register_allocator.processing_core_registers_ = true;
458  register_allocator.unhandled_ = &register_allocator.unhandled_core_intervals_;
459
460  ASSERT_TRUE(register_allocator.TryAllocateFreeReg(unhandled));
461
462  // Check that we have split the interval.
463  ASSERT_EQ(1u, register_allocator.unhandled_->size());
464  // Check that we know need to find a new register where the next interval
465  // that uses the register starts.
466  ASSERT_EQ(20u, register_allocator.unhandled_->front()->GetStart());
467}
468
469static HGraph* BuildIfElseWithPhi(ArenaAllocator* allocator,
470                                  HPhi** phi,
471                                  HInstruction** input1,
472                                  HInstruction** input2) {
473  HGraph* graph = CreateGraph(allocator);
474  HBasicBlock* entry = new (allocator) HBasicBlock(graph);
475  NullHandle<mirror::DexCache> dex_cache;
476  graph->AddBlock(entry);
477  graph->SetEntryBlock(entry);
478  HInstruction* parameter = new (allocator) HParameterValue(0, Primitive::kPrimNot);
479  entry->AddInstruction(parameter);
480
481  HBasicBlock* block = new (allocator) HBasicBlock(graph);
482  graph->AddBlock(block);
483  entry->AddSuccessor(block);
484
485  HInstruction* test = new (allocator) HInstanceFieldGet(parameter,
486                                                         Primitive::kPrimBoolean,
487                                                         MemberOffset(22),
488                                                         false,
489                                                         kUnknownFieldIndex,
490                                                         graph->GetDexFile(),
491                                                         dex_cache,
492                                                         0);
493  block->AddInstruction(test);
494  block->AddInstruction(new (allocator) HIf(test));
495  HBasicBlock* then = new (allocator) HBasicBlock(graph);
496  HBasicBlock* else_ = new (allocator) HBasicBlock(graph);
497  HBasicBlock* join = new (allocator) HBasicBlock(graph);
498  graph->AddBlock(then);
499  graph->AddBlock(else_);
500  graph->AddBlock(join);
501
502  block->AddSuccessor(then);
503  block->AddSuccessor(else_);
504  then->AddSuccessor(join);
505  else_->AddSuccessor(join);
506  then->AddInstruction(new (allocator) HGoto());
507  else_->AddInstruction(new (allocator) HGoto());
508
509  *phi = new (allocator) HPhi(allocator, 0, 0, Primitive::kPrimInt);
510  join->AddPhi(*phi);
511  *input1 = new (allocator) HInstanceFieldGet(parameter,
512                                              Primitive::kPrimInt,
513                                              MemberOffset(42),
514                                              false,
515                                              kUnknownFieldIndex,
516                                              graph->GetDexFile(),
517                                              dex_cache,
518                                              0);
519*input2 = new (allocator) HInstanceFieldGet(parameter,
520                                            Primitive::kPrimInt,
521                                            MemberOffset(42),
522                                            false,
523                                            kUnknownFieldIndex,
524                                            graph->GetDexFile(),
525                                            dex_cache,
526                                            0);
527  then->AddInstruction(*input1);
528  else_->AddInstruction(*input2);
529  join->AddInstruction(new (allocator) HExit());
530  (*phi)->AddInput(*input1);
531  (*phi)->AddInput(*input2);
532
533  graph->BuildDominatorTree();
534  graph->AnalyzeNaturalLoops();
535  return graph;
536}
537
538TEST(RegisterAllocatorTest, PhiHint) {
539  ArenaPool pool;
540  ArenaAllocator allocator(&pool);
541  HPhi *phi;
542  HInstruction *input1, *input2;
543
544  {
545    HGraph* graph = BuildIfElseWithPhi(&allocator, &phi, &input1, &input2);
546    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
547        X86InstructionSetFeatures::FromCppDefines());
548    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
549    SsaLivenessAnalysis liveness(graph, &codegen);
550    liveness.Analyze();
551
552    // Check that the register allocator is deterministic.
553    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
554    register_allocator.AllocateRegisters();
555
556    ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 0);
557    ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 0);
558    ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 0);
559  }
560
561  {
562    HGraph* graph = BuildIfElseWithPhi(&allocator, &phi, &input1, &input2);
563    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
564        X86InstructionSetFeatures::FromCppDefines());
565    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
566    SsaLivenessAnalysis liveness(graph, &codegen);
567    liveness.Analyze();
568
569    // Set the phi to a specific register, and check that the inputs get allocated
570    // the same register.
571    phi->GetLocations()->UpdateOut(Location::RegisterLocation(2));
572    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
573    register_allocator.AllocateRegisters();
574
575    ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 2);
576    ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 2);
577    ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 2);
578  }
579
580  {
581    HGraph* graph = BuildIfElseWithPhi(&allocator, &phi, &input1, &input2);
582    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
583        X86InstructionSetFeatures::FromCppDefines());
584    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
585    SsaLivenessAnalysis liveness(graph, &codegen);
586    liveness.Analyze();
587
588    // Set input1 to a specific register, and check that the phi and other input get allocated
589    // the same register.
590    input1->GetLocations()->UpdateOut(Location::RegisterLocation(2));
591    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
592    register_allocator.AllocateRegisters();
593
594    ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 2);
595    ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 2);
596    ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 2);
597  }
598
599  {
600    HGraph* graph = BuildIfElseWithPhi(&allocator, &phi, &input1, &input2);
601    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
602        X86InstructionSetFeatures::FromCppDefines());
603    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
604    SsaLivenessAnalysis liveness(graph, &codegen);
605    liveness.Analyze();
606
607    // Set input2 to a specific register, and check that the phi and other input get allocated
608    // the same register.
609    input2->GetLocations()->UpdateOut(Location::RegisterLocation(2));
610    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
611    register_allocator.AllocateRegisters();
612
613    ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 2);
614    ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 2);
615    ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 2);
616  }
617}
618
619static HGraph* BuildFieldReturn(ArenaAllocator* allocator,
620                                HInstruction** field,
621                                HInstruction** ret) {
622  HGraph* graph = CreateGraph(allocator);
623  NullHandle<mirror::DexCache> dex_cache;
624  HBasicBlock* entry = new (allocator) HBasicBlock(graph);
625  graph->AddBlock(entry);
626  graph->SetEntryBlock(entry);
627  HInstruction* parameter = new (allocator) HParameterValue(0, Primitive::kPrimNot);
628  entry->AddInstruction(parameter);
629
630  HBasicBlock* block = new (allocator) HBasicBlock(graph);
631  graph->AddBlock(block);
632  entry->AddSuccessor(block);
633
634  *field = new (allocator) HInstanceFieldGet(parameter,
635                                             Primitive::kPrimInt,
636                                             MemberOffset(42),
637                                             false,
638                                             kUnknownFieldIndex,
639                                             graph->GetDexFile(),
640                                             dex_cache,
641                                             0);
642  block->AddInstruction(*field);
643  *ret = new (allocator) HReturn(*field);
644  block->AddInstruction(*ret);
645
646  HBasicBlock* exit = new (allocator) HBasicBlock(graph);
647  graph->AddBlock(exit);
648  block->AddSuccessor(exit);
649  exit->AddInstruction(new (allocator) HExit());
650
651  graph->BuildDominatorTree();
652  return graph;
653}
654
655TEST(RegisterAllocatorTest, ExpectedInRegisterHint) {
656  ArenaPool pool;
657  ArenaAllocator allocator(&pool);
658  HInstruction *field, *ret;
659
660  {
661    HGraph* graph = BuildFieldReturn(&allocator, &field, &ret);
662    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
663        X86InstructionSetFeatures::FromCppDefines());
664    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
665    SsaLivenessAnalysis liveness(graph, &codegen);
666    liveness.Analyze();
667
668    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
669    register_allocator.AllocateRegisters();
670
671    // Sanity check that in normal conditions, the register should be hinted to 0 (EAX).
672    ASSERT_EQ(field->GetLiveInterval()->GetRegister(), 0);
673  }
674
675  {
676    HGraph* graph = BuildFieldReturn(&allocator, &field, &ret);
677    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
678        X86InstructionSetFeatures::FromCppDefines());
679    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
680    SsaLivenessAnalysis liveness(graph, &codegen);
681    liveness.Analyze();
682
683    // Check that the field gets put in the register expected by its use.
684    // Don't use SetInAt because we are overriding an already allocated location.
685    ret->GetLocations()->inputs_[0] = Location::RegisterLocation(2);
686
687    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
688    register_allocator.AllocateRegisters();
689
690    ASSERT_EQ(field->GetLiveInterval()->GetRegister(), 2);
691  }
692}
693
694static HGraph* BuildTwoSubs(ArenaAllocator* allocator,
695                            HInstruction** first_sub,
696                            HInstruction** second_sub) {
697  HGraph* graph = CreateGraph(allocator);
698  HBasicBlock* entry = new (allocator) HBasicBlock(graph);
699  graph->AddBlock(entry);
700  graph->SetEntryBlock(entry);
701  HInstruction* parameter = new (allocator) HParameterValue(0, Primitive::kPrimInt);
702  entry->AddInstruction(parameter);
703
704  HInstruction* constant1 = graph->GetIntConstant(1);
705  HInstruction* constant2 = graph->GetIntConstant(2);
706
707  HBasicBlock* block = new (allocator) HBasicBlock(graph);
708  graph->AddBlock(block);
709  entry->AddSuccessor(block);
710
711  *first_sub = new (allocator) HSub(Primitive::kPrimInt, parameter, constant1);
712  block->AddInstruction(*first_sub);
713  *second_sub = new (allocator) HSub(Primitive::kPrimInt, *first_sub, constant2);
714  block->AddInstruction(*second_sub);
715
716  block->AddInstruction(new (allocator) HExit());
717
718  graph->BuildDominatorTree();
719  return graph;
720}
721
722TEST(RegisterAllocatorTest, SameAsFirstInputHint) {
723  ArenaPool pool;
724  ArenaAllocator allocator(&pool);
725  HInstruction *first_sub, *second_sub;
726
727  {
728    HGraph* graph = BuildTwoSubs(&allocator, &first_sub, &second_sub);
729    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
730        X86InstructionSetFeatures::FromCppDefines());
731    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
732    SsaLivenessAnalysis liveness(graph, &codegen);
733    liveness.Analyze();
734
735    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
736    register_allocator.AllocateRegisters();
737
738    // Sanity check that in normal conditions, the registers are the same.
739    ASSERT_EQ(first_sub->GetLiveInterval()->GetRegister(), 1);
740    ASSERT_EQ(second_sub->GetLiveInterval()->GetRegister(), 1);
741  }
742
743  {
744    HGraph* graph = BuildTwoSubs(&allocator, &first_sub, &second_sub);
745    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
746        X86InstructionSetFeatures::FromCppDefines());
747    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
748    SsaLivenessAnalysis liveness(graph, &codegen);
749    liveness.Analyze();
750
751    // check that both adds get the same register.
752    // Don't use UpdateOutput because output is already allocated.
753    first_sub->InputAt(0)->GetLocations()->output_ = Location::RegisterLocation(2);
754    ASSERT_EQ(first_sub->GetLocations()->Out().GetPolicy(), Location::kSameAsFirstInput);
755    ASSERT_EQ(second_sub->GetLocations()->Out().GetPolicy(), Location::kSameAsFirstInput);
756
757    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
758    register_allocator.AllocateRegisters();
759
760    ASSERT_EQ(first_sub->GetLiveInterval()->GetRegister(), 2);
761    ASSERT_EQ(second_sub->GetLiveInterval()->GetRegister(), 2);
762  }
763}
764
765static HGraph* BuildDiv(ArenaAllocator* allocator,
766                        HInstruction** div) {
767  HGraph* graph = CreateGraph(allocator);
768  HBasicBlock* entry = new (allocator) HBasicBlock(graph);
769  graph->AddBlock(entry);
770  graph->SetEntryBlock(entry);
771  HInstruction* first = new (allocator) HParameterValue(0, Primitive::kPrimInt);
772  HInstruction* second = new (allocator) HParameterValue(0, Primitive::kPrimInt);
773  entry->AddInstruction(first);
774  entry->AddInstruction(second);
775
776  HBasicBlock* block = new (allocator) HBasicBlock(graph);
777  graph->AddBlock(block);
778  entry->AddSuccessor(block);
779
780  *div = new (allocator) HDiv(Primitive::kPrimInt, first, second, 0);  // don't care about dex_pc.
781  block->AddInstruction(*div);
782
783  block->AddInstruction(new (allocator) HExit());
784
785  graph->BuildDominatorTree();
786  return graph;
787}
788
789TEST(RegisterAllocatorTest, ExpectedExactInRegisterAndSameOutputHint) {
790  ArenaPool pool;
791  ArenaAllocator allocator(&pool);
792  HInstruction *div;
793
794  {
795    HGraph* graph = BuildDiv(&allocator, &div);
796    std::unique_ptr<const X86InstructionSetFeatures> features_x86(
797        X86InstructionSetFeatures::FromCppDefines());
798    x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
799    SsaLivenessAnalysis liveness(graph, &codegen);
800    liveness.Analyze();
801
802    RegisterAllocator register_allocator(&allocator, &codegen, liveness);
803    register_allocator.AllocateRegisters();
804
805    // div on x86 requires its first input in eax and the output be the same as the first input.
806    ASSERT_EQ(div->GetLiveInterval()->GetRegister(), 0);
807  }
808}
809
810// Test a bug in the register allocator, where allocating a blocked
811// register would lead to spilling an inactive interval at the wrong
812// position.
813TEST(RegisterAllocatorTest, SpillInactive) {
814  ArenaPool pool;
815
816  // Create a synthesized graph to please the register_allocator and
817  // ssa_liveness_analysis code.
818  ArenaAllocator allocator(&pool);
819  HGraph* graph = CreateGraph(&allocator);
820  HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
821  graph->AddBlock(entry);
822  graph->SetEntryBlock(entry);
823  HInstruction* one = new (&allocator) HParameterValue(0, Primitive::kPrimInt);
824  HInstruction* two = new (&allocator) HParameterValue(0, Primitive::kPrimInt);
825  HInstruction* three = new (&allocator) HParameterValue(0, Primitive::kPrimInt);
826  HInstruction* four = new (&allocator) HParameterValue(0, Primitive::kPrimInt);
827  entry->AddInstruction(one);
828  entry->AddInstruction(two);
829  entry->AddInstruction(three);
830  entry->AddInstruction(four);
831
832  HBasicBlock* block = new (&allocator) HBasicBlock(graph);
833  graph->AddBlock(block);
834  entry->AddSuccessor(block);
835  block->AddInstruction(new (&allocator) HExit());
836
837  // We create a synthesized user requesting a register, to avoid just spilling the
838  // intervals.
839  HPhi* user = new (&allocator) HPhi(&allocator, 0, 1, Primitive::kPrimInt);
840  user->AddInput(one);
841  user->SetBlock(block);
842  LocationSummary* locations = new (&allocator) LocationSummary(user, LocationSummary::kNoCall);
843  locations->SetInAt(0, Location::RequiresRegister());
844  static constexpr size_t phi_ranges[][2] = {{20, 30}};
845  BuildInterval(phi_ranges, arraysize(phi_ranges), &allocator, -1, user);
846
847  // Create an interval with lifetime holes.
848  static constexpr size_t ranges1[][2] = {{0, 2}, {4, 6}, {8, 10}};
849  LiveInterval* first = BuildInterval(ranges1, arraysize(ranges1), &allocator, -1, one);
850  first->first_use_ = new(&allocator) UsePosition(user, 0, false, 8, first->first_use_);
851  first->first_use_ = new(&allocator) UsePosition(user, 0, false, 7, first->first_use_);
852  first->first_use_ = new(&allocator) UsePosition(user, 0, false, 6, first->first_use_);
853
854  locations = new (&allocator) LocationSummary(first->GetDefinedBy(), LocationSummary::kNoCall);
855  locations->SetOut(Location::RequiresRegister());
856  first = first->SplitAt(1);
857
858  // Create an interval that conflicts with the next interval, to force the next
859  // interval to call `AllocateBlockedReg`.
860  static constexpr size_t ranges2[][2] = {{2, 4}};
861  LiveInterval* second = BuildInterval(ranges2, arraysize(ranges2), &allocator, -1, two);
862  locations = new (&allocator) LocationSummary(second->GetDefinedBy(), LocationSummary::kNoCall);
863  locations->SetOut(Location::RequiresRegister());
864
865  // Create an interval that will lead to splitting the first interval. The bug occured
866  // by splitting at a wrong position, in this case at the next intersection between
867  // this interval and the first interval. We would have then put the interval with ranges
868  // "[0, 2(, [4, 6(" in the list of handled intervals, even though we haven't processed intervals
869  // before lifetime position 6 yet.
870  static constexpr size_t ranges3[][2] = {{2, 4}, {8, 10}};
871  LiveInterval* third = BuildInterval(ranges3, arraysize(ranges3), &allocator, -1, three);
872  third->first_use_ = new(&allocator) UsePosition(user, 0, false, 8, third->first_use_);
873  third->first_use_ = new(&allocator) UsePosition(user, 0, false, 4, third->first_use_);
874  third->first_use_ = new(&allocator) UsePosition(user, 0, false, 3, third->first_use_);
875  locations = new (&allocator) LocationSummary(third->GetDefinedBy(), LocationSummary::kNoCall);
876  locations->SetOut(Location::RequiresRegister());
877  third = third->SplitAt(3);
878
879  // Because the first part of the split interval was considered handled, this interval
880  // was free to allocate the same register, even though it conflicts with it.
881  static constexpr size_t ranges4[][2] = {{4, 6}};
882  LiveInterval* fourth = BuildInterval(ranges4, arraysize(ranges4), &allocator, -1, four);
883  locations = new (&allocator) LocationSummary(fourth->GetDefinedBy(), LocationSummary::kNoCall);
884  locations->SetOut(Location::RequiresRegister());
885
886  std::unique_ptr<const X86InstructionSetFeatures> features_x86(
887      X86InstructionSetFeatures::FromCppDefines());
888  x86::CodeGeneratorX86 codegen(graph, *features_x86.get(), CompilerOptions());
889  SsaLivenessAnalysis liveness(graph, &codegen);
890  // Populate the instructions in the liveness object, to please the register allocator.
891  for (size_t i = 0; i < 32; ++i) {
892    liveness.instructions_from_lifetime_position_.push_back(user);
893  }
894
895  RegisterAllocator register_allocator(&allocator, &codegen, liveness);
896  register_allocator.unhandled_core_intervals_.push_back(fourth);
897  register_allocator.unhandled_core_intervals_.push_back(third);
898  register_allocator.unhandled_core_intervals_.push_back(second);
899  register_allocator.unhandled_core_intervals_.push_back(first);
900
901  // Set just one register available to make all intervals compete for the same.
902  register_allocator.number_of_registers_ = 1;
903  register_allocator.registers_array_ = allocator.AllocArray<size_t>(1);
904  register_allocator.processing_core_registers_ = true;
905  register_allocator.unhandled_ = &register_allocator.unhandled_core_intervals_;
906  register_allocator.LinearScan();
907
908  // Test that there is no conflicts between intervals.
909  ArenaVector<LiveInterval*> intervals(allocator.Adapter());
910  intervals.push_back(first);
911  intervals.push_back(second);
912  intervals.push_back(third);
913  intervals.push_back(fourth);
914  ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
915      intervals, 0, 0, codegen, &allocator, true, false));
916}
917
918}  // namespace art
919