1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGLoopInfo.h"
20#include "CGValue.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "EHScopeStack.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/ExprOpenMP.h"
28#include "clang/AST/Type.h"
29#include "clang/Basic/ABI.h"
30#include "clang/Basic/CapturedStmt.h"
31#include "clang/Basic/OpenMPKinds.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/Frontend/CodeGenOptions.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/IR/ValueHandle.h"
38#include "llvm/Support/Debug.h"
39
40namespace llvm {
41class BasicBlock;
42class LLVMContext;
43class MDNode;
44class Module;
45class SwitchInst;
46class Twine;
47class Value;
48class CallSite;
49}
50
51namespace clang {
52class ASTContext;
53class BlockDecl;
54class CXXDestructorDecl;
55class CXXForRangeStmt;
56class CXXTryStmt;
57class Decl;
58class LabelDecl;
59class EnumConstantDecl;
60class FunctionDecl;
61class FunctionProtoType;
62class LabelStmt;
63class ObjCContainerDecl;
64class ObjCInterfaceDecl;
65class ObjCIvarDecl;
66class ObjCMethodDecl;
67class ObjCImplementationDecl;
68class ObjCPropertyImplDecl;
69class TargetInfo;
70class TargetCodeGenInfo;
71class VarDecl;
72class ObjCForCollectionStmt;
73class ObjCAtTryStmt;
74class ObjCAtThrowStmt;
75class ObjCAtSynchronizedStmt;
76class ObjCAutoreleasePoolStmt;
77
78namespace CodeGen {
79class CodeGenTypes;
80class CGFunctionInfo;
81class CGRecordLayout;
82class CGBlockInfo;
83class CGCXXABI;
84class BlockByrefHelpers;
85class BlockByrefInfo;
86class BlockFlags;
87class BlockFieldFlags;
88
89/// The kind of evaluation to perform on values of a particular
90/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
91/// CGExprAgg?
92///
93/// TODO: should vectors maybe be split out into their own thing?
94enum TypeEvaluationKind {
95  TEK_Scalar,
96  TEK_Complex,
97  TEK_Aggregate
98};
99
100/// CodeGenFunction - This class organizes the per-function state that is used
101/// while generating LLVM code.
102class CodeGenFunction : public CodeGenTypeCache {
103  CodeGenFunction(const CodeGenFunction &) = delete;
104  void operator=(const CodeGenFunction &) = delete;
105
106  friend class CGCXXABI;
107public:
108  /// A jump destination is an abstract label, branching to which may
109  /// require a jump out through normal cleanups.
110  struct JumpDest {
111    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
112    JumpDest(llvm::BasicBlock *Block,
113             EHScopeStack::stable_iterator Depth,
114             unsigned Index)
115      : Block(Block), ScopeDepth(Depth), Index(Index) {}
116
117    bool isValid() const { return Block != nullptr; }
118    llvm::BasicBlock *getBlock() const { return Block; }
119    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
120    unsigned getDestIndex() const { return Index; }
121
122    // This should be used cautiously.
123    void setScopeDepth(EHScopeStack::stable_iterator depth) {
124      ScopeDepth = depth;
125    }
126
127  private:
128    llvm::BasicBlock *Block;
129    EHScopeStack::stable_iterator ScopeDepth;
130    unsigned Index;
131  };
132
133  CodeGenModule &CGM;  // Per-module state.
134  const TargetInfo &Target;
135
136  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
137  LoopInfoStack LoopStack;
138  CGBuilderTy Builder;
139
140  /// \brief CGBuilder insert helper. This function is called after an
141  /// instruction is created using Builder.
142  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
143                    llvm::BasicBlock *BB,
144                    llvm::BasicBlock::iterator InsertPt) const;
145
146  /// CurFuncDecl - Holds the Decl for the current outermost
147  /// non-closure context.
148  const Decl *CurFuncDecl;
149  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
150  const Decl *CurCodeDecl;
151  const CGFunctionInfo *CurFnInfo;
152  QualType FnRetTy;
153  llvm::Function *CurFn;
154
155  /// CurGD - The GlobalDecl for the current function being compiled.
156  GlobalDecl CurGD;
157
158  /// PrologueCleanupDepth - The cleanup depth enclosing all the
159  /// cleanups associated with the parameters.
160  EHScopeStack::stable_iterator PrologueCleanupDepth;
161
162  /// ReturnBlock - Unified return block.
163  JumpDest ReturnBlock;
164
165  /// ReturnValue - The temporary alloca to hold the return
166  /// value. This is invalid iff the function has no return value.
167  Address ReturnValue;
168
169  /// AllocaInsertPoint - This is an instruction in the entry block before which
170  /// we prefer to insert allocas.
171  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
172
173  /// \brief API for captured statement code generation.
174  class CGCapturedStmtInfo {
175  public:
176    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
177        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
178    explicit CGCapturedStmtInfo(const CapturedStmt &S,
179                                CapturedRegionKind K = CR_Default)
180      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
181
182      RecordDecl::field_iterator Field =
183        S.getCapturedRecordDecl()->field_begin();
184      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
185                                                E = S.capture_end();
186           I != E; ++I, ++Field) {
187        if (I->capturesThis())
188          CXXThisFieldDecl = *Field;
189        else if (I->capturesVariable())
190          CaptureFields[I->getCapturedVar()] = *Field;
191      }
192    }
193
194    virtual ~CGCapturedStmtInfo();
195
196    CapturedRegionKind getKind() const { return Kind; }
197
198    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
199    // \brief Retrieve the value of the context parameter.
200    virtual llvm::Value *getContextValue() const { return ThisValue; }
201
202    /// \brief Lookup the captured field decl for a variable.
203    virtual const FieldDecl *lookup(const VarDecl *VD) const {
204      return CaptureFields.lookup(VD);
205    }
206
207    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
208    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
209
210    static bool classof(const CGCapturedStmtInfo *) {
211      return true;
212    }
213
214    /// \brief Emit the captured statement body.
215    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
216      CGF.incrementProfileCounter(S);
217      CGF.EmitStmt(S);
218    }
219
220    /// \brief Get the name of the capture helper.
221    virtual StringRef getHelperName() const { return "__captured_stmt"; }
222
223  private:
224    /// \brief The kind of captured statement being generated.
225    CapturedRegionKind Kind;
226
227    /// \brief Keep the map between VarDecl and FieldDecl.
228    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
229
230    /// \brief The base address of the captured record, passed in as the first
231    /// argument of the parallel region function.
232    llvm::Value *ThisValue;
233
234    /// \brief Captured 'this' type.
235    FieldDecl *CXXThisFieldDecl;
236  };
237  CGCapturedStmtInfo *CapturedStmtInfo;
238
239  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
240  class CGCapturedStmtRAII {
241  private:
242    CodeGenFunction &CGF;
243    CGCapturedStmtInfo *PrevCapturedStmtInfo;
244  public:
245    CGCapturedStmtRAII(CodeGenFunction &CGF,
246                       CGCapturedStmtInfo *NewCapturedStmtInfo)
247        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
248      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
249    }
250    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
251  };
252
253  /// \brief Sanitizers enabled for this function.
254  SanitizerSet SanOpts;
255
256  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
257  bool IsSanitizerScope;
258
259  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
260  class SanitizerScope {
261    CodeGenFunction *CGF;
262  public:
263    SanitizerScope(CodeGenFunction *CGF);
264    ~SanitizerScope();
265  };
266
267  /// In C++, whether we are code generating a thunk.  This controls whether we
268  /// should emit cleanups.
269  bool CurFuncIsThunk;
270
271  /// In ARC, whether we should autorelease the return value.
272  bool AutoreleaseResult;
273
274  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
275  /// potentially set the return value.
276  bool SawAsmBlock;
277
278  /// True if the current function is an outlined SEH helper. This can be a
279  /// finally block or filter expression.
280  bool IsOutlinedSEHHelper;
281
282  const CodeGen::CGBlockInfo *BlockInfo;
283  llvm::Value *BlockPointer;
284
285  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
286  FieldDecl *LambdaThisCaptureField;
287
288  /// \brief A mapping from NRVO variables to the flags used to indicate
289  /// when the NRVO has been applied to this variable.
290  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
291
292  EHScopeStack EHStack;
293  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
294  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
295
296  llvm::Instruction *CurrentFuncletPad = nullptr;
297
298  /// Header for data within LifetimeExtendedCleanupStack.
299  struct LifetimeExtendedCleanupHeader {
300    /// The size of the following cleanup object.
301    unsigned Size;
302    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
303    CleanupKind Kind;
304
305    size_t getSize() const { return Size; }
306    CleanupKind getKind() const { return Kind; }
307  };
308
309  /// i32s containing the indexes of the cleanup destinations.
310  llvm::AllocaInst *NormalCleanupDest;
311
312  unsigned NextCleanupDestIndex;
313
314  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
315  CGBlockInfo *FirstBlockInfo;
316
317  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
318  llvm::BasicBlock *EHResumeBlock;
319
320  /// The exception slot.  All landing pads write the current exception pointer
321  /// into this alloca.
322  llvm::Value *ExceptionSlot;
323
324  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
325  /// write the current selector value into this alloca.
326  llvm::AllocaInst *EHSelectorSlot;
327
328  /// A stack of exception code slots. Entering an __except block pushes a slot
329  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
330  /// a value from the top of the stack.
331  SmallVector<Address, 1> SEHCodeSlotStack;
332
333  /// Value returned by __exception_info intrinsic.
334  llvm::Value *SEHInfo = nullptr;
335
336  /// Emits a landing pad for the current EH stack.
337  llvm::BasicBlock *EmitLandingPad();
338
339  llvm::BasicBlock *getInvokeDestImpl();
340
341  template <class T>
342  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
343    return DominatingValue<T>::save(*this, value);
344  }
345
346public:
347  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
348  /// rethrows.
349  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
350
351  /// A class controlling the emission of a finally block.
352  class FinallyInfo {
353    /// Where the catchall's edge through the cleanup should go.
354    JumpDest RethrowDest;
355
356    /// A function to call to enter the catch.
357    llvm::Constant *BeginCatchFn;
358
359    /// An i1 variable indicating whether or not the @finally is
360    /// running for an exception.
361    llvm::AllocaInst *ForEHVar;
362
363    /// An i8* variable into which the exception pointer to rethrow
364    /// has been saved.
365    llvm::AllocaInst *SavedExnVar;
366
367  public:
368    void enter(CodeGenFunction &CGF, const Stmt *Finally,
369               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
370               llvm::Constant *rethrowFn);
371    void exit(CodeGenFunction &CGF);
372  };
373
374  /// Returns true inside SEH __try blocks.
375  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
376
377  /// Returns true while emitting a cleanuppad.
378  bool isCleanupPadScope() const {
379    return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
380  }
381
382  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
383  /// current full-expression.  Safe against the possibility that
384  /// we're currently inside a conditionally-evaluated expression.
385  template <class T, class... As>
386  void pushFullExprCleanup(CleanupKind kind, As... A) {
387    // If we're not in a conditional branch, or if none of the
388    // arguments requires saving, then use the unconditional cleanup.
389    if (!isInConditionalBranch())
390      return EHStack.pushCleanup<T>(kind, A...);
391
392    // Stash values in a tuple so we can guarantee the order of saves.
393    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
394    SavedTuple Saved{saveValueInCond(A)...};
395
396    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
397    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
398    initFullExprCleanup();
399  }
400
401  /// \brief Queue a cleanup to be pushed after finishing the current
402  /// full-expression.
403  template <class T, class... As>
404  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
405    assert(!isInConditionalBranch() && "can't defer conditional cleanup");
406
407    LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
408
409    size_t OldSize = LifetimeExtendedCleanupStack.size();
410    LifetimeExtendedCleanupStack.resize(
411        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
412
413    static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
414                  "Cleanup will be allocated on misaligned address");
415    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
416    new (Buffer) LifetimeExtendedCleanupHeader(Header);
417    new (Buffer + sizeof(Header)) T(A...);
418  }
419
420  /// Set up the last cleaup that was pushed as a conditional
421  /// full-expression cleanup.
422  void initFullExprCleanup();
423
424  /// PushDestructorCleanup - Push a cleanup to call the
425  /// complete-object destructor of an object of the given type at the
426  /// given address.  Does nothing if T is not a C++ class type with a
427  /// non-trivial destructor.
428  void PushDestructorCleanup(QualType T, Address Addr);
429
430  /// PushDestructorCleanup - Push a cleanup to call the
431  /// complete-object variant of the given destructor on the object at
432  /// the given address.
433  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
434
435  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
436  /// process all branch fixups.
437  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
438
439  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
440  /// The block cannot be reactivated.  Pops it if it's the top of the
441  /// stack.
442  ///
443  /// \param DominatingIP - An instruction which is known to
444  ///   dominate the current IP (if set) and which lies along
445  ///   all paths of execution between the current IP and the
446  ///   the point at which the cleanup comes into scope.
447  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
448                              llvm::Instruction *DominatingIP);
449
450  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
451  /// Cannot be used to resurrect a deactivated cleanup.
452  ///
453  /// \param DominatingIP - An instruction which is known to
454  ///   dominate the current IP (if set) and which lies along
455  ///   all paths of execution between the current IP and the
456  ///   the point at which the cleanup comes into scope.
457  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
458                            llvm::Instruction *DominatingIP);
459
460  /// \brief Enters a new scope for capturing cleanups, all of which
461  /// will be executed once the scope is exited.
462  class RunCleanupsScope {
463    EHScopeStack::stable_iterator CleanupStackDepth;
464    size_t LifetimeExtendedCleanupStackSize;
465    bool OldDidCallStackSave;
466  protected:
467    bool PerformCleanup;
468  private:
469
470    RunCleanupsScope(const RunCleanupsScope &) = delete;
471    void operator=(const RunCleanupsScope &) = delete;
472
473  protected:
474    CodeGenFunction& CGF;
475
476  public:
477    /// \brief Enter a new cleanup scope.
478    explicit RunCleanupsScope(CodeGenFunction &CGF)
479      : PerformCleanup(true), CGF(CGF)
480    {
481      CleanupStackDepth = CGF.EHStack.stable_begin();
482      LifetimeExtendedCleanupStackSize =
483          CGF.LifetimeExtendedCleanupStack.size();
484      OldDidCallStackSave = CGF.DidCallStackSave;
485      CGF.DidCallStackSave = false;
486    }
487
488    /// \brief Exit this cleanup scope, emitting any accumulated
489    /// cleanups.
490    ~RunCleanupsScope() {
491      if (PerformCleanup) {
492        CGF.DidCallStackSave = OldDidCallStackSave;
493        CGF.PopCleanupBlocks(CleanupStackDepth,
494                             LifetimeExtendedCleanupStackSize);
495      }
496    }
497
498    /// \brief Determine whether this scope requires any cleanups.
499    bool requiresCleanups() const {
500      return CGF.EHStack.stable_begin() != CleanupStackDepth;
501    }
502
503    /// \brief Force the emission of cleanups now, instead of waiting
504    /// until this object is destroyed.
505    void ForceCleanup() {
506      assert(PerformCleanup && "Already forced cleanup");
507      CGF.DidCallStackSave = OldDidCallStackSave;
508      CGF.PopCleanupBlocks(CleanupStackDepth,
509                           LifetimeExtendedCleanupStackSize);
510      PerformCleanup = false;
511    }
512  };
513
514  class LexicalScope : public RunCleanupsScope {
515    SourceRange Range;
516    SmallVector<const LabelDecl*, 4> Labels;
517    LexicalScope *ParentScope;
518
519    LexicalScope(const LexicalScope &) = delete;
520    void operator=(const LexicalScope &) = delete;
521
522  public:
523    /// \brief Enter a new cleanup scope.
524    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
525      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
526      CGF.CurLexicalScope = this;
527      if (CGDebugInfo *DI = CGF.getDebugInfo())
528        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
529    }
530
531    void addLabel(const LabelDecl *label) {
532      assert(PerformCleanup && "adding label to dead scope?");
533      Labels.push_back(label);
534    }
535
536    /// \brief Exit this cleanup scope, emitting any accumulated
537    /// cleanups.
538    ~LexicalScope() {
539      if (CGDebugInfo *DI = CGF.getDebugInfo())
540        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
541
542      // If we should perform a cleanup, force them now.  Note that
543      // this ends the cleanup scope before rescoping any labels.
544      if (PerformCleanup) {
545        ApplyDebugLocation DL(CGF, Range.getEnd());
546        ForceCleanup();
547      }
548    }
549
550    /// \brief Force the emission of cleanups now, instead of waiting
551    /// until this object is destroyed.
552    void ForceCleanup() {
553      CGF.CurLexicalScope = ParentScope;
554      RunCleanupsScope::ForceCleanup();
555
556      if (!Labels.empty())
557        rescopeLabels();
558    }
559
560    void rescopeLabels();
561  };
562
563  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
564
565  /// \brief The scope used to remap some variables as private in the OpenMP
566  /// loop body (or other captured region emitted without outlining), and to
567  /// restore old vars back on exit.
568  class OMPPrivateScope : public RunCleanupsScope {
569    DeclMapTy SavedLocals;
570    DeclMapTy SavedPrivates;
571
572  private:
573    OMPPrivateScope(const OMPPrivateScope &) = delete;
574    void operator=(const OMPPrivateScope &) = delete;
575
576  public:
577    /// \brief Enter a new OpenMP private scope.
578    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
579
580    /// \brief Registers \a LocalVD variable as a private and apply \a
581    /// PrivateGen function for it to generate corresponding private variable.
582    /// \a PrivateGen returns an address of the generated private variable.
583    /// \return true if the variable is registered as private, false if it has
584    /// been privatized already.
585    bool
586    addPrivate(const VarDecl *LocalVD,
587               llvm::function_ref<Address()> PrivateGen) {
588      assert(PerformCleanup && "adding private to dead scope");
589
590      // Only save it once.
591      if (SavedLocals.count(LocalVD)) return false;
592
593      // Copy the existing local entry to SavedLocals.
594      auto it = CGF.LocalDeclMap.find(LocalVD);
595      if (it != CGF.LocalDeclMap.end()) {
596        SavedLocals.insert({LocalVD, it->second});
597      } else {
598        SavedLocals.insert({LocalVD, Address::invalid()});
599      }
600
601      // Generate the private entry.
602      Address Addr = PrivateGen();
603      QualType VarTy = LocalVD->getType();
604      if (VarTy->isReferenceType()) {
605        Address Temp = CGF.CreateMemTemp(VarTy);
606        CGF.Builder.CreateStore(Addr.getPointer(), Temp);
607        Addr = Temp;
608      }
609      SavedPrivates.insert({LocalVD, Addr});
610
611      return true;
612    }
613
614    /// \brief Privatizes local variables previously registered as private.
615    /// Registration is separate from the actual privatization to allow
616    /// initializers use values of the original variables, not the private one.
617    /// This is important, for example, if the private variable is a class
618    /// variable initialized by a constructor that references other private
619    /// variables. But at initialization original variables must be used, not
620    /// private copies.
621    /// \return true if at least one variable was privatized, false otherwise.
622    bool Privatize() {
623      copyInto(SavedPrivates, CGF.LocalDeclMap);
624      SavedPrivates.clear();
625      return !SavedLocals.empty();
626    }
627
628    void ForceCleanup() {
629      RunCleanupsScope::ForceCleanup();
630      copyInto(SavedLocals, CGF.LocalDeclMap);
631      SavedLocals.clear();
632    }
633
634    /// \brief Exit scope - all the mapped variables are restored.
635    ~OMPPrivateScope() {
636      if (PerformCleanup)
637        ForceCleanup();
638    }
639
640  private:
641    /// Copy all the entries in the source map over the corresponding
642    /// entries in the destination, which must exist.
643    static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
644      for (auto &pair : src) {
645        if (!pair.second.isValid()) {
646          dest.erase(pair.first);
647          continue;
648        }
649
650        auto it = dest.find(pair.first);
651        if (it != dest.end()) {
652          it->second = pair.second;
653        } else {
654          dest.insert(pair);
655        }
656      }
657    }
658  };
659
660  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
661  /// that have been added.
662  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
663
664  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
665  /// that have been added, then adds all lifetime-extended cleanups from
666  /// the given position to the stack.
667  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
668                        size_t OldLifetimeExtendedStackSize);
669
670  void ResolveBranchFixups(llvm::BasicBlock *Target);
671
672  /// The given basic block lies in the current EH scope, but may be a
673  /// target of a potentially scope-crossing jump; get a stable handle
674  /// to which we can perform this jump later.
675  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
676    return JumpDest(Target,
677                    EHStack.getInnermostNormalCleanup(),
678                    NextCleanupDestIndex++);
679  }
680
681  /// The given basic block lies in the current EH scope, but may be a
682  /// target of a potentially scope-crossing jump; get a stable handle
683  /// to which we can perform this jump later.
684  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
685    return getJumpDestInCurrentScope(createBasicBlock(Name));
686  }
687
688  /// EmitBranchThroughCleanup - Emit a branch from the current insert
689  /// block through the normal cleanup handling code (if any) and then
690  /// on to \arg Dest.
691  void EmitBranchThroughCleanup(JumpDest Dest);
692
693  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
694  /// specified destination obviously has no cleanups to run.  'false' is always
695  /// a conservatively correct answer for this method.
696  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
697
698  /// popCatchScope - Pops the catch scope at the top of the EHScope
699  /// stack, emitting any required code (other than the catch handlers
700  /// themselves).
701  void popCatchScope();
702
703  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
704  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
705  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
706
707  /// An object to manage conditionally-evaluated expressions.
708  class ConditionalEvaluation {
709    llvm::BasicBlock *StartBB;
710
711  public:
712    ConditionalEvaluation(CodeGenFunction &CGF)
713      : StartBB(CGF.Builder.GetInsertBlock()) {}
714
715    void begin(CodeGenFunction &CGF) {
716      assert(CGF.OutermostConditional != this);
717      if (!CGF.OutermostConditional)
718        CGF.OutermostConditional = this;
719    }
720
721    void end(CodeGenFunction &CGF) {
722      assert(CGF.OutermostConditional != nullptr);
723      if (CGF.OutermostConditional == this)
724        CGF.OutermostConditional = nullptr;
725    }
726
727    /// Returns a block which will be executed prior to each
728    /// evaluation of the conditional code.
729    llvm::BasicBlock *getStartingBlock() const {
730      return StartBB;
731    }
732  };
733
734  /// isInConditionalBranch - Return true if we're currently emitting
735  /// one branch or the other of a conditional expression.
736  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
737
738  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
739    assert(isInConditionalBranch());
740    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
741    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
742    store->setAlignment(addr.getAlignment().getQuantity());
743  }
744
745  /// An RAII object to record that we're evaluating a statement
746  /// expression.
747  class StmtExprEvaluation {
748    CodeGenFunction &CGF;
749
750    /// We have to save the outermost conditional: cleanups in a
751    /// statement expression aren't conditional just because the
752    /// StmtExpr is.
753    ConditionalEvaluation *SavedOutermostConditional;
754
755  public:
756    StmtExprEvaluation(CodeGenFunction &CGF)
757      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
758      CGF.OutermostConditional = nullptr;
759    }
760
761    ~StmtExprEvaluation() {
762      CGF.OutermostConditional = SavedOutermostConditional;
763      CGF.EnsureInsertPoint();
764    }
765  };
766
767  /// An object which temporarily prevents a value from being
768  /// destroyed by aggressive peephole optimizations that assume that
769  /// all uses of a value have been realized in the IR.
770  class PeepholeProtection {
771    llvm::Instruction *Inst;
772    friend class CodeGenFunction;
773
774  public:
775    PeepholeProtection() : Inst(nullptr) {}
776  };
777
778  /// A non-RAII class containing all the information about a bound
779  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
780  /// this which makes individual mappings very simple; using this
781  /// class directly is useful when you have a variable number of
782  /// opaque values or don't want the RAII functionality for some
783  /// reason.
784  class OpaqueValueMappingData {
785    const OpaqueValueExpr *OpaqueValue;
786    bool BoundLValue;
787    CodeGenFunction::PeepholeProtection Protection;
788
789    OpaqueValueMappingData(const OpaqueValueExpr *ov,
790                           bool boundLValue)
791      : OpaqueValue(ov), BoundLValue(boundLValue) {}
792  public:
793    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
794
795    static bool shouldBindAsLValue(const Expr *expr) {
796      // gl-values should be bound as l-values for obvious reasons.
797      // Records should be bound as l-values because IR generation
798      // always keeps them in memory.  Expressions of function type
799      // act exactly like l-values but are formally required to be
800      // r-values in C.
801      return expr->isGLValue() ||
802             expr->getType()->isFunctionType() ||
803             hasAggregateEvaluationKind(expr->getType());
804    }
805
806    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
807                                       const OpaqueValueExpr *ov,
808                                       const Expr *e) {
809      if (shouldBindAsLValue(ov))
810        return bind(CGF, ov, CGF.EmitLValue(e));
811      return bind(CGF, ov, CGF.EmitAnyExpr(e));
812    }
813
814    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
815                                       const OpaqueValueExpr *ov,
816                                       const LValue &lv) {
817      assert(shouldBindAsLValue(ov));
818      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
819      return OpaqueValueMappingData(ov, true);
820    }
821
822    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
823                                       const OpaqueValueExpr *ov,
824                                       const RValue &rv) {
825      assert(!shouldBindAsLValue(ov));
826      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
827
828      OpaqueValueMappingData data(ov, false);
829
830      // Work around an extremely aggressive peephole optimization in
831      // EmitScalarConversion which assumes that all other uses of a
832      // value are extant.
833      data.Protection = CGF.protectFromPeepholes(rv);
834
835      return data;
836    }
837
838    bool isValid() const { return OpaqueValue != nullptr; }
839    void clear() { OpaqueValue = nullptr; }
840
841    void unbind(CodeGenFunction &CGF) {
842      assert(OpaqueValue && "no data to unbind!");
843
844      if (BoundLValue) {
845        CGF.OpaqueLValues.erase(OpaqueValue);
846      } else {
847        CGF.OpaqueRValues.erase(OpaqueValue);
848        CGF.unprotectFromPeepholes(Protection);
849      }
850    }
851  };
852
853  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
854  class OpaqueValueMapping {
855    CodeGenFunction &CGF;
856    OpaqueValueMappingData Data;
857
858  public:
859    static bool shouldBindAsLValue(const Expr *expr) {
860      return OpaqueValueMappingData::shouldBindAsLValue(expr);
861    }
862
863    /// Build the opaque value mapping for the given conditional
864    /// operator if it's the GNU ?: extension.  This is a common
865    /// enough pattern that the convenience operator is really
866    /// helpful.
867    ///
868    OpaqueValueMapping(CodeGenFunction &CGF,
869                       const AbstractConditionalOperator *op) : CGF(CGF) {
870      if (isa<ConditionalOperator>(op))
871        // Leave Data empty.
872        return;
873
874      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
875      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
876                                          e->getCommon());
877    }
878
879    OpaqueValueMapping(CodeGenFunction &CGF,
880                       const OpaqueValueExpr *opaqueValue,
881                       LValue lvalue)
882      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
883    }
884
885    OpaqueValueMapping(CodeGenFunction &CGF,
886                       const OpaqueValueExpr *opaqueValue,
887                       RValue rvalue)
888      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
889    }
890
891    void pop() {
892      Data.unbind(CGF);
893      Data.clear();
894    }
895
896    ~OpaqueValueMapping() {
897      if (Data.isValid()) Data.unbind(CGF);
898    }
899  };
900
901private:
902  CGDebugInfo *DebugInfo;
903  bool DisableDebugInfo;
904
905  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
906  /// calling llvm.stacksave for multiple VLAs in the same scope.
907  bool DidCallStackSave;
908
909  /// IndirectBranch - The first time an indirect goto is seen we create a block
910  /// with an indirect branch.  Every time we see the address of a label taken,
911  /// we add the label to the indirect goto.  Every subsequent indirect goto is
912  /// codegen'd as a jump to the IndirectBranch's basic block.
913  llvm::IndirectBrInst *IndirectBranch;
914
915  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
916  /// decls.
917  DeclMapTy LocalDeclMap;
918
919  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
920  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
921  /// parameter.
922  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
923      SizeArguments;
924
925  /// Track escaped local variables with auto storage. Used during SEH
926  /// outlining to produce a call to llvm.localescape.
927  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
928
929  /// LabelMap - This keeps track of the LLVM basic block for each C label.
930  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
931
932  // BreakContinueStack - This keeps track of where break and continue
933  // statements should jump to.
934  struct BreakContinue {
935    BreakContinue(JumpDest Break, JumpDest Continue)
936      : BreakBlock(Break), ContinueBlock(Continue) {}
937
938    JumpDest BreakBlock;
939    JumpDest ContinueBlock;
940  };
941  SmallVector<BreakContinue, 8> BreakContinueStack;
942
943  CodeGenPGO PGO;
944
945  /// Calculate branch weights appropriate for PGO data
946  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
947  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
948  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
949                                            uint64_t LoopCount);
950
951public:
952  /// Increment the profiler's counter for the given statement.
953  void incrementProfileCounter(const Stmt *S) {
954    if (CGM.getCodeGenOpts().ProfileInstrGenerate)
955      PGO.emitCounterIncrement(Builder, S);
956    PGO.setCurrentStmt(S);
957  }
958
959  /// Get the profiler's count for the given statement.
960  uint64_t getProfileCount(const Stmt *S) {
961    Optional<uint64_t> Count = PGO.getStmtCount(S);
962    if (!Count.hasValue())
963      return 0;
964    return *Count;
965  }
966
967  /// Set the profiler's current count.
968  void setCurrentProfileCount(uint64_t Count) {
969    PGO.setCurrentRegionCount(Count);
970  }
971
972  /// Get the profiler's current count. This is generally the count for the most
973  /// recently incremented counter.
974  uint64_t getCurrentProfileCount() {
975    return PGO.getCurrentRegionCount();
976  }
977
978private:
979
980  /// SwitchInsn - This is nearest current switch instruction. It is null if
981  /// current context is not in a switch.
982  llvm::SwitchInst *SwitchInsn;
983  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
984  SmallVector<uint64_t, 16> *SwitchWeights;
985
986  /// CaseRangeBlock - This block holds if condition check for last case
987  /// statement range in current switch instruction.
988  llvm::BasicBlock *CaseRangeBlock;
989
990  /// OpaqueLValues - Keeps track of the current set of opaque value
991  /// expressions.
992  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
993  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
994
995  // VLASizeMap - This keeps track of the associated size for each VLA type.
996  // We track this by the size expression rather than the type itself because
997  // in certain situations, like a const qualifier applied to an VLA typedef,
998  // multiple VLA types can share the same size expression.
999  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1000  // enter/leave scopes.
1001  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1002
1003  /// A block containing a single 'unreachable' instruction.  Created
1004  /// lazily by getUnreachableBlock().
1005  llvm::BasicBlock *UnreachableBlock;
1006
1007  /// Counts of the number return expressions in the function.
1008  unsigned NumReturnExprs;
1009
1010  /// Count the number of simple (constant) return expressions in the function.
1011  unsigned NumSimpleReturnExprs;
1012
1013  /// The last regular (non-return) debug location (breakpoint) in the function.
1014  SourceLocation LastStopPoint;
1015
1016public:
1017  /// A scope within which we are constructing the fields of an object which
1018  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1019  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1020  class FieldConstructionScope {
1021  public:
1022    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1023        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1024      CGF.CXXDefaultInitExprThis = This;
1025    }
1026    ~FieldConstructionScope() {
1027      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1028    }
1029
1030  private:
1031    CodeGenFunction &CGF;
1032    Address OldCXXDefaultInitExprThis;
1033  };
1034
1035  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1036  /// is overridden to be the object under construction.
1037  class CXXDefaultInitExprScope {
1038  public:
1039    CXXDefaultInitExprScope(CodeGenFunction &CGF)
1040      : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1041        OldCXXThisAlignment(CGF.CXXThisAlignment) {
1042      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1043      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1044    }
1045    ~CXXDefaultInitExprScope() {
1046      CGF.CXXThisValue = OldCXXThisValue;
1047      CGF.CXXThisAlignment = OldCXXThisAlignment;
1048    }
1049
1050  public:
1051    CodeGenFunction &CGF;
1052    llvm::Value *OldCXXThisValue;
1053    CharUnits OldCXXThisAlignment;
1054  };
1055
1056private:
1057  /// CXXThisDecl - When generating code for a C++ member function,
1058  /// this will hold the implicit 'this' declaration.
1059  ImplicitParamDecl *CXXABIThisDecl;
1060  llvm::Value *CXXABIThisValue;
1061  llvm::Value *CXXThisValue;
1062  CharUnits CXXABIThisAlignment;
1063  CharUnits CXXThisAlignment;
1064
1065  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1066  /// this expression.
1067  Address CXXDefaultInitExprThis = Address::invalid();
1068
1069  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1070  /// destructor, this will hold the implicit argument (e.g. VTT).
1071  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1072  llvm::Value *CXXStructorImplicitParamValue;
1073
1074  /// OutermostConditional - Points to the outermost active
1075  /// conditional control.  This is used so that we know if a
1076  /// temporary should be destroyed conditionally.
1077  ConditionalEvaluation *OutermostConditional;
1078
1079  /// The current lexical scope.
1080  LexicalScope *CurLexicalScope;
1081
1082  /// The current source location that should be used for exception
1083  /// handling code.
1084  SourceLocation CurEHLocation;
1085
1086  /// BlockByrefInfos - For each __block variable, contains
1087  /// information about the layout of the variable.
1088  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1089
1090  llvm::BasicBlock *TerminateLandingPad;
1091  llvm::BasicBlock *TerminateHandler;
1092  llvm::BasicBlock *TrapBB;
1093
1094  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1095  /// In the kernel metadata node, reference the kernel function and metadata
1096  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1097  /// - A node for the vec_type_hint(<type>) qualifier contains string
1098  ///   "vec_type_hint", an undefined value of the <type> data type,
1099  ///   and a Boolean that is true if the <type> is integer and signed.
1100  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1101  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1102  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1103  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1104  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1105                                llvm::Function *Fn);
1106
1107public:
1108  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1109  ~CodeGenFunction();
1110
1111  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1112  ASTContext &getContext() const { return CGM.getContext(); }
1113  CGDebugInfo *getDebugInfo() {
1114    if (DisableDebugInfo)
1115      return nullptr;
1116    return DebugInfo;
1117  }
1118  void disableDebugInfo() { DisableDebugInfo = true; }
1119  void enableDebugInfo() { DisableDebugInfo = false; }
1120
1121  bool shouldUseFusedARCCalls() {
1122    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1123  }
1124
1125  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1126
1127  /// Returns a pointer to the function's exception object and selector slot,
1128  /// which is assigned in every landing pad.
1129  Address getExceptionSlot();
1130  Address getEHSelectorSlot();
1131
1132  /// Returns the contents of the function's exception object and selector
1133  /// slots.
1134  llvm::Value *getExceptionFromSlot();
1135  llvm::Value *getSelectorFromSlot();
1136
1137  Address getNormalCleanupDestSlot();
1138
1139  llvm::BasicBlock *getUnreachableBlock() {
1140    if (!UnreachableBlock) {
1141      UnreachableBlock = createBasicBlock("unreachable");
1142      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1143    }
1144    return UnreachableBlock;
1145  }
1146
1147  llvm::BasicBlock *getInvokeDest() {
1148    if (!EHStack.requiresLandingPad()) return nullptr;
1149    return getInvokeDestImpl();
1150  }
1151
1152  bool currentFunctionUsesSEHTry() const {
1153    const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1154    return FD && FD->usesSEHTry();
1155  }
1156
1157  const TargetInfo &getTarget() const { return Target; }
1158  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1159
1160  //===--------------------------------------------------------------------===//
1161  //                                  Cleanups
1162  //===--------------------------------------------------------------------===//
1163
1164  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1165
1166  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1167                                        Address arrayEndPointer,
1168                                        QualType elementType,
1169                                        CharUnits elementAlignment,
1170                                        Destroyer *destroyer);
1171  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1172                                      llvm::Value *arrayEnd,
1173                                      QualType elementType,
1174                                      CharUnits elementAlignment,
1175                                      Destroyer *destroyer);
1176
1177  void pushDestroy(QualType::DestructionKind dtorKind,
1178                   Address addr, QualType type);
1179  void pushEHDestroy(QualType::DestructionKind dtorKind,
1180                     Address addr, QualType type);
1181  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1182                   Destroyer *destroyer, bool useEHCleanupForArray);
1183  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1184                                   QualType type, Destroyer *destroyer,
1185                                   bool useEHCleanupForArray);
1186  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1187                                   llvm::Value *CompletePtr,
1188                                   QualType ElementType);
1189  void pushStackRestore(CleanupKind kind, Address SPMem);
1190  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1191                   bool useEHCleanupForArray);
1192  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1193                                        Destroyer *destroyer,
1194                                        bool useEHCleanupForArray,
1195                                        const VarDecl *VD);
1196  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1197                        QualType elementType, CharUnits elementAlign,
1198                        Destroyer *destroyer,
1199                        bool checkZeroLength, bool useEHCleanup);
1200
1201  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1202
1203  /// Determines whether an EH cleanup is required to destroy a type
1204  /// with the given destruction kind.
1205  bool needsEHCleanup(QualType::DestructionKind kind) {
1206    switch (kind) {
1207    case QualType::DK_none:
1208      return false;
1209    case QualType::DK_cxx_destructor:
1210    case QualType::DK_objc_weak_lifetime:
1211      return getLangOpts().Exceptions;
1212    case QualType::DK_objc_strong_lifetime:
1213      return getLangOpts().Exceptions &&
1214             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1215    }
1216    llvm_unreachable("bad destruction kind");
1217  }
1218
1219  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1220    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1221  }
1222
1223  //===--------------------------------------------------------------------===//
1224  //                                  Objective-C
1225  //===--------------------------------------------------------------------===//
1226
1227  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1228
1229  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1230
1231  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1232  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1233                          const ObjCPropertyImplDecl *PID);
1234  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1235                              const ObjCPropertyImplDecl *propImpl,
1236                              const ObjCMethodDecl *GetterMothodDecl,
1237                              llvm::Constant *AtomicHelperFn);
1238
1239  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1240                                  ObjCMethodDecl *MD, bool ctor);
1241
1242  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1243  /// for the given property.
1244  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1245                          const ObjCPropertyImplDecl *PID);
1246  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1247                              const ObjCPropertyImplDecl *propImpl,
1248                              llvm::Constant *AtomicHelperFn);
1249
1250  //===--------------------------------------------------------------------===//
1251  //                                  Block Bits
1252  //===--------------------------------------------------------------------===//
1253
1254  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1255  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1256  static void destroyBlockInfos(CGBlockInfo *info);
1257
1258  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1259                                        const CGBlockInfo &Info,
1260                                        const DeclMapTy &ldm,
1261                                        bool IsLambdaConversionToBlock);
1262
1263  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1264  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1265  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1266                                             const ObjCPropertyImplDecl *PID);
1267  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1268                                             const ObjCPropertyImplDecl *PID);
1269  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1270
1271  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1272
1273  class AutoVarEmission;
1274
1275  void emitByrefStructureInit(const AutoVarEmission &emission);
1276  void enterByrefCleanup(const AutoVarEmission &emission);
1277
1278  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1279                                llvm::Value *ptr);
1280
1281  Address LoadBlockStruct();
1282  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1283
1284  /// BuildBlockByrefAddress - Computes the location of the
1285  /// data in a variable which is declared as __block.
1286  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1287                                bool followForward = true);
1288  Address emitBlockByrefAddress(Address baseAddr,
1289                                const BlockByrefInfo &info,
1290                                bool followForward,
1291                                const llvm::Twine &name);
1292
1293  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1294
1295  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1296                    const CGFunctionInfo &FnInfo);
1297  /// \brief Emit code for the start of a function.
1298  /// \param Loc       The location to be associated with the function.
1299  /// \param StartLoc  The location of the function body.
1300  void StartFunction(GlobalDecl GD,
1301                     QualType RetTy,
1302                     llvm::Function *Fn,
1303                     const CGFunctionInfo &FnInfo,
1304                     const FunctionArgList &Args,
1305                     SourceLocation Loc = SourceLocation(),
1306                     SourceLocation StartLoc = SourceLocation());
1307
1308  void EmitConstructorBody(FunctionArgList &Args);
1309  void EmitDestructorBody(FunctionArgList &Args);
1310  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1311  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1312  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1313
1314  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1315                                  CallArgList &CallArgs);
1316  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1317  void EmitLambdaBlockInvokeBody();
1318  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1319  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1320  void EmitAsanPrologueOrEpilogue(bool Prologue);
1321
1322  /// \brief Emit the unified return block, trying to avoid its emission when
1323  /// possible.
1324  /// \return The debug location of the user written return statement if the
1325  /// return block is is avoided.
1326  llvm::DebugLoc EmitReturnBlock();
1327
1328  /// FinishFunction - Complete IR generation of the current function. It is
1329  /// legal to call this function even if there is no current insertion point.
1330  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1331
1332  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1333                  const CGFunctionInfo &FnInfo);
1334
1335  void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1336
1337  void FinishThunk();
1338
1339  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1340  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1341                         llvm::Value *Callee);
1342
1343  /// Generate a thunk for the given method.
1344  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1345                     GlobalDecl GD, const ThunkInfo &Thunk);
1346
1347  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1348                                       const CGFunctionInfo &FnInfo,
1349                                       GlobalDecl GD, const ThunkInfo &Thunk);
1350
1351  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1352                        FunctionArgList &Args);
1353
1354  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1355                               ArrayRef<VarDecl *> ArrayIndexes);
1356
1357  /// Struct with all informations about dynamic [sub]class needed to set vptr.
1358  struct VPtr {
1359    BaseSubobject Base;
1360    const CXXRecordDecl *NearestVBase;
1361    CharUnits OffsetFromNearestVBase;
1362    const CXXRecordDecl *VTableClass;
1363  };
1364
1365  /// Initialize the vtable pointer of the given subobject.
1366  void InitializeVTablePointer(const VPtr &vptr);
1367
1368  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1369
1370  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1371  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1372
1373  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1374                         CharUnits OffsetFromNearestVBase,
1375                         bool BaseIsNonVirtualPrimaryBase,
1376                         const CXXRecordDecl *VTableClass,
1377                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1378
1379  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1380
1381  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1382  /// to by This.
1383  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1384                            const CXXRecordDecl *VTableClass);
1385
1386  enum CFITypeCheckKind {
1387    CFITCK_VCall,
1388    CFITCK_NVCall,
1389    CFITCK_DerivedCast,
1390    CFITCK_UnrelatedCast,
1391  };
1392
1393  /// \brief Derived is the presumed address of an object of type T after a
1394  /// cast. If T is a polymorphic class type, emit a check that the virtual
1395  /// table for Derived belongs to a class derived from T.
1396  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1397                                 bool MayBeNull, CFITypeCheckKind TCK,
1398                                 SourceLocation Loc);
1399
1400  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1401  /// If vptr CFI is enabled, emit a check that VTable is valid.
1402  void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1403                                 CFITypeCheckKind TCK, SourceLocation Loc);
1404
1405  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1406  /// RD using llvm.bitset.test.
1407  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1408                          CFITypeCheckKind TCK, SourceLocation Loc);
1409
1410  /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1411  /// expr can be devirtualized.
1412  bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1413                                         const CXXMethodDecl *MD);
1414
1415  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1416  /// given phase of destruction for a destructor.  The end result
1417  /// should call destructors on members and base classes in reverse
1418  /// order of their construction.
1419  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1420
1421  /// ShouldInstrumentFunction - Return true if the current function should be
1422  /// instrumented with __cyg_profile_func_* calls
1423  bool ShouldInstrumentFunction();
1424
1425  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1426  /// instrumentation function with the current function and the call site, if
1427  /// function instrumentation is enabled.
1428  void EmitFunctionInstrumentation(const char *Fn);
1429
1430  /// EmitMCountInstrumentation - Emit call to .mcount.
1431  void EmitMCountInstrumentation();
1432
1433  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1434  /// arguments for the given function. This is also responsible for naming the
1435  /// LLVM function arguments.
1436  void EmitFunctionProlog(const CGFunctionInfo &FI,
1437                          llvm::Function *Fn,
1438                          const FunctionArgList &Args);
1439
1440  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1441  /// given temporary.
1442  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1443                          SourceLocation EndLoc);
1444
1445  /// EmitStartEHSpec - Emit the start of the exception spec.
1446  void EmitStartEHSpec(const Decl *D);
1447
1448  /// EmitEndEHSpec - Emit the end of the exception spec.
1449  void EmitEndEHSpec(const Decl *D);
1450
1451  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1452  llvm::BasicBlock *getTerminateLandingPad();
1453
1454  /// getTerminateHandler - Return a handler (not a landing pad, just
1455  /// a catch handler) that just calls terminate.  This is used when
1456  /// a terminate scope encloses a try.
1457  llvm::BasicBlock *getTerminateHandler();
1458
1459  llvm::Type *ConvertTypeForMem(QualType T);
1460  llvm::Type *ConvertType(QualType T);
1461  llvm::Type *ConvertType(const TypeDecl *T) {
1462    return ConvertType(getContext().getTypeDeclType(T));
1463  }
1464
1465  /// LoadObjCSelf - Load the value of self. This function is only valid while
1466  /// generating code for an Objective-C method.
1467  llvm::Value *LoadObjCSelf();
1468
1469  /// TypeOfSelfObject - Return type of object that this self represents.
1470  QualType TypeOfSelfObject();
1471
1472  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1473  /// an aggregate LLVM type or is void.
1474  static TypeEvaluationKind getEvaluationKind(QualType T);
1475
1476  static bool hasScalarEvaluationKind(QualType T) {
1477    return getEvaluationKind(T) == TEK_Scalar;
1478  }
1479
1480  static bool hasAggregateEvaluationKind(QualType T) {
1481    return getEvaluationKind(T) == TEK_Aggregate;
1482  }
1483
1484  /// createBasicBlock - Create an LLVM basic block.
1485  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1486                                     llvm::Function *parent = nullptr,
1487                                     llvm::BasicBlock *before = nullptr) {
1488#ifdef NDEBUG
1489    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1490#else
1491    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1492#endif
1493  }
1494
1495  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1496  /// label maps to.
1497  JumpDest getJumpDestForLabel(const LabelDecl *S);
1498
1499  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1500  /// another basic block, simplify it. This assumes that no other code could
1501  /// potentially reference the basic block.
1502  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1503
1504  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1505  /// adding a fall-through branch from the current insert block if
1506  /// necessary. It is legal to call this function even if there is no current
1507  /// insertion point.
1508  ///
1509  /// IsFinished - If true, indicates that the caller has finished emitting
1510  /// branches to the given block and does not expect to emit code into it. This
1511  /// means the block can be ignored if it is unreachable.
1512  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1513
1514  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1515  /// near its uses, and leave the insertion point in it.
1516  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1517
1518  /// EmitBranch - Emit a branch to the specified basic block from the current
1519  /// insert block, taking care to avoid creation of branches from dummy
1520  /// blocks. It is legal to call this function even if there is no current
1521  /// insertion point.
1522  ///
1523  /// This function clears the current insertion point. The caller should follow
1524  /// calls to this function with calls to Emit*Block prior to generation new
1525  /// code.
1526  void EmitBranch(llvm::BasicBlock *Block);
1527
1528  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1529  /// indicates that the current code being emitted is unreachable.
1530  bool HaveInsertPoint() const {
1531    return Builder.GetInsertBlock() != nullptr;
1532  }
1533
1534  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1535  /// emitted IR has a place to go. Note that by definition, if this function
1536  /// creates a block then that block is unreachable; callers may do better to
1537  /// detect when no insertion point is defined and simply skip IR generation.
1538  void EnsureInsertPoint() {
1539    if (!HaveInsertPoint())
1540      EmitBlock(createBasicBlock());
1541  }
1542
1543  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1544  /// specified stmt yet.
1545  void ErrorUnsupported(const Stmt *S, const char *Type);
1546
1547  //===--------------------------------------------------------------------===//
1548  //                                  Helpers
1549  //===--------------------------------------------------------------------===//
1550
1551  LValue MakeAddrLValue(Address Addr, QualType T,
1552                        AlignmentSource AlignSource = AlignmentSource::Type) {
1553    return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1554                            CGM.getTBAAInfo(T));
1555  }
1556
1557  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1558                        AlignmentSource AlignSource = AlignmentSource::Type) {
1559    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1560                            AlignSource, CGM.getTBAAInfo(T));
1561  }
1562
1563  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1564  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1565  CharUnits getNaturalTypeAlignment(QualType T,
1566                                    AlignmentSource *Source = nullptr,
1567                                    bool forPointeeType = false);
1568  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1569                                           AlignmentSource *Source = nullptr);
1570
1571  Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1572                              AlignmentSource *Source = nullptr);
1573  LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1574
1575  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1576  /// block. The caller is responsible for setting an appropriate alignment on
1577  /// the alloca.
1578  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1579                                     const Twine &Name = "tmp");
1580  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1581                           const Twine &Name = "tmp");
1582
1583  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1584  /// default ABI alignment of the given LLVM type.
1585  ///
1586  /// IMPORTANT NOTE: This is *not* generally the right alignment for
1587  /// any given AST type that happens to have been lowered to the
1588  /// given IR type.  This should only ever be used for function-local,
1589  /// IR-driven manipulations like saving and restoring a value.  Do
1590  /// not hand this address off to arbitrary IRGen routines, and especially
1591  /// do not pass it as an argument to a function that might expect a
1592  /// properly ABI-aligned value.
1593  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1594                                       const Twine &Name = "tmp");
1595
1596  /// InitTempAlloca - Provide an initial value for the given alloca which
1597  /// will be observable at all locations in the function.
1598  ///
1599  /// The address should be something that was returned from one of
1600  /// the CreateTempAlloca or CreateMemTemp routines, and the
1601  /// initializer must be valid in the entry block (i.e. it must
1602  /// either be a constant or an argument value).
1603  void InitTempAlloca(Address Alloca, llvm::Value *Value);
1604
1605  /// CreateIRTemp - Create a temporary IR object of the given type, with
1606  /// appropriate alignment. This routine should only be used when an temporary
1607  /// value needs to be stored into an alloca (for example, to avoid explicit
1608  /// PHI construction), but the type is the IR type, not the type appropriate
1609  /// for storing in memory.
1610  ///
1611  /// That is, this is exactly equivalent to CreateMemTemp, but calling
1612  /// ConvertType instead of ConvertTypeForMem.
1613  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1614
1615  /// CreateMemTemp - Create a temporary memory object of the given type, with
1616  /// appropriate alignment.
1617  Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1618  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1619
1620  /// CreateAggTemp - Create a temporary memory object for the given
1621  /// aggregate type.
1622  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1623    return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1624                                 T.getQualifiers(),
1625                                 AggValueSlot::IsNotDestructed,
1626                                 AggValueSlot::DoesNotNeedGCBarriers,
1627                                 AggValueSlot::IsNotAliased);
1628  }
1629
1630  /// Emit a cast to void* in the appropriate address space.
1631  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1632
1633  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1634  /// expression and compare the result against zero, returning an Int1Ty value.
1635  llvm::Value *EvaluateExprAsBool(const Expr *E);
1636
1637  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1638  void EmitIgnoredExpr(const Expr *E);
1639
1640  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1641  /// any type.  The result is returned as an RValue struct.  If this is an
1642  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1643  /// the result should be returned.
1644  ///
1645  /// \param ignoreResult True if the resulting value isn't used.
1646  RValue EmitAnyExpr(const Expr *E,
1647                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1648                     bool ignoreResult = false);
1649
1650  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1651  // or the value of the expression, depending on how va_list is defined.
1652  Address EmitVAListRef(const Expr *E);
1653
1654  /// Emit a "reference" to a __builtin_ms_va_list; this is
1655  /// always the value of the expression, because a __builtin_ms_va_list is a
1656  /// pointer to a char.
1657  Address EmitMSVAListRef(const Expr *E);
1658
1659  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1660  /// always be accessible even if no aggregate location is provided.
1661  RValue EmitAnyExprToTemp(const Expr *E);
1662
1663  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1664  /// arbitrary expression into the given memory location.
1665  void EmitAnyExprToMem(const Expr *E, Address Location,
1666                        Qualifiers Quals, bool IsInitializer);
1667
1668  void EmitAnyExprToExn(const Expr *E, Address Addr);
1669
1670  /// EmitExprAsInit - Emits the code necessary to initialize a
1671  /// location in memory with the given initializer.
1672  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1673                      bool capturedByInit);
1674
1675  /// hasVolatileMember - returns true if aggregate type has a volatile
1676  /// member.
1677  bool hasVolatileMember(QualType T) {
1678    if (const RecordType *RT = T->getAs<RecordType>()) {
1679      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1680      return RD->hasVolatileMember();
1681    }
1682    return false;
1683  }
1684  /// EmitAggregateCopy - Emit an aggregate assignment.
1685  ///
1686  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1687  /// This is required for correctness when assigning non-POD structures in C++.
1688  void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1689                           QualType EltTy) {
1690    bool IsVolatile = hasVolatileMember(EltTy);
1691    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1692  }
1693
1694  void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1695                             QualType DestTy, QualType SrcTy) {
1696    EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1697                      /*IsAssignment=*/false);
1698  }
1699
1700  /// EmitAggregateCopy - Emit an aggregate copy.
1701  ///
1702  /// \param isVolatile - True iff either the source or the destination is
1703  /// volatile.
1704  /// \param isAssignment - If false, allow padding to be copied.  This often
1705  /// yields more efficient.
1706  void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1707                         QualType EltTy, bool isVolatile=false,
1708                         bool isAssignment = false);
1709
1710  /// GetAddrOfLocalVar - Return the address of a local variable.
1711  Address GetAddrOfLocalVar(const VarDecl *VD) {
1712    auto it = LocalDeclMap.find(VD);
1713    assert(it != LocalDeclMap.end() &&
1714           "Invalid argument to GetAddrOfLocalVar(), no decl!");
1715    return it->second;
1716  }
1717
1718  /// getOpaqueLValueMapping - Given an opaque value expression (which
1719  /// must be mapped to an l-value), return its mapping.
1720  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1721    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1722
1723    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1724      it = OpaqueLValues.find(e);
1725    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1726    return it->second;
1727  }
1728
1729  /// getOpaqueRValueMapping - Given an opaque value expression (which
1730  /// must be mapped to an r-value), return its mapping.
1731  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1732    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1733
1734    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1735      it = OpaqueRValues.find(e);
1736    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1737    return it->second;
1738  }
1739
1740  /// getAccessedFieldNo - Given an encoded value and a result number, return
1741  /// the input field number being accessed.
1742  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1743
1744  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1745  llvm::BasicBlock *GetIndirectGotoBlock();
1746
1747  /// EmitNullInitialization - Generate code to set a value of the given type to
1748  /// null, If the type contains data member pointers, they will be initialized
1749  /// to -1 in accordance with the Itanium C++ ABI.
1750  void EmitNullInitialization(Address DestPtr, QualType Ty);
1751
1752  /// Emits a call to an LLVM variable-argument intrinsic, either
1753  /// \c llvm.va_start or \c llvm.va_end.
1754  /// \param ArgValue A reference to the \c va_list as emitted by either
1755  /// \c EmitVAListRef or \c EmitMSVAListRef.
1756  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1757  /// calls \c llvm.va_end.
1758  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1759
1760  /// Generate code to get an argument from the passed in pointer
1761  /// and update it accordingly.
1762  /// \param VE The \c VAArgExpr for which to generate code.
1763  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1764  /// either \c EmitVAListRef or \c EmitMSVAListRef.
1765  /// \returns A pointer to the argument.
1766  // FIXME: We should be able to get rid of this method and use the va_arg
1767  // instruction in LLVM instead once it works well enough.
1768  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1769
1770  /// emitArrayLength - Compute the length of an array, even if it's a
1771  /// VLA, and drill down to the base element type.
1772  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1773                               QualType &baseType,
1774                               Address &addr);
1775
1776  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1777  /// the given variably-modified type and store them in the VLASizeMap.
1778  ///
1779  /// This function can be called with a null (unreachable) insert point.
1780  void EmitVariablyModifiedType(QualType Ty);
1781
1782  /// getVLASize - Returns an LLVM value that corresponds to the size,
1783  /// in non-variably-sized elements, of a variable length array type,
1784  /// plus that largest non-variably-sized element type.  Assumes that
1785  /// the type has already been emitted with EmitVariablyModifiedType.
1786  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1787  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1788
1789  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1790  /// generating code for an C++ member function.
1791  llvm::Value *LoadCXXThis() {
1792    assert(CXXThisValue && "no 'this' value for this function");
1793    return CXXThisValue;
1794  }
1795  Address LoadCXXThisAddress();
1796
1797  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1798  /// virtual bases.
1799  // FIXME: Every place that calls LoadCXXVTT is something
1800  // that needs to be abstracted properly.
1801  llvm::Value *LoadCXXVTT() {
1802    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1803    return CXXStructorImplicitParamValue;
1804  }
1805
1806  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1807  /// complete class to the given direct base.
1808  Address
1809  GetAddressOfDirectBaseInCompleteClass(Address Value,
1810                                        const CXXRecordDecl *Derived,
1811                                        const CXXRecordDecl *Base,
1812                                        bool BaseIsVirtual);
1813
1814  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1815
1816  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1817  /// load of 'this' and returns address of the base class.
1818  Address GetAddressOfBaseClass(Address Value,
1819                                const CXXRecordDecl *Derived,
1820                                CastExpr::path_const_iterator PathBegin,
1821                                CastExpr::path_const_iterator PathEnd,
1822                                bool NullCheckValue, SourceLocation Loc);
1823
1824  Address GetAddressOfDerivedClass(Address Value,
1825                                   const CXXRecordDecl *Derived,
1826                                   CastExpr::path_const_iterator PathBegin,
1827                                   CastExpr::path_const_iterator PathEnd,
1828                                   bool NullCheckValue);
1829
1830  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1831  /// base constructor/destructor with virtual bases.
1832  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1833  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1834  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1835                               bool Delegating);
1836
1837  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1838                                      CXXCtorType CtorType,
1839                                      const FunctionArgList &Args,
1840                                      SourceLocation Loc);
1841  // It's important not to confuse this and the previous function. Delegating
1842  // constructors are the C++0x feature. The constructor delegate optimization
1843  // is used to reduce duplication in the base and complete consturctors where
1844  // they are substantially the same.
1845  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1846                                        const FunctionArgList &Args);
1847
1848  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1849                              bool ForVirtualBase, bool Delegating,
1850                              Address This, const CXXConstructExpr *E);
1851
1852  /// Emit assumption load for all bases. Requires to be be called only on
1853  /// most-derived class and not under construction of the object.
1854  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1855
1856  /// Emit assumption that vptr load == global vtable.
1857  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1858
1859  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1860                                      Address This, Address Src,
1861                                      const CXXConstructExpr *E);
1862
1863  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1864                                  const ConstantArrayType *ArrayTy,
1865                                  Address ArrayPtr,
1866                                  const CXXConstructExpr *E,
1867                                  bool ZeroInitialization = false);
1868
1869  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1870                                  llvm::Value *NumElements,
1871                                  Address ArrayPtr,
1872                                  const CXXConstructExpr *E,
1873                                  bool ZeroInitialization = false);
1874
1875  static Destroyer destroyCXXObject;
1876
1877  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1878                             bool ForVirtualBase, bool Delegating,
1879                             Address This);
1880
1881  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1882                               llvm::Type *ElementTy, Address NewPtr,
1883                               llvm::Value *NumElements,
1884                               llvm::Value *AllocSizeWithoutCookie);
1885
1886  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1887                        Address Ptr);
1888
1889  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1890  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1891
1892  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1893  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1894
1895  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1896                      QualType DeleteTy);
1897
1898  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1899                                  const Expr *Arg, bool IsDelete);
1900
1901  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1902  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1903  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1904
1905  /// \brief Situations in which we might emit a check for the suitability of a
1906  ///        pointer or glvalue.
1907  enum TypeCheckKind {
1908    /// Checking the operand of a load. Must be suitably sized and aligned.
1909    TCK_Load,
1910    /// Checking the destination of a store. Must be suitably sized and aligned.
1911    TCK_Store,
1912    /// Checking the bound value in a reference binding. Must be suitably sized
1913    /// and aligned, but is not required to refer to an object (until the
1914    /// reference is used), per core issue 453.
1915    TCK_ReferenceBinding,
1916    /// Checking the object expression in a non-static data member access. Must
1917    /// be an object within its lifetime.
1918    TCK_MemberAccess,
1919    /// Checking the 'this' pointer for a call to a non-static member function.
1920    /// Must be an object within its lifetime.
1921    TCK_MemberCall,
1922    /// Checking the 'this' pointer for a constructor call.
1923    TCK_ConstructorCall,
1924    /// Checking the operand of a static_cast to a derived pointer type. Must be
1925    /// null or an object within its lifetime.
1926    TCK_DowncastPointer,
1927    /// Checking the operand of a static_cast to a derived reference type. Must
1928    /// be an object within its lifetime.
1929    TCK_DowncastReference,
1930    /// Checking the operand of a cast to a base object. Must be suitably sized
1931    /// and aligned.
1932    TCK_Upcast,
1933    /// Checking the operand of a cast to a virtual base object. Must be an
1934    /// object within its lifetime.
1935    TCK_UpcastToVirtualBase
1936  };
1937
1938  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1939  /// calls to EmitTypeCheck can be skipped.
1940  bool sanitizePerformTypeCheck() const;
1941
1942  /// \brief Emit a check that \p V is the address of storage of the
1943  /// appropriate size and alignment for an object of type \p Type.
1944  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1945                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
1946                     bool SkipNullCheck = false);
1947
1948  /// \brief Emit a check that \p Base points into an array object, which
1949  /// we can access at index \p Index. \p Accessed should be \c false if we
1950  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1951  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1952                       QualType IndexType, bool Accessed);
1953
1954  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1955                                       bool isInc, bool isPre);
1956  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1957                                         bool isInc, bool isPre);
1958
1959  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1960                               llvm::Value *OffsetValue = nullptr) {
1961    Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1962                                      OffsetValue);
1963  }
1964
1965  //===--------------------------------------------------------------------===//
1966  //                            Declaration Emission
1967  //===--------------------------------------------------------------------===//
1968
1969  /// EmitDecl - Emit a declaration.
1970  ///
1971  /// This function can be called with a null (unreachable) insert point.
1972  void EmitDecl(const Decl &D);
1973
1974  /// EmitVarDecl - Emit a local variable declaration.
1975  ///
1976  /// This function can be called with a null (unreachable) insert point.
1977  void EmitVarDecl(const VarDecl &D);
1978
1979  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1980                      bool capturedByInit);
1981  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1982
1983  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1984                             llvm::Value *Address);
1985
1986  /// \brief Determine whether the given initializer is trivial in the sense
1987  /// that it requires no code to be generated.
1988  bool isTrivialInitializer(const Expr *Init);
1989
1990  /// EmitAutoVarDecl - Emit an auto variable declaration.
1991  ///
1992  /// This function can be called with a null (unreachable) insert point.
1993  void EmitAutoVarDecl(const VarDecl &D);
1994
1995  class AutoVarEmission {
1996    friend class CodeGenFunction;
1997
1998    const VarDecl *Variable;
1999
2000    /// The address of the alloca.  Invalid if the variable was emitted
2001    /// as a global constant.
2002    Address Addr;
2003
2004    llvm::Value *NRVOFlag;
2005
2006    /// True if the variable is a __block variable.
2007    bool IsByRef;
2008
2009    /// True if the variable is of aggregate type and has a constant
2010    /// initializer.
2011    bool IsConstantAggregate;
2012
2013    /// Non-null if we should use lifetime annotations.
2014    llvm::Value *SizeForLifetimeMarkers;
2015
2016    struct Invalid {};
2017    AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2018
2019    AutoVarEmission(const VarDecl &variable)
2020      : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2021        IsByRef(false), IsConstantAggregate(false),
2022        SizeForLifetimeMarkers(nullptr) {}
2023
2024    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2025
2026  public:
2027    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2028
2029    bool useLifetimeMarkers() const {
2030      return SizeForLifetimeMarkers != nullptr;
2031    }
2032    llvm::Value *getSizeForLifetimeMarkers() const {
2033      assert(useLifetimeMarkers());
2034      return SizeForLifetimeMarkers;
2035    }
2036
2037    /// Returns the raw, allocated address, which is not necessarily
2038    /// the address of the object itself.
2039    Address getAllocatedAddress() const {
2040      return Addr;
2041    }
2042
2043    /// Returns the address of the object within this declaration.
2044    /// Note that this does not chase the forwarding pointer for
2045    /// __block decls.
2046    Address getObjectAddress(CodeGenFunction &CGF) const {
2047      if (!IsByRef) return Addr;
2048
2049      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2050    }
2051  };
2052  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2053  void EmitAutoVarInit(const AutoVarEmission &emission);
2054  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2055  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2056                              QualType::DestructionKind dtorKind);
2057
2058  void EmitStaticVarDecl(const VarDecl &D,
2059                         llvm::GlobalValue::LinkageTypes Linkage);
2060
2061  class ParamValue {
2062    llvm::Value *Value;
2063    unsigned Alignment;
2064    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2065  public:
2066    static ParamValue forDirect(llvm::Value *value) {
2067      return ParamValue(value, 0);
2068    }
2069    static ParamValue forIndirect(Address addr) {
2070      assert(!addr.getAlignment().isZero());
2071      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2072    }
2073
2074    bool isIndirect() const { return Alignment != 0; }
2075    llvm::Value *getAnyValue() const { return Value; }
2076
2077    llvm::Value *getDirectValue() const {
2078      assert(!isIndirect());
2079      return Value;
2080    }
2081
2082    Address getIndirectAddress() const {
2083      assert(isIndirect());
2084      return Address(Value, CharUnits::fromQuantity(Alignment));
2085    }
2086  };
2087
2088  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2089  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2090
2091  /// protectFromPeepholes - Protect a value that we're intending to
2092  /// store to the side, but which will probably be used later, from
2093  /// aggressive peepholing optimizations that might delete it.
2094  ///
2095  /// Pass the result to unprotectFromPeepholes to declare that
2096  /// protection is no longer required.
2097  ///
2098  /// There's no particular reason why this shouldn't apply to
2099  /// l-values, it's just that no existing peepholes work on pointers.
2100  PeepholeProtection protectFromPeepholes(RValue rvalue);
2101  void unprotectFromPeepholes(PeepholeProtection protection);
2102
2103  //===--------------------------------------------------------------------===//
2104  //                             Statement Emission
2105  //===--------------------------------------------------------------------===//
2106
2107  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2108  void EmitStopPoint(const Stmt *S);
2109
2110  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2111  /// this function even if there is no current insertion point.
2112  ///
2113  /// This function may clear the current insertion point; callers should use
2114  /// EnsureInsertPoint if they wish to subsequently generate code without first
2115  /// calling EmitBlock, EmitBranch, or EmitStmt.
2116  void EmitStmt(const Stmt *S);
2117
2118  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2119  /// necessarily require an insertion point or debug information; typically
2120  /// because the statement amounts to a jump or a container of other
2121  /// statements.
2122  ///
2123  /// \return True if the statement was handled.
2124  bool EmitSimpleStmt(const Stmt *S);
2125
2126  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2127                           AggValueSlot AVS = AggValueSlot::ignored());
2128  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2129                                       bool GetLast = false,
2130                                       AggValueSlot AVS =
2131                                                AggValueSlot::ignored());
2132
2133  /// EmitLabel - Emit the block for the given label. It is legal to call this
2134  /// function even if there is no current insertion point.
2135  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2136
2137  void EmitLabelStmt(const LabelStmt &S);
2138  void EmitAttributedStmt(const AttributedStmt &S);
2139  void EmitGotoStmt(const GotoStmt &S);
2140  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2141  void EmitIfStmt(const IfStmt &S);
2142
2143  void EmitWhileStmt(const WhileStmt &S,
2144                     ArrayRef<const Attr *> Attrs = None);
2145  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2146  void EmitForStmt(const ForStmt &S,
2147                   ArrayRef<const Attr *> Attrs = None);
2148  void EmitReturnStmt(const ReturnStmt &S);
2149  void EmitDeclStmt(const DeclStmt &S);
2150  void EmitBreakStmt(const BreakStmt &S);
2151  void EmitContinueStmt(const ContinueStmt &S);
2152  void EmitSwitchStmt(const SwitchStmt &S);
2153  void EmitDefaultStmt(const DefaultStmt &S);
2154  void EmitCaseStmt(const CaseStmt &S);
2155  void EmitCaseStmtRange(const CaseStmt &S);
2156  void EmitAsmStmt(const AsmStmt &S);
2157
2158  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2159  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2160  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2161  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2162  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2163
2164  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2165  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2166
2167  void EmitCXXTryStmt(const CXXTryStmt &S);
2168  void EmitSEHTryStmt(const SEHTryStmt &S);
2169  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2170  void EnterSEHTryStmt(const SEHTryStmt &S);
2171  void ExitSEHTryStmt(const SEHTryStmt &S);
2172
2173  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2174                              const Stmt *OutlinedStmt);
2175
2176  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2177                                            const SEHExceptStmt &Except);
2178
2179  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2180                                             const SEHFinallyStmt &Finally);
2181
2182  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2183                                llvm::Value *ParentFP,
2184                                llvm::Value *EntryEBP);
2185  llvm::Value *EmitSEHExceptionCode();
2186  llvm::Value *EmitSEHExceptionInfo();
2187  llvm::Value *EmitSEHAbnormalTermination();
2188
2189  /// Scan the outlined statement for captures from the parent function. For
2190  /// each capture, mark the capture as escaped and emit a call to
2191  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2192  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2193                          bool IsFilter);
2194
2195  /// Recovers the address of a local in a parent function. ParentVar is the
2196  /// address of the variable used in the immediate parent function. It can
2197  /// either be an alloca or a call to llvm.localrecover if there are nested
2198  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2199  /// frame.
2200  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2201                                    Address ParentVar,
2202                                    llvm::Value *ParentFP);
2203
2204  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2205                           ArrayRef<const Attr *> Attrs = None);
2206
2207  LValue InitCapturedStruct(const CapturedStmt &S);
2208  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2209  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2210  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2211  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2212  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2213                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
2214  /// \brief Perform element by element copying of arrays with type \a
2215  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2216  /// generated by \a CopyGen.
2217  ///
2218  /// \param DestAddr Address of the destination array.
2219  /// \param SrcAddr Address of the source array.
2220  /// \param OriginalType Type of destination and source arrays.
2221  /// \param CopyGen Copying procedure that copies value of single array element
2222  /// to another single array element.
2223  void EmitOMPAggregateAssign(
2224      Address DestAddr, Address SrcAddr, QualType OriginalType,
2225      const llvm::function_ref<void(Address, Address)> &CopyGen);
2226  /// \brief Emit proper copying of data from one variable to another.
2227  ///
2228  /// \param OriginalType Original type of the copied variables.
2229  /// \param DestAddr Destination address.
2230  /// \param SrcAddr Source address.
2231  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2232  /// type of the base array element).
2233  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2234  /// the base array element).
2235  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2236  /// DestVD.
2237  void EmitOMPCopy(QualType OriginalType,
2238                   Address DestAddr, Address SrcAddr,
2239                   const VarDecl *DestVD, const VarDecl *SrcVD,
2240                   const Expr *Copy);
2241  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2242  /// \a X = \a E \a BO \a E.
2243  ///
2244  /// \param X Value to be updated.
2245  /// \param E Update value.
2246  /// \param BO Binary operation for update operation.
2247  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2248  /// expression, false otherwise.
2249  /// \param AO Atomic ordering of the generated atomic instructions.
2250  /// \param CommonGen Code generator for complex expressions that cannot be
2251  /// expressed through atomicrmw instruction.
2252  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2253  /// generated, <false, RValue::get(nullptr)> otherwise.
2254  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2255      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2256      llvm::AtomicOrdering AO, SourceLocation Loc,
2257      const llvm::function_ref<RValue(RValue)> &CommonGen);
2258  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2259                                 OMPPrivateScope &PrivateScope);
2260  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2261                            OMPPrivateScope &PrivateScope);
2262  /// \brief Emit code for copyin clause in \a D directive. The next code is
2263  /// generated at the start of outlined functions for directives:
2264  /// \code
2265  /// threadprivate_var1 = master_threadprivate_var1;
2266  /// operator=(threadprivate_var2, master_threadprivate_var2);
2267  /// ...
2268  /// __kmpc_barrier(&loc, global_tid);
2269  /// \endcode
2270  ///
2271  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2272  /// \returns true if at least one copyin variable is found, false otherwise.
2273  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2274  /// \brief Emit initial code for lastprivate variables. If some variable is
2275  /// not also firstprivate, then the default initialization is used. Otherwise
2276  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2277  /// method.
2278  ///
2279  /// \param D Directive that may have 'lastprivate' directives.
2280  /// \param PrivateScope Private scope for capturing lastprivate variables for
2281  /// proper codegen in internal captured statement.
2282  ///
2283  /// \returns true if there is at least one lastprivate variable, false
2284  /// otherwise.
2285  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2286                                    OMPPrivateScope &PrivateScope);
2287  /// \brief Emit final copying of lastprivate values to original variables at
2288  /// the end of the worksharing or simd directive.
2289  ///
2290  /// \param D Directive that has at least one 'lastprivate' directives.
2291  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2292  /// it is the last iteration of the loop code in associated directive, or to
2293  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2294  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2295                                     llvm::Value *IsLastIterCond = nullptr);
2296  /// \brief Emit initial code for reduction variables. Creates reduction copies
2297  /// and initializes them with the values according to OpenMP standard.
2298  ///
2299  /// \param D Directive (possibly) with the 'reduction' clause.
2300  /// \param PrivateScope Private scope for capturing reduction variables for
2301  /// proper codegen in internal captured statement.
2302  ///
2303  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2304                                  OMPPrivateScope &PrivateScope);
2305  /// \brief Emit final update of reduction values to original variables at
2306  /// the end of the directive.
2307  ///
2308  /// \param D Directive that has at least one 'reduction' directives.
2309  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2310  /// \brief Emit initial code for linear variables. Creates private copies
2311  /// and initializes them with the values according to OpenMP standard.
2312  ///
2313  /// \param D Directive (possibly) with the 'linear' clause.
2314  void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2315
2316  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2317  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2318  void EmitOMPForDirective(const OMPForDirective &S);
2319  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2320  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2321  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2322  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2323  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2324  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2325  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2326  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2327  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2328  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2329  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2330  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2331  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2332  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2333  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2334  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2335  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2336  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2337  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2338  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2339  void
2340  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2341  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2342  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2343  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2344  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2345
2346  /// \brief Emit inner loop of the worksharing/simd construct.
2347  ///
2348  /// \param S Directive, for which the inner loop must be emitted.
2349  /// \param RequiresCleanup true, if directive has some associated private
2350  /// variables.
2351  /// \param LoopCond Bollean condition for loop continuation.
2352  /// \param IncExpr Increment expression for loop control variable.
2353  /// \param BodyGen Generator for the inner body of the inner loop.
2354  /// \param PostIncGen Genrator for post-increment code (required for ordered
2355  /// loop directvies).
2356  void EmitOMPInnerLoop(
2357      const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2358      const Expr *IncExpr,
2359      const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2360      const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2361
2362  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2363
2364private:
2365
2366  /// Helpers for the OpenMP loop directives.
2367  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2368  void EmitOMPSimdInit(const OMPLoopDirective &D);
2369  void EmitOMPSimdFinal(const OMPLoopDirective &D);
2370  /// \brief Emit code for the worksharing loop-based directive.
2371  /// \return true, if this construct has any lastprivate clause, false -
2372  /// otherwise.
2373  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2374  void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2375                           const OMPLoopDirective &S,
2376                           OMPPrivateScope &LoopScope, bool Ordered,
2377                           Address LB, Address UB, Address ST,
2378                           Address IL, llvm::Value *Chunk);
2379  /// \brief Emit code for sections directive.
2380  OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2381
2382public:
2383
2384  //===--------------------------------------------------------------------===//
2385  //                         LValue Expression Emission
2386  //===--------------------------------------------------------------------===//
2387
2388  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2389  RValue GetUndefRValue(QualType Ty);
2390
2391  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2392  /// and issue an ErrorUnsupported style diagnostic (using the
2393  /// provided Name).
2394  RValue EmitUnsupportedRValue(const Expr *E,
2395                               const char *Name);
2396
2397  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2398  /// an ErrorUnsupported style diagnostic (using the provided Name).
2399  LValue EmitUnsupportedLValue(const Expr *E,
2400                               const char *Name);
2401
2402  /// EmitLValue - Emit code to compute a designator that specifies the location
2403  /// of the expression.
2404  ///
2405  /// This can return one of two things: a simple address or a bitfield
2406  /// reference.  In either case, the LLVM Value* in the LValue structure is
2407  /// guaranteed to be an LLVM pointer type.
2408  ///
2409  /// If this returns a bitfield reference, nothing about the pointee type of
2410  /// the LLVM value is known: For example, it may not be a pointer to an
2411  /// integer.
2412  ///
2413  /// If this returns a normal address, and if the lvalue's C type is fixed
2414  /// size, this method guarantees that the returned pointer type will point to
2415  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2416  /// variable length type, this is not possible.
2417  ///
2418  LValue EmitLValue(const Expr *E);
2419
2420  /// \brief Same as EmitLValue but additionally we generate checking code to
2421  /// guard against undefined behavior.  This is only suitable when we know
2422  /// that the address will be used to access the object.
2423  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2424
2425  RValue convertTempToRValue(Address addr, QualType type,
2426                             SourceLocation Loc);
2427
2428  void EmitAtomicInit(Expr *E, LValue lvalue);
2429
2430  bool LValueIsSuitableForInlineAtomic(LValue Src);
2431  bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2432
2433  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2434                        AggValueSlot Slot = AggValueSlot::ignored());
2435
2436  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2437                        llvm::AtomicOrdering AO, bool IsVolatile = false,
2438                        AggValueSlot slot = AggValueSlot::ignored());
2439
2440  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2441
2442  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2443                       bool IsVolatile, bool isInit);
2444
2445  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2446      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2447      llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2448      llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2449      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2450
2451  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2452                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
2453                        bool IsVolatile);
2454
2455  /// EmitToMemory - Change a scalar value from its value
2456  /// representation to its in-memory representation.
2457  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2458
2459  /// EmitFromMemory - Change a scalar value from its memory
2460  /// representation to its value representation.
2461  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2462
2463  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2464  /// care to appropriately convert from the memory representation to
2465  /// the LLVM value representation.
2466  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2467                                SourceLocation Loc,
2468                                AlignmentSource AlignSource =
2469                                  AlignmentSource::Type,
2470                                llvm::MDNode *TBAAInfo = nullptr,
2471                                QualType TBAABaseTy = QualType(),
2472                                uint64_t TBAAOffset = 0,
2473                                bool isNontemporal = false);
2474
2475  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2476  /// care to appropriately convert from the memory representation to
2477  /// the LLVM value representation.  The l-value must be a simple
2478  /// l-value.
2479  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2480
2481  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2482  /// care to appropriately convert from the memory representation to
2483  /// the LLVM value representation.
2484  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2485                         bool Volatile, QualType Ty,
2486                         AlignmentSource AlignSource = AlignmentSource::Type,
2487                         llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2488                         QualType TBAABaseTy = QualType(),
2489                         uint64_t TBAAOffset = 0, bool isNontemporal = false);
2490
2491  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2492  /// care to appropriately convert from the memory representation to
2493  /// the LLVM value representation.  The l-value must be a simple
2494  /// l-value.  The isInit flag indicates whether this is an initialization.
2495  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2496  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2497
2498  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2499  /// this method emits the address of the lvalue, then loads the result as an
2500  /// rvalue, returning the rvalue.
2501  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2502  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2503  RValue EmitLoadOfBitfieldLValue(LValue LV);
2504  RValue EmitLoadOfGlobalRegLValue(LValue LV);
2505
2506  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2507  /// lvalue, where both are guaranteed to the have the same type, and that type
2508  /// is 'Ty'.
2509  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2510  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2511  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2512
2513  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2514  /// as EmitStoreThroughLValue.
2515  ///
2516  /// \param Result [out] - If non-null, this will be set to a Value* for the
2517  /// bit-field contents after the store, appropriate for use as the result of
2518  /// an assignment to the bit-field.
2519  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2520                                      llvm::Value **Result=nullptr);
2521
2522  /// Emit an l-value for an assignment (simple or compound) of complex type.
2523  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2524  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2525  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2526                                             llvm::Value *&Result);
2527
2528  // Note: only available for agg return types
2529  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2530  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2531  // Note: only available for agg return types
2532  LValue EmitCallExprLValue(const CallExpr *E);
2533  // Note: only available for agg return types
2534  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2535  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2536  LValue EmitStringLiteralLValue(const StringLiteral *E);
2537  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2538  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2539  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2540  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2541                                bool Accessed = false);
2542  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2543                                 bool IsLowerBound = true);
2544  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2545  LValue EmitMemberExpr(const MemberExpr *E);
2546  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2547  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2548  LValue EmitInitListLValue(const InitListExpr *E);
2549  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2550  LValue EmitCastLValue(const CastExpr *E);
2551  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2552  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2553
2554  Address EmitExtVectorElementLValue(LValue V);
2555
2556  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2557
2558  Address EmitArrayToPointerDecay(const Expr *Array,
2559                                  AlignmentSource *AlignSource = nullptr);
2560
2561  class ConstantEmission {
2562    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2563    ConstantEmission(llvm::Constant *C, bool isReference)
2564      : ValueAndIsReference(C, isReference) {}
2565  public:
2566    ConstantEmission() {}
2567    static ConstantEmission forReference(llvm::Constant *C) {
2568      return ConstantEmission(C, true);
2569    }
2570    static ConstantEmission forValue(llvm::Constant *C) {
2571      return ConstantEmission(C, false);
2572    }
2573
2574    explicit operator bool() const {
2575      return ValueAndIsReference.getOpaqueValue() != nullptr;
2576    }
2577
2578    bool isReference() const { return ValueAndIsReference.getInt(); }
2579    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2580      assert(isReference());
2581      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2582                                            refExpr->getType());
2583    }
2584
2585    llvm::Constant *getValue() const {
2586      assert(!isReference());
2587      return ValueAndIsReference.getPointer();
2588    }
2589  };
2590
2591  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2592
2593  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2594                                AggValueSlot slot = AggValueSlot::ignored());
2595  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2596
2597  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2598                              const ObjCIvarDecl *Ivar);
2599  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2600  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2601
2602  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2603  /// if the Field is a reference, this will return the address of the reference
2604  /// and not the address of the value stored in the reference.
2605  LValue EmitLValueForFieldInitialization(LValue Base,
2606                                          const FieldDecl* Field);
2607
2608  LValue EmitLValueForIvar(QualType ObjectTy,
2609                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2610                           unsigned CVRQualifiers);
2611
2612  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2613  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2614  LValue EmitLambdaLValue(const LambdaExpr *E);
2615  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2616  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2617
2618  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2619  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2620  LValue EmitStmtExprLValue(const StmtExpr *E);
2621  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2622  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2623  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2624
2625  //===--------------------------------------------------------------------===//
2626  //                         Scalar Expression Emission
2627  //===--------------------------------------------------------------------===//
2628
2629  /// EmitCall - Generate a call of the given function, expecting the given
2630  /// result type, and using the given argument list which specifies both the
2631  /// LLVM arguments and the types they were derived from.
2632  RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
2633                  ReturnValueSlot ReturnValue, const CallArgList &Args,
2634                  CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2635                  llvm::Instruction **callOrInvoke = nullptr);
2636
2637  RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2638                  ReturnValueSlot ReturnValue,
2639                  CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2640                  llvm::Value *Chain = nullptr);
2641  RValue EmitCallExpr(const CallExpr *E,
2642                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2643
2644  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2645
2646  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2647                                  const Twine &name = "");
2648  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2649                                  ArrayRef<llvm::Value*> args,
2650                                  const Twine &name = "");
2651  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2652                                          const Twine &name = "");
2653  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2654                                          ArrayRef<llvm::Value*> args,
2655                                          const Twine &name = "");
2656
2657  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2658                                  ArrayRef<llvm::Value *> Args,
2659                                  const Twine &Name = "");
2660  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2661                                         ArrayRef<llvm::Value*> args,
2662                                         const Twine &name = "");
2663  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2664                                         const Twine &name = "");
2665  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2666                                       ArrayRef<llvm::Value*> args);
2667
2668  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2669                                         NestedNameSpecifier *Qual,
2670                                         llvm::Type *Ty);
2671
2672  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2673                                                   CXXDtorType Type,
2674                                                   const CXXRecordDecl *RD);
2675
2676  RValue
2677  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2678                              ReturnValueSlot ReturnValue, llvm::Value *This,
2679                              llvm::Value *ImplicitParam,
2680                              QualType ImplicitParamTy, const CallExpr *E);
2681  RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2682                             ReturnValueSlot ReturnValue, llvm::Value *This,
2683                             llvm::Value *ImplicitParam,
2684                             QualType ImplicitParamTy, const CallExpr *E,
2685                             StructorType Type);
2686  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2687                               ReturnValueSlot ReturnValue);
2688  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2689                                               const CXXMethodDecl *MD,
2690                                               ReturnValueSlot ReturnValue,
2691                                               bool HasQualifier,
2692                                               NestedNameSpecifier *Qualifier,
2693                                               bool IsArrow, const Expr *Base);
2694  // Compute the object pointer.
2695  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2696                                          llvm::Value *memberPtr,
2697                                          const MemberPointerType *memberPtrType,
2698                                          AlignmentSource *AlignSource = nullptr);
2699  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2700                                      ReturnValueSlot ReturnValue);
2701
2702  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2703                                       const CXXMethodDecl *MD,
2704                                       ReturnValueSlot ReturnValue);
2705
2706  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2707                                ReturnValueSlot ReturnValue);
2708
2709
2710  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2711                         unsigned BuiltinID, const CallExpr *E,
2712                         ReturnValueSlot ReturnValue);
2713
2714  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2715
2716  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2717  /// is unhandled by the current target.
2718  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2719
2720  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2721                                             const llvm::CmpInst::Predicate Fp,
2722                                             const llvm::CmpInst::Predicate Ip,
2723                                             const llvm::Twine &Name = "");
2724  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2725
2726  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2727                                         unsigned LLVMIntrinsic,
2728                                         unsigned AltLLVMIntrinsic,
2729                                         const char *NameHint,
2730                                         unsigned Modifier,
2731                                         const CallExpr *E,
2732                                         SmallVectorImpl<llvm::Value *> &Ops,
2733                                         Address PtrOp0, Address PtrOp1);
2734  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2735                                          unsigned Modifier, llvm::Type *ArgTy,
2736                                          const CallExpr *E);
2737  llvm::Value *EmitNeonCall(llvm::Function *F,
2738                            SmallVectorImpl<llvm::Value*> &O,
2739                            const char *name,
2740                            unsigned shift = 0, bool rightshift = false);
2741  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2742  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2743                                   bool negateForRightShift);
2744  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2745                                 llvm::Type *Ty, bool usgn, const char *name);
2746  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2747  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2748
2749  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2750  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2751  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2752  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2753  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2754  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2755  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2756                                          const CallExpr *E);
2757
2758  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2759  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2760  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2761  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2762  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2763  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2764                                const ObjCMethodDecl *MethodWithObjects);
2765  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2766  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2767                             ReturnValueSlot Return = ReturnValueSlot());
2768
2769  /// Retrieves the default cleanup kind for an ARC cleanup.
2770  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2771  CleanupKind getARCCleanupKind() {
2772    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2773             ? NormalAndEHCleanup : NormalCleanup;
2774  }
2775
2776  // ARC primitives.
2777  void EmitARCInitWeak(Address addr, llvm::Value *value);
2778  void EmitARCDestroyWeak(Address addr);
2779  llvm::Value *EmitARCLoadWeak(Address addr);
2780  llvm::Value *EmitARCLoadWeakRetained(Address addr);
2781  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2782  void EmitARCCopyWeak(Address dst, Address src);
2783  void EmitARCMoveWeak(Address dst, Address src);
2784  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2785  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2786  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2787                                  bool resultIgnored);
2788  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2789                                      bool resultIgnored);
2790  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2791  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2792  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2793  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2794  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2795  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2796  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2797  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2798  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2799
2800  std::pair<LValue,llvm::Value*>
2801  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2802  std::pair<LValue,llvm::Value*>
2803  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2804
2805  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2806  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2807  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2808
2809  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2810  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2811  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2812
2813  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2814
2815  static Destroyer destroyARCStrongImprecise;
2816  static Destroyer destroyARCStrongPrecise;
2817  static Destroyer destroyARCWeak;
2818
2819  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2820  llvm::Value *EmitObjCAutoreleasePoolPush();
2821  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2822  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2823  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2824
2825  /// \brief Emits a reference binding to the passed in expression.
2826  RValue EmitReferenceBindingToExpr(const Expr *E);
2827
2828  //===--------------------------------------------------------------------===//
2829  //                           Expression Emission
2830  //===--------------------------------------------------------------------===//
2831
2832  // Expressions are broken into three classes: scalar, complex, aggregate.
2833
2834  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2835  /// scalar type, returning the result.
2836  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2837
2838  /// Emit a conversion from the specified type to the specified destination
2839  /// type, both of which are LLVM scalar types.
2840  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2841                                    QualType DstTy, SourceLocation Loc);
2842
2843  /// Emit a conversion from the specified complex type to the specified
2844  /// destination type, where the destination type is an LLVM scalar type.
2845  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2846                                             QualType DstTy,
2847                                             SourceLocation Loc);
2848
2849  /// EmitAggExpr - Emit the computation of the specified expression
2850  /// of aggregate type.  The result is computed into the given slot,
2851  /// which may be null to indicate that the value is not needed.
2852  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2853
2854  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2855  /// aggregate type into a temporary LValue.
2856  LValue EmitAggExprToLValue(const Expr *E);
2857
2858  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2859  /// make sure it survives garbage collection until this point.
2860  void EmitExtendGCLifetime(llvm::Value *object);
2861
2862  /// EmitComplexExpr - Emit the computation of the specified expression of
2863  /// complex type, returning the result.
2864  ComplexPairTy EmitComplexExpr(const Expr *E,
2865                                bool IgnoreReal = false,
2866                                bool IgnoreImag = false);
2867
2868  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2869  /// type and place its result into the specified l-value.
2870  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2871
2872  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2873  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2874
2875  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2876  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2877
2878  Address emitAddrOfRealComponent(Address complex, QualType complexType);
2879  Address emitAddrOfImagComponent(Address complex, QualType complexType);
2880
2881  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2882  /// global variable that has already been created for it.  If the initializer
2883  /// has a different type than GV does, this may free GV and return a different
2884  /// one.  Otherwise it just returns GV.
2885  llvm::GlobalVariable *
2886  AddInitializerToStaticVarDecl(const VarDecl &D,
2887                                llvm::GlobalVariable *GV);
2888
2889
2890  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2891  /// variable with global storage.
2892  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2893                                bool PerformInit);
2894
2895  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2896                                   llvm::Constant *Addr);
2897
2898  /// Call atexit() with a function that passes the given argument to
2899  /// the given function.
2900  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2901                                    llvm::Constant *addr);
2902
2903  /// Emit code in this function to perform a guarded variable
2904  /// initialization.  Guarded initializations are used when it's not
2905  /// possible to prove that an initialization will be done exactly
2906  /// once, e.g. with a static local variable or a static data member
2907  /// of a class template.
2908  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2909                          bool PerformInit);
2910
2911  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2912  /// variables.
2913  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2914                                 ArrayRef<llvm::Function *> CXXThreadLocals,
2915                                 Address Guard = Address::invalid());
2916
2917  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2918  /// variables.
2919  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2920                                  const std::vector<std::pair<llvm::WeakVH,
2921                                  llvm::Constant*> > &DtorsAndObjects);
2922
2923  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2924                                        const VarDecl *D,
2925                                        llvm::GlobalVariable *Addr,
2926                                        bool PerformInit);
2927
2928  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2929
2930  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
2931
2932  void enterFullExpression(const ExprWithCleanups *E) {
2933    if (E->getNumObjects() == 0) return;
2934    enterNonTrivialFullExpression(E);
2935  }
2936  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2937
2938  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2939
2940  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2941
2942  RValue EmitAtomicExpr(AtomicExpr *E);
2943
2944  //===--------------------------------------------------------------------===//
2945  //                         Annotations Emission
2946  //===--------------------------------------------------------------------===//
2947
2948  /// Emit an annotation call (intrinsic or builtin).
2949  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2950                                  llvm::Value *AnnotatedVal,
2951                                  StringRef AnnotationStr,
2952                                  SourceLocation Location);
2953
2954  /// Emit local annotations for the local variable V, declared by D.
2955  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2956
2957  /// Emit field annotations for the given field & value. Returns the
2958  /// annotation result.
2959  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
2960
2961  //===--------------------------------------------------------------------===//
2962  //                             Internal Helpers
2963  //===--------------------------------------------------------------------===//
2964
2965  /// ContainsLabel - Return true if the statement contains a label in it.  If
2966  /// this statement is not executed normally, it not containing a label means
2967  /// that we can just remove the code.
2968  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2969
2970  /// containsBreak - Return true if the statement contains a break out of it.
2971  /// If the statement (recursively) contains a switch or loop with a break
2972  /// inside of it, this is fine.
2973  static bool containsBreak(const Stmt *S);
2974
2975  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2976  /// to a constant, or if it does but contains a label, return false.  If it
2977  /// constant folds return true and set the boolean result in Result.
2978  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2979
2980  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2981  /// to a constant, or if it does but contains a label, return false.  If it
2982  /// constant folds return true and set the folded value.
2983  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2984
2985  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2986  /// if statement) to the specified blocks.  Based on the condition, this might
2987  /// try to simplify the codegen of the conditional based on the branch.
2988  /// TrueCount should be the number of times we expect the condition to
2989  /// evaluate to true based on PGO data.
2990  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2991                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2992
2993  /// \brief Emit a description of a type in a format suitable for passing to
2994  /// a runtime sanitizer handler.
2995  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2996
2997  /// \brief Convert a value into a format suitable for passing to a runtime
2998  /// sanitizer handler.
2999  llvm::Value *EmitCheckValue(llvm::Value *V);
3000
3001  /// \brief Emit a description of a source location in a format suitable for
3002  /// passing to a runtime sanitizer handler.
3003  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3004
3005  /// \brief Create a basic block that will call a handler function in a
3006  /// sanitizer runtime with the provided arguments, and create a conditional
3007  /// branch to it.
3008  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3009                 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3010                 ArrayRef<llvm::Value *> DynamicArgs);
3011
3012  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3013  /// if Cond if false.
3014  void EmitCfiSlowPathCheck(llvm::Value *Cond, llvm::ConstantInt *TypeId,
3015                            llvm::Value *Ptr);
3016
3017  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3018  /// conditional branch to it, for the -ftrapv checks.
3019  void EmitTrapCheck(llvm::Value *Checked);
3020
3021  /// \brief Emit a call to trap or debugtrap and attach function attribute
3022  /// "trap-func-name" if specified.
3023  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3024
3025  /// \brief Create a check for a function parameter that may potentially be
3026  /// declared as non-null.
3027  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3028                           const FunctionDecl *FD, unsigned ParmNum);
3029
3030  /// EmitCallArg - Emit a single call argument.
3031  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3032
3033  /// EmitDelegateCallArg - We are performing a delegate call; that
3034  /// is, the current function is delegating to another one.  Produce
3035  /// a r-value suitable for passing the given parameter.
3036  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3037                           SourceLocation loc);
3038
3039  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3040  /// point operation, expressed as the maximum relative error in ulp.
3041  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3042
3043private:
3044  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3045  void EmitReturnOfRValue(RValue RV, QualType Ty);
3046
3047  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3048
3049  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3050  DeferredReplacements;
3051
3052  /// Set the address of a local variable.
3053  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3054    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3055    LocalDeclMap.insert({VD, Addr});
3056  }
3057
3058  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3059  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3060  ///
3061  /// \param AI - The first function argument of the expansion.
3062  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3063                          SmallVectorImpl<llvm::Argument *>::iterator &AI);
3064
3065  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3066  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3067  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3068  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3069                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
3070                        unsigned &IRCallArgPos);
3071
3072  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3073                            const Expr *InputExpr, std::string &ConstraintStr);
3074
3075  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3076                                  LValue InputValue, QualType InputType,
3077                                  std::string &ConstraintStr,
3078                                  SourceLocation Loc);
3079
3080  /// \brief Attempts to statically evaluate the object size of E. If that
3081  /// fails, emits code to figure the size of E out for us. This is
3082  /// pass_object_size aware.
3083  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3084                                               llvm::IntegerType *ResType);
3085
3086  /// \brief Emits the size of E, as required by __builtin_object_size. This
3087  /// function is aware of pass_object_size parameters, and will act accordingly
3088  /// if E is a parameter with the pass_object_size attribute.
3089  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3090                                     llvm::IntegerType *ResType);
3091
3092public:
3093#ifndef NDEBUG
3094  // Determine whether the given argument is an Objective-C method
3095  // that may have type parameters in its signature.
3096  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3097    const DeclContext *dc = method->getDeclContext();
3098    if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3099      return classDecl->getTypeParamListAsWritten();
3100    }
3101
3102    if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3103      return catDecl->getTypeParamList();
3104    }
3105
3106    return false;
3107  }
3108
3109  template<typename T>
3110  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3111#endif
3112
3113  /// EmitCallArgs - Emit call arguments for a function.
3114  template <typename T>
3115  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3116                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3117                    const FunctionDecl *CalleeDecl = nullptr,
3118                    unsigned ParamsToSkip = 0) {
3119    SmallVector<QualType, 16> ArgTypes;
3120    CallExpr::const_arg_iterator Arg = ArgRange.begin();
3121
3122    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3123           "Can't skip parameters if type info is not provided");
3124    if (CallArgTypeInfo) {
3125#ifndef NDEBUG
3126      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3127#endif
3128
3129      // First, use the argument types that the type info knows about
3130      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3131                E = CallArgTypeInfo->param_type_end();
3132           I != E; ++I, ++Arg) {
3133        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3134        assert((isGenericMethod ||
3135                ((*I)->isVariablyModifiedType() ||
3136                 (*I).getNonReferenceType()->isObjCRetainableType() ||
3137                 getContext()
3138                         .getCanonicalType((*I).getNonReferenceType())
3139                         .getTypePtr() ==
3140                     getContext()
3141                         .getCanonicalType((*Arg)->getType())
3142                         .getTypePtr())) &&
3143               "type mismatch in call argument!");
3144        ArgTypes.push_back(*I);
3145      }
3146    }
3147
3148    // Either we've emitted all the call args, or we have a call to variadic
3149    // function.
3150    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3151            CallArgTypeInfo->isVariadic()) &&
3152           "Extra arguments in non-variadic function!");
3153
3154    // If we still have any arguments, emit them using the type of the argument.
3155    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3156      ArgTypes.push_back(getVarArgType(A));
3157
3158    EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3159  }
3160
3161  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3162                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3163                    const FunctionDecl *CalleeDecl = nullptr,
3164                    unsigned ParamsToSkip = 0);
3165
3166  /// EmitPointerWithAlignment - Given an expression with a pointer
3167  /// type, emit the value and compute our best estimate of the
3168  /// alignment of the pointee.
3169  ///
3170  /// Note that this function will conservatively fall back on the type
3171  /// when it doesn't
3172  ///
3173  /// \param Source - If non-null, this will be initialized with
3174  ///   information about the source of the alignment.  Note that this
3175  ///   function will conservatively fall back on the type when it
3176  ///   doesn't recognize the expression, which means that sometimes
3177  ///
3178  ///   a worst-case One
3179  ///   reasonable way to use this information is when there's a
3180  ///   language guarantee that the pointer must be aligned to some
3181  ///   stricter value, and we're simply trying to ensure that
3182  ///   sufficiently obvious uses of under-aligned objects don't get
3183  ///   miscompiled; for example, a placement new into the address of
3184  ///   a local variable.  In such a case, it's quite reasonable to
3185  ///   just ignore the returned alignment when it isn't from an
3186  ///   explicit source.
3187  Address EmitPointerWithAlignment(const Expr *Addr,
3188                                   AlignmentSource *Source = nullptr);
3189
3190private:
3191  QualType getVarArgType(const Expr *Arg);
3192
3193  const TargetCodeGenInfo &getTargetHooks() const {
3194    return CGM.getTargetCodeGenInfo();
3195  }
3196
3197  void EmitDeclMetadata();
3198
3199  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3200                                  const AutoVarEmission &emission);
3201
3202  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3203
3204  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3205};
3206
3207/// Helper class with most of the code for saving a value for a
3208/// conditional expression cleanup.
3209struct DominatingLLVMValue {
3210  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3211
3212  /// Answer whether the given value needs extra work to be saved.
3213  static bool needsSaving(llvm::Value *value) {
3214    // If it's not an instruction, we don't need to save.
3215    if (!isa<llvm::Instruction>(value)) return false;
3216
3217    // If it's an instruction in the entry block, we don't need to save.
3218    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3219    return (block != &block->getParent()->getEntryBlock());
3220  }
3221
3222  /// Try to save the given value.
3223  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3224    if (!needsSaving(value)) return saved_type(value, false);
3225
3226    // Otherwise, we need an alloca.
3227    auto align = CharUnits::fromQuantity(
3228              CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3229    Address alloca =
3230      CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3231    CGF.Builder.CreateStore(value, alloca);
3232
3233    return saved_type(alloca.getPointer(), true);
3234  }
3235
3236  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3237    // If the value says it wasn't saved, trust that it's still dominating.
3238    if (!value.getInt()) return value.getPointer();
3239
3240    // Otherwise, it should be an alloca instruction, as set up in save().
3241    auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3242    return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3243  }
3244};
3245
3246/// A partial specialization of DominatingValue for llvm::Values that
3247/// might be llvm::Instructions.
3248template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3249  typedef T *type;
3250  static type restore(CodeGenFunction &CGF, saved_type value) {
3251    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3252  }
3253};
3254
3255/// A specialization of DominatingValue for Address.
3256template <> struct DominatingValue<Address> {
3257  typedef Address type;
3258
3259  struct saved_type {
3260    DominatingLLVMValue::saved_type SavedValue;
3261    CharUnits Alignment;
3262  };
3263
3264  static bool needsSaving(type value) {
3265    return DominatingLLVMValue::needsSaving(value.getPointer());
3266  }
3267  static saved_type save(CodeGenFunction &CGF, type value) {
3268    return { DominatingLLVMValue::save(CGF, value.getPointer()),
3269             value.getAlignment() };
3270  }
3271  static type restore(CodeGenFunction &CGF, saved_type value) {
3272    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3273                   value.Alignment);
3274  }
3275};
3276
3277/// A specialization of DominatingValue for RValue.
3278template <> struct DominatingValue<RValue> {
3279  typedef RValue type;
3280  class saved_type {
3281    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3282                AggregateAddress, ComplexAddress };
3283
3284    llvm::Value *Value;
3285    unsigned K : 3;
3286    unsigned Align : 29;
3287    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3288      : Value(v), K(k), Align(a) {}
3289
3290  public:
3291    static bool needsSaving(RValue value);
3292    static saved_type save(CodeGenFunction &CGF, RValue value);
3293    RValue restore(CodeGenFunction &CGF);
3294
3295    // implementations in CGCleanup.cpp
3296  };
3297
3298  static bool needsSaving(type value) {
3299    return saved_type::needsSaving(value);
3300  }
3301  static saved_type save(CodeGenFunction &CGF, type value) {
3302    return saved_type::save(CGF, value);
3303  }
3304  static type restore(CodeGenFunction &CGF, saved_type value) {
3305    return value.restore(CGF);
3306  }
3307};
3308
3309}  // end namespace CodeGen
3310}  // end namespace clang
3311
3312#endif
3313