1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaLambda.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace sema;
43
44/// \brief Handle the result of the special case name lookup for inheriting
45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46/// constructor names in member using declarations, even if 'X' is not the
47/// name of the corresponding type.
48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49                                              SourceLocation NameLoc,
50                                              IdentifierInfo &Name) {
51  NestedNameSpecifier *NNS = SS.getScopeRep();
52
53  // Convert the nested-name-specifier into a type.
54  QualType Type;
55  switch (NNS->getKind()) {
56  case NestedNameSpecifier::TypeSpec:
57  case NestedNameSpecifier::TypeSpecWithTemplate:
58    Type = QualType(NNS->getAsType(), 0);
59    break;
60
61  case NestedNameSpecifier::Identifier:
62    // Strip off the last layer of the nested-name-specifier and build a
63    // typename type for it.
64    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66                                        NNS->getAsIdentifier());
67    break;
68
69  case NestedNameSpecifier::Global:
70  case NestedNameSpecifier::Super:
71  case NestedNameSpecifier::Namespace:
72  case NestedNameSpecifier::NamespaceAlias:
73    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74  }
75
76  // This reference to the type is located entirely at the location of the
77  // final identifier in the qualified-id.
78  return CreateParsedType(Type,
79                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
80}
81
82ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
83                                   IdentifierInfo &II,
84                                   SourceLocation NameLoc,
85                                   Scope *S, CXXScopeSpec &SS,
86                                   ParsedType ObjectTypePtr,
87                                   bool EnteringContext) {
88  // Determine where to perform name lookup.
89
90  // FIXME: This area of the standard is very messy, and the current
91  // wording is rather unclear about which scopes we search for the
92  // destructor name; see core issues 399 and 555. Issue 399 in
93  // particular shows where the current description of destructor name
94  // lookup is completely out of line with existing practice, e.g.,
95  // this appears to be ill-formed:
96  //
97  //   namespace N {
98  //     template <typename T> struct S {
99  //       ~S();
100  //     };
101  //   }
102  //
103  //   void f(N::S<int>* s) {
104  //     s->N::S<int>::~S();
105  //   }
106  //
107  // See also PR6358 and PR6359.
108  // For this reason, we're currently only doing the C++03 version of this
109  // code; the C++0x version has to wait until we get a proper spec.
110  QualType SearchType;
111  DeclContext *LookupCtx = nullptr;
112  bool isDependent = false;
113  bool LookInScope = false;
114
115  if (SS.isInvalid())
116    return ParsedType();
117
118  // If we have an object type, it's because we are in a
119  // pseudo-destructor-expression or a member access expression, and
120  // we know what type we're looking for.
121  if (ObjectTypePtr)
122    SearchType = GetTypeFromParser(ObjectTypePtr);
123
124  if (SS.isSet()) {
125    NestedNameSpecifier *NNS = SS.getScopeRep();
126
127    bool AlreadySearched = false;
128    bool LookAtPrefix = true;
129    // C++11 [basic.lookup.qual]p6:
130    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
131    //   the type-names are looked up as types in the scope designated by the
132    //   nested-name-specifier. Similarly, in a qualified-id of the form:
133    //
134    //     nested-name-specifier[opt] class-name :: ~ class-name
135    //
136    //   the second class-name is looked up in the same scope as the first.
137    //
138    // Here, we determine whether the code below is permitted to look at the
139    // prefix of the nested-name-specifier.
140    DeclContext *DC = computeDeclContext(SS, EnteringContext);
141    if (DC && DC->isFileContext()) {
142      AlreadySearched = true;
143      LookupCtx = DC;
144      isDependent = false;
145    } else if (DC && isa<CXXRecordDecl>(DC)) {
146      LookAtPrefix = false;
147      LookInScope = true;
148    }
149
150    // The second case from the C++03 rules quoted further above.
151    NestedNameSpecifier *Prefix = nullptr;
152    if (AlreadySearched) {
153      // Nothing left to do.
154    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
155      CXXScopeSpec PrefixSS;
156      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
157      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
158      isDependent = isDependentScopeSpecifier(PrefixSS);
159    } else if (ObjectTypePtr) {
160      LookupCtx = computeDeclContext(SearchType);
161      isDependent = SearchType->isDependentType();
162    } else {
163      LookupCtx = computeDeclContext(SS, EnteringContext);
164      isDependent = LookupCtx && LookupCtx->isDependentContext();
165    }
166  } else if (ObjectTypePtr) {
167    // C++ [basic.lookup.classref]p3:
168    //   If the unqualified-id is ~type-name, the type-name is looked up
169    //   in the context of the entire postfix-expression. If the type T
170    //   of the object expression is of a class type C, the type-name is
171    //   also looked up in the scope of class C. At least one of the
172    //   lookups shall find a name that refers to (possibly
173    //   cv-qualified) T.
174    LookupCtx = computeDeclContext(SearchType);
175    isDependent = SearchType->isDependentType();
176    assert((isDependent || !SearchType->isIncompleteType()) &&
177           "Caller should have completed object type");
178
179    LookInScope = true;
180  } else {
181    // Perform lookup into the current scope (only).
182    LookInScope = true;
183  }
184
185  TypeDecl *NonMatchingTypeDecl = nullptr;
186  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187  for (unsigned Step = 0; Step != 2; ++Step) {
188    // Look for the name first in the computed lookup context (if we
189    // have one) and, if that fails to find a match, in the scope (if
190    // we're allowed to look there).
191    Found.clear();
192    if (Step == 0 && LookupCtx)
193      LookupQualifiedName(Found, LookupCtx);
194    else if (Step == 1 && LookInScope && S)
195      LookupName(Found, S);
196    else
197      continue;
198
199    // FIXME: Should we be suppressing ambiguities here?
200    if (Found.isAmbiguous())
201      return ParsedType();
202
203    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204      QualType T = Context.getTypeDeclType(Type);
205      MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
206
207      if (SearchType.isNull() || SearchType->isDependentType() ||
208          Context.hasSameUnqualifiedType(T, SearchType)) {
209        // We found our type!
210
211        return CreateParsedType(T,
212                                Context.getTrivialTypeSourceInfo(T, NameLoc));
213      }
214
215      if (!SearchType.isNull())
216        NonMatchingTypeDecl = Type;
217    }
218
219    // If the name that we found is a class template name, and it is
220    // the same name as the template name in the last part of the
221    // nested-name-specifier (if present) or the object type, then
222    // this is the destructor for that class.
223    // FIXME: This is a workaround until we get real drafting for core
224    // issue 399, for which there isn't even an obvious direction.
225    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
226      QualType MemberOfType;
227      if (SS.isSet()) {
228        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
229          // Figure out the type of the context, if it has one.
230          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
231            MemberOfType = Context.getTypeDeclType(Record);
232        }
233      }
234      if (MemberOfType.isNull())
235        MemberOfType = SearchType;
236
237      if (MemberOfType.isNull())
238        continue;
239
240      // We're referring into a class template specialization. If the
241      // class template we found is the same as the template being
242      // specialized, we found what we are looking for.
243      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
244        if (ClassTemplateSpecializationDecl *Spec
245              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
246          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
247                Template->getCanonicalDecl())
248            return CreateParsedType(
249                MemberOfType,
250                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
251        }
252
253        continue;
254      }
255
256      // We're referring to an unresolved class template
257      // specialization. Determine whether we class template we found
258      // is the same as the template being specialized or, if we don't
259      // know which template is being specialized, that it at least
260      // has the same name.
261      if (const TemplateSpecializationType *SpecType
262            = MemberOfType->getAs<TemplateSpecializationType>()) {
263        TemplateName SpecName = SpecType->getTemplateName();
264
265        // The class template we found is the same template being
266        // specialized.
267        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
268          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
269            return CreateParsedType(
270                MemberOfType,
271                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
272
273          continue;
274        }
275
276        // The class template we found has the same name as the
277        // (dependent) template name being specialized.
278        if (DependentTemplateName *DepTemplate
279                                    = SpecName.getAsDependentTemplateName()) {
280          if (DepTemplate->isIdentifier() &&
281              DepTemplate->getIdentifier() == Template->getIdentifier())
282            return CreateParsedType(
283                MemberOfType,
284                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
285
286          continue;
287        }
288      }
289    }
290  }
291
292  if (isDependent) {
293    // We didn't find our type, but that's okay: it's dependent
294    // anyway.
295
296    // FIXME: What if we have no nested-name-specifier?
297    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
298                                   SS.getWithLocInContext(Context),
299                                   II, NameLoc);
300    return ParsedType::make(T);
301  }
302
303  if (NonMatchingTypeDecl) {
304    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
305    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
306      << T << SearchType;
307    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
308      << T;
309  } else if (ObjectTypePtr)
310    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
311      << &II;
312  else {
313    SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
314                                          diag::err_destructor_class_name);
315    if (S) {
316      const DeclContext *Ctx = S->getEntity();
317      if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
318        DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
319                                                 Class->getNameAsString());
320    }
321  }
322
323  return ParsedType();
324}
325
326ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
327    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
328      return ParsedType();
329    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
330           && "only get destructor types from declspecs");
331    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
332    QualType SearchType = GetTypeFromParser(ObjectType);
333    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
334      return ParsedType::make(T);
335    }
336
337    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
338      << T << SearchType;
339    return ParsedType();
340}
341
342bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
343                                  const UnqualifiedId &Name) {
344  assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
345
346  if (!SS.isValid())
347    return false;
348
349  switch (SS.getScopeRep()->getKind()) {
350  case NestedNameSpecifier::Identifier:
351  case NestedNameSpecifier::TypeSpec:
352  case NestedNameSpecifier::TypeSpecWithTemplate:
353    // Per C++11 [over.literal]p2, literal operators can only be declared at
354    // namespace scope. Therefore, this unqualified-id cannot name anything.
355    // Reject it early, because we have no AST representation for this in the
356    // case where the scope is dependent.
357    Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
358      << SS.getScopeRep();
359    return true;
360
361  case NestedNameSpecifier::Global:
362  case NestedNameSpecifier::Super:
363  case NestedNameSpecifier::Namespace:
364  case NestedNameSpecifier::NamespaceAlias:
365    return false;
366  }
367
368  llvm_unreachable("unknown nested name specifier kind");
369}
370
371/// \brief Build a C++ typeid expression with a type operand.
372ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
373                                SourceLocation TypeidLoc,
374                                TypeSourceInfo *Operand,
375                                SourceLocation RParenLoc) {
376  // C++ [expr.typeid]p4:
377  //   The top-level cv-qualifiers of the lvalue expression or the type-id
378  //   that is the operand of typeid are always ignored.
379  //   If the type of the type-id is a class type or a reference to a class
380  //   type, the class shall be completely-defined.
381  Qualifiers Quals;
382  QualType T
383    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
384                                      Quals);
385  if (T->getAs<RecordType>() &&
386      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
387    return ExprError();
388
389  if (T->isVariablyModifiedType())
390    return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
391
392  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
393                                     SourceRange(TypeidLoc, RParenLoc));
394}
395
396/// \brief Build a C++ typeid expression with an expression operand.
397ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
398                                SourceLocation TypeidLoc,
399                                Expr *E,
400                                SourceLocation RParenLoc) {
401  bool WasEvaluated = false;
402  if (E && !E->isTypeDependent()) {
403    if (E->getType()->isPlaceholderType()) {
404      ExprResult result = CheckPlaceholderExpr(E);
405      if (result.isInvalid()) return ExprError();
406      E = result.get();
407    }
408
409    QualType T = E->getType();
410    if (const RecordType *RecordT = T->getAs<RecordType>()) {
411      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
412      // C++ [expr.typeid]p3:
413      //   [...] If the type of the expression is a class type, the class
414      //   shall be completely-defined.
415      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
416        return ExprError();
417
418      // C++ [expr.typeid]p3:
419      //   When typeid is applied to an expression other than an glvalue of a
420      //   polymorphic class type [...] [the] expression is an unevaluated
421      //   operand. [...]
422      if (RecordD->isPolymorphic() && E->isGLValue()) {
423        // The subexpression is potentially evaluated; switch the context
424        // and recheck the subexpression.
425        ExprResult Result = TransformToPotentiallyEvaluated(E);
426        if (Result.isInvalid()) return ExprError();
427        E = Result.get();
428
429        // We require a vtable to query the type at run time.
430        MarkVTableUsed(TypeidLoc, RecordD);
431        WasEvaluated = true;
432      }
433    }
434
435    // C++ [expr.typeid]p4:
436    //   [...] If the type of the type-id is a reference to a possibly
437    //   cv-qualified type, the result of the typeid expression refers to a
438    //   std::type_info object representing the cv-unqualified referenced
439    //   type.
440    Qualifiers Quals;
441    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
442    if (!Context.hasSameType(T, UnqualT)) {
443      T = UnqualT;
444      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
445    }
446  }
447
448  if (E->getType()->isVariablyModifiedType())
449    return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
450                     << E->getType());
451  else if (ActiveTemplateInstantiations.empty() &&
452           E->HasSideEffects(Context, WasEvaluated)) {
453    // The expression operand for typeid is in an unevaluated expression
454    // context, so side effects could result in unintended consequences.
455    Diag(E->getExprLoc(), WasEvaluated
456                              ? diag::warn_side_effects_typeid
457                              : diag::warn_side_effects_unevaluated_context);
458  }
459
460  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
461                                     SourceRange(TypeidLoc, RParenLoc));
462}
463
464/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
465ExprResult
466Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
467                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
468  // Find the std::type_info type.
469  if (!getStdNamespace())
470    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
471
472  if (!CXXTypeInfoDecl) {
473    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
474    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
475    LookupQualifiedName(R, getStdNamespace());
476    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
477    // Microsoft's typeinfo doesn't have type_info in std but in the global
478    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
479    if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
480      LookupQualifiedName(R, Context.getTranslationUnitDecl());
481      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
482    }
483    if (!CXXTypeInfoDecl)
484      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
485  }
486
487  if (!getLangOpts().RTTI) {
488    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
489  }
490
491  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
492
493  if (isType) {
494    // The operand is a type; handle it as such.
495    TypeSourceInfo *TInfo = nullptr;
496    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
497                                   &TInfo);
498    if (T.isNull())
499      return ExprError();
500
501    if (!TInfo)
502      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
503
504    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
505  }
506
507  // The operand is an expression.
508  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
509}
510
511/// \brief Build a Microsoft __uuidof expression with a type operand.
512ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
513                                SourceLocation TypeidLoc,
514                                TypeSourceInfo *Operand,
515                                SourceLocation RParenLoc) {
516  if (!Operand->getType()->isDependentType()) {
517    bool HasMultipleGUIDs = false;
518    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
519                                          &HasMultipleGUIDs)) {
520      if (HasMultipleGUIDs)
521        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
522      else
523        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
524    }
525  }
526
527  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
528                                     SourceRange(TypeidLoc, RParenLoc));
529}
530
531/// \brief Build a Microsoft __uuidof expression with an expression operand.
532ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
533                                SourceLocation TypeidLoc,
534                                Expr *E,
535                                SourceLocation RParenLoc) {
536  if (!E->getType()->isDependentType()) {
537    bool HasMultipleGUIDs = false;
538    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
539        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
540      if (HasMultipleGUIDs)
541        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
542      else
543        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
544    }
545  }
546
547  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
548                                     SourceRange(TypeidLoc, RParenLoc));
549}
550
551/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
552ExprResult
553Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
554                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
555  // If MSVCGuidDecl has not been cached, do the lookup.
556  if (!MSVCGuidDecl) {
557    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
558    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
559    LookupQualifiedName(R, Context.getTranslationUnitDecl());
560    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
561    if (!MSVCGuidDecl)
562      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
563  }
564
565  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
566
567  if (isType) {
568    // The operand is a type; handle it as such.
569    TypeSourceInfo *TInfo = nullptr;
570    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
571                                   &TInfo);
572    if (T.isNull())
573      return ExprError();
574
575    if (!TInfo)
576      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
577
578    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
579  }
580
581  // The operand is an expression.
582  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
583}
584
585/// ActOnCXXBoolLiteral - Parse {true,false} literals.
586ExprResult
587Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
588  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
589         "Unknown C++ Boolean value!");
590  return new (Context)
591      CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
592}
593
594/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
595ExprResult
596Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
597  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
598}
599
600/// ActOnCXXThrow - Parse throw expressions.
601ExprResult
602Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
603  bool IsThrownVarInScope = false;
604  if (Ex) {
605    // C++0x [class.copymove]p31:
606    //   When certain criteria are met, an implementation is allowed to omit the
607    //   copy/move construction of a class object [...]
608    //
609    //     - in a throw-expression, when the operand is the name of a
610    //       non-volatile automatic object (other than a function or catch-
611    //       clause parameter) whose scope does not extend beyond the end of the
612    //       innermost enclosing try-block (if there is one), the copy/move
613    //       operation from the operand to the exception object (15.1) can be
614    //       omitted by constructing the automatic object directly into the
615    //       exception object
616    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
617      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
618        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
619          for( ; S; S = S->getParent()) {
620            if (S->isDeclScope(Var)) {
621              IsThrownVarInScope = true;
622              break;
623            }
624
625            if (S->getFlags() &
626                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
627                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
628                 Scope::TryScope))
629              break;
630          }
631        }
632      }
633  }
634
635  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
636}
637
638ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
639                               bool IsThrownVarInScope) {
640  // Don't report an error if 'throw' is used in system headers.
641  if (!getLangOpts().CXXExceptions &&
642      !getSourceManager().isInSystemHeader(OpLoc))
643    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
644
645  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
646    Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
647
648  if (Ex && !Ex->isTypeDependent()) {
649    QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
650    if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
651      return ExprError();
652
653    // Initialize the exception result.  This implicitly weeds out
654    // abstract types or types with inaccessible copy constructors.
655
656    // C++0x [class.copymove]p31:
657    //   When certain criteria are met, an implementation is allowed to omit the
658    //   copy/move construction of a class object [...]
659    //
660    //     - in a throw-expression, when the operand is the name of a
661    //       non-volatile automatic object (other than a function or
662    //       catch-clause
663    //       parameter) whose scope does not extend beyond the end of the
664    //       innermost enclosing try-block (if there is one), the copy/move
665    //       operation from the operand to the exception object (15.1) can be
666    //       omitted by constructing the automatic object directly into the
667    //       exception object
668    const VarDecl *NRVOVariable = nullptr;
669    if (IsThrownVarInScope)
670      NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
671
672    InitializedEntity Entity = InitializedEntity::InitializeException(
673        OpLoc, ExceptionObjectTy,
674        /*NRVO=*/NRVOVariable != nullptr);
675    ExprResult Res = PerformMoveOrCopyInitialization(
676        Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
677    if (Res.isInvalid())
678      return ExprError();
679    Ex = Res.get();
680  }
681
682  return new (Context)
683      CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
684}
685
686static void
687collectPublicBases(CXXRecordDecl *RD,
688                   llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
689                   llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
690                   llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
691                   bool ParentIsPublic) {
692  for (const CXXBaseSpecifier &BS : RD->bases()) {
693    CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
694    bool NewSubobject;
695    // Virtual bases constitute the same subobject.  Non-virtual bases are
696    // always distinct subobjects.
697    if (BS.isVirtual())
698      NewSubobject = VBases.insert(BaseDecl).second;
699    else
700      NewSubobject = true;
701
702    if (NewSubobject)
703      ++SubobjectsSeen[BaseDecl];
704
705    // Only add subobjects which have public access throughout the entire chain.
706    bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
707    if (PublicPath)
708      PublicSubobjectsSeen.insert(BaseDecl);
709
710    // Recurse on to each base subobject.
711    collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
712                       PublicPath);
713  }
714}
715
716static void getUnambiguousPublicSubobjects(
717    CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
718  llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
719  llvm::SmallSet<CXXRecordDecl *, 2> VBases;
720  llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
721  SubobjectsSeen[RD] = 1;
722  PublicSubobjectsSeen.insert(RD);
723  collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
724                     /*ParentIsPublic=*/true);
725
726  for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
727    // Skip ambiguous objects.
728    if (SubobjectsSeen[PublicSubobject] > 1)
729      continue;
730
731    Objects.push_back(PublicSubobject);
732  }
733}
734
735/// CheckCXXThrowOperand - Validate the operand of a throw.
736bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
737                                QualType ExceptionObjectTy, Expr *E) {
738  //   If the type of the exception would be an incomplete type or a pointer
739  //   to an incomplete type other than (cv) void the program is ill-formed.
740  QualType Ty = ExceptionObjectTy;
741  bool isPointer = false;
742  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
743    Ty = Ptr->getPointeeType();
744    isPointer = true;
745  }
746  if (!isPointer || !Ty->isVoidType()) {
747    if (RequireCompleteType(ThrowLoc, Ty,
748                            isPointer ? diag::err_throw_incomplete_ptr
749                                      : diag::err_throw_incomplete,
750                            E->getSourceRange()))
751      return true;
752
753    if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
754                               diag::err_throw_abstract_type, E))
755      return true;
756  }
757
758  // If the exception has class type, we need additional handling.
759  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
760  if (!RD)
761    return false;
762
763  // If we are throwing a polymorphic class type or pointer thereof,
764  // exception handling will make use of the vtable.
765  MarkVTableUsed(ThrowLoc, RD);
766
767  // If a pointer is thrown, the referenced object will not be destroyed.
768  if (isPointer)
769    return false;
770
771  // If the class has a destructor, we must be able to call it.
772  if (!RD->hasIrrelevantDestructor()) {
773    if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
774      MarkFunctionReferenced(E->getExprLoc(), Destructor);
775      CheckDestructorAccess(E->getExprLoc(), Destructor,
776                            PDiag(diag::err_access_dtor_exception) << Ty);
777      if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
778        return true;
779    }
780  }
781
782  // The MSVC ABI creates a list of all types which can catch the exception
783  // object.  This list also references the appropriate copy constructor to call
784  // if the object is caught by value and has a non-trivial copy constructor.
785  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
786    // We are only interested in the public, unambiguous bases contained within
787    // the exception object.  Bases which are ambiguous or otherwise
788    // inaccessible are not catchable types.
789    llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
790    getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
791
792    for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
793      // Attempt to lookup the copy constructor.  Various pieces of machinery
794      // will spring into action, like template instantiation, which means this
795      // cannot be a simple walk of the class's decls.  Instead, we must perform
796      // lookup and overload resolution.
797      CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
798      if (!CD)
799        continue;
800
801      // Mark the constructor referenced as it is used by this throw expression.
802      MarkFunctionReferenced(E->getExprLoc(), CD);
803
804      // Skip this copy constructor if it is trivial, we don't need to record it
805      // in the catchable type data.
806      if (CD->isTrivial())
807        continue;
808
809      // The copy constructor is non-trivial, create a mapping from this class
810      // type to this constructor.
811      // N.B.  The selection of copy constructor is not sensitive to this
812      // particular throw-site.  Lookup will be performed at the catch-site to
813      // ensure that the copy constructor is, in fact, accessible (via
814      // friendship or any other means).
815      Context.addCopyConstructorForExceptionObject(Subobject, CD);
816
817      // We don't keep the instantiated default argument expressions around so
818      // we must rebuild them here.
819      for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
820        // Skip any default arguments that we've already instantiated.
821        if (Context.getDefaultArgExprForConstructor(CD, I))
822          continue;
823
824        Expr *DefaultArg =
825            BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
826        Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
827      }
828    }
829  }
830
831  return false;
832}
833
834QualType Sema::getCurrentThisType() {
835  DeclContext *DC = getFunctionLevelDeclContext();
836  QualType ThisTy = CXXThisTypeOverride;
837  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
838    if (method && method->isInstance())
839      ThisTy = method->getThisType(Context);
840  }
841  if (ThisTy.isNull()) {
842    if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
843        CurContext->getParent()->getParent()->isRecord()) {
844      // This is a generic lambda call operator that is being instantiated
845      // within a default initializer - so use the enclosing class as 'this'.
846      // There is no enclosing member function to retrieve the 'this' pointer
847      // from.
848      QualType ClassTy = Context.getTypeDeclType(
849          cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
850      // There are no cv-qualifiers for 'this' within default initializers,
851      // per [expr.prim.general]p4.
852      return Context.getPointerType(ClassTy);
853    }
854  }
855  return ThisTy;
856}
857
858Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
859                                         Decl *ContextDecl,
860                                         unsigned CXXThisTypeQuals,
861                                         bool Enabled)
862  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
863{
864  if (!Enabled || !ContextDecl)
865    return;
866
867  CXXRecordDecl *Record = nullptr;
868  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
869    Record = Template->getTemplatedDecl();
870  else
871    Record = cast<CXXRecordDecl>(ContextDecl);
872
873  S.CXXThisTypeOverride
874    = S.Context.getPointerType(
875        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
876
877  this->Enabled = true;
878}
879
880
881Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
882  if (Enabled) {
883    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
884  }
885}
886
887static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
888                         QualType ThisTy, SourceLocation Loc) {
889  FieldDecl *Field
890    = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
891                        Context.getTrivialTypeSourceInfo(ThisTy, Loc),
892                        nullptr, false, ICIS_NoInit);
893  Field->setImplicit(true);
894  Field->setAccess(AS_private);
895  RD->addDecl(Field);
896  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
897}
898
899bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
900    bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
901  // We don't need to capture this in an unevaluated context.
902  if (isUnevaluatedContext() && !Explicit)
903    return true;
904
905  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
906    *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
907 // Otherwise, check that we can capture 'this'.
908  unsigned NumClosures = 0;
909  for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
910    if (CapturingScopeInfo *CSI =
911            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
912      if (CSI->CXXThisCaptureIndex != 0) {
913        // 'this' is already being captured; there isn't anything more to do.
914        break;
915      }
916      LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
917      if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
918        // This context can't implicitly capture 'this'; fail out.
919        if (BuildAndDiagnose)
920          Diag(Loc, diag::err_this_capture) << Explicit;
921        return true;
922      }
923      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
924          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
925          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
926          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
927          Explicit) {
928        // This closure can capture 'this'; continue looking upwards.
929        NumClosures++;
930        Explicit = false;
931        continue;
932      }
933      // This context can't implicitly capture 'this'; fail out.
934      if (BuildAndDiagnose)
935        Diag(Loc, diag::err_this_capture) << Explicit;
936      return true;
937    }
938    break;
939  }
940  if (!BuildAndDiagnose) return false;
941  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
942  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
943  // contexts.
944  for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
945      --idx, --NumClosures) {
946    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
947    Expr *ThisExpr = nullptr;
948    QualType ThisTy = getCurrentThisType();
949    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
950      // For lambda expressions, build a field and an initializing expression.
951      ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
952    else if (CapturedRegionScopeInfo *RSI
953        = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
954      ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
955
956    bool isNested = NumClosures > 1;
957    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
958  }
959  return false;
960}
961
962ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
963  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
964  /// is a non-lvalue expression whose value is the address of the object for
965  /// which the function is called.
966
967  QualType ThisTy = getCurrentThisType();
968  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
969
970  CheckCXXThisCapture(Loc);
971  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
972}
973
974bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
975  // If we're outside the body of a member function, then we'll have a specified
976  // type for 'this'.
977  if (CXXThisTypeOverride.isNull())
978    return false;
979
980  // Determine whether we're looking into a class that's currently being
981  // defined.
982  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
983  return Class && Class->isBeingDefined();
984}
985
986ExprResult
987Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
988                                SourceLocation LParenLoc,
989                                MultiExprArg exprs,
990                                SourceLocation RParenLoc) {
991  if (!TypeRep)
992    return ExprError();
993
994  TypeSourceInfo *TInfo;
995  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
996  if (!TInfo)
997    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
998
999  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
1000}
1001
1002/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
1003/// Can be interpreted either as function-style casting ("int(x)")
1004/// or class type construction ("ClassType(x,y,z)")
1005/// or creation of a value-initialized type ("int()").
1006ExprResult
1007Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1008                                SourceLocation LParenLoc,
1009                                MultiExprArg Exprs,
1010                                SourceLocation RParenLoc) {
1011  QualType Ty = TInfo->getType();
1012  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1013
1014  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1015    return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
1016                                              RParenLoc);
1017  }
1018
1019  bool ListInitialization = LParenLoc.isInvalid();
1020  assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
1021         && "List initialization must have initializer list as expression.");
1022  SourceRange FullRange = SourceRange(TyBeginLoc,
1023      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
1024
1025  // C++ [expr.type.conv]p1:
1026  // If the expression list is a single expression, the type conversion
1027  // expression is equivalent (in definedness, and if defined in meaning) to the
1028  // corresponding cast expression.
1029  if (Exprs.size() == 1 && !ListInitialization) {
1030    Expr *Arg = Exprs[0];
1031    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
1032  }
1033
1034  // C++14 [expr.type.conv]p2: The expression T(), where T is a
1035  //   simple-type-specifier or typename-specifier for a non-array complete
1036  //   object type or the (possibly cv-qualified) void type, creates a prvalue
1037  //   of the specified type, whose value is that produced by value-initializing
1038  //   an object of type T.
1039  QualType ElemTy = Ty;
1040  if (Ty->isArrayType()) {
1041    if (!ListInitialization)
1042      return ExprError(Diag(TyBeginLoc,
1043                            diag::err_value_init_for_array_type) << FullRange);
1044    ElemTy = Context.getBaseElementType(Ty);
1045  }
1046
1047  if (!ListInitialization && Ty->isFunctionType())
1048    return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
1049                     << FullRange);
1050
1051  if (!Ty->isVoidType() &&
1052      RequireCompleteType(TyBeginLoc, ElemTy,
1053                          diag::err_invalid_incomplete_type_use, FullRange))
1054    return ExprError();
1055
1056  if (RequireNonAbstractType(TyBeginLoc, Ty,
1057                             diag::err_allocation_of_abstract_type))
1058    return ExprError();
1059
1060  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1061  InitializationKind Kind =
1062      Exprs.size() ? ListInitialization
1063      ? InitializationKind::CreateDirectList(TyBeginLoc)
1064      : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
1065      : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
1066  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1067  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1068
1069  if (Result.isInvalid() || !ListInitialization)
1070    return Result;
1071
1072  Expr *Inner = Result.get();
1073  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1074    Inner = BTE->getSubExpr();
1075  if (!isa<CXXTemporaryObjectExpr>(Inner)) {
1076    // If we created a CXXTemporaryObjectExpr, that node also represents the
1077    // functional cast. Otherwise, create an explicit cast to represent
1078    // the syntactic form of a functional-style cast that was used here.
1079    //
1080    // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1081    // would give a more consistent AST representation than using a
1082    // CXXTemporaryObjectExpr. It's also weird that the functional cast
1083    // is sometimes handled by initialization and sometimes not.
1084    QualType ResultType = Result.get()->getType();
1085    Result = CXXFunctionalCastExpr::Create(
1086        Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
1087        CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
1088  }
1089
1090  return Result;
1091}
1092
1093/// doesUsualArrayDeleteWantSize - Answers whether the usual
1094/// operator delete[] for the given type has a size_t parameter.
1095static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1096                                         QualType allocType) {
1097  const RecordType *record =
1098    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1099  if (!record) return false;
1100
1101  // Try to find an operator delete[] in class scope.
1102
1103  DeclarationName deleteName =
1104    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1105  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1106  S.LookupQualifiedName(ops, record->getDecl());
1107
1108  // We're just doing this for information.
1109  ops.suppressDiagnostics();
1110
1111  // Very likely: there's no operator delete[].
1112  if (ops.empty()) return false;
1113
1114  // If it's ambiguous, it should be illegal to call operator delete[]
1115  // on this thing, so it doesn't matter if we allocate extra space or not.
1116  if (ops.isAmbiguous()) return false;
1117
1118  LookupResult::Filter filter = ops.makeFilter();
1119  while (filter.hasNext()) {
1120    NamedDecl *del = filter.next()->getUnderlyingDecl();
1121
1122    // C++0x [basic.stc.dynamic.deallocation]p2:
1123    //   A template instance is never a usual deallocation function,
1124    //   regardless of its signature.
1125    if (isa<FunctionTemplateDecl>(del)) {
1126      filter.erase();
1127      continue;
1128    }
1129
1130    // C++0x [basic.stc.dynamic.deallocation]p2:
1131    //   If class T does not declare [an operator delete[] with one
1132    //   parameter] but does declare a member deallocation function
1133    //   named operator delete[] with exactly two parameters, the
1134    //   second of which has type std::size_t, then this function
1135    //   is a usual deallocation function.
1136    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1137      filter.erase();
1138      continue;
1139    }
1140  }
1141  filter.done();
1142
1143  if (!ops.isSingleResult()) return false;
1144
1145  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1146  return (del->getNumParams() == 2);
1147}
1148
1149/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1150///
1151/// E.g.:
1152/// @code new (memory) int[size][4] @endcode
1153/// or
1154/// @code ::new Foo(23, "hello") @endcode
1155///
1156/// \param StartLoc The first location of the expression.
1157/// \param UseGlobal True if 'new' was prefixed with '::'.
1158/// \param PlacementLParen Opening paren of the placement arguments.
1159/// \param PlacementArgs Placement new arguments.
1160/// \param PlacementRParen Closing paren of the placement arguments.
1161/// \param TypeIdParens If the type is in parens, the source range.
1162/// \param D The type to be allocated, as well as array dimensions.
1163/// \param Initializer The initializing expression or initializer-list, or null
1164///   if there is none.
1165ExprResult
1166Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1167                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1168                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1169                  Declarator &D, Expr *Initializer) {
1170  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1171
1172  Expr *ArraySize = nullptr;
1173  // If the specified type is an array, unwrap it and save the expression.
1174  if (D.getNumTypeObjects() > 0 &&
1175      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1176     DeclaratorChunk &Chunk = D.getTypeObject(0);
1177    if (TypeContainsAuto)
1178      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1179        << D.getSourceRange());
1180    if (Chunk.Arr.hasStatic)
1181      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1182        << D.getSourceRange());
1183    if (!Chunk.Arr.NumElts)
1184      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1185        << D.getSourceRange());
1186
1187    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1188    D.DropFirstTypeObject();
1189  }
1190
1191  // Every dimension shall be of constant size.
1192  if (ArraySize) {
1193    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1194      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1195        break;
1196
1197      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1198      if (Expr *NumElts = (Expr *)Array.NumElts) {
1199        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1200          if (getLangOpts().CPlusPlus14) {
1201	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1202	    //   shall be a converted constant expression (5.19) of type std::size_t
1203	    //   and shall evaluate to a strictly positive value.
1204            unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1205            assert(IntWidth && "Builtin type of size 0?");
1206            llvm::APSInt Value(IntWidth);
1207            Array.NumElts
1208             = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1209                                                CCEK_NewExpr)
1210                 .get();
1211          } else {
1212            Array.NumElts
1213              = VerifyIntegerConstantExpression(NumElts, nullptr,
1214                                                diag::err_new_array_nonconst)
1215                  .get();
1216          }
1217          if (!Array.NumElts)
1218            return ExprError();
1219        }
1220      }
1221    }
1222  }
1223
1224  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1225  QualType AllocType = TInfo->getType();
1226  if (D.isInvalidType())
1227    return ExprError();
1228
1229  SourceRange DirectInitRange;
1230  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1231    DirectInitRange = List->getSourceRange();
1232
1233  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1234                     PlacementLParen,
1235                     PlacementArgs,
1236                     PlacementRParen,
1237                     TypeIdParens,
1238                     AllocType,
1239                     TInfo,
1240                     ArraySize,
1241                     DirectInitRange,
1242                     Initializer,
1243                     TypeContainsAuto);
1244}
1245
1246static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1247                                       Expr *Init) {
1248  if (!Init)
1249    return true;
1250  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1251    return PLE->getNumExprs() == 0;
1252  if (isa<ImplicitValueInitExpr>(Init))
1253    return true;
1254  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1255    return !CCE->isListInitialization() &&
1256           CCE->getConstructor()->isDefaultConstructor();
1257  else if (Style == CXXNewExpr::ListInit) {
1258    assert(isa<InitListExpr>(Init) &&
1259           "Shouldn't create list CXXConstructExprs for arrays.");
1260    return true;
1261  }
1262  return false;
1263}
1264
1265ExprResult
1266Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1267                  SourceLocation PlacementLParen,
1268                  MultiExprArg PlacementArgs,
1269                  SourceLocation PlacementRParen,
1270                  SourceRange TypeIdParens,
1271                  QualType AllocType,
1272                  TypeSourceInfo *AllocTypeInfo,
1273                  Expr *ArraySize,
1274                  SourceRange DirectInitRange,
1275                  Expr *Initializer,
1276                  bool TypeMayContainAuto) {
1277  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1278  SourceLocation StartLoc = Range.getBegin();
1279
1280  CXXNewExpr::InitializationStyle initStyle;
1281  if (DirectInitRange.isValid()) {
1282    assert(Initializer && "Have parens but no initializer.");
1283    initStyle = CXXNewExpr::CallInit;
1284  } else if (Initializer && isa<InitListExpr>(Initializer))
1285    initStyle = CXXNewExpr::ListInit;
1286  else {
1287    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1288            isa<CXXConstructExpr>(Initializer)) &&
1289           "Initializer expression that cannot have been implicitly created.");
1290    initStyle = CXXNewExpr::NoInit;
1291  }
1292
1293  Expr **Inits = &Initializer;
1294  unsigned NumInits = Initializer ? 1 : 0;
1295  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1296    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1297    Inits = List->getExprs();
1298    NumInits = List->getNumExprs();
1299  }
1300
1301  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1302  if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1303    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1304      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1305                       << AllocType << TypeRange);
1306    if (initStyle == CXXNewExpr::ListInit ||
1307        (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1308      return ExprError(Diag(Inits[0]->getLocStart(),
1309                            diag::err_auto_new_list_init)
1310                       << AllocType << TypeRange);
1311    if (NumInits > 1) {
1312      Expr *FirstBad = Inits[1];
1313      return ExprError(Diag(FirstBad->getLocStart(),
1314                            diag::err_auto_new_ctor_multiple_expressions)
1315                       << AllocType << TypeRange);
1316    }
1317    Expr *Deduce = Inits[0];
1318    QualType DeducedType;
1319    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1320      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1321                       << AllocType << Deduce->getType()
1322                       << TypeRange << Deduce->getSourceRange());
1323    if (DeducedType.isNull())
1324      return ExprError();
1325    AllocType = DeducedType;
1326  }
1327
1328  // Per C++0x [expr.new]p5, the type being constructed may be a
1329  // typedef of an array type.
1330  if (!ArraySize) {
1331    if (const ConstantArrayType *Array
1332                              = Context.getAsConstantArrayType(AllocType)) {
1333      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1334                                         Context.getSizeType(),
1335                                         TypeRange.getEnd());
1336      AllocType = Array->getElementType();
1337    }
1338  }
1339
1340  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1341    return ExprError();
1342
1343  if (initStyle == CXXNewExpr::ListInit &&
1344      isStdInitializerList(AllocType, nullptr)) {
1345    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1346         diag::warn_dangling_std_initializer_list)
1347        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1348  }
1349
1350  // In ARC, infer 'retaining' for the allocated
1351  if (getLangOpts().ObjCAutoRefCount &&
1352      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1353      AllocType->isObjCLifetimeType()) {
1354    AllocType = Context.getLifetimeQualifiedType(AllocType,
1355                                    AllocType->getObjCARCImplicitLifetime());
1356  }
1357
1358  QualType ResultType = Context.getPointerType(AllocType);
1359
1360  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1361    ExprResult result = CheckPlaceholderExpr(ArraySize);
1362    if (result.isInvalid()) return ExprError();
1363    ArraySize = result.get();
1364  }
1365  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1366  //   integral or enumeration type with a non-negative value."
1367  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1368  //   enumeration type, or a class type for which a single non-explicit
1369  //   conversion function to integral or unscoped enumeration type exists.
1370  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1371  //   std::size_t.
1372  if (ArraySize && !ArraySize->isTypeDependent()) {
1373    ExprResult ConvertedSize;
1374    if (getLangOpts().CPlusPlus14) {
1375      assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1376
1377      ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1378						AA_Converting);
1379
1380      if (!ConvertedSize.isInvalid() &&
1381          ArraySize->getType()->getAs<RecordType>())
1382        // Diagnose the compatibility of this conversion.
1383        Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1384          << ArraySize->getType() << 0 << "'size_t'";
1385    } else {
1386      class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1387      protected:
1388        Expr *ArraySize;
1389
1390      public:
1391        SizeConvertDiagnoser(Expr *ArraySize)
1392            : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1393              ArraySize(ArraySize) {}
1394
1395        SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1396                                             QualType T) override {
1397          return S.Diag(Loc, diag::err_array_size_not_integral)
1398                   << S.getLangOpts().CPlusPlus11 << T;
1399        }
1400
1401        SemaDiagnosticBuilder diagnoseIncomplete(
1402            Sema &S, SourceLocation Loc, QualType T) override {
1403          return S.Diag(Loc, diag::err_array_size_incomplete_type)
1404                   << T << ArraySize->getSourceRange();
1405        }
1406
1407        SemaDiagnosticBuilder diagnoseExplicitConv(
1408            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1409          return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1410        }
1411
1412        SemaDiagnosticBuilder noteExplicitConv(
1413            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1414          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1415                   << ConvTy->isEnumeralType() << ConvTy;
1416        }
1417
1418        SemaDiagnosticBuilder diagnoseAmbiguous(
1419            Sema &S, SourceLocation Loc, QualType T) override {
1420          return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1421        }
1422
1423        SemaDiagnosticBuilder noteAmbiguous(
1424            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1425          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1426                   << ConvTy->isEnumeralType() << ConvTy;
1427        }
1428
1429        SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1430                                                 QualType T,
1431                                                 QualType ConvTy) override {
1432          return S.Diag(Loc,
1433                        S.getLangOpts().CPlusPlus11
1434                          ? diag::warn_cxx98_compat_array_size_conversion
1435                          : diag::ext_array_size_conversion)
1436                   << T << ConvTy->isEnumeralType() << ConvTy;
1437        }
1438      } SizeDiagnoser(ArraySize);
1439
1440      ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1441                                                          SizeDiagnoser);
1442    }
1443    if (ConvertedSize.isInvalid())
1444      return ExprError();
1445
1446    ArraySize = ConvertedSize.get();
1447    QualType SizeType = ArraySize->getType();
1448
1449    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1450      return ExprError();
1451
1452    // C++98 [expr.new]p7:
1453    //   The expression in a direct-new-declarator shall have integral type
1454    //   with a non-negative value.
1455    //
1456    // Let's see if this is a constant < 0. If so, we reject it out of
1457    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1458    // array type.
1459    //
1460    // Note: such a construct has well-defined semantics in C++11: it throws
1461    // std::bad_array_new_length.
1462    if (!ArraySize->isValueDependent()) {
1463      llvm::APSInt Value;
1464      // We've already performed any required implicit conversion to integer or
1465      // unscoped enumeration type.
1466      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1467        if (Value < llvm::APSInt(
1468                        llvm::APInt::getNullValue(Value.getBitWidth()),
1469                                 Value.isUnsigned())) {
1470          if (getLangOpts().CPlusPlus11)
1471            Diag(ArraySize->getLocStart(),
1472                 diag::warn_typecheck_negative_array_new_size)
1473              << ArraySize->getSourceRange();
1474          else
1475            return ExprError(Diag(ArraySize->getLocStart(),
1476                                  diag::err_typecheck_negative_array_size)
1477                             << ArraySize->getSourceRange());
1478        } else if (!AllocType->isDependentType()) {
1479          unsigned ActiveSizeBits =
1480            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1481          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1482            if (getLangOpts().CPlusPlus11)
1483              Diag(ArraySize->getLocStart(),
1484                   diag::warn_array_new_too_large)
1485                << Value.toString(10)
1486                << ArraySize->getSourceRange();
1487            else
1488              return ExprError(Diag(ArraySize->getLocStart(),
1489                                    diag::err_array_too_large)
1490                               << Value.toString(10)
1491                               << ArraySize->getSourceRange());
1492          }
1493        }
1494      } else if (TypeIdParens.isValid()) {
1495        // Can't have dynamic array size when the type-id is in parentheses.
1496        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1497          << ArraySize->getSourceRange()
1498          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1499          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1500
1501        TypeIdParens = SourceRange();
1502      }
1503    }
1504
1505    // Note that we do *not* convert the argument in any way.  It can
1506    // be signed, larger than size_t, whatever.
1507  }
1508
1509  FunctionDecl *OperatorNew = nullptr;
1510  FunctionDecl *OperatorDelete = nullptr;
1511
1512  if (!AllocType->isDependentType() &&
1513      !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1514      FindAllocationFunctions(StartLoc,
1515                              SourceRange(PlacementLParen, PlacementRParen),
1516                              UseGlobal, AllocType, ArraySize, PlacementArgs,
1517                              OperatorNew, OperatorDelete))
1518    return ExprError();
1519
1520  // If this is an array allocation, compute whether the usual array
1521  // deallocation function for the type has a size_t parameter.
1522  bool UsualArrayDeleteWantsSize = false;
1523  if (ArraySize && !AllocType->isDependentType())
1524    UsualArrayDeleteWantsSize
1525      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1526
1527  SmallVector<Expr *, 8> AllPlaceArgs;
1528  if (OperatorNew) {
1529    const FunctionProtoType *Proto =
1530        OperatorNew->getType()->getAs<FunctionProtoType>();
1531    VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1532                                                    : VariadicDoesNotApply;
1533
1534    // We've already converted the placement args, just fill in any default
1535    // arguments. Skip the first parameter because we don't have a corresponding
1536    // argument.
1537    if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1538                               PlacementArgs, AllPlaceArgs, CallType))
1539      return ExprError();
1540
1541    if (!AllPlaceArgs.empty())
1542      PlacementArgs = AllPlaceArgs;
1543
1544    // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1545    DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1546
1547    // FIXME: Missing call to CheckFunctionCall or equivalent
1548  }
1549
1550  // Warn if the type is over-aligned and is being allocated by global operator
1551  // new.
1552  if (PlacementArgs.empty() && OperatorNew &&
1553      (OperatorNew->isImplicit() ||
1554       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1555    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1556      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1557      if (Align > SuitableAlign)
1558        Diag(StartLoc, diag::warn_overaligned_type)
1559            << AllocType
1560            << unsigned(Align / Context.getCharWidth())
1561            << unsigned(SuitableAlign / Context.getCharWidth());
1562    }
1563  }
1564
1565  QualType InitType = AllocType;
1566  // Array 'new' can't have any initializers except empty parentheses.
1567  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1568  // dialect distinction.
1569  if (ResultType->isArrayType() || ArraySize) {
1570    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1571      SourceRange InitRange(Inits[0]->getLocStart(),
1572                            Inits[NumInits - 1]->getLocEnd());
1573      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1574      return ExprError();
1575    }
1576    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1577      // We do the initialization typechecking against the array type
1578      // corresponding to the number of initializers + 1 (to also check
1579      // default-initialization).
1580      unsigned NumElements = ILE->getNumInits() + 1;
1581      InitType = Context.getConstantArrayType(AllocType,
1582          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1583                                              ArrayType::Normal, 0);
1584    }
1585  }
1586
1587  // If we can perform the initialization, and we've not already done so,
1588  // do it now.
1589  if (!AllocType->isDependentType() &&
1590      !Expr::hasAnyTypeDependentArguments(
1591          llvm::makeArrayRef(Inits, NumInits))) {
1592    // C++11 [expr.new]p15:
1593    //   A new-expression that creates an object of type T initializes that
1594    //   object as follows:
1595    InitializationKind Kind
1596    //     - If the new-initializer is omitted, the object is default-
1597    //       initialized (8.5); if no initialization is performed,
1598    //       the object has indeterminate value
1599      = initStyle == CXXNewExpr::NoInit
1600          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1601    //     - Otherwise, the new-initializer is interpreted according to the
1602    //       initialization rules of 8.5 for direct-initialization.
1603          : initStyle == CXXNewExpr::ListInit
1604              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1605              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1606                                                 DirectInitRange.getBegin(),
1607                                                 DirectInitRange.getEnd());
1608
1609    InitializedEntity Entity
1610      = InitializedEntity::InitializeNew(StartLoc, InitType);
1611    InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1612    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1613                                          MultiExprArg(Inits, NumInits));
1614    if (FullInit.isInvalid())
1615      return ExprError();
1616
1617    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1618    // we don't want the initialized object to be destructed.
1619    if (CXXBindTemporaryExpr *Binder =
1620            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1621      FullInit = Binder->getSubExpr();
1622
1623    Initializer = FullInit.get();
1624  }
1625
1626  // Mark the new and delete operators as referenced.
1627  if (OperatorNew) {
1628    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1629      return ExprError();
1630    MarkFunctionReferenced(StartLoc, OperatorNew);
1631  }
1632  if (OperatorDelete) {
1633    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1634      return ExprError();
1635    MarkFunctionReferenced(StartLoc, OperatorDelete);
1636  }
1637
1638  // C++0x [expr.new]p17:
1639  //   If the new expression creates an array of objects of class type,
1640  //   access and ambiguity control are done for the destructor.
1641  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1642  if (ArraySize && !BaseAllocType->isDependentType()) {
1643    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1644      if (CXXDestructorDecl *dtor = LookupDestructor(
1645              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1646        MarkFunctionReferenced(StartLoc, dtor);
1647        CheckDestructorAccess(StartLoc, dtor,
1648                              PDiag(diag::err_access_dtor)
1649                                << BaseAllocType);
1650        if (DiagnoseUseOfDecl(dtor, StartLoc))
1651          return ExprError();
1652      }
1653    }
1654  }
1655
1656  return new (Context)
1657      CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1658                 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1659                 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1660                 Range, DirectInitRange);
1661}
1662
1663/// \brief Checks that a type is suitable as the allocated type
1664/// in a new-expression.
1665bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1666                              SourceRange R) {
1667  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1668  //   abstract class type or array thereof.
1669  if (AllocType->isFunctionType())
1670    return Diag(Loc, diag::err_bad_new_type)
1671      << AllocType << 0 << R;
1672  else if (AllocType->isReferenceType())
1673    return Diag(Loc, diag::err_bad_new_type)
1674      << AllocType << 1 << R;
1675  else if (!AllocType->isDependentType() &&
1676           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1677    return true;
1678  else if (RequireNonAbstractType(Loc, AllocType,
1679                                  diag::err_allocation_of_abstract_type))
1680    return true;
1681  else if (AllocType->isVariablyModifiedType())
1682    return Diag(Loc, diag::err_variably_modified_new_type)
1683             << AllocType;
1684  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1685    return Diag(Loc, diag::err_address_space_qualified_new)
1686      << AllocType.getUnqualifiedType() << AddressSpace;
1687  else if (getLangOpts().ObjCAutoRefCount) {
1688    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1689      QualType BaseAllocType = Context.getBaseElementType(AT);
1690      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1691          BaseAllocType->isObjCLifetimeType())
1692        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1693          << BaseAllocType;
1694    }
1695  }
1696
1697  return false;
1698}
1699
1700/// \brief Determine whether the given function is a non-placement
1701/// deallocation function.
1702static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1703  if (FD->isInvalidDecl())
1704    return false;
1705
1706  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1707    return Method->isUsualDeallocationFunction();
1708
1709  if (FD->getOverloadedOperator() != OO_Delete &&
1710      FD->getOverloadedOperator() != OO_Array_Delete)
1711    return false;
1712
1713  if (FD->getNumParams() == 1)
1714    return true;
1715
1716  return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1717         S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1718                                          S.Context.getSizeType());
1719}
1720
1721/// FindAllocationFunctions - Finds the overloads of operator new and delete
1722/// that are appropriate for the allocation.
1723bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1724                                   bool UseGlobal, QualType AllocType,
1725                                   bool IsArray, MultiExprArg PlaceArgs,
1726                                   FunctionDecl *&OperatorNew,
1727                                   FunctionDecl *&OperatorDelete) {
1728  // --- Choosing an allocation function ---
1729  // C++ 5.3.4p8 - 14 & 18
1730  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1731  //   in the scope of the allocated class.
1732  // 2) If an array size is given, look for operator new[], else look for
1733  //   operator new.
1734  // 3) The first argument is always size_t. Append the arguments from the
1735  //   placement form.
1736
1737  SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1738  // We don't care about the actual value of this argument.
1739  // FIXME: Should the Sema create the expression and embed it in the syntax
1740  // tree? Or should the consumer just recalculate the value?
1741  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1742                      Context.getTargetInfo().getPointerWidth(0)),
1743                      Context.getSizeType(),
1744                      SourceLocation());
1745  AllocArgs[0] = &Size;
1746  std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1747
1748  // C++ [expr.new]p8:
1749  //   If the allocated type is a non-array type, the allocation
1750  //   function's name is operator new and the deallocation function's
1751  //   name is operator delete. If the allocated type is an array
1752  //   type, the allocation function's name is operator new[] and the
1753  //   deallocation function's name is operator delete[].
1754  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1755                                        IsArray ? OO_Array_New : OO_New);
1756  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1757                                        IsArray ? OO_Array_Delete : OO_Delete);
1758
1759  QualType AllocElemType = Context.getBaseElementType(AllocType);
1760
1761  if (AllocElemType->isRecordType() && !UseGlobal) {
1762    CXXRecordDecl *Record
1763      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1764    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1765                               /*AllowMissing=*/true, OperatorNew))
1766      return true;
1767  }
1768
1769  if (!OperatorNew) {
1770    // Didn't find a member overload. Look for a global one.
1771    DeclareGlobalNewDelete();
1772    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1773    bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1774    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1775                               /*AllowMissing=*/FallbackEnabled, OperatorNew,
1776                               /*Diagnose=*/!FallbackEnabled)) {
1777      if (!FallbackEnabled)
1778        return true;
1779
1780      // MSVC will fall back on trying to find a matching global operator new
1781      // if operator new[] cannot be found.  Also, MSVC will leak by not
1782      // generating a call to operator delete or operator delete[], but we
1783      // will not replicate that bug.
1784      NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1785      DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1786      if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1787                               /*AllowMissing=*/false, OperatorNew))
1788      return true;
1789    }
1790  }
1791
1792  // We don't need an operator delete if we're running under
1793  // -fno-exceptions.
1794  if (!getLangOpts().Exceptions) {
1795    OperatorDelete = nullptr;
1796    return false;
1797  }
1798
1799  // C++ [expr.new]p19:
1800  //
1801  //   If the new-expression begins with a unary :: operator, the
1802  //   deallocation function's name is looked up in the global
1803  //   scope. Otherwise, if the allocated type is a class type T or an
1804  //   array thereof, the deallocation function's name is looked up in
1805  //   the scope of T. If this lookup fails to find the name, or if
1806  //   the allocated type is not a class type or array thereof, the
1807  //   deallocation function's name is looked up in the global scope.
1808  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1809  if (AllocElemType->isRecordType() && !UseGlobal) {
1810    CXXRecordDecl *RD
1811      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1812    LookupQualifiedName(FoundDelete, RD);
1813  }
1814  if (FoundDelete.isAmbiguous())
1815    return true; // FIXME: clean up expressions?
1816
1817  if (FoundDelete.empty()) {
1818    DeclareGlobalNewDelete();
1819    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1820  }
1821
1822  FoundDelete.suppressDiagnostics();
1823
1824  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1825
1826  // Whether we're looking for a placement operator delete is dictated
1827  // by whether we selected a placement operator new, not by whether
1828  // we had explicit placement arguments.  This matters for things like
1829  //   struct A { void *operator new(size_t, int = 0); ... };
1830  //   A *a = new A()
1831  bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1832
1833  if (isPlacementNew) {
1834    // C++ [expr.new]p20:
1835    //   A declaration of a placement deallocation function matches the
1836    //   declaration of a placement allocation function if it has the
1837    //   same number of parameters and, after parameter transformations
1838    //   (8.3.5), all parameter types except the first are
1839    //   identical. [...]
1840    //
1841    // To perform this comparison, we compute the function type that
1842    // the deallocation function should have, and use that type both
1843    // for template argument deduction and for comparison purposes.
1844    //
1845    // FIXME: this comparison should ignore CC and the like.
1846    QualType ExpectedFunctionType;
1847    {
1848      const FunctionProtoType *Proto
1849        = OperatorNew->getType()->getAs<FunctionProtoType>();
1850
1851      SmallVector<QualType, 4> ArgTypes;
1852      ArgTypes.push_back(Context.VoidPtrTy);
1853      for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1854        ArgTypes.push_back(Proto->getParamType(I));
1855
1856      FunctionProtoType::ExtProtoInfo EPI;
1857      EPI.Variadic = Proto->isVariadic();
1858
1859      ExpectedFunctionType
1860        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1861    }
1862
1863    for (LookupResult::iterator D = FoundDelete.begin(),
1864                             DEnd = FoundDelete.end();
1865         D != DEnd; ++D) {
1866      FunctionDecl *Fn = nullptr;
1867      if (FunctionTemplateDecl *FnTmpl
1868            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1869        // Perform template argument deduction to try to match the
1870        // expected function type.
1871        TemplateDeductionInfo Info(StartLoc);
1872        if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1873                                    Info))
1874          continue;
1875      } else
1876        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1877
1878      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1879        Matches.push_back(std::make_pair(D.getPair(), Fn));
1880    }
1881  } else {
1882    // C++ [expr.new]p20:
1883    //   [...] Any non-placement deallocation function matches a
1884    //   non-placement allocation function. [...]
1885    for (LookupResult::iterator D = FoundDelete.begin(),
1886                             DEnd = FoundDelete.end();
1887         D != DEnd; ++D) {
1888      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1889        if (isNonPlacementDeallocationFunction(*this, Fn))
1890          Matches.push_back(std::make_pair(D.getPair(), Fn));
1891    }
1892
1893    // C++1y [expr.new]p22:
1894    //   For a non-placement allocation function, the normal deallocation
1895    //   function lookup is used
1896    // C++1y [expr.delete]p?:
1897    //   If [...] deallocation function lookup finds both a usual deallocation
1898    //   function with only a pointer parameter and a usual deallocation
1899    //   function with both a pointer parameter and a size parameter, then the
1900    //   selected deallocation function shall be the one with two parameters.
1901    //   Otherwise, the selected deallocation function shall be the function
1902    //   with one parameter.
1903    if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1904      if (Matches[0].second->getNumParams() == 1)
1905        Matches.erase(Matches.begin());
1906      else
1907        Matches.erase(Matches.begin() + 1);
1908      assert(Matches[0].second->getNumParams() == 2 &&
1909             "found an unexpected usual deallocation function");
1910    }
1911  }
1912
1913  // C++ [expr.new]p20:
1914  //   [...] If the lookup finds a single matching deallocation
1915  //   function, that function will be called; otherwise, no
1916  //   deallocation function will be called.
1917  if (Matches.size() == 1) {
1918    OperatorDelete = Matches[0].second;
1919
1920    // C++0x [expr.new]p20:
1921    //   If the lookup finds the two-parameter form of a usual
1922    //   deallocation function (3.7.4.2) and that function, considered
1923    //   as a placement deallocation function, would have been
1924    //   selected as a match for the allocation function, the program
1925    //   is ill-formed.
1926    if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1927        isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1928      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1929        << SourceRange(PlaceArgs.front()->getLocStart(),
1930                       PlaceArgs.back()->getLocEnd());
1931      if (!OperatorDelete->isImplicit())
1932        Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1933          << DeleteName;
1934    } else {
1935      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1936                            Matches[0].first);
1937    }
1938  }
1939
1940  return false;
1941}
1942
1943/// \brief Find an fitting overload for the allocation function
1944/// in the specified scope.
1945///
1946/// \param StartLoc The location of the 'new' token.
1947/// \param Range The range of the placement arguments.
1948/// \param Name The name of the function ('operator new' or 'operator new[]').
1949/// \param Args The placement arguments specified.
1950/// \param Ctx The scope in which we should search; either a class scope or the
1951///        translation unit.
1952/// \param AllowMissing If \c true, report an error if we can't find any
1953///        allocation functions. Otherwise, succeed but don't fill in \p
1954///        Operator.
1955/// \param Operator Filled in with the found allocation function. Unchanged if
1956///        no allocation function was found.
1957/// \param Diagnose If \c true, issue errors if the allocation function is not
1958///        usable.
1959bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1960                                  DeclarationName Name, MultiExprArg Args,
1961                                  DeclContext *Ctx,
1962                                  bool AllowMissing, FunctionDecl *&Operator,
1963                                  bool Diagnose) {
1964  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1965  LookupQualifiedName(R, Ctx);
1966  if (R.empty()) {
1967    if (AllowMissing || !Diagnose)
1968      return false;
1969    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1970      << Name << Range;
1971  }
1972
1973  if (R.isAmbiguous())
1974    return true;
1975
1976  R.suppressDiagnostics();
1977
1978  OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1979  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1980       Alloc != AllocEnd; ++Alloc) {
1981    // Even member operator new/delete are implicitly treated as
1982    // static, so don't use AddMemberCandidate.
1983    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1984
1985    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1986      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1987                                   /*ExplicitTemplateArgs=*/nullptr,
1988                                   Args, Candidates,
1989                                   /*SuppressUserConversions=*/false);
1990      continue;
1991    }
1992
1993    FunctionDecl *Fn = cast<FunctionDecl>(D);
1994    AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1995                         /*SuppressUserConversions=*/false);
1996  }
1997
1998  // Do the resolution.
1999  OverloadCandidateSet::iterator Best;
2000  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
2001  case OR_Success: {
2002    // Got one!
2003    FunctionDecl *FnDecl = Best->Function;
2004    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
2005                              Best->FoundDecl, Diagnose) == AR_inaccessible)
2006      return true;
2007
2008    Operator = FnDecl;
2009    return false;
2010  }
2011
2012  case OR_No_Viable_Function:
2013    if (Diagnose) {
2014      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
2015        << Name << Range;
2016      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2017    }
2018    return true;
2019
2020  case OR_Ambiguous:
2021    if (Diagnose) {
2022      Diag(StartLoc, diag::err_ovl_ambiguous_call)
2023        << Name << Range;
2024      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
2025    }
2026    return true;
2027
2028  case OR_Deleted: {
2029    if (Diagnose) {
2030      Diag(StartLoc, diag::err_ovl_deleted_call)
2031        << Best->Function->isDeleted()
2032        << Name
2033        << getDeletedOrUnavailableSuffix(Best->Function)
2034        << Range;
2035      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2036    }
2037    return true;
2038  }
2039  }
2040  llvm_unreachable("Unreachable, bad result from BestViableFunction");
2041}
2042
2043
2044/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2045/// delete. These are:
2046/// @code
2047///   // C++03:
2048///   void* operator new(std::size_t) throw(std::bad_alloc);
2049///   void* operator new[](std::size_t) throw(std::bad_alloc);
2050///   void operator delete(void *) throw();
2051///   void operator delete[](void *) throw();
2052///   // C++11:
2053///   void* operator new(std::size_t);
2054///   void* operator new[](std::size_t);
2055///   void operator delete(void *) noexcept;
2056///   void operator delete[](void *) noexcept;
2057///   // C++1y:
2058///   void* operator new(std::size_t);
2059///   void* operator new[](std::size_t);
2060///   void operator delete(void *) noexcept;
2061///   void operator delete[](void *) noexcept;
2062///   void operator delete(void *, std::size_t) noexcept;
2063///   void operator delete[](void *, std::size_t) noexcept;
2064/// @endcode
2065/// Note that the placement and nothrow forms of new are *not* implicitly
2066/// declared. Their use requires including \<new\>.
2067void Sema::DeclareGlobalNewDelete() {
2068  if (GlobalNewDeleteDeclared)
2069    return;
2070
2071  // C++ [basic.std.dynamic]p2:
2072  //   [...] The following allocation and deallocation functions (18.4) are
2073  //   implicitly declared in global scope in each translation unit of a
2074  //   program
2075  //
2076  //     C++03:
2077  //     void* operator new(std::size_t) throw(std::bad_alloc);
2078  //     void* operator new[](std::size_t) throw(std::bad_alloc);
2079  //     void  operator delete(void*) throw();
2080  //     void  operator delete[](void*) throw();
2081  //     C++11:
2082  //     void* operator new(std::size_t);
2083  //     void* operator new[](std::size_t);
2084  //     void  operator delete(void*) noexcept;
2085  //     void  operator delete[](void*) noexcept;
2086  //     C++1y:
2087  //     void* operator new(std::size_t);
2088  //     void* operator new[](std::size_t);
2089  //     void  operator delete(void*) noexcept;
2090  //     void  operator delete[](void*) noexcept;
2091  //     void  operator delete(void*, std::size_t) noexcept;
2092  //     void  operator delete[](void*, std::size_t) noexcept;
2093  //
2094  //   These implicit declarations introduce only the function names operator
2095  //   new, operator new[], operator delete, operator delete[].
2096  //
2097  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2098  // "std" or "bad_alloc" as necessary to form the exception specification.
2099  // However, we do not make these implicit declarations visible to name
2100  // lookup.
2101  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2102    // The "std::bad_alloc" class has not yet been declared, so build it
2103    // implicitly.
2104    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2105                                        getOrCreateStdNamespace(),
2106                                        SourceLocation(), SourceLocation(),
2107                                      &PP.getIdentifierTable().get("bad_alloc"),
2108                                        nullptr);
2109    getStdBadAlloc()->setImplicit(true);
2110  }
2111
2112  GlobalNewDeleteDeclared = true;
2113
2114  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2115  QualType SizeT = Context.getSizeType();
2116  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2117
2118  DeclareGlobalAllocationFunction(
2119      Context.DeclarationNames.getCXXOperatorName(OO_New),
2120      VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2121  DeclareGlobalAllocationFunction(
2122      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2123      VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2124  DeclareGlobalAllocationFunction(
2125      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2126      Context.VoidTy, VoidPtr);
2127  DeclareGlobalAllocationFunction(
2128      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2129      Context.VoidTy, VoidPtr);
2130  if (getLangOpts().SizedDeallocation) {
2131    DeclareGlobalAllocationFunction(
2132        Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2133        Context.VoidTy, VoidPtr, Context.getSizeType());
2134    DeclareGlobalAllocationFunction(
2135        Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2136        Context.VoidTy, VoidPtr, Context.getSizeType());
2137  }
2138}
2139
2140/// DeclareGlobalAllocationFunction - Declares a single implicit global
2141/// allocation function if it doesn't already exist.
2142void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2143                                           QualType Return,
2144                                           QualType Param1, QualType Param2,
2145                                           bool AddRestrictAttr) {
2146  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2147  unsigned NumParams = Param2.isNull() ? 1 : 2;
2148
2149  // Check if this function is already declared.
2150  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2151  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2152       Alloc != AllocEnd; ++Alloc) {
2153    // Only look at non-template functions, as it is the predefined,
2154    // non-templated allocation function we are trying to declare here.
2155    if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2156      if (Func->getNumParams() == NumParams) {
2157        QualType InitialParam1Type =
2158            Context.getCanonicalType(Func->getParamDecl(0)
2159                                         ->getType().getUnqualifiedType());
2160        QualType InitialParam2Type =
2161            NumParams == 2
2162                ? Context.getCanonicalType(Func->getParamDecl(1)
2163                                               ->getType().getUnqualifiedType())
2164                : QualType();
2165        // FIXME: Do we need to check for default arguments here?
2166        if (InitialParam1Type == Param1 &&
2167            (NumParams == 1 || InitialParam2Type == Param2)) {
2168          if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
2169            Func->addAttr(RestrictAttr::CreateImplicit(
2170                Context, RestrictAttr::GNU_malloc));
2171          // Make the function visible to name lookup, even if we found it in
2172          // an unimported module. It either is an implicitly-declared global
2173          // allocation function, or is suppressing that function.
2174          Func->setHidden(false);
2175          return;
2176        }
2177      }
2178    }
2179  }
2180
2181  FunctionProtoType::ExtProtoInfo EPI;
2182
2183  QualType BadAllocType;
2184  bool HasBadAllocExceptionSpec
2185    = (Name.getCXXOverloadedOperator() == OO_New ||
2186       Name.getCXXOverloadedOperator() == OO_Array_New);
2187  if (HasBadAllocExceptionSpec) {
2188    if (!getLangOpts().CPlusPlus11) {
2189      BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2190      assert(StdBadAlloc && "Must have std::bad_alloc declared");
2191      EPI.ExceptionSpec.Type = EST_Dynamic;
2192      EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2193    }
2194  } else {
2195    EPI.ExceptionSpec =
2196        getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2197  }
2198
2199  QualType Params[] = { Param1, Param2 };
2200
2201  QualType FnType = Context.getFunctionType(
2202      Return, llvm::makeArrayRef(Params, NumParams), EPI);
2203  FunctionDecl *Alloc =
2204    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2205                         SourceLocation(), Name,
2206                         FnType, /*TInfo=*/nullptr, SC_None, false, true);
2207  Alloc->setImplicit();
2208
2209  // Implicit sized deallocation functions always have default visibility.
2210  Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
2211                                                VisibilityAttr::Default));
2212
2213  if (AddRestrictAttr)
2214    Alloc->addAttr(
2215        RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
2216
2217  ParmVarDecl *ParamDecls[2];
2218  for (unsigned I = 0; I != NumParams; ++I) {
2219    ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2220                                        SourceLocation(), nullptr,
2221                                        Params[I], /*TInfo=*/nullptr,
2222                                        SC_None, nullptr);
2223    ParamDecls[I]->setImplicit();
2224  }
2225  Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
2226
2227  Context.getTranslationUnitDecl()->addDecl(Alloc);
2228  IdResolver.tryAddTopLevelDecl(Alloc, Name);
2229}
2230
2231FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2232                                                  bool CanProvideSize,
2233                                                  DeclarationName Name) {
2234  DeclareGlobalNewDelete();
2235
2236  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2237  LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2238
2239  // C++ [expr.new]p20:
2240  //   [...] Any non-placement deallocation function matches a
2241  //   non-placement allocation function. [...]
2242  llvm::SmallVector<FunctionDecl*, 2> Matches;
2243  for (LookupResult::iterator D = FoundDelete.begin(),
2244                           DEnd = FoundDelete.end();
2245       D != DEnd; ++D) {
2246    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2247      if (isNonPlacementDeallocationFunction(*this, Fn))
2248        Matches.push_back(Fn);
2249  }
2250
2251  // C++1y [expr.delete]p?:
2252  //   If the type is complete and deallocation function lookup finds both a
2253  //   usual deallocation function with only a pointer parameter and a usual
2254  //   deallocation function with both a pointer parameter and a size
2255  //   parameter, then the selected deallocation function shall be the one
2256  //   with two parameters.  Otherwise, the selected deallocation function
2257  //   shall be the function with one parameter.
2258  if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2259    unsigned NumArgs = CanProvideSize ? 2 : 1;
2260    if (Matches[0]->getNumParams() != NumArgs)
2261      Matches.erase(Matches.begin());
2262    else
2263      Matches.erase(Matches.begin() + 1);
2264    assert(Matches[0]->getNumParams() == NumArgs &&
2265           "found an unexpected usual deallocation function");
2266  }
2267
2268  if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
2269    EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2270
2271  assert(Matches.size() == 1 &&
2272         "unexpectedly have multiple usual deallocation functions");
2273  return Matches.front();
2274}
2275
2276bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2277                                    DeclarationName Name,
2278                                    FunctionDecl* &Operator, bool Diagnose) {
2279  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2280  // Try to find operator delete/operator delete[] in class scope.
2281  LookupQualifiedName(Found, RD);
2282
2283  if (Found.isAmbiguous())
2284    return true;
2285
2286  Found.suppressDiagnostics();
2287
2288  SmallVector<DeclAccessPair,4> Matches;
2289  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2290       F != FEnd; ++F) {
2291    NamedDecl *ND = (*F)->getUnderlyingDecl();
2292
2293    // Ignore template operator delete members from the check for a usual
2294    // deallocation function.
2295    if (isa<FunctionTemplateDecl>(ND))
2296      continue;
2297
2298    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2299      Matches.push_back(F.getPair());
2300  }
2301
2302  if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
2303    EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2304
2305  // There's exactly one suitable operator;  pick it.
2306  if (Matches.size() == 1) {
2307    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2308
2309    if (Operator->isDeleted()) {
2310      if (Diagnose) {
2311        Diag(StartLoc, diag::err_deleted_function_use);
2312        NoteDeletedFunction(Operator);
2313      }
2314      return true;
2315    }
2316
2317    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2318                              Matches[0], Diagnose) == AR_inaccessible)
2319      return true;
2320
2321    return false;
2322
2323  // We found multiple suitable operators;  complain about the ambiguity.
2324  } else if (!Matches.empty()) {
2325    if (Diagnose) {
2326      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2327        << Name << RD;
2328
2329      for (SmallVectorImpl<DeclAccessPair>::iterator
2330             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2331        Diag((*F)->getUnderlyingDecl()->getLocation(),
2332             diag::note_member_declared_here) << Name;
2333    }
2334    return true;
2335  }
2336
2337  // We did find operator delete/operator delete[] declarations, but
2338  // none of them were suitable.
2339  if (!Found.empty()) {
2340    if (Diagnose) {
2341      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2342        << Name << RD;
2343
2344      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2345           F != FEnd; ++F)
2346        Diag((*F)->getUnderlyingDecl()->getLocation(),
2347             diag::note_member_declared_here) << Name;
2348    }
2349    return true;
2350  }
2351
2352  Operator = nullptr;
2353  return false;
2354}
2355
2356namespace {
2357/// \brief Checks whether delete-expression, and new-expression used for
2358///  initializing deletee have the same array form.
2359class MismatchingNewDeleteDetector {
2360public:
2361  enum MismatchResult {
2362    /// Indicates that there is no mismatch or a mismatch cannot be proven.
2363    NoMismatch,
2364    /// Indicates that variable is initialized with mismatching form of \a new.
2365    VarInitMismatches,
2366    /// Indicates that member is initialized with mismatching form of \a new.
2367    MemberInitMismatches,
2368    /// Indicates that 1 or more constructors' definitions could not been
2369    /// analyzed, and they will be checked again at the end of translation unit.
2370    AnalyzeLater
2371  };
2372
2373  /// \param EndOfTU True, if this is the final analysis at the end of
2374  /// translation unit. False, if this is the initial analysis at the point
2375  /// delete-expression was encountered.
2376  explicit MismatchingNewDeleteDetector(bool EndOfTU)
2377      : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
2378        HasUndefinedConstructors(false) {}
2379
2380  /// \brief Checks whether pointee of a delete-expression is initialized with
2381  /// matching form of new-expression.
2382  ///
2383  /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2384  /// point where delete-expression is encountered, then a warning will be
2385  /// issued immediately. If return value is \c AnalyzeLater at the point where
2386  /// delete-expression is seen, then member will be analyzed at the end of
2387  /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2388  /// couldn't be analyzed. If at least one constructor initializes the member
2389  /// with matching type of new, the return value is \c NoMismatch.
2390  MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2391  /// \brief Analyzes a class member.
2392  /// \param Field Class member to analyze.
2393  /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2394  /// for deleting the \p Field.
2395  MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2396  /// List of mismatching new-expressions used for initialization of the pointee
2397  llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2398  /// Indicates whether delete-expression was in array form.
2399  bool IsArrayForm;
2400  FieldDecl *Field;
2401
2402private:
2403  const bool EndOfTU;
2404  /// \brief Indicates that there is at least one constructor without body.
2405  bool HasUndefinedConstructors;
2406  /// \brief Returns \c CXXNewExpr from given initialization expression.
2407  /// \param E Expression used for initializing pointee in delete-expression.
2408  /// E can be a single-element \c InitListExpr consisting of new-expression.
2409  const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2410  /// \brief Returns whether member is initialized with mismatching form of
2411  /// \c new either by the member initializer or in-class initialization.
2412  ///
2413  /// If bodies of all constructors are not visible at the end of translation
2414  /// unit or at least one constructor initializes member with the matching
2415  /// form of \c new, mismatch cannot be proven, and this function will return
2416  /// \c NoMismatch.
2417  MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2418  /// \brief Returns whether variable is initialized with mismatching form of
2419  /// \c new.
2420  ///
2421  /// If variable is initialized with matching form of \c new or variable is not
2422  /// initialized with a \c new expression, this function will return true.
2423  /// If variable is initialized with mismatching form of \c new, returns false.
2424  /// \param D Variable to analyze.
2425  bool hasMatchingVarInit(const DeclRefExpr *D);
2426  /// \brief Checks whether the constructor initializes pointee with mismatching
2427  /// form of \c new.
2428  ///
2429  /// Returns true, if member is initialized with matching form of \c new in
2430  /// member initializer list. Returns false, if member is initialized with the
2431  /// matching form of \c new in this constructor's initializer or given
2432  /// constructor isn't defined at the point where delete-expression is seen, or
2433  /// member isn't initialized by the constructor.
2434  bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2435  /// \brief Checks whether member is initialized with matching form of
2436  /// \c new in member initializer list.
2437  bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2438  /// Checks whether member is initialized with mismatching form of \c new by
2439  /// in-class initializer.
2440  MismatchResult analyzeInClassInitializer();
2441};
2442}
2443
2444MismatchingNewDeleteDetector::MismatchResult
2445MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2446  NewExprs.clear();
2447  assert(DE && "Expected delete-expression");
2448  IsArrayForm = DE->isArrayForm();
2449  const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2450  if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2451    return analyzeMemberExpr(ME);
2452  } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2453    if (!hasMatchingVarInit(D))
2454      return VarInitMismatches;
2455  }
2456  return NoMismatch;
2457}
2458
2459const CXXNewExpr *
2460MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2461  assert(E != nullptr && "Expected a valid initializer expression");
2462  E = E->IgnoreParenImpCasts();
2463  if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2464    if (ILE->getNumInits() == 1)
2465      E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2466  }
2467
2468  return dyn_cast_or_null<const CXXNewExpr>(E);
2469}
2470
2471bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2472    const CXXCtorInitializer *CI) {
2473  const CXXNewExpr *NE = nullptr;
2474  if (Field == CI->getMember() &&
2475      (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2476    if (NE->isArray() == IsArrayForm)
2477      return true;
2478    else
2479      NewExprs.push_back(NE);
2480  }
2481  return false;
2482}
2483
2484bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
2485    const CXXConstructorDecl *CD) {
2486  if (CD->isImplicit())
2487    return false;
2488  const FunctionDecl *Definition = CD;
2489  if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
2490    HasUndefinedConstructors = true;
2491    return EndOfTU;
2492  }
2493  for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
2494    if (hasMatchingNewInCtorInit(CI))
2495      return true;
2496  }
2497  return false;
2498}
2499
2500MismatchingNewDeleteDetector::MismatchResult
2501MismatchingNewDeleteDetector::analyzeInClassInitializer() {
2502  assert(Field != nullptr && "This should be called only for members");
2503  const Expr *InitExpr = Field->getInClassInitializer();
2504  if (!InitExpr)
2505    return EndOfTU ? NoMismatch : AnalyzeLater;
2506  if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
2507    if (NE->isArray() != IsArrayForm) {
2508      NewExprs.push_back(NE);
2509      return MemberInitMismatches;
2510    }
2511  }
2512  return NoMismatch;
2513}
2514
2515MismatchingNewDeleteDetector::MismatchResult
2516MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
2517                                           bool DeleteWasArrayForm) {
2518  assert(Field != nullptr && "Analysis requires a valid class member.");
2519  this->Field = Field;
2520  IsArrayForm = DeleteWasArrayForm;
2521  const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
2522  for (const auto *CD : RD->ctors()) {
2523    if (hasMatchingNewInCtor(CD))
2524      return NoMismatch;
2525  }
2526  if (HasUndefinedConstructors)
2527    return EndOfTU ? NoMismatch : AnalyzeLater;
2528  if (!NewExprs.empty())
2529    return MemberInitMismatches;
2530  return Field->hasInClassInitializer() ? analyzeInClassInitializer()
2531                                        : NoMismatch;
2532}
2533
2534MismatchingNewDeleteDetector::MismatchResult
2535MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
2536  assert(ME != nullptr && "Expected a member expression");
2537  if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2538    return analyzeField(F, IsArrayForm);
2539  return NoMismatch;
2540}
2541
2542bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
2543  const CXXNewExpr *NE = nullptr;
2544  if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
2545    if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
2546        NE->isArray() != IsArrayForm) {
2547      NewExprs.push_back(NE);
2548    }
2549  }
2550  return NewExprs.empty();
2551}
2552
2553static void
2554DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
2555                            const MismatchingNewDeleteDetector &Detector) {
2556  SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
2557  FixItHint H;
2558  if (!Detector.IsArrayForm)
2559    H = FixItHint::CreateInsertion(EndOfDelete, "[]");
2560  else {
2561    SourceLocation RSquare = Lexer::findLocationAfterToken(
2562        DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
2563        SemaRef.getLangOpts(), true);
2564    if (RSquare.isValid())
2565      H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
2566  }
2567  SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
2568      << Detector.IsArrayForm << H;
2569
2570  for (const auto *NE : Detector.NewExprs)
2571    SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
2572        << Detector.IsArrayForm;
2573}
2574
2575void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
2576  if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
2577    return;
2578  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
2579  switch (Detector.analyzeDeleteExpr(DE)) {
2580  case MismatchingNewDeleteDetector::VarInitMismatches:
2581  case MismatchingNewDeleteDetector::MemberInitMismatches: {
2582    DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
2583    break;
2584  }
2585  case MismatchingNewDeleteDetector::AnalyzeLater: {
2586    DeleteExprs[Detector.Field].push_back(
2587        std::make_pair(DE->getLocStart(), DE->isArrayForm()));
2588    break;
2589  }
2590  case MismatchingNewDeleteDetector::NoMismatch:
2591    break;
2592  }
2593}
2594
2595void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
2596                                     bool DeleteWasArrayForm) {
2597  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
2598  switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
2599  case MismatchingNewDeleteDetector::VarInitMismatches:
2600    llvm_unreachable("This analysis should have been done for class members.");
2601  case MismatchingNewDeleteDetector::AnalyzeLater:
2602    llvm_unreachable("Analysis cannot be postponed any point beyond end of "
2603                     "translation unit.");
2604  case MismatchingNewDeleteDetector::MemberInitMismatches:
2605    DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
2606    break;
2607  case MismatchingNewDeleteDetector::NoMismatch:
2608    break;
2609  }
2610}
2611
2612/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2613/// @code ::delete ptr; @endcode
2614/// or
2615/// @code delete [] ptr; @endcode
2616ExprResult
2617Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2618                     bool ArrayForm, Expr *ExE) {
2619  // C++ [expr.delete]p1:
2620  //   The operand shall have a pointer type, or a class type having a single
2621  //   non-explicit conversion function to a pointer type. The result has type
2622  //   void.
2623  //
2624  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2625
2626  ExprResult Ex = ExE;
2627  FunctionDecl *OperatorDelete = nullptr;
2628  bool ArrayFormAsWritten = ArrayForm;
2629  bool UsualArrayDeleteWantsSize = false;
2630
2631  if (!Ex.get()->isTypeDependent()) {
2632    // Perform lvalue-to-rvalue cast, if needed.
2633    Ex = DefaultLvalueConversion(Ex.get());
2634    if (Ex.isInvalid())
2635      return ExprError();
2636
2637    QualType Type = Ex.get()->getType();
2638
2639    class DeleteConverter : public ContextualImplicitConverter {
2640    public:
2641      DeleteConverter() : ContextualImplicitConverter(false, true) {}
2642
2643      bool match(QualType ConvType) override {
2644        // FIXME: If we have an operator T* and an operator void*, we must pick
2645        // the operator T*.
2646        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2647          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2648            return true;
2649        return false;
2650      }
2651
2652      SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2653                                            QualType T) override {
2654        return S.Diag(Loc, diag::err_delete_operand) << T;
2655      }
2656
2657      SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2658                                               QualType T) override {
2659        return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2660      }
2661
2662      SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2663                                                 QualType T,
2664                                                 QualType ConvTy) override {
2665        return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2666      }
2667
2668      SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2669                                             QualType ConvTy) override {
2670        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2671          << ConvTy;
2672      }
2673
2674      SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2675                                              QualType T) override {
2676        return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2677      }
2678
2679      SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2680                                          QualType ConvTy) override {
2681        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2682          << ConvTy;
2683      }
2684
2685      SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2686                                               QualType T,
2687                                               QualType ConvTy) override {
2688        llvm_unreachable("conversion functions are permitted");
2689      }
2690    } Converter;
2691
2692    Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2693    if (Ex.isInvalid())
2694      return ExprError();
2695    Type = Ex.get()->getType();
2696    if (!Converter.match(Type))
2697      // FIXME: PerformContextualImplicitConversion should return ExprError
2698      //        itself in this case.
2699      return ExprError();
2700
2701    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2702    QualType PointeeElem = Context.getBaseElementType(Pointee);
2703
2704    if (unsigned AddressSpace = Pointee.getAddressSpace())
2705      return Diag(Ex.get()->getLocStart(),
2706                  diag::err_address_space_qualified_delete)
2707               << Pointee.getUnqualifiedType() << AddressSpace;
2708
2709    CXXRecordDecl *PointeeRD = nullptr;
2710    if (Pointee->isVoidType() && !isSFINAEContext()) {
2711      // The C++ standard bans deleting a pointer to a non-object type, which
2712      // effectively bans deletion of "void*". However, most compilers support
2713      // this, so we treat it as a warning unless we're in a SFINAE context.
2714      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2715        << Type << Ex.get()->getSourceRange();
2716    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2717      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2718        << Type << Ex.get()->getSourceRange());
2719    } else if (!Pointee->isDependentType()) {
2720      // FIXME: This can result in errors if the definition was imported from a
2721      // module but is hidden.
2722      if (!RequireCompleteType(StartLoc, Pointee,
2723                               diag::warn_delete_incomplete, Ex.get())) {
2724        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2725          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2726      }
2727    }
2728
2729    if (Pointee->isArrayType() && !ArrayForm) {
2730      Diag(StartLoc, diag::warn_delete_array_type)
2731          << Type << Ex.get()->getSourceRange()
2732          << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
2733      ArrayForm = true;
2734    }
2735
2736    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2737                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2738
2739    if (PointeeRD) {
2740      if (!UseGlobal &&
2741          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2742                                   OperatorDelete))
2743        return ExprError();
2744
2745      // If we're allocating an array of records, check whether the
2746      // usual operator delete[] has a size_t parameter.
2747      if (ArrayForm) {
2748        // If the user specifically asked to use the global allocator,
2749        // we'll need to do the lookup into the class.
2750        if (UseGlobal)
2751          UsualArrayDeleteWantsSize =
2752            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2753
2754        // Otherwise, the usual operator delete[] should be the
2755        // function we just found.
2756        else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2757          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2758      }
2759
2760      if (!PointeeRD->hasIrrelevantDestructor())
2761        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2762          MarkFunctionReferenced(StartLoc,
2763                                    const_cast<CXXDestructorDecl*>(Dtor));
2764          if (DiagnoseUseOfDecl(Dtor, StartLoc))
2765            return ExprError();
2766        }
2767
2768      // C++ [expr.delete]p3:
2769      //   In the first alternative (delete object), if the static type of the
2770      //   object to be deleted is different from its dynamic type, the static
2771      //   type shall be a base class of the dynamic type of the object to be
2772      //   deleted and the static type shall have a virtual destructor or the
2773      //   behavior is undefined.
2774      //
2775      // Note: a final class cannot be derived from, no issue there
2776      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2777        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2778        if (dtor && !dtor->isVirtual()) {
2779          if (PointeeRD->isAbstract()) {
2780            // If the class is abstract, we warn by default, because we're
2781            // sure the code has undefined behavior.
2782            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2783                << PointeeElem;
2784          } else if (!ArrayForm) {
2785            // Otherwise, if this is not an array delete, it's a bit suspect,
2786            // but not necessarily wrong.
2787            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2788          }
2789        }
2790      }
2791
2792    }
2793
2794    if (!OperatorDelete)
2795      // Look for a global declaration.
2796      OperatorDelete = FindUsualDeallocationFunction(
2797          StartLoc, isCompleteType(StartLoc, Pointee) &&
2798                    (!ArrayForm || UsualArrayDeleteWantsSize ||
2799                     Pointee.isDestructedType()),
2800          DeleteName);
2801
2802    MarkFunctionReferenced(StartLoc, OperatorDelete);
2803
2804    // Check access and ambiguity of operator delete and destructor.
2805    if (PointeeRD) {
2806      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2807          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2808                      PDiag(diag::err_access_dtor) << PointeeElem);
2809      }
2810    }
2811  }
2812
2813  CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
2814      Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2815      UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2816  AnalyzeDeleteExprMismatch(Result);
2817  return Result;
2818}
2819
2820/// \brief Check the use of the given variable as a C++ condition in an if,
2821/// while, do-while, or switch statement.
2822ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2823                                        SourceLocation StmtLoc,
2824                                        bool ConvertToBoolean) {
2825  if (ConditionVar->isInvalidDecl())
2826    return ExprError();
2827
2828  QualType T = ConditionVar->getType();
2829
2830  // C++ [stmt.select]p2:
2831  //   The declarator shall not specify a function or an array.
2832  if (T->isFunctionType())
2833    return ExprError(Diag(ConditionVar->getLocation(),
2834                          diag::err_invalid_use_of_function_type)
2835                       << ConditionVar->getSourceRange());
2836  else if (T->isArrayType())
2837    return ExprError(Diag(ConditionVar->getLocation(),
2838                          diag::err_invalid_use_of_array_type)
2839                     << ConditionVar->getSourceRange());
2840
2841  ExprResult Condition = DeclRefExpr::Create(
2842      Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2843      /*enclosing*/ false, ConditionVar->getLocation(),
2844      ConditionVar->getType().getNonReferenceType(), VK_LValue);
2845
2846  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2847
2848  if (ConvertToBoolean) {
2849    Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2850    if (Condition.isInvalid())
2851      return ExprError();
2852  }
2853
2854  return Condition;
2855}
2856
2857/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2858ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2859  // C++ 6.4p4:
2860  // The value of a condition that is an initialized declaration in a statement
2861  // other than a switch statement is the value of the declared variable
2862  // implicitly converted to type bool. If that conversion is ill-formed, the
2863  // program is ill-formed.
2864  // The value of a condition that is an expression is the value of the
2865  // expression, implicitly converted to bool.
2866  //
2867  return PerformContextuallyConvertToBool(CondExpr);
2868}
2869
2870/// Helper function to determine whether this is the (deprecated) C++
2871/// conversion from a string literal to a pointer to non-const char or
2872/// non-const wchar_t (for narrow and wide string literals,
2873/// respectively).
2874bool
2875Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2876  // Look inside the implicit cast, if it exists.
2877  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2878    From = Cast->getSubExpr();
2879
2880  // A string literal (2.13.4) that is not a wide string literal can
2881  // be converted to an rvalue of type "pointer to char"; a wide
2882  // string literal can be converted to an rvalue of type "pointer
2883  // to wchar_t" (C++ 4.2p2).
2884  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2885    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2886      if (const BuiltinType *ToPointeeType
2887          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2888        // This conversion is considered only when there is an
2889        // explicit appropriate pointer target type (C++ 4.2p2).
2890        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2891          switch (StrLit->getKind()) {
2892            case StringLiteral::UTF8:
2893            case StringLiteral::UTF16:
2894            case StringLiteral::UTF32:
2895              // We don't allow UTF literals to be implicitly converted
2896              break;
2897            case StringLiteral::Ascii:
2898              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2899                      ToPointeeType->getKind() == BuiltinType::Char_S);
2900            case StringLiteral::Wide:
2901              return ToPointeeType->isWideCharType();
2902          }
2903        }
2904      }
2905
2906  return false;
2907}
2908
2909static ExprResult BuildCXXCastArgument(Sema &S,
2910                                       SourceLocation CastLoc,
2911                                       QualType Ty,
2912                                       CastKind Kind,
2913                                       CXXMethodDecl *Method,
2914                                       DeclAccessPair FoundDecl,
2915                                       bool HadMultipleCandidates,
2916                                       Expr *From) {
2917  switch (Kind) {
2918  default: llvm_unreachable("Unhandled cast kind!");
2919  case CK_ConstructorConversion: {
2920    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2921    SmallVector<Expr*, 8> ConstructorArgs;
2922
2923    if (S.RequireNonAbstractType(CastLoc, Ty,
2924                                 diag::err_allocation_of_abstract_type))
2925      return ExprError();
2926
2927    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2928      return ExprError();
2929
2930    S.CheckConstructorAccess(CastLoc, Constructor,
2931                             InitializedEntity::InitializeTemporary(Ty),
2932                             Constructor->getAccess());
2933    if (S.DiagnoseUseOfDecl(Method, CastLoc))
2934      return ExprError();
2935
2936    ExprResult Result = S.BuildCXXConstructExpr(
2937        CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2938        ConstructorArgs, HadMultipleCandidates,
2939        /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2940        CXXConstructExpr::CK_Complete, SourceRange());
2941    if (Result.isInvalid())
2942      return ExprError();
2943
2944    return S.MaybeBindToTemporary(Result.getAs<Expr>());
2945  }
2946
2947  case CK_UserDefinedConversion: {
2948    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2949
2950    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2951    if (S.DiagnoseUseOfDecl(Method, CastLoc))
2952      return ExprError();
2953
2954    // Create an implicit call expr that calls it.
2955    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2956    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2957                                                 HadMultipleCandidates);
2958    if (Result.isInvalid())
2959      return ExprError();
2960    // Record usage of conversion in an implicit cast.
2961    Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2962                                      CK_UserDefinedConversion, Result.get(),
2963                                      nullptr, Result.get()->getValueKind());
2964
2965    return S.MaybeBindToTemporary(Result.get());
2966  }
2967  }
2968}
2969
2970/// PerformImplicitConversion - Perform an implicit conversion of the
2971/// expression From to the type ToType using the pre-computed implicit
2972/// conversion sequence ICS. Returns the converted
2973/// expression. Action is the kind of conversion we're performing,
2974/// used in the error message.
2975ExprResult
2976Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2977                                const ImplicitConversionSequence &ICS,
2978                                AssignmentAction Action,
2979                                CheckedConversionKind CCK) {
2980  switch (ICS.getKind()) {
2981  case ImplicitConversionSequence::StandardConversion: {
2982    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2983                                               Action, CCK);
2984    if (Res.isInvalid())
2985      return ExprError();
2986    From = Res.get();
2987    break;
2988  }
2989
2990  case ImplicitConversionSequence::UserDefinedConversion: {
2991
2992      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2993      CastKind CastKind;
2994      QualType BeforeToType;
2995      assert(FD && "no conversion function for user-defined conversion seq");
2996      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2997        CastKind = CK_UserDefinedConversion;
2998
2999        // If the user-defined conversion is specified by a conversion function,
3000        // the initial standard conversion sequence converts the source type to
3001        // the implicit object parameter of the conversion function.
3002        BeforeToType = Context.getTagDeclType(Conv->getParent());
3003      } else {
3004        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3005        CastKind = CK_ConstructorConversion;
3006        // Do no conversion if dealing with ... for the first conversion.
3007        if (!ICS.UserDefined.EllipsisConversion) {
3008          // If the user-defined conversion is specified by a constructor, the
3009          // initial standard conversion sequence converts the source type to
3010          // the type required by the argument of the constructor
3011          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3012        }
3013      }
3014      // Watch out for ellipsis conversion.
3015      if (!ICS.UserDefined.EllipsisConversion) {
3016        ExprResult Res =
3017          PerformImplicitConversion(From, BeforeToType,
3018                                    ICS.UserDefined.Before, AA_Converting,
3019                                    CCK);
3020        if (Res.isInvalid())
3021          return ExprError();
3022        From = Res.get();
3023      }
3024
3025      ExprResult CastArg
3026        = BuildCXXCastArgument(*this,
3027                               From->getLocStart(),
3028                               ToType.getNonReferenceType(),
3029                               CastKind, cast<CXXMethodDecl>(FD),
3030                               ICS.UserDefined.FoundConversionFunction,
3031                               ICS.UserDefined.HadMultipleCandidates,
3032                               From);
3033
3034      if (CastArg.isInvalid())
3035        return ExprError();
3036
3037      From = CastArg.get();
3038
3039      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3040                                       AA_Converting, CCK);
3041  }
3042
3043  case ImplicitConversionSequence::AmbiguousConversion:
3044    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3045                          PDiag(diag::err_typecheck_ambiguous_condition)
3046                            << From->getSourceRange());
3047     return ExprError();
3048
3049  case ImplicitConversionSequence::EllipsisConversion:
3050    llvm_unreachable("Cannot perform an ellipsis conversion");
3051
3052  case ImplicitConversionSequence::BadConversion:
3053    return ExprError();
3054  }
3055
3056  // Everything went well.
3057  return From;
3058}
3059
3060/// PerformImplicitConversion - Perform an implicit conversion of the
3061/// expression From to the type ToType by following the standard
3062/// conversion sequence SCS. Returns the converted
3063/// expression. Flavor is the context in which we're performing this
3064/// conversion, for use in error messages.
3065ExprResult
3066Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3067                                const StandardConversionSequence& SCS,
3068                                AssignmentAction Action,
3069                                CheckedConversionKind CCK) {
3070  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3071
3072  // Overall FIXME: we are recomputing too many types here and doing far too
3073  // much extra work. What this means is that we need to keep track of more
3074  // information that is computed when we try the implicit conversion initially,
3075  // so that we don't need to recompute anything here.
3076  QualType FromType = From->getType();
3077
3078  if (SCS.CopyConstructor) {
3079    // FIXME: When can ToType be a reference type?
3080    assert(!ToType->isReferenceType());
3081    if (SCS.Second == ICK_Derived_To_Base) {
3082      SmallVector<Expr*, 8> ConstructorArgs;
3083      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3084                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
3085                                  ConstructorArgs))
3086        return ExprError();
3087      return BuildCXXConstructExpr(
3088          /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
3089          ConstructorArgs, /*HadMultipleCandidates*/ false,
3090          /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3091          CXXConstructExpr::CK_Complete, SourceRange());
3092    }
3093    return BuildCXXConstructExpr(
3094        /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
3095        From, /*HadMultipleCandidates*/ false,
3096        /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3097        CXXConstructExpr::CK_Complete, SourceRange());
3098  }
3099
3100  // Resolve overloaded function references.
3101  if (Context.hasSameType(FromType, Context.OverloadTy)) {
3102    DeclAccessPair Found;
3103    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3104                                                          true, Found);
3105    if (!Fn)
3106      return ExprError();
3107
3108    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3109      return ExprError();
3110
3111    From = FixOverloadedFunctionReference(From, Found, Fn);
3112    FromType = From->getType();
3113  }
3114
3115  // If we're converting to an atomic type, first convert to the corresponding
3116  // non-atomic type.
3117  QualType ToAtomicType;
3118  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3119    ToAtomicType = ToType;
3120    ToType = ToAtomic->getValueType();
3121  }
3122
3123  QualType InitialFromType = FromType;
3124  // Perform the first implicit conversion.
3125  switch (SCS.First) {
3126  case ICK_Identity:
3127    if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3128      FromType = FromAtomic->getValueType().getUnqualifiedType();
3129      From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3130                                      From, /*BasePath=*/nullptr, VK_RValue);
3131    }
3132    break;
3133
3134  case ICK_Lvalue_To_Rvalue: {
3135    assert(From->getObjectKind() != OK_ObjCProperty);
3136    ExprResult FromRes = DefaultLvalueConversion(From);
3137    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3138    From = FromRes.get();
3139    FromType = From->getType();
3140    break;
3141  }
3142
3143  case ICK_Array_To_Pointer:
3144    FromType = Context.getArrayDecayedType(FromType);
3145    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3146                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3147    break;
3148
3149  case ICK_Function_To_Pointer:
3150    FromType = Context.getPointerType(FromType);
3151    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3152                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3153    break;
3154
3155  default:
3156    llvm_unreachable("Improper first standard conversion");
3157  }
3158
3159  // Perform the second implicit conversion
3160  switch (SCS.Second) {
3161  case ICK_Identity:
3162    // C++ [except.spec]p5:
3163    //   [For] assignment to and initialization of pointers to functions,
3164    //   pointers to member functions, and references to functions: the
3165    //   target entity shall allow at least the exceptions allowed by the
3166    //   source value in the assignment or initialization.
3167    switch (Action) {
3168    case AA_Assigning:
3169    case AA_Initializing:
3170      // Note, function argument passing and returning are initialization.
3171    case AA_Passing:
3172    case AA_Returning:
3173    case AA_Sending:
3174    case AA_Passing_CFAudited:
3175      if (CheckExceptionSpecCompatibility(From, ToType))
3176        return ExprError();
3177      break;
3178
3179    case AA_Casting:
3180    case AA_Converting:
3181      // Casts and implicit conversions are not initialization, so are not
3182      // checked for exception specification mismatches.
3183      break;
3184    }
3185    // Nothing else to do.
3186    break;
3187
3188  case ICK_NoReturn_Adjustment:
3189    // If both sides are functions (or pointers/references to them), there could
3190    // be incompatible exception declarations.
3191    if (CheckExceptionSpecCompatibility(From, ToType))
3192      return ExprError();
3193
3194    From = ImpCastExprToType(From, ToType, CK_NoOp,
3195                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3196    break;
3197
3198  case ICK_Integral_Promotion:
3199  case ICK_Integral_Conversion:
3200    if (ToType->isBooleanType()) {
3201      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
3202             SCS.Second == ICK_Integral_Promotion &&
3203             "only enums with fixed underlying type can promote to bool");
3204      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3205                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3206    } else {
3207      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3208                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3209    }
3210    break;
3211
3212  case ICK_Floating_Promotion:
3213  case ICK_Floating_Conversion:
3214    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
3215                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3216    break;
3217
3218  case ICK_Complex_Promotion:
3219  case ICK_Complex_Conversion: {
3220    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3221    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3222    CastKind CK;
3223    if (FromEl->isRealFloatingType()) {
3224      if (ToEl->isRealFloatingType())
3225        CK = CK_FloatingComplexCast;
3226      else
3227        CK = CK_FloatingComplexToIntegralComplex;
3228    } else if (ToEl->isRealFloatingType()) {
3229      CK = CK_IntegralComplexToFloatingComplex;
3230    } else {
3231      CK = CK_IntegralComplexCast;
3232    }
3233    From = ImpCastExprToType(From, ToType, CK,
3234                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3235    break;
3236  }
3237
3238  case ICK_Floating_Integral:
3239    if (ToType->isRealFloatingType())
3240      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
3241                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3242    else
3243      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
3244                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3245    break;
3246
3247  case ICK_Compatible_Conversion:
3248      From = ImpCastExprToType(From, ToType, CK_NoOp,
3249                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3250    break;
3251
3252  case ICK_Writeback_Conversion:
3253  case ICK_Pointer_Conversion: {
3254    if (SCS.IncompatibleObjC && Action != AA_Casting) {
3255      // Diagnose incompatible Objective-C conversions
3256      if (Action == AA_Initializing || Action == AA_Assigning)
3257        Diag(From->getLocStart(),
3258             diag::ext_typecheck_convert_incompatible_pointer)
3259          << ToType << From->getType() << Action
3260          << From->getSourceRange() << 0;
3261      else
3262        Diag(From->getLocStart(),
3263             diag::ext_typecheck_convert_incompatible_pointer)
3264          << From->getType() << ToType << Action
3265          << From->getSourceRange() << 0;
3266
3267      if (From->getType()->isObjCObjectPointerType() &&
3268          ToType->isObjCObjectPointerType())
3269        EmitRelatedResultTypeNote(From);
3270    }
3271    else if (getLangOpts().ObjCAutoRefCount &&
3272             !CheckObjCARCUnavailableWeakConversion(ToType,
3273                                                    From->getType())) {
3274      if (Action == AA_Initializing)
3275        Diag(From->getLocStart(),
3276             diag::err_arc_weak_unavailable_assign);
3277      else
3278        Diag(From->getLocStart(),
3279             diag::err_arc_convesion_of_weak_unavailable)
3280          << (Action == AA_Casting) << From->getType() << ToType
3281          << From->getSourceRange();
3282    }
3283
3284    CastKind Kind = CK_Invalid;
3285    CXXCastPath BasePath;
3286    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3287      return ExprError();
3288
3289    // Make sure we extend blocks if necessary.
3290    // FIXME: doing this here is really ugly.
3291    if (Kind == CK_BlockPointerToObjCPointerCast) {
3292      ExprResult E = From;
3293      (void) PrepareCastToObjCObjectPointer(E);
3294      From = E.get();
3295    }
3296    if (getLangOpts().ObjCAutoRefCount)
3297      CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
3298    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3299             .get();
3300    break;
3301  }
3302
3303  case ICK_Pointer_Member: {
3304    CastKind Kind = CK_Invalid;
3305    CXXCastPath BasePath;
3306    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3307      return ExprError();
3308    if (CheckExceptionSpecCompatibility(From, ToType))
3309      return ExprError();
3310
3311    // We may not have been able to figure out what this member pointer resolved
3312    // to up until this exact point.  Attempt to lock-in it's inheritance model.
3313    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3314      (void)isCompleteType(From->getExprLoc(), From->getType());
3315      (void)isCompleteType(From->getExprLoc(), ToType);
3316    }
3317
3318    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3319             .get();
3320    break;
3321  }
3322
3323  case ICK_Boolean_Conversion:
3324    // Perform half-to-boolean conversion via float.
3325    if (From->getType()->isHalfType()) {
3326      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3327      FromType = Context.FloatTy;
3328    }
3329
3330    From = ImpCastExprToType(From, Context.BoolTy,
3331                             ScalarTypeToBooleanCastKind(FromType),
3332                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3333    break;
3334
3335  case ICK_Derived_To_Base: {
3336    CXXCastPath BasePath;
3337    if (CheckDerivedToBaseConversion(From->getType(),
3338                                     ToType.getNonReferenceType(),
3339                                     From->getLocStart(),
3340                                     From->getSourceRange(),
3341                                     &BasePath,
3342                                     CStyle))
3343      return ExprError();
3344
3345    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3346                      CK_DerivedToBase, From->getValueKind(),
3347                      &BasePath, CCK).get();
3348    break;
3349  }
3350
3351  case ICK_Vector_Conversion:
3352    From = ImpCastExprToType(From, ToType, CK_BitCast,
3353                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3354    break;
3355
3356  case ICK_Vector_Splat:
3357    // Vector splat from any arithmetic type to a vector.
3358    // Cast to the element type.
3359    {
3360      QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
3361      if (elType != From->getType()) {
3362        ExprResult E = From;
3363        From = ImpCastExprToType(From, elType,
3364                                 PrepareScalarCast(E, elType)).get();
3365      }
3366      From = ImpCastExprToType(From, ToType, CK_VectorSplat,
3367                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3368    }
3369    break;
3370
3371  case ICK_Complex_Real:
3372    // Case 1.  x -> _Complex y
3373    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3374      QualType ElType = ToComplex->getElementType();
3375      bool isFloatingComplex = ElType->isRealFloatingType();
3376
3377      // x -> y
3378      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3379        // do nothing
3380      } else if (From->getType()->isRealFloatingType()) {
3381        From = ImpCastExprToType(From, ElType,
3382                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3383      } else {
3384        assert(From->getType()->isIntegerType());
3385        From = ImpCastExprToType(From, ElType,
3386                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3387      }
3388      // y -> _Complex y
3389      From = ImpCastExprToType(From, ToType,
3390                   isFloatingComplex ? CK_FloatingRealToComplex
3391                                     : CK_IntegralRealToComplex).get();
3392
3393    // Case 2.  _Complex x -> y
3394    } else {
3395      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3396      assert(FromComplex);
3397
3398      QualType ElType = FromComplex->getElementType();
3399      bool isFloatingComplex = ElType->isRealFloatingType();
3400
3401      // _Complex x -> x
3402      From = ImpCastExprToType(From, ElType,
3403                   isFloatingComplex ? CK_FloatingComplexToReal
3404                                     : CK_IntegralComplexToReal,
3405                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
3406
3407      // x -> y
3408      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3409        // do nothing
3410      } else if (ToType->isRealFloatingType()) {
3411        From = ImpCastExprToType(From, ToType,
3412                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3413                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3414      } else {
3415        assert(ToType->isIntegerType());
3416        From = ImpCastExprToType(From, ToType,
3417                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3418                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3419      }
3420    }
3421    break;
3422
3423  case ICK_Block_Pointer_Conversion: {
3424    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3425                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3426    break;
3427  }
3428
3429  case ICK_TransparentUnionConversion: {
3430    ExprResult FromRes = From;
3431    Sema::AssignConvertType ConvTy =
3432      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3433    if (FromRes.isInvalid())
3434      return ExprError();
3435    From = FromRes.get();
3436    assert ((ConvTy == Sema::Compatible) &&
3437            "Improper transparent union conversion");
3438    (void)ConvTy;
3439    break;
3440  }
3441
3442  case ICK_Zero_Event_Conversion:
3443    From = ImpCastExprToType(From, ToType,
3444                             CK_ZeroToOCLEvent,
3445                             From->getValueKind()).get();
3446    break;
3447
3448  case ICK_Lvalue_To_Rvalue:
3449  case ICK_Array_To_Pointer:
3450  case ICK_Function_To_Pointer:
3451  case ICK_Qualification:
3452  case ICK_Num_Conversion_Kinds:
3453  case ICK_C_Only_Conversion:
3454    llvm_unreachable("Improper second standard conversion");
3455  }
3456
3457  switch (SCS.Third) {
3458  case ICK_Identity:
3459    // Nothing to do.
3460    break;
3461
3462  case ICK_Qualification: {
3463    // The qualification keeps the category of the inner expression, unless the
3464    // target type isn't a reference.
3465    ExprValueKind VK = ToType->isReferenceType() ?
3466                                  From->getValueKind() : VK_RValue;
3467    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3468                             CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3469
3470    if (SCS.DeprecatedStringLiteralToCharPtr &&
3471        !getLangOpts().WritableStrings) {
3472      Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3473           ? diag::ext_deprecated_string_literal_conversion
3474           : diag::warn_deprecated_string_literal_conversion)
3475        << ToType.getNonReferenceType();
3476    }
3477
3478    break;
3479  }
3480
3481  default:
3482    llvm_unreachable("Improper third standard conversion");
3483  }
3484
3485  // If this conversion sequence involved a scalar -> atomic conversion, perform
3486  // that conversion now.
3487  if (!ToAtomicType.isNull()) {
3488    assert(Context.hasSameType(
3489        ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3490    From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3491                             VK_RValue, nullptr, CCK).get();
3492  }
3493
3494  // If this conversion sequence succeeded and involved implicitly converting a
3495  // _Nullable type to a _Nonnull one, complain.
3496  if (CCK == CCK_ImplicitConversion)
3497    diagnoseNullableToNonnullConversion(ToType, InitialFromType,
3498                                        From->getLocStart());
3499
3500  return From;
3501}
3502
3503/// \brief Check the completeness of a type in a unary type trait.
3504///
3505/// If the particular type trait requires a complete type, tries to complete
3506/// it. If completing the type fails, a diagnostic is emitted and false
3507/// returned. If completing the type succeeds or no completion was required,
3508/// returns true.
3509static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3510                                                SourceLocation Loc,
3511                                                QualType ArgTy) {
3512  // C++0x [meta.unary.prop]p3:
3513  //   For all of the class templates X declared in this Clause, instantiating
3514  //   that template with a template argument that is a class template
3515  //   specialization may result in the implicit instantiation of the template
3516  //   argument if and only if the semantics of X require that the argument
3517  //   must be a complete type.
3518  // We apply this rule to all the type trait expressions used to implement
3519  // these class templates. We also try to follow any GCC documented behavior
3520  // in these expressions to ensure portability of standard libraries.
3521  switch (UTT) {
3522  default: llvm_unreachable("not a UTT");
3523    // is_complete_type somewhat obviously cannot require a complete type.
3524  case UTT_IsCompleteType:
3525    // Fall-through
3526
3527    // These traits are modeled on the type predicates in C++0x
3528    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3529    // requiring a complete type, as whether or not they return true cannot be
3530    // impacted by the completeness of the type.
3531  case UTT_IsVoid:
3532  case UTT_IsIntegral:
3533  case UTT_IsFloatingPoint:
3534  case UTT_IsArray:
3535  case UTT_IsPointer:
3536  case UTT_IsLvalueReference:
3537  case UTT_IsRvalueReference:
3538  case UTT_IsMemberFunctionPointer:
3539  case UTT_IsMemberObjectPointer:
3540  case UTT_IsEnum:
3541  case UTT_IsUnion:
3542  case UTT_IsClass:
3543  case UTT_IsFunction:
3544  case UTT_IsReference:
3545  case UTT_IsArithmetic:
3546  case UTT_IsFundamental:
3547  case UTT_IsObject:
3548  case UTT_IsScalar:
3549  case UTT_IsCompound:
3550  case UTT_IsMemberPointer:
3551    // Fall-through
3552
3553    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3554    // which requires some of its traits to have the complete type. However,
3555    // the completeness of the type cannot impact these traits' semantics, and
3556    // so they don't require it. This matches the comments on these traits in
3557    // Table 49.
3558  case UTT_IsConst:
3559  case UTT_IsVolatile:
3560  case UTT_IsSigned:
3561  case UTT_IsUnsigned:
3562
3563  // This type trait always returns false, checking the type is moot.
3564  case UTT_IsInterfaceClass:
3565    return true;
3566
3567  // C++14 [meta.unary.prop]:
3568  //   If T is a non-union class type, T shall be a complete type.
3569  case UTT_IsEmpty:
3570  case UTT_IsPolymorphic:
3571  case UTT_IsAbstract:
3572    if (const auto *RD = ArgTy->getAsCXXRecordDecl())
3573      if (!RD->isUnion())
3574        return !S.RequireCompleteType(
3575            Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3576    return true;
3577
3578  // C++14 [meta.unary.prop]:
3579  //   If T is a class type, T shall be a complete type.
3580  case UTT_IsFinal:
3581  case UTT_IsSealed:
3582    if (ArgTy->getAsCXXRecordDecl())
3583      return !S.RequireCompleteType(
3584          Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3585    return true;
3586
3587  // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3588  // applied to a complete type.
3589  case UTT_IsTrivial:
3590  case UTT_IsTriviallyCopyable:
3591  case UTT_IsStandardLayout:
3592  case UTT_IsPOD:
3593  case UTT_IsLiteral:
3594
3595  case UTT_IsDestructible:
3596  case UTT_IsNothrowDestructible:
3597    // Fall-through
3598
3599    // These trait expressions are designed to help implement predicates in
3600    // [meta.unary.prop] despite not being named the same. They are specified
3601    // by both GCC and the Embarcadero C++ compiler, and require the complete
3602    // type due to the overarching C++0x type predicates being implemented
3603    // requiring the complete type.
3604  case UTT_HasNothrowAssign:
3605  case UTT_HasNothrowMoveAssign:
3606  case UTT_HasNothrowConstructor:
3607  case UTT_HasNothrowCopy:
3608  case UTT_HasTrivialAssign:
3609  case UTT_HasTrivialMoveAssign:
3610  case UTT_HasTrivialDefaultConstructor:
3611  case UTT_HasTrivialMoveConstructor:
3612  case UTT_HasTrivialCopy:
3613  case UTT_HasTrivialDestructor:
3614  case UTT_HasVirtualDestructor:
3615    // Arrays of unknown bound are expressly allowed.
3616    QualType ElTy = ArgTy;
3617    if (ArgTy->isIncompleteArrayType())
3618      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3619
3620    // The void type is expressly allowed.
3621    if (ElTy->isVoidType())
3622      return true;
3623
3624    return !S.RequireCompleteType(
3625      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3626  }
3627}
3628
3629static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3630                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3631                               bool (CXXRecordDecl::*HasTrivial)() const,
3632                               bool (CXXRecordDecl::*HasNonTrivial)() const,
3633                               bool (CXXMethodDecl::*IsDesiredOp)() const)
3634{
3635  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3636  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3637    return true;
3638
3639  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3640  DeclarationNameInfo NameInfo(Name, KeyLoc);
3641  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3642  if (Self.LookupQualifiedName(Res, RD)) {
3643    bool FoundOperator = false;
3644    Res.suppressDiagnostics();
3645    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3646         Op != OpEnd; ++Op) {
3647      if (isa<FunctionTemplateDecl>(*Op))
3648        continue;
3649
3650      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3651      if((Operator->*IsDesiredOp)()) {
3652        FoundOperator = true;
3653        const FunctionProtoType *CPT =
3654          Operator->getType()->getAs<FunctionProtoType>();
3655        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3656        if (!CPT || !CPT->isNothrow(C))
3657          return false;
3658      }
3659    }
3660    return FoundOperator;
3661  }
3662  return false;
3663}
3664
3665static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3666                                   SourceLocation KeyLoc, QualType T) {
3667  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3668
3669  ASTContext &C = Self.Context;
3670  switch(UTT) {
3671  default: llvm_unreachable("not a UTT");
3672    // Type trait expressions corresponding to the primary type category
3673    // predicates in C++0x [meta.unary.cat].
3674  case UTT_IsVoid:
3675    return T->isVoidType();
3676  case UTT_IsIntegral:
3677    return T->isIntegralType(C);
3678  case UTT_IsFloatingPoint:
3679    return T->isFloatingType();
3680  case UTT_IsArray:
3681    return T->isArrayType();
3682  case UTT_IsPointer:
3683    return T->isPointerType();
3684  case UTT_IsLvalueReference:
3685    return T->isLValueReferenceType();
3686  case UTT_IsRvalueReference:
3687    return T->isRValueReferenceType();
3688  case UTT_IsMemberFunctionPointer:
3689    return T->isMemberFunctionPointerType();
3690  case UTT_IsMemberObjectPointer:
3691    return T->isMemberDataPointerType();
3692  case UTT_IsEnum:
3693    return T->isEnumeralType();
3694  case UTT_IsUnion:
3695    return T->isUnionType();
3696  case UTT_IsClass:
3697    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3698  case UTT_IsFunction:
3699    return T->isFunctionType();
3700
3701    // Type trait expressions which correspond to the convenient composition
3702    // predicates in C++0x [meta.unary.comp].
3703  case UTT_IsReference:
3704    return T->isReferenceType();
3705  case UTT_IsArithmetic:
3706    return T->isArithmeticType() && !T->isEnumeralType();
3707  case UTT_IsFundamental:
3708    return T->isFundamentalType();
3709  case UTT_IsObject:
3710    return T->isObjectType();
3711  case UTT_IsScalar:
3712    // Note: semantic analysis depends on Objective-C lifetime types to be
3713    // considered scalar types. However, such types do not actually behave
3714    // like scalar types at run time (since they may require retain/release
3715    // operations), so we report them as non-scalar.
3716    if (T->isObjCLifetimeType()) {
3717      switch (T.getObjCLifetime()) {
3718      case Qualifiers::OCL_None:
3719      case Qualifiers::OCL_ExplicitNone:
3720        return true;
3721
3722      case Qualifiers::OCL_Strong:
3723      case Qualifiers::OCL_Weak:
3724      case Qualifiers::OCL_Autoreleasing:
3725        return false;
3726      }
3727    }
3728
3729    return T->isScalarType();
3730  case UTT_IsCompound:
3731    return T->isCompoundType();
3732  case UTT_IsMemberPointer:
3733    return T->isMemberPointerType();
3734
3735    // Type trait expressions which correspond to the type property predicates
3736    // in C++0x [meta.unary.prop].
3737  case UTT_IsConst:
3738    return T.isConstQualified();
3739  case UTT_IsVolatile:
3740    return T.isVolatileQualified();
3741  case UTT_IsTrivial:
3742    return T.isTrivialType(C);
3743  case UTT_IsTriviallyCopyable:
3744    return T.isTriviallyCopyableType(C);
3745  case UTT_IsStandardLayout:
3746    return T->isStandardLayoutType();
3747  case UTT_IsPOD:
3748    return T.isPODType(C);
3749  case UTT_IsLiteral:
3750    return T->isLiteralType(C);
3751  case UTT_IsEmpty:
3752    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3753      return !RD->isUnion() && RD->isEmpty();
3754    return false;
3755  case UTT_IsPolymorphic:
3756    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3757      return !RD->isUnion() && RD->isPolymorphic();
3758    return false;
3759  case UTT_IsAbstract:
3760    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3761      return !RD->isUnion() && RD->isAbstract();
3762    return false;
3763  // __is_interface_class only returns true when CL is invoked in /CLR mode and
3764  // even then only when it is used with the 'interface struct ...' syntax
3765  // Clang doesn't support /CLR which makes this type trait moot.
3766  case UTT_IsInterfaceClass:
3767    return false;
3768  case UTT_IsFinal:
3769  case UTT_IsSealed:
3770    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3771      return RD->hasAttr<FinalAttr>();
3772    return false;
3773  case UTT_IsSigned:
3774    return T->isSignedIntegerType();
3775  case UTT_IsUnsigned:
3776    return T->isUnsignedIntegerType();
3777
3778    // Type trait expressions which query classes regarding their construction,
3779    // destruction, and copying. Rather than being based directly on the
3780    // related type predicates in the standard, they are specified by both
3781    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3782    // specifications.
3783    //
3784    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3785    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3786    //
3787    // Note that these builtins do not behave as documented in g++: if a class
3788    // has both a trivial and a non-trivial special member of a particular kind,
3789    // they return false! For now, we emulate this behavior.
3790    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3791    // does not correctly compute triviality in the presence of multiple special
3792    // members of the same kind. Revisit this once the g++ bug is fixed.
3793  case UTT_HasTrivialDefaultConstructor:
3794    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3795    //   If __is_pod (type) is true then the trait is true, else if type is
3796    //   a cv class or union type (or array thereof) with a trivial default
3797    //   constructor ([class.ctor]) then the trait is true, else it is false.
3798    if (T.isPODType(C))
3799      return true;
3800    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3801      return RD->hasTrivialDefaultConstructor() &&
3802             !RD->hasNonTrivialDefaultConstructor();
3803    return false;
3804  case UTT_HasTrivialMoveConstructor:
3805    //  This trait is implemented by MSVC 2012 and needed to parse the
3806    //  standard library headers. Specifically this is used as the logic
3807    //  behind std::is_trivially_move_constructible (20.9.4.3).
3808    if (T.isPODType(C))
3809      return true;
3810    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3811      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3812    return false;
3813  case UTT_HasTrivialCopy:
3814    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3815    //   If __is_pod (type) is true or type is a reference type then
3816    //   the trait is true, else if type is a cv class or union type
3817    //   with a trivial copy constructor ([class.copy]) then the trait
3818    //   is true, else it is false.
3819    if (T.isPODType(C) || T->isReferenceType())
3820      return true;
3821    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3822      return RD->hasTrivialCopyConstructor() &&
3823             !RD->hasNonTrivialCopyConstructor();
3824    return false;
3825  case UTT_HasTrivialMoveAssign:
3826    //  This trait is implemented by MSVC 2012 and needed to parse the
3827    //  standard library headers. Specifically it is used as the logic
3828    //  behind std::is_trivially_move_assignable (20.9.4.3)
3829    if (T.isPODType(C))
3830      return true;
3831    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3832      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3833    return false;
3834  case UTT_HasTrivialAssign:
3835    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3836    //   If type is const qualified or is a reference type then the
3837    //   trait is false. Otherwise if __is_pod (type) is true then the
3838    //   trait is true, else if type is a cv class or union type with
3839    //   a trivial copy assignment ([class.copy]) then the trait is
3840    //   true, else it is false.
3841    // Note: the const and reference restrictions are interesting,
3842    // given that const and reference members don't prevent a class
3843    // from having a trivial copy assignment operator (but do cause
3844    // errors if the copy assignment operator is actually used, q.v.
3845    // [class.copy]p12).
3846
3847    if (T.isConstQualified())
3848      return false;
3849    if (T.isPODType(C))
3850      return true;
3851    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3852      return RD->hasTrivialCopyAssignment() &&
3853             !RD->hasNonTrivialCopyAssignment();
3854    return false;
3855  case UTT_IsDestructible:
3856  case UTT_IsNothrowDestructible:
3857    // C++14 [meta.unary.prop]:
3858    //   For reference types, is_destructible<T>::value is true.
3859    if (T->isReferenceType())
3860      return true;
3861
3862    // Objective-C++ ARC: autorelease types don't require destruction.
3863    if (T->isObjCLifetimeType() &&
3864        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3865      return true;
3866
3867    // C++14 [meta.unary.prop]:
3868    //   For incomplete types and function types, is_destructible<T>::value is
3869    //   false.
3870    if (T->isIncompleteType() || T->isFunctionType())
3871      return false;
3872
3873    // C++14 [meta.unary.prop]:
3874    //   For object types and given U equal to remove_all_extents_t<T>, if the
3875    //   expression std::declval<U&>().~U() is well-formed when treated as an
3876    //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
3877    if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3878      CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
3879      if (!Destructor)
3880        return false;
3881      //  C++14 [dcl.fct.def.delete]p2:
3882      //    A program that refers to a deleted function implicitly or
3883      //    explicitly, other than to declare it, is ill-formed.
3884      if (Destructor->isDeleted())
3885        return false;
3886      if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
3887        return false;
3888      if (UTT == UTT_IsNothrowDestructible) {
3889        const FunctionProtoType *CPT =
3890            Destructor->getType()->getAs<FunctionProtoType>();
3891        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3892        if (!CPT || !CPT->isNothrow(C))
3893          return false;
3894      }
3895    }
3896    return true;
3897
3898  case UTT_HasTrivialDestructor:
3899    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3900    //   If __is_pod (type) is true or type is a reference type
3901    //   then the trait is true, else if type is a cv class or union
3902    //   type (or array thereof) with a trivial destructor
3903    //   ([class.dtor]) then the trait is true, else it is
3904    //   false.
3905    if (T.isPODType(C) || T->isReferenceType())
3906      return true;
3907
3908    // Objective-C++ ARC: autorelease types don't require destruction.
3909    if (T->isObjCLifetimeType() &&
3910        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3911      return true;
3912
3913    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3914      return RD->hasTrivialDestructor();
3915    return false;
3916  // TODO: Propagate nothrowness for implicitly declared special members.
3917  case UTT_HasNothrowAssign:
3918    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3919    //   If type is const qualified or is a reference type then the
3920    //   trait is false. Otherwise if __has_trivial_assign (type)
3921    //   is true then the trait is true, else if type is a cv class
3922    //   or union type with copy assignment operators that are known
3923    //   not to throw an exception then the trait is true, else it is
3924    //   false.
3925    if (C.getBaseElementType(T).isConstQualified())
3926      return false;
3927    if (T->isReferenceType())
3928      return false;
3929    if (T.isPODType(C) || T->isObjCLifetimeType())
3930      return true;
3931
3932    if (const RecordType *RT = T->getAs<RecordType>())
3933      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3934                                &CXXRecordDecl::hasTrivialCopyAssignment,
3935                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
3936                                &CXXMethodDecl::isCopyAssignmentOperator);
3937    return false;
3938  case UTT_HasNothrowMoveAssign:
3939    //  This trait is implemented by MSVC 2012 and needed to parse the
3940    //  standard library headers. Specifically this is used as the logic
3941    //  behind std::is_nothrow_move_assignable (20.9.4.3).
3942    if (T.isPODType(C))
3943      return true;
3944
3945    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3946      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3947                                &CXXRecordDecl::hasTrivialMoveAssignment,
3948                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
3949                                &CXXMethodDecl::isMoveAssignmentOperator);
3950    return false;
3951  case UTT_HasNothrowCopy:
3952    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3953    //   If __has_trivial_copy (type) is true then the trait is true, else
3954    //   if type is a cv class or union type with copy constructors that are
3955    //   known not to throw an exception then the trait is true, else it is
3956    //   false.
3957    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3958      return true;
3959    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3960      if (RD->hasTrivialCopyConstructor() &&
3961          !RD->hasNonTrivialCopyConstructor())
3962        return true;
3963
3964      bool FoundConstructor = false;
3965      unsigned FoundTQs;
3966      for (const auto *ND : Self.LookupConstructors(RD)) {
3967        // A template constructor is never a copy constructor.
3968        // FIXME: However, it may actually be selected at the actual overload
3969        // resolution point.
3970        if (isa<FunctionTemplateDecl>(ND))
3971          continue;
3972        const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
3973        if (Constructor->isCopyConstructor(FoundTQs)) {
3974          FoundConstructor = true;
3975          const FunctionProtoType *CPT
3976              = Constructor->getType()->getAs<FunctionProtoType>();
3977          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3978          if (!CPT)
3979            return false;
3980          // TODO: check whether evaluating default arguments can throw.
3981          // For now, we'll be conservative and assume that they can throw.
3982          if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
3983            return false;
3984        }
3985      }
3986
3987      return FoundConstructor;
3988    }
3989    return false;
3990  case UTT_HasNothrowConstructor:
3991    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3992    //   If __has_trivial_constructor (type) is true then the trait is
3993    //   true, else if type is a cv class or union type (or array
3994    //   thereof) with a default constructor that is known not to
3995    //   throw an exception then the trait is true, else it is false.
3996    if (T.isPODType(C) || T->isObjCLifetimeType())
3997      return true;
3998    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3999      if (RD->hasTrivialDefaultConstructor() &&
4000          !RD->hasNonTrivialDefaultConstructor())
4001        return true;
4002
4003      bool FoundConstructor = false;
4004      for (const auto *ND : Self.LookupConstructors(RD)) {
4005        // FIXME: In C++0x, a constructor template can be a default constructor.
4006        if (isa<FunctionTemplateDecl>(ND))
4007          continue;
4008        const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
4009        if (Constructor->isDefaultConstructor()) {
4010          FoundConstructor = true;
4011          const FunctionProtoType *CPT
4012              = Constructor->getType()->getAs<FunctionProtoType>();
4013          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4014          if (!CPT)
4015            return false;
4016          // FIXME: check whether evaluating default arguments can throw.
4017          // For now, we'll be conservative and assume that they can throw.
4018          if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4019            return false;
4020        }
4021      }
4022      return FoundConstructor;
4023    }
4024    return false;
4025  case UTT_HasVirtualDestructor:
4026    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4027    //   If type is a class type with a virtual destructor ([class.dtor])
4028    //   then the trait is true, else it is false.
4029    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4030      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4031        return Destructor->isVirtual();
4032    return false;
4033
4034    // These type trait expressions are modeled on the specifications for the
4035    // Embarcadero C++0x type trait functions:
4036    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4037  case UTT_IsCompleteType:
4038    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4039    //   Returns True if and only if T is a complete type at the point of the
4040    //   function call.
4041    return !T->isIncompleteType();
4042  }
4043}
4044
4045/// \brief Determine whether T has a non-trivial Objective-C lifetime in
4046/// ARC mode.
4047static bool hasNontrivialObjCLifetime(QualType T) {
4048  switch (T.getObjCLifetime()) {
4049  case Qualifiers::OCL_ExplicitNone:
4050    return false;
4051
4052  case Qualifiers::OCL_Strong:
4053  case Qualifiers::OCL_Weak:
4054  case Qualifiers::OCL_Autoreleasing:
4055    return true;
4056
4057  case Qualifiers::OCL_None:
4058    return T->isObjCLifetimeType();
4059  }
4060
4061  llvm_unreachable("Unknown ObjC lifetime qualifier");
4062}
4063
4064static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4065                                    QualType RhsT, SourceLocation KeyLoc);
4066
4067static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4068                              ArrayRef<TypeSourceInfo *> Args,
4069                              SourceLocation RParenLoc) {
4070  if (Kind <= UTT_Last)
4071    return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4072
4073  if (Kind <= BTT_Last)
4074    return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4075                                   Args[1]->getType(), RParenLoc);
4076
4077  switch (Kind) {
4078  case clang::TT_IsConstructible:
4079  case clang::TT_IsNothrowConstructible:
4080  case clang::TT_IsTriviallyConstructible: {
4081    // C++11 [meta.unary.prop]:
4082    //   is_trivially_constructible is defined as:
4083    //
4084    //     is_constructible<T, Args...>::value is true and the variable
4085    //     definition for is_constructible, as defined below, is known to call
4086    //     no operation that is not trivial.
4087    //
4088    //   The predicate condition for a template specialization
4089    //   is_constructible<T, Args...> shall be satisfied if and only if the
4090    //   following variable definition would be well-formed for some invented
4091    //   variable t:
4092    //
4093    //     T t(create<Args>()...);
4094    assert(!Args.empty());
4095
4096    // Precondition: T and all types in the parameter pack Args shall be
4097    // complete types, (possibly cv-qualified) void, or arrays of
4098    // unknown bound.
4099    for (const auto *TSI : Args) {
4100      QualType ArgTy = TSI->getType();
4101      if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4102        continue;
4103
4104      if (S.RequireCompleteType(KWLoc, ArgTy,
4105          diag::err_incomplete_type_used_in_type_trait_expr))
4106        return false;
4107    }
4108
4109    // Make sure the first argument is not incomplete nor a function type.
4110    QualType T = Args[0]->getType();
4111    if (T->isIncompleteType() || T->isFunctionType())
4112      return false;
4113
4114    // Make sure the first argument is not an abstract type.
4115    CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4116    if (RD && RD->isAbstract())
4117      return false;
4118
4119    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4120    SmallVector<Expr *, 2> ArgExprs;
4121    ArgExprs.reserve(Args.size() - 1);
4122    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4123      QualType ArgTy = Args[I]->getType();
4124      if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4125        ArgTy = S.Context.getRValueReferenceType(ArgTy);
4126      OpaqueArgExprs.push_back(
4127          OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4128                          ArgTy.getNonLValueExprType(S.Context),
4129                          Expr::getValueKindForType(ArgTy)));
4130    }
4131    for (Expr &E : OpaqueArgExprs)
4132      ArgExprs.push_back(&E);
4133
4134    // Perform the initialization in an unevaluated context within a SFINAE
4135    // trap at translation unit scope.
4136    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
4137    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4138    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4139    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4140    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4141                                                                 RParenLoc));
4142    InitializationSequence Init(S, To, InitKind, ArgExprs);
4143    if (Init.Failed())
4144      return false;
4145
4146    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4147    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4148      return false;
4149
4150    if (Kind == clang::TT_IsConstructible)
4151      return true;
4152
4153    if (Kind == clang::TT_IsNothrowConstructible)
4154      return S.canThrow(Result.get()) == CT_Cannot;
4155
4156    if (Kind == clang::TT_IsTriviallyConstructible) {
4157      // Under Objective-C ARC, if the destination has non-trivial Objective-C
4158      // lifetime, this is a non-trivial construction.
4159      if (S.getLangOpts().ObjCAutoRefCount &&
4160          hasNontrivialObjCLifetime(T.getNonReferenceType()))
4161        return false;
4162
4163      // The initialization succeeded; now make sure there are no non-trivial
4164      // calls.
4165      return !Result.get()->hasNonTrivialCall(S.Context);
4166    }
4167
4168    llvm_unreachable("unhandled type trait");
4169    return false;
4170  }
4171    default: llvm_unreachable("not a TT");
4172  }
4173
4174  return false;
4175}
4176
4177ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4178                                ArrayRef<TypeSourceInfo *> Args,
4179                                SourceLocation RParenLoc) {
4180  QualType ResultType = Context.getLogicalOperationType();
4181
4182  if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4183                               *this, Kind, KWLoc, Args[0]->getType()))
4184    return ExprError();
4185
4186  bool Dependent = false;
4187  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4188    if (Args[I]->getType()->isDependentType()) {
4189      Dependent = true;
4190      break;
4191    }
4192  }
4193
4194  bool Result = false;
4195  if (!Dependent)
4196    Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4197
4198  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4199                               RParenLoc, Result);
4200}
4201
4202ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4203                                ArrayRef<ParsedType> Args,
4204                                SourceLocation RParenLoc) {
4205  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4206  ConvertedArgs.reserve(Args.size());
4207
4208  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4209    TypeSourceInfo *TInfo;
4210    QualType T = GetTypeFromParser(Args[I], &TInfo);
4211    if (!TInfo)
4212      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4213
4214    ConvertedArgs.push_back(TInfo);
4215  }
4216
4217  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4218}
4219
4220static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4221                                    QualType RhsT, SourceLocation KeyLoc) {
4222  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
4223         "Cannot evaluate traits of dependent types");
4224
4225  switch(BTT) {
4226  case BTT_IsBaseOf: {
4227    // C++0x [meta.rel]p2
4228    // Base is a base class of Derived without regard to cv-qualifiers or
4229    // Base and Derived are not unions and name the same class type without
4230    // regard to cv-qualifiers.
4231
4232    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4233    if (!lhsRecord) return false;
4234
4235    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4236    if (!rhsRecord) return false;
4237
4238    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
4239             == (lhsRecord == rhsRecord));
4240
4241    if (lhsRecord == rhsRecord)
4242      return !lhsRecord->getDecl()->isUnion();
4243
4244    // C++0x [meta.rel]p2:
4245    //   If Base and Derived are class types and are different types
4246    //   (ignoring possible cv-qualifiers) then Derived shall be a
4247    //   complete type.
4248    if (Self.RequireCompleteType(KeyLoc, RhsT,
4249                          diag::err_incomplete_type_used_in_type_trait_expr))
4250      return false;
4251
4252    return cast<CXXRecordDecl>(rhsRecord->getDecl())
4253      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
4254  }
4255  case BTT_IsSame:
4256    return Self.Context.hasSameType(LhsT, RhsT);
4257  case BTT_TypeCompatible:
4258    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
4259                                           RhsT.getUnqualifiedType());
4260  case BTT_IsConvertible:
4261  case BTT_IsConvertibleTo: {
4262    // C++0x [meta.rel]p4:
4263    //   Given the following function prototype:
4264    //
4265    //     template <class T>
4266    //       typename add_rvalue_reference<T>::type create();
4267    //
4268    //   the predicate condition for a template specialization
4269    //   is_convertible<From, To> shall be satisfied if and only if
4270    //   the return expression in the following code would be
4271    //   well-formed, including any implicit conversions to the return
4272    //   type of the function:
4273    //
4274    //     To test() {
4275    //       return create<From>();
4276    //     }
4277    //
4278    //   Access checking is performed as if in a context unrelated to To and
4279    //   From. Only the validity of the immediate context of the expression
4280    //   of the return-statement (including conversions to the return type)
4281    //   is considered.
4282    //
4283    // We model the initialization as a copy-initialization of a temporary
4284    // of the appropriate type, which for this expression is identical to the
4285    // return statement (since NRVO doesn't apply).
4286
4287    // Functions aren't allowed to return function or array types.
4288    if (RhsT->isFunctionType() || RhsT->isArrayType())
4289      return false;
4290
4291    // A return statement in a void function must have void type.
4292    if (RhsT->isVoidType())
4293      return LhsT->isVoidType();
4294
4295    // A function definition requires a complete, non-abstract return type.
4296    if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
4297      return false;
4298
4299    // Compute the result of add_rvalue_reference.
4300    if (LhsT->isObjectType() || LhsT->isFunctionType())
4301      LhsT = Self.Context.getRValueReferenceType(LhsT);
4302
4303    // Build a fake source and destination for initialization.
4304    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
4305    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4306                         Expr::getValueKindForType(LhsT));
4307    Expr *FromPtr = &From;
4308    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
4309                                                           SourceLocation()));
4310
4311    // Perform the initialization in an unevaluated context within a SFINAE
4312    // trap at translation unit scope.
4313    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4314    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4315    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4316    InitializationSequence Init(Self, To, Kind, FromPtr);
4317    if (Init.Failed())
4318      return false;
4319
4320    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
4321    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
4322  }
4323
4324  case BTT_IsNothrowAssignable:
4325  case BTT_IsTriviallyAssignable: {
4326    // C++11 [meta.unary.prop]p3:
4327    //   is_trivially_assignable is defined as:
4328    //     is_assignable<T, U>::value is true and the assignment, as defined by
4329    //     is_assignable, is known to call no operation that is not trivial
4330    //
4331    //   is_assignable is defined as:
4332    //     The expression declval<T>() = declval<U>() is well-formed when
4333    //     treated as an unevaluated operand (Clause 5).
4334    //
4335    //   For both, T and U shall be complete types, (possibly cv-qualified)
4336    //   void, or arrays of unknown bound.
4337    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4338        Self.RequireCompleteType(KeyLoc, LhsT,
4339          diag::err_incomplete_type_used_in_type_trait_expr))
4340      return false;
4341    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4342        Self.RequireCompleteType(KeyLoc, RhsT,
4343          diag::err_incomplete_type_used_in_type_trait_expr))
4344      return false;
4345
4346    // cv void is never assignable.
4347    if (LhsT->isVoidType() || RhsT->isVoidType())
4348      return false;
4349
4350    // Build expressions that emulate the effect of declval<T>() and
4351    // declval<U>().
4352    if (LhsT->isObjectType() || LhsT->isFunctionType())
4353      LhsT = Self.Context.getRValueReferenceType(LhsT);
4354    if (RhsT->isObjectType() || RhsT->isFunctionType())
4355      RhsT = Self.Context.getRValueReferenceType(RhsT);
4356    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4357                        Expr::getValueKindForType(LhsT));
4358    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4359                        Expr::getValueKindForType(RhsT));
4360
4361    // Attempt the assignment in an unevaluated context within a SFINAE
4362    // trap at translation unit scope.
4363    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4364    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4365    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4366    ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4367                                        &Rhs);
4368    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4369      return false;
4370
4371    if (BTT == BTT_IsNothrowAssignable)
4372      return Self.canThrow(Result.get()) == CT_Cannot;
4373
4374    if (BTT == BTT_IsTriviallyAssignable) {
4375      // Under Objective-C ARC, if the destination has non-trivial Objective-C
4376      // lifetime, this is a non-trivial assignment.
4377      if (Self.getLangOpts().ObjCAutoRefCount &&
4378          hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
4379        return false;
4380
4381      return !Result.get()->hasNonTrivialCall(Self.Context);
4382    }
4383
4384    llvm_unreachable("unhandled type trait");
4385    return false;
4386  }
4387    default: llvm_unreachable("not a BTT");
4388  }
4389  llvm_unreachable("Unknown type trait or not implemented");
4390}
4391
4392ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
4393                                     SourceLocation KWLoc,
4394                                     ParsedType Ty,
4395                                     Expr* DimExpr,
4396                                     SourceLocation RParen) {
4397  TypeSourceInfo *TSInfo;
4398  QualType T = GetTypeFromParser(Ty, &TSInfo);
4399  if (!TSInfo)
4400    TSInfo = Context.getTrivialTypeSourceInfo(T);
4401
4402  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
4403}
4404
4405static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
4406                                           QualType T, Expr *DimExpr,
4407                                           SourceLocation KeyLoc) {
4408  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4409
4410  switch(ATT) {
4411  case ATT_ArrayRank:
4412    if (T->isArrayType()) {
4413      unsigned Dim = 0;
4414      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4415        ++Dim;
4416        T = AT->getElementType();
4417      }
4418      return Dim;
4419    }
4420    return 0;
4421
4422  case ATT_ArrayExtent: {
4423    llvm::APSInt Value;
4424    uint64_t Dim;
4425    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
4426          diag::err_dimension_expr_not_constant_integer,
4427          false).isInvalid())
4428      return 0;
4429    if (Value.isSigned() && Value.isNegative()) {
4430      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
4431        << DimExpr->getSourceRange();
4432      return 0;
4433    }
4434    Dim = Value.getLimitedValue();
4435
4436    if (T->isArrayType()) {
4437      unsigned D = 0;
4438      bool Matched = false;
4439      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4440        if (Dim == D) {
4441          Matched = true;
4442          break;
4443        }
4444        ++D;
4445        T = AT->getElementType();
4446      }
4447
4448      if (Matched && T->isArrayType()) {
4449        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4450          return CAT->getSize().getLimitedValue();
4451      }
4452    }
4453    return 0;
4454  }
4455  }
4456  llvm_unreachable("Unknown type trait or not implemented");
4457}
4458
4459ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4460                                     SourceLocation KWLoc,
4461                                     TypeSourceInfo *TSInfo,
4462                                     Expr* DimExpr,
4463                                     SourceLocation RParen) {
4464  QualType T = TSInfo->getType();
4465
4466  // FIXME: This should likely be tracked as an APInt to remove any host
4467  // assumptions about the width of size_t on the target.
4468  uint64_t Value = 0;
4469  if (!T->isDependentType())
4470    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4471
4472  // While the specification for these traits from the Embarcadero C++
4473  // compiler's documentation says the return type is 'unsigned int', Clang
4474  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4475  // compiler, there is no difference. On several other platforms this is an
4476  // important distinction.
4477  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4478                                          RParen, Context.getSizeType());
4479}
4480
4481ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4482                                      SourceLocation KWLoc,
4483                                      Expr *Queried,
4484                                      SourceLocation RParen) {
4485  // If error parsing the expression, ignore.
4486  if (!Queried)
4487    return ExprError();
4488
4489  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4490
4491  return Result;
4492}
4493
4494static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4495  switch (ET) {
4496  case ET_IsLValueExpr: return E->isLValue();
4497  case ET_IsRValueExpr: return E->isRValue();
4498  }
4499  llvm_unreachable("Expression trait not covered by switch");
4500}
4501
4502ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4503                                      SourceLocation KWLoc,
4504                                      Expr *Queried,
4505                                      SourceLocation RParen) {
4506  if (Queried->isTypeDependent()) {
4507    // Delay type-checking for type-dependent expressions.
4508  } else if (Queried->getType()->isPlaceholderType()) {
4509    ExprResult PE = CheckPlaceholderExpr(Queried);
4510    if (PE.isInvalid()) return ExprError();
4511    return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4512  }
4513
4514  bool Value = EvaluateExpressionTrait(ET, Queried);
4515
4516  return new (Context)
4517      ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4518}
4519
4520QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4521                                            ExprValueKind &VK,
4522                                            SourceLocation Loc,
4523                                            bool isIndirect) {
4524  assert(!LHS.get()->getType()->isPlaceholderType() &&
4525         !RHS.get()->getType()->isPlaceholderType() &&
4526         "placeholders should have been weeded out by now");
4527
4528  // The LHS undergoes lvalue conversions if this is ->*.
4529  if (isIndirect) {
4530    LHS = DefaultLvalueConversion(LHS.get());
4531    if (LHS.isInvalid()) return QualType();
4532  }
4533
4534  // The RHS always undergoes lvalue conversions.
4535  RHS = DefaultLvalueConversion(RHS.get());
4536  if (RHS.isInvalid()) return QualType();
4537
4538  const char *OpSpelling = isIndirect ? "->*" : ".*";
4539  // C++ 5.5p2
4540  //   The binary operator .* [p3: ->*] binds its second operand, which shall
4541  //   be of type "pointer to member of T" (where T is a completely-defined
4542  //   class type) [...]
4543  QualType RHSType = RHS.get()->getType();
4544  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4545  if (!MemPtr) {
4546    Diag(Loc, diag::err_bad_memptr_rhs)
4547      << OpSpelling << RHSType << RHS.get()->getSourceRange();
4548    return QualType();
4549  }
4550
4551  QualType Class(MemPtr->getClass(), 0);
4552
4553  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4554  // member pointer points must be completely-defined. However, there is no
4555  // reason for this semantic distinction, and the rule is not enforced by
4556  // other compilers. Therefore, we do not check this property, as it is
4557  // likely to be considered a defect.
4558
4559  // C++ 5.5p2
4560  //   [...] to its first operand, which shall be of class T or of a class of
4561  //   which T is an unambiguous and accessible base class. [p3: a pointer to
4562  //   such a class]
4563  QualType LHSType = LHS.get()->getType();
4564  if (isIndirect) {
4565    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4566      LHSType = Ptr->getPointeeType();
4567    else {
4568      Diag(Loc, diag::err_bad_memptr_lhs)
4569        << OpSpelling << 1 << LHSType
4570        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4571      return QualType();
4572    }
4573  }
4574
4575  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4576    // If we want to check the hierarchy, we need a complete type.
4577    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4578                            OpSpelling, (int)isIndirect)) {
4579      return QualType();
4580    }
4581
4582    if (!IsDerivedFrom(Loc, LHSType, Class)) {
4583      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4584        << (int)isIndirect << LHS.get()->getType();
4585      return QualType();
4586    }
4587
4588    CXXCastPath BasePath;
4589    if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4590                                     SourceRange(LHS.get()->getLocStart(),
4591                                                 RHS.get()->getLocEnd()),
4592                                     &BasePath))
4593      return QualType();
4594
4595    // Cast LHS to type of use.
4596    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4597    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4598    LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4599                            &BasePath);
4600  }
4601
4602  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4603    // Diagnose use of pointer-to-member type which when used as
4604    // the functional cast in a pointer-to-member expression.
4605    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4606     return QualType();
4607  }
4608
4609  // C++ 5.5p2
4610  //   The result is an object or a function of the type specified by the
4611  //   second operand.
4612  // The cv qualifiers are the union of those in the pointer and the left side,
4613  // in accordance with 5.5p5 and 5.2.5.
4614  QualType Result = MemPtr->getPointeeType();
4615  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4616
4617  // C++0x [expr.mptr.oper]p6:
4618  //   In a .* expression whose object expression is an rvalue, the program is
4619  //   ill-formed if the second operand is a pointer to member function with
4620  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
4621  //   expression is an lvalue, the program is ill-formed if the second operand
4622  //   is a pointer to member function with ref-qualifier &&.
4623  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4624    switch (Proto->getRefQualifier()) {
4625    case RQ_None:
4626      // Do nothing
4627      break;
4628
4629    case RQ_LValue:
4630      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4631        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4632          << RHSType << 1 << LHS.get()->getSourceRange();
4633      break;
4634
4635    case RQ_RValue:
4636      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4637        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4638          << RHSType << 0 << LHS.get()->getSourceRange();
4639      break;
4640    }
4641  }
4642
4643  // C++ [expr.mptr.oper]p6:
4644  //   The result of a .* expression whose second operand is a pointer
4645  //   to a data member is of the same value category as its
4646  //   first operand. The result of a .* expression whose second
4647  //   operand is a pointer to a member function is a prvalue. The
4648  //   result of an ->* expression is an lvalue if its second operand
4649  //   is a pointer to data member and a prvalue otherwise.
4650  if (Result->isFunctionType()) {
4651    VK = VK_RValue;
4652    return Context.BoundMemberTy;
4653  } else if (isIndirect) {
4654    VK = VK_LValue;
4655  } else {
4656    VK = LHS.get()->getValueKind();
4657  }
4658
4659  return Result;
4660}
4661
4662/// \brief Try to convert a type to another according to C++0x 5.16p3.
4663///
4664/// This is part of the parameter validation for the ? operator. If either
4665/// value operand is a class type, the two operands are attempted to be
4666/// converted to each other. This function does the conversion in one direction.
4667/// It returns true if the program is ill-formed and has already been diagnosed
4668/// as such.
4669static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4670                                SourceLocation QuestionLoc,
4671                                bool &HaveConversion,
4672                                QualType &ToType) {
4673  HaveConversion = false;
4674  ToType = To->getType();
4675
4676  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4677                                                           SourceLocation());
4678  // C++0x 5.16p3
4679  //   The process for determining whether an operand expression E1 of type T1
4680  //   can be converted to match an operand expression E2 of type T2 is defined
4681  //   as follows:
4682  //   -- If E2 is an lvalue:
4683  bool ToIsLvalue = To->isLValue();
4684  if (ToIsLvalue) {
4685    //   E1 can be converted to match E2 if E1 can be implicitly converted to
4686    //   type "lvalue reference to T2", subject to the constraint that in the
4687    //   conversion the reference must bind directly to E1.
4688    QualType T = Self.Context.getLValueReferenceType(ToType);
4689    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4690
4691    InitializationSequence InitSeq(Self, Entity, Kind, From);
4692    if (InitSeq.isDirectReferenceBinding()) {
4693      ToType = T;
4694      HaveConversion = true;
4695      return false;
4696    }
4697
4698    if (InitSeq.isAmbiguous())
4699      return InitSeq.Diagnose(Self, Entity, Kind, From);
4700  }
4701
4702  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4703  //      -- if E1 and E2 have class type, and the underlying class types are
4704  //         the same or one is a base class of the other:
4705  QualType FTy = From->getType();
4706  QualType TTy = To->getType();
4707  const RecordType *FRec = FTy->getAs<RecordType>();
4708  const RecordType *TRec = TTy->getAs<RecordType>();
4709  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4710                       Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
4711  if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
4712                       Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
4713    //         E1 can be converted to match E2 if the class of T2 is the
4714    //         same type as, or a base class of, the class of T1, and
4715    //         [cv2 > cv1].
4716    if (FRec == TRec || FDerivedFromT) {
4717      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4718        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4719        InitializationSequence InitSeq(Self, Entity, Kind, From);
4720        if (InitSeq) {
4721          HaveConversion = true;
4722          return false;
4723        }
4724
4725        if (InitSeq.isAmbiguous())
4726          return InitSeq.Diagnose(Self, Entity, Kind, From);
4727      }
4728    }
4729
4730    return false;
4731  }
4732
4733  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4734  //        implicitly converted to the type that expression E2 would have
4735  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4736  //        an rvalue).
4737  //
4738  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4739  // to the array-to-pointer or function-to-pointer conversions.
4740  if (!TTy->getAs<TagType>())
4741    TTy = TTy.getUnqualifiedType();
4742
4743  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4744  InitializationSequence InitSeq(Self, Entity, Kind, From);
4745  HaveConversion = !InitSeq.Failed();
4746  ToType = TTy;
4747  if (InitSeq.isAmbiguous())
4748    return InitSeq.Diagnose(Self, Entity, Kind, From);
4749
4750  return false;
4751}
4752
4753/// \brief Try to find a common type for two according to C++0x 5.16p5.
4754///
4755/// This is part of the parameter validation for the ? operator. If either
4756/// value operand is a class type, overload resolution is used to find a
4757/// conversion to a common type.
4758static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4759                                    SourceLocation QuestionLoc) {
4760  Expr *Args[2] = { LHS.get(), RHS.get() };
4761  OverloadCandidateSet CandidateSet(QuestionLoc,
4762                                    OverloadCandidateSet::CSK_Operator);
4763  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4764                                    CandidateSet);
4765
4766  OverloadCandidateSet::iterator Best;
4767  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4768    case OR_Success: {
4769      // We found a match. Perform the conversions on the arguments and move on.
4770      ExprResult LHSRes =
4771        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4772                                       Best->Conversions[0], Sema::AA_Converting);
4773      if (LHSRes.isInvalid())
4774        break;
4775      LHS = LHSRes;
4776
4777      ExprResult RHSRes =
4778        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4779                                       Best->Conversions[1], Sema::AA_Converting);
4780      if (RHSRes.isInvalid())
4781        break;
4782      RHS = RHSRes;
4783      if (Best->Function)
4784        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4785      return false;
4786    }
4787
4788    case OR_No_Viable_Function:
4789
4790      // Emit a better diagnostic if one of the expressions is a null pointer
4791      // constant and the other is a pointer type. In this case, the user most
4792      // likely forgot to take the address of the other expression.
4793      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4794        return true;
4795
4796      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4797        << LHS.get()->getType() << RHS.get()->getType()
4798        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4799      return true;
4800
4801    case OR_Ambiguous:
4802      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4803        << LHS.get()->getType() << RHS.get()->getType()
4804        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4805      // FIXME: Print the possible common types by printing the return types of
4806      // the viable candidates.
4807      break;
4808
4809    case OR_Deleted:
4810      llvm_unreachable("Conditional operator has only built-in overloads");
4811  }
4812  return true;
4813}
4814
4815/// \brief Perform an "extended" implicit conversion as returned by
4816/// TryClassUnification.
4817static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4818  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4819  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4820                                                           SourceLocation());
4821  Expr *Arg = E.get();
4822  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4823  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4824  if (Result.isInvalid())
4825    return true;
4826
4827  E = Result;
4828  return false;
4829}
4830
4831/// \brief Check the operands of ?: under C++ semantics.
4832///
4833/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4834/// extension. In this case, LHS == Cond. (But they're not aliases.)
4835QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4836                                           ExprResult &RHS, ExprValueKind &VK,
4837                                           ExprObjectKind &OK,
4838                                           SourceLocation QuestionLoc) {
4839  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4840  // interface pointers.
4841
4842  // C++11 [expr.cond]p1
4843  //   The first expression is contextually converted to bool.
4844  if (!Cond.get()->isTypeDependent()) {
4845    ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4846    if (CondRes.isInvalid())
4847      return QualType();
4848    Cond = CondRes;
4849  }
4850
4851  // Assume r-value.
4852  VK = VK_RValue;
4853  OK = OK_Ordinary;
4854
4855  // Either of the arguments dependent?
4856  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4857    return Context.DependentTy;
4858
4859  // C++11 [expr.cond]p2
4860  //   If either the second or the third operand has type (cv) void, ...
4861  QualType LTy = LHS.get()->getType();
4862  QualType RTy = RHS.get()->getType();
4863  bool LVoid = LTy->isVoidType();
4864  bool RVoid = RTy->isVoidType();
4865  if (LVoid || RVoid) {
4866    //   ... one of the following shall hold:
4867    //   -- The second or the third operand (but not both) is a (possibly
4868    //      parenthesized) throw-expression; the result is of the type
4869    //      and value category of the other.
4870    bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4871    bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4872    if (LThrow != RThrow) {
4873      Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4874      VK = NonThrow->getValueKind();
4875      // DR (no number yet): the result is a bit-field if the
4876      // non-throw-expression operand is a bit-field.
4877      OK = NonThrow->getObjectKind();
4878      return NonThrow->getType();
4879    }
4880
4881    //   -- Both the second and third operands have type void; the result is of
4882    //      type void and is a prvalue.
4883    if (LVoid && RVoid)
4884      return Context.VoidTy;
4885
4886    // Neither holds, error.
4887    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4888      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4889      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4890    return QualType();
4891  }
4892
4893  // Neither is void.
4894
4895  // C++11 [expr.cond]p3
4896  //   Otherwise, if the second and third operand have different types, and
4897  //   either has (cv) class type [...] an attempt is made to convert each of
4898  //   those operands to the type of the other.
4899  if (!Context.hasSameType(LTy, RTy) &&
4900      (LTy->isRecordType() || RTy->isRecordType())) {
4901    // These return true if a single direction is already ambiguous.
4902    QualType L2RType, R2LType;
4903    bool HaveL2R, HaveR2L;
4904    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4905      return QualType();
4906    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4907      return QualType();
4908
4909    //   If both can be converted, [...] the program is ill-formed.
4910    if (HaveL2R && HaveR2L) {
4911      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4912        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4913      return QualType();
4914    }
4915
4916    //   If exactly one conversion is possible, that conversion is applied to
4917    //   the chosen operand and the converted operands are used in place of the
4918    //   original operands for the remainder of this section.
4919    if (HaveL2R) {
4920      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4921        return QualType();
4922      LTy = LHS.get()->getType();
4923    } else if (HaveR2L) {
4924      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4925        return QualType();
4926      RTy = RHS.get()->getType();
4927    }
4928  }
4929
4930  // C++11 [expr.cond]p3
4931  //   if both are glvalues of the same value category and the same type except
4932  //   for cv-qualification, an attempt is made to convert each of those
4933  //   operands to the type of the other.
4934  ExprValueKind LVK = LHS.get()->getValueKind();
4935  ExprValueKind RVK = RHS.get()->getValueKind();
4936  if (!Context.hasSameType(LTy, RTy) &&
4937      Context.hasSameUnqualifiedType(LTy, RTy) &&
4938      LVK == RVK && LVK != VK_RValue) {
4939    // Since the unqualified types are reference-related and we require the
4940    // result to be as if a reference bound directly, the only conversion
4941    // we can perform is to add cv-qualifiers.
4942    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4943    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4944    if (RCVR.isStrictSupersetOf(LCVR)) {
4945      LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4946      LTy = LHS.get()->getType();
4947    }
4948    else if (LCVR.isStrictSupersetOf(RCVR)) {
4949      RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4950      RTy = RHS.get()->getType();
4951    }
4952  }
4953
4954  // C++11 [expr.cond]p4
4955  //   If the second and third operands are glvalues of the same value
4956  //   category and have the same type, the result is of that type and
4957  //   value category and it is a bit-field if the second or the third
4958  //   operand is a bit-field, or if both are bit-fields.
4959  // We only extend this to bitfields, not to the crazy other kinds of
4960  // l-values.
4961  bool Same = Context.hasSameType(LTy, RTy);
4962  if (Same && LVK == RVK && LVK != VK_RValue &&
4963      LHS.get()->isOrdinaryOrBitFieldObject() &&
4964      RHS.get()->isOrdinaryOrBitFieldObject()) {
4965    VK = LHS.get()->getValueKind();
4966    if (LHS.get()->getObjectKind() == OK_BitField ||
4967        RHS.get()->getObjectKind() == OK_BitField)
4968      OK = OK_BitField;
4969    return LTy;
4970  }
4971
4972  // C++11 [expr.cond]p5
4973  //   Otherwise, the result is a prvalue. If the second and third operands
4974  //   do not have the same type, and either has (cv) class type, ...
4975  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4976    //   ... overload resolution is used to determine the conversions (if any)
4977    //   to be applied to the operands. If the overload resolution fails, the
4978    //   program is ill-formed.
4979    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4980      return QualType();
4981  }
4982
4983  // C++11 [expr.cond]p6
4984  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4985  //   conversions are performed on the second and third operands.
4986  LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4987  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4988  if (LHS.isInvalid() || RHS.isInvalid())
4989    return QualType();
4990  LTy = LHS.get()->getType();
4991  RTy = RHS.get()->getType();
4992
4993  //   After those conversions, one of the following shall hold:
4994  //   -- The second and third operands have the same type; the result
4995  //      is of that type. If the operands have class type, the result
4996  //      is a prvalue temporary of the result type, which is
4997  //      copy-initialized from either the second operand or the third
4998  //      operand depending on the value of the first operand.
4999  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5000    if (LTy->isRecordType()) {
5001      // The operands have class type. Make a temporary copy.
5002      if (RequireNonAbstractType(QuestionLoc, LTy,
5003                                 diag::err_allocation_of_abstract_type))
5004        return QualType();
5005      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5006
5007      ExprResult LHSCopy = PerformCopyInitialization(Entity,
5008                                                     SourceLocation(),
5009                                                     LHS);
5010      if (LHSCopy.isInvalid())
5011        return QualType();
5012
5013      ExprResult RHSCopy = PerformCopyInitialization(Entity,
5014                                                     SourceLocation(),
5015                                                     RHS);
5016      if (RHSCopy.isInvalid())
5017        return QualType();
5018
5019      LHS = LHSCopy;
5020      RHS = RHSCopy;
5021    }
5022
5023    return LTy;
5024  }
5025
5026  // Extension: conditional operator involving vector types.
5027  if (LTy->isVectorType() || RTy->isVectorType())
5028    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5029                               /*AllowBothBool*/true,
5030                               /*AllowBoolConversions*/false);
5031
5032  //   -- The second and third operands have arithmetic or enumeration type;
5033  //      the usual arithmetic conversions are performed to bring them to a
5034  //      common type, and the result is of that type.
5035  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5036    QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5037    if (LHS.isInvalid() || RHS.isInvalid())
5038      return QualType();
5039
5040    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5041    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5042
5043    return ResTy;
5044  }
5045
5046  //   -- The second and third operands have pointer type, or one has pointer
5047  //      type and the other is a null pointer constant, or both are null
5048  //      pointer constants, at least one of which is non-integral; pointer
5049  //      conversions and qualification conversions are performed to bring them
5050  //      to their composite pointer type. The result is of the composite
5051  //      pointer type.
5052  //   -- The second and third operands have pointer to member type, or one has
5053  //      pointer to member type and the other is a null pointer constant;
5054  //      pointer to member conversions and qualification conversions are
5055  //      performed to bring them to a common type, whose cv-qualification
5056  //      shall match the cv-qualification of either the second or the third
5057  //      operand. The result is of the common type.
5058  bool NonStandardCompositeType = false;
5059  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
5060                                 isSFINAEContext() ? nullptr
5061                                                   : &NonStandardCompositeType);
5062  if (!Composite.isNull()) {
5063    if (NonStandardCompositeType)
5064      Diag(QuestionLoc,
5065           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
5066        << LTy << RTy << Composite
5067        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5068
5069    return Composite;
5070  }
5071
5072  // Similarly, attempt to find composite type of two objective-c pointers.
5073  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5074  if (!Composite.isNull())
5075    return Composite;
5076
5077  // Check if we are using a null with a non-pointer type.
5078  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5079    return QualType();
5080
5081  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5082    << LHS.get()->getType() << RHS.get()->getType()
5083    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5084  return QualType();
5085}
5086
5087/// \brief Find a merged pointer type and convert the two expressions to it.
5088///
5089/// This finds the composite pointer type (or member pointer type) for @p E1
5090/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
5091/// type and returns it.
5092/// It does not emit diagnostics.
5093///
5094/// \param Loc The location of the operator requiring these two expressions to
5095/// be converted to the composite pointer type.
5096///
5097/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
5098/// a non-standard (but still sane) composite type to which both expressions
5099/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
5100/// will be set true.
5101QualType Sema::FindCompositePointerType(SourceLocation Loc,
5102                                        Expr *&E1, Expr *&E2,
5103                                        bool *NonStandardCompositeType) {
5104  if (NonStandardCompositeType)
5105    *NonStandardCompositeType = false;
5106
5107  assert(getLangOpts().CPlusPlus && "This function assumes C++");
5108  QualType T1 = E1->getType(), T2 = E2->getType();
5109
5110  // C++11 5.9p2
5111  //   Pointer conversions and qualification conversions are performed on
5112  //   pointer operands to bring them to their composite pointer type. If
5113  //   one operand is a null pointer constant, the composite pointer type is
5114  //   std::nullptr_t if the other operand is also a null pointer constant or,
5115  //   if the other operand is a pointer, the type of the other operand.
5116  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
5117      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
5118    if (T1->isNullPtrType() &&
5119        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5120      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5121      return T1;
5122    }
5123    if (T2->isNullPtrType() &&
5124        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5125      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5126      return T2;
5127    }
5128    return QualType();
5129  }
5130
5131  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5132    if (T2->isMemberPointerType())
5133      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
5134    else
5135      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5136    return T2;
5137  }
5138  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5139    if (T1->isMemberPointerType())
5140      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
5141    else
5142      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5143    return T1;
5144  }
5145
5146  // Now both have to be pointers or member pointers.
5147  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
5148      (!T2->isPointerType() && !T2->isMemberPointerType()))
5149    return QualType();
5150
5151  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
5152  //   the other has type "pointer to cv2 T" and the composite pointer type is
5153  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
5154  //   Otherwise, the composite pointer type is a pointer type similar to the
5155  //   type of one of the operands, with a cv-qualification signature that is
5156  //   the union of the cv-qualification signatures of the operand types.
5157  // In practice, the first part here is redundant; it's subsumed by the second.
5158  // What we do here is, we build the two possible composite types, and try the
5159  // conversions in both directions. If only one works, or if the two composite
5160  // types are the same, we have succeeded.
5161  // FIXME: extended qualifiers?
5162  typedef SmallVector<unsigned, 4> QualifierVector;
5163  QualifierVector QualifierUnion;
5164  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
5165      ContainingClassVector;
5166  ContainingClassVector MemberOfClass;
5167  QualType Composite1 = Context.getCanonicalType(T1),
5168           Composite2 = Context.getCanonicalType(T2);
5169  unsigned NeedConstBefore = 0;
5170  do {
5171    const PointerType *Ptr1, *Ptr2;
5172    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
5173        (Ptr2 = Composite2->getAs<PointerType>())) {
5174      Composite1 = Ptr1->getPointeeType();
5175      Composite2 = Ptr2->getPointeeType();
5176
5177      // If we're allowed to create a non-standard composite type, keep track
5178      // of where we need to fill in additional 'const' qualifiers.
5179      if (NonStandardCompositeType &&
5180          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5181        NeedConstBefore = QualifierUnion.size();
5182
5183      QualifierUnion.push_back(
5184                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5185      MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
5186      continue;
5187    }
5188
5189    const MemberPointerType *MemPtr1, *MemPtr2;
5190    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
5191        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
5192      Composite1 = MemPtr1->getPointeeType();
5193      Composite2 = MemPtr2->getPointeeType();
5194
5195      // If we're allowed to create a non-standard composite type, keep track
5196      // of where we need to fill in additional 'const' qualifiers.
5197      if (NonStandardCompositeType &&
5198          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5199        NeedConstBefore = QualifierUnion.size();
5200
5201      QualifierUnion.push_back(
5202                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5203      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
5204                                             MemPtr2->getClass()));
5205      continue;
5206    }
5207
5208    // FIXME: block pointer types?
5209
5210    // Cannot unwrap any more types.
5211    break;
5212  } while (true);
5213
5214  if (NeedConstBefore && NonStandardCompositeType) {
5215    // Extension: Add 'const' to qualifiers that come before the first qualifier
5216    // mismatch, so that our (non-standard!) composite type meets the
5217    // requirements of C++ [conv.qual]p4 bullet 3.
5218    for (unsigned I = 0; I != NeedConstBefore; ++I) {
5219      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
5220        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
5221        *NonStandardCompositeType = true;
5222      }
5223    }
5224  }
5225
5226  // Rewrap the composites as pointers or member pointers with the union CVRs.
5227  ContainingClassVector::reverse_iterator MOC
5228    = MemberOfClass.rbegin();
5229  for (QualifierVector::reverse_iterator
5230         I = QualifierUnion.rbegin(),
5231         E = QualifierUnion.rend();
5232       I != E; (void)++I, ++MOC) {
5233    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
5234    if (MOC->first && MOC->second) {
5235      // Rebuild member pointer type
5236      Composite1 = Context.getMemberPointerType(
5237                                    Context.getQualifiedType(Composite1, Quals),
5238                                    MOC->first);
5239      Composite2 = Context.getMemberPointerType(
5240                                    Context.getQualifiedType(Composite2, Quals),
5241                                    MOC->second);
5242    } else {
5243      // Rebuild pointer type
5244      Composite1
5245        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
5246      Composite2
5247        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
5248    }
5249  }
5250
5251  // Try to convert to the first composite pointer type.
5252  InitializedEntity Entity1
5253    = InitializedEntity::InitializeTemporary(Composite1);
5254  InitializationKind Kind
5255    = InitializationKind::CreateCopy(Loc, SourceLocation());
5256  InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
5257  InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
5258
5259  if (E1ToC1 && E2ToC1) {
5260    // Conversion to Composite1 is viable.
5261    if (!Context.hasSameType(Composite1, Composite2)) {
5262      // Composite2 is a different type from Composite1. Check whether
5263      // Composite2 is also viable.
5264      InitializedEntity Entity2
5265        = InitializedEntity::InitializeTemporary(Composite2);
5266      InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5267      InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5268      if (E1ToC2 && E2ToC2) {
5269        // Both Composite1 and Composite2 are viable and are different;
5270        // this is an ambiguity.
5271        return QualType();
5272      }
5273    }
5274
5275    // Convert E1 to Composite1
5276    ExprResult E1Result
5277      = E1ToC1.Perform(*this, Entity1, Kind, E1);
5278    if (E1Result.isInvalid())
5279      return QualType();
5280    E1 = E1Result.getAs<Expr>();
5281
5282    // Convert E2 to Composite1
5283    ExprResult E2Result
5284      = E2ToC1.Perform(*this, Entity1, Kind, E2);
5285    if (E2Result.isInvalid())
5286      return QualType();
5287    E2 = E2Result.getAs<Expr>();
5288
5289    return Composite1;
5290  }
5291
5292  // Check whether Composite2 is viable.
5293  InitializedEntity Entity2
5294    = InitializedEntity::InitializeTemporary(Composite2);
5295  InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5296  InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5297  if (!E1ToC2 || !E2ToC2)
5298    return QualType();
5299
5300  // Convert E1 to Composite2
5301  ExprResult E1Result
5302    = E1ToC2.Perform(*this, Entity2, Kind, E1);
5303  if (E1Result.isInvalid())
5304    return QualType();
5305  E1 = E1Result.getAs<Expr>();
5306
5307  // Convert E2 to Composite2
5308  ExprResult E2Result
5309    = E2ToC2.Perform(*this, Entity2, Kind, E2);
5310  if (E2Result.isInvalid())
5311    return QualType();
5312  E2 = E2Result.getAs<Expr>();
5313
5314  return Composite2;
5315}
5316
5317ExprResult Sema::MaybeBindToTemporary(Expr *E) {
5318  if (!E)
5319    return ExprError();
5320
5321  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
5322
5323  // If the result is a glvalue, we shouldn't bind it.
5324  if (!E->isRValue())
5325    return E;
5326
5327  // In ARC, calls that return a retainable type can return retained,
5328  // in which case we have to insert a consuming cast.
5329  if (getLangOpts().ObjCAutoRefCount &&
5330      E->getType()->isObjCRetainableType()) {
5331
5332    bool ReturnsRetained;
5333
5334    // For actual calls, we compute this by examining the type of the
5335    // called value.
5336    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
5337      Expr *Callee = Call->getCallee()->IgnoreParens();
5338      QualType T = Callee->getType();
5339
5340      if (T == Context.BoundMemberTy) {
5341        // Handle pointer-to-members.
5342        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
5343          T = BinOp->getRHS()->getType();
5344        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
5345          T = Mem->getMemberDecl()->getType();
5346      }
5347
5348      if (const PointerType *Ptr = T->getAs<PointerType>())
5349        T = Ptr->getPointeeType();
5350      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
5351        T = Ptr->getPointeeType();
5352      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
5353        T = MemPtr->getPointeeType();
5354
5355      const FunctionType *FTy = T->getAs<FunctionType>();
5356      assert(FTy && "call to value not of function type?");
5357      ReturnsRetained = FTy->getExtInfo().getProducesResult();
5358
5359    // ActOnStmtExpr arranges things so that StmtExprs of retainable
5360    // type always produce a +1 object.
5361    } else if (isa<StmtExpr>(E)) {
5362      ReturnsRetained = true;
5363
5364    // We hit this case with the lambda conversion-to-block optimization;
5365    // we don't want any extra casts here.
5366    } else if (isa<CastExpr>(E) &&
5367               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
5368      return E;
5369
5370    // For message sends and property references, we try to find an
5371    // actual method.  FIXME: we should infer retention by selector in
5372    // cases where we don't have an actual method.
5373    } else {
5374      ObjCMethodDecl *D = nullptr;
5375      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
5376        D = Send->getMethodDecl();
5377      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
5378        D = BoxedExpr->getBoxingMethod();
5379      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
5380        D = ArrayLit->getArrayWithObjectsMethod();
5381      } else if (ObjCDictionaryLiteral *DictLit
5382                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
5383        D = DictLit->getDictWithObjectsMethod();
5384      }
5385
5386      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
5387
5388      // Don't do reclaims on performSelector calls; despite their
5389      // return type, the invoked method doesn't necessarily actually
5390      // return an object.
5391      if (!ReturnsRetained &&
5392          D && D->getMethodFamily() == OMF_performSelector)
5393        return E;
5394    }
5395
5396    // Don't reclaim an object of Class type.
5397    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
5398      return E;
5399
5400    ExprNeedsCleanups = true;
5401
5402    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
5403                                   : CK_ARCReclaimReturnedObject);
5404    return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
5405                                    VK_RValue);
5406  }
5407
5408  if (!getLangOpts().CPlusPlus)
5409    return E;
5410
5411  // Search for the base element type (cf. ASTContext::getBaseElementType) with
5412  // a fast path for the common case that the type is directly a RecordType.
5413  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
5414  const RecordType *RT = nullptr;
5415  while (!RT) {
5416    switch (T->getTypeClass()) {
5417    case Type::Record:
5418      RT = cast<RecordType>(T);
5419      break;
5420    case Type::ConstantArray:
5421    case Type::IncompleteArray:
5422    case Type::VariableArray:
5423    case Type::DependentSizedArray:
5424      T = cast<ArrayType>(T)->getElementType().getTypePtr();
5425      break;
5426    default:
5427      return E;
5428    }
5429  }
5430
5431  // That should be enough to guarantee that this type is complete, if we're
5432  // not processing a decltype expression.
5433  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5434  if (RD->isInvalidDecl() || RD->isDependentContext())
5435    return E;
5436
5437  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
5438  CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
5439
5440  if (Destructor) {
5441    MarkFunctionReferenced(E->getExprLoc(), Destructor);
5442    CheckDestructorAccess(E->getExprLoc(), Destructor,
5443                          PDiag(diag::err_access_dtor_temp)
5444                            << E->getType());
5445    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
5446      return ExprError();
5447
5448    // If destructor is trivial, we can avoid the extra copy.
5449    if (Destructor->isTrivial())
5450      return E;
5451
5452    // We need a cleanup, but we don't need to remember the temporary.
5453    ExprNeedsCleanups = true;
5454  }
5455
5456  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5457  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5458
5459  if (IsDecltype)
5460    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5461
5462  return Bind;
5463}
5464
5465ExprResult
5466Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5467  if (SubExpr.isInvalid())
5468    return ExprError();
5469
5470  return MaybeCreateExprWithCleanups(SubExpr.get());
5471}
5472
5473Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5474  assert(SubExpr && "subexpression can't be null!");
5475
5476  CleanupVarDeclMarking();
5477
5478  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5479  assert(ExprCleanupObjects.size() >= FirstCleanup);
5480  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5481  if (!ExprNeedsCleanups)
5482    return SubExpr;
5483
5484  auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5485                                     ExprCleanupObjects.size() - FirstCleanup);
5486
5487  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5488  DiscardCleanupsInEvaluationContext();
5489
5490  return E;
5491}
5492
5493Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5494  assert(SubStmt && "sub-statement can't be null!");
5495
5496  CleanupVarDeclMarking();
5497
5498  if (!ExprNeedsCleanups)
5499    return SubStmt;
5500
5501  // FIXME: In order to attach the temporaries, wrap the statement into
5502  // a StmtExpr; currently this is only used for asm statements.
5503  // This is hacky, either create a new CXXStmtWithTemporaries statement or
5504  // a new AsmStmtWithTemporaries.
5505  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5506                                                      SourceLocation(),
5507                                                      SourceLocation());
5508  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5509                                   SourceLocation());
5510  return MaybeCreateExprWithCleanups(E);
5511}
5512
5513/// Process the expression contained within a decltype. For such expressions,
5514/// certain semantic checks on temporaries are delayed until this point, and
5515/// are omitted for the 'topmost' call in the decltype expression. If the
5516/// topmost call bound a temporary, strip that temporary off the expression.
5517ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5518  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5519
5520  // C++11 [expr.call]p11:
5521  //   If a function call is a prvalue of object type,
5522  // -- if the function call is either
5523  //   -- the operand of a decltype-specifier, or
5524  //   -- the right operand of a comma operator that is the operand of a
5525  //      decltype-specifier,
5526  //   a temporary object is not introduced for the prvalue.
5527
5528  // Recursively rebuild ParenExprs and comma expressions to strip out the
5529  // outermost CXXBindTemporaryExpr, if any.
5530  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5531    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5532    if (SubExpr.isInvalid())
5533      return ExprError();
5534    if (SubExpr.get() == PE->getSubExpr())
5535      return E;
5536    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5537  }
5538  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5539    if (BO->getOpcode() == BO_Comma) {
5540      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5541      if (RHS.isInvalid())
5542        return ExprError();
5543      if (RHS.get() == BO->getRHS())
5544        return E;
5545      return new (Context) BinaryOperator(
5546          BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5547          BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5548    }
5549  }
5550
5551  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5552  CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5553                              : nullptr;
5554  if (TopCall)
5555    E = TopCall;
5556  else
5557    TopBind = nullptr;
5558
5559  // Disable the special decltype handling now.
5560  ExprEvalContexts.back().IsDecltype = false;
5561
5562  // In MS mode, don't perform any extra checking of call return types within a
5563  // decltype expression.
5564  if (getLangOpts().MSVCCompat)
5565    return E;
5566
5567  // Perform the semantic checks we delayed until this point.
5568  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5569       I != N; ++I) {
5570    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5571    if (Call == TopCall)
5572      continue;
5573
5574    if (CheckCallReturnType(Call->getCallReturnType(Context),
5575                            Call->getLocStart(),
5576                            Call, Call->getDirectCallee()))
5577      return ExprError();
5578  }
5579
5580  // Now all relevant types are complete, check the destructors are accessible
5581  // and non-deleted, and annotate them on the temporaries.
5582  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5583       I != N; ++I) {
5584    CXXBindTemporaryExpr *Bind =
5585      ExprEvalContexts.back().DelayedDecltypeBinds[I];
5586    if (Bind == TopBind)
5587      continue;
5588
5589    CXXTemporary *Temp = Bind->getTemporary();
5590
5591    CXXRecordDecl *RD =
5592      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5593    CXXDestructorDecl *Destructor = LookupDestructor(RD);
5594    Temp->setDestructor(Destructor);
5595
5596    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5597    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5598                          PDiag(diag::err_access_dtor_temp)
5599                            << Bind->getType());
5600    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5601      return ExprError();
5602
5603    // We need a cleanup, but we don't need to remember the temporary.
5604    ExprNeedsCleanups = true;
5605  }
5606
5607  // Possibly strip off the top CXXBindTemporaryExpr.
5608  return E;
5609}
5610
5611/// Note a set of 'operator->' functions that were used for a member access.
5612static void noteOperatorArrows(Sema &S,
5613                               ArrayRef<FunctionDecl *> OperatorArrows) {
5614  unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5615  // FIXME: Make this configurable?
5616  unsigned Limit = 9;
5617  if (OperatorArrows.size() > Limit) {
5618    // Produce Limit-1 normal notes and one 'skipping' note.
5619    SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5620    SkipCount = OperatorArrows.size() - (Limit - 1);
5621  }
5622
5623  for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5624    if (I == SkipStart) {
5625      S.Diag(OperatorArrows[I]->getLocation(),
5626             diag::note_operator_arrows_suppressed)
5627          << SkipCount;
5628      I += SkipCount;
5629    } else {
5630      S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5631          << OperatorArrows[I]->getCallResultType();
5632      ++I;
5633    }
5634  }
5635}
5636
5637ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
5638                                              SourceLocation OpLoc,
5639                                              tok::TokenKind OpKind,
5640                                              ParsedType &ObjectType,
5641                                              bool &MayBePseudoDestructor) {
5642  // Since this might be a postfix expression, get rid of ParenListExprs.
5643  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5644  if (Result.isInvalid()) return ExprError();
5645  Base = Result.get();
5646
5647  Result = CheckPlaceholderExpr(Base);
5648  if (Result.isInvalid()) return ExprError();
5649  Base = Result.get();
5650
5651  QualType BaseType = Base->getType();
5652  MayBePseudoDestructor = false;
5653  if (BaseType->isDependentType()) {
5654    // If we have a pointer to a dependent type and are using the -> operator,
5655    // the object type is the type that the pointer points to. We might still
5656    // have enough information about that type to do something useful.
5657    if (OpKind == tok::arrow)
5658      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5659        BaseType = Ptr->getPointeeType();
5660
5661    ObjectType = ParsedType::make(BaseType);
5662    MayBePseudoDestructor = true;
5663    return Base;
5664  }
5665
5666  // C++ [over.match.oper]p8:
5667  //   [...] When operator->returns, the operator-> is applied  to the value
5668  //   returned, with the original second operand.
5669  if (OpKind == tok::arrow) {
5670    QualType StartingType = BaseType;
5671    bool NoArrowOperatorFound = false;
5672    bool FirstIteration = true;
5673    FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5674    // The set of types we've considered so far.
5675    llvm::SmallPtrSet<CanQualType,8> CTypes;
5676    SmallVector<FunctionDecl*, 8> OperatorArrows;
5677    CTypes.insert(Context.getCanonicalType(BaseType));
5678
5679    while (BaseType->isRecordType()) {
5680      if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5681        Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5682          << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5683        noteOperatorArrows(*this, OperatorArrows);
5684        Diag(OpLoc, diag::note_operator_arrow_depth)
5685          << getLangOpts().ArrowDepth;
5686        return ExprError();
5687      }
5688
5689      Result = BuildOverloadedArrowExpr(
5690          S, Base, OpLoc,
5691          // When in a template specialization and on the first loop iteration,
5692          // potentially give the default diagnostic (with the fixit in a
5693          // separate note) instead of having the error reported back to here
5694          // and giving a diagnostic with a fixit attached to the error itself.
5695          (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5696              ? nullptr
5697              : &NoArrowOperatorFound);
5698      if (Result.isInvalid()) {
5699        if (NoArrowOperatorFound) {
5700          if (FirstIteration) {
5701            Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5702              << BaseType << 1 << Base->getSourceRange()
5703              << FixItHint::CreateReplacement(OpLoc, ".");
5704            OpKind = tok::period;
5705            break;
5706          }
5707          Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5708            << BaseType << Base->getSourceRange();
5709          CallExpr *CE = dyn_cast<CallExpr>(Base);
5710          if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5711            Diag(CD->getLocStart(),
5712                 diag::note_member_reference_arrow_from_operator_arrow);
5713          }
5714        }
5715        return ExprError();
5716      }
5717      Base = Result.get();
5718      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5719        OperatorArrows.push_back(OpCall->getDirectCallee());
5720      BaseType = Base->getType();
5721      CanQualType CBaseType = Context.getCanonicalType(BaseType);
5722      if (!CTypes.insert(CBaseType).second) {
5723        Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5724        noteOperatorArrows(*this, OperatorArrows);
5725        return ExprError();
5726      }
5727      FirstIteration = false;
5728    }
5729
5730    if (OpKind == tok::arrow &&
5731        (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5732      BaseType = BaseType->getPointeeType();
5733  }
5734
5735  // Objective-C properties allow "." access on Objective-C pointer types,
5736  // so adjust the base type to the object type itself.
5737  if (BaseType->isObjCObjectPointerType())
5738    BaseType = BaseType->getPointeeType();
5739
5740  // C++ [basic.lookup.classref]p2:
5741  //   [...] If the type of the object expression is of pointer to scalar
5742  //   type, the unqualified-id is looked up in the context of the complete
5743  //   postfix-expression.
5744  //
5745  // This also indicates that we could be parsing a pseudo-destructor-name.
5746  // Note that Objective-C class and object types can be pseudo-destructor
5747  // expressions or normal member (ivar or property) access expressions, and
5748  // it's legal for the type to be incomplete if this is a pseudo-destructor
5749  // call.  We'll do more incomplete-type checks later in the lookup process,
5750  // so just skip this check for ObjC types.
5751  if (BaseType->isObjCObjectOrInterfaceType()) {
5752    ObjectType = ParsedType::make(BaseType);
5753    MayBePseudoDestructor = true;
5754    return Base;
5755  } else if (!BaseType->isRecordType()) {
5756    ObjectType = ParsedType();
5757    MayBePseudoDestructor = true;
5758    return Base;
5759  }
5760
5761  // The object type must be complete (or dependent), or
5762  // C++11 [expr.prim.general]p3:
5763  //   Unlike the object expression in other contexts, *this is not required to
5764  //   be of complete type for purposes of class member access (5.2.5) outside
5765  //   the member function body.
5766  if (!BaseType->isDependentType() &&
5767      !isThisOutsideMemberFunctionBody(BaseType) &&
5768      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5769    return ExprError();
5770
5771  // C++ [basic.lookup.classref]p2:
5772  //   If the id-expression in a class member access (5.2.5) is an
5773  //   unqualified-id, and the type of the object expression is of a class
5774  //   type C (or of pointer to a class type C), the unqualified-id is looked
5775  //   up in the scope of class C. [...]
5776  ObjectType = ParsedType::make(BaseType);
5777  return Base;
5778}
5779
5780static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5781                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5782  if (Base->hasPlaceholderType()) {
5783    ExprResult result = S.CheckPlaceholderExpr(Base);
5784    if (result.isInvalid()) return true;
5785    Base = result.get();
5786  }
5787  ObjectType = Base->getType();
5788
5789  // C++ [expr.pseudo]p2:
5790  //   The left-hand side of the dot operator shall be of scalar type. The
5791  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5792  //   This scalar type is the object type.
5793  // Note that this is rather different from the normal handling for the
5794  // arrow operator.
5795  if (OpKind == tok::arrow) {
5796    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5797      ObjectType = Ptr->getPointeeType();
5798    } else if (!Base->isTypeDependent()) {
5799      // The user wrote "p->" when she probably meant "p."; fix it.
5800      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5801        << ObjectType << true
5802        << FixItHint::CreateReplacement(OpLoc, ".");
5803      if (S.isSFINAEContext())
5804        return true;
5805
5806      OpKind = tok::period;
5807    }
5808  }
5809
5810  return false;
5811}
5812
5813ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5814                                           SourceLocation OpLoc,
5815                                           tok::TokenKind OpKind,
5816                                           const CXXScopeSpec &SS,
5817                                           TypeSourceInfo *ScopeTypeInfo,
5818                                           SourceLocation CCLoc,
5819                                           SourceLocation TildeLoc,
5820                                         PseudoDestructorTypeStorage Destructed) {
5821  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5822
5823  QualType ObjectType;
5824  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5825    return ExprError();
5826
5827  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5828      !ObjectType->isVectorType()) {
5829    if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5830      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5831    else {
5832      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5833        << ObjectType << Base->getSourceRange();
5834      return ExprError();
5835    }
5836  }
5837
5838  // C++ [expr.pseudo]p2:
5839  //   [...] The cv-unqualified versions of the object type and of the type
5840  //   designated by the pseudo-destructor-name shall be the same type.
5841  if (DestructedTypeInfo) {
5842    QualType DestructedType = DestructedTypeInfo->getType();
5843    SourceLocation DestructedTypeStart
5844      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5845    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5846      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5847        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5848          << ObjectType << DestructedType << Base->getSourceRange()
5849          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5850
5851        // Recover by setting the destructed type to the object type.
5852        DestructedType = ObjectType;
5853        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5854                                                           DestructedTypeStart);
5855        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5856      } else if (DestructedType.getObjCLifetime() !=
5857                                                ObjectType.getObjCLifetime()) {
5858
5859        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5860          // Okay: just pretend that the user provided the correctly-qualified
5861          // type.
5862        } else {
5863          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5864            << ObjectType << DestructedType << Base->getSourceRange()
5865            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5866        }
5867
5868        // Recover by setting the destructed type to the object type.
5869        DestructedType = ObjectType;
5870        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5871                                                           DestructedTypeStart);
5872        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5873      }
5874    }
5875  }
5876
5877  // C++ [expr.pseudo]p2:
5878  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5879  //   form
5880  //
5881  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5882  //
5883  //   shall designate the same scalar type.
5884  if (ScopeTypeInfo) {
5885    QualType ScopeType = ScopeTypeInfo->getType();
5886    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5887        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5888
5889      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5890           diag::err_pseudo_dtor_type_mismatch)
5891        << ObjectType << ScopeType << Base->getSourceRange()
5892        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5893
5894      ScopeType = QualType();
5895      ScopeTypeInfo = nullptr;
5896    }
5897  }
5898
5899  Expr *Result
5900    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5901                                            OpKind == tok::arrow, OpLoc,
5902                                            SS.getWithLocInContext(Context),
5903                                            ScopeTypeInfo,
5904                                            CCLoc,
5905                                            TildeLoc,
5906                                            Destructed);
5907
5908  return Result;
5909}
5910
5911ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5912                                           SourceLocation OpLoc,
5913                                           tok::TokenKind OpKind,
5914                                           CXXScopeSpec &SS,
5915                                           UnqualifiedId &FirstTypeName,
5916                                           SourceLocation CCLoc,
5917                                           SourceLocation TildeLoc,
5918                                           UnqualifiedId &SecondTypeName) {
5919  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5920          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5921         "Invalid first type name in pseudo-destructor");
5922  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5923          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5924         "Invalid second type name in pseudo-destructor");
5925
5926  QualType ObjectType;
5927  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5928    return ExprError();
5929
5930  // Compute the object type that we should use for name lookup purposes. Only
5931  // record types and dependent types matter.
5932  ParsedType ObjectTypePtrForLookup;
5933  if (!SS.isSet()) {
5934    if (ObjectType->isRecordType())
5935      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5936    else if (ObjectType->isDependentType())
5937      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5938  }
5939
5940  // Convert the name of the type being destructed (following the ~) into a
5941  // type (with source-location information).
5942  QualType DestructedType;
5943  TypeSourceInfo *DestructedTypeInfo = nullptr;
5944  PseudoDestructorTypeStorage Destructed;
5945  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5946    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5947                               SecondTypeName.StartLocation,
5948                               S, &SS, true, false, ObjectTypePtrForLookup);
5949    if (!T &&
5950        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5951         (!SS.isSet() && ObjectType->isDependentType()))) {
5952      // The name of the type being destroyed is a dependent name, and we
5953      // couldn't find anything useful in scope. Just store the identifier and
5954      // it's location, and we'll perform (qualified) name lookup again at
5955      // template instantiation time.
5956      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5957                                               SecondTypeName.StartLocation);
5958    } else if (!T) {
5959      Diag(SecondTypeName.StartLocation,
5960           diag::err_pseudo_dtor_destructor_non_type)
5961        << SecondTypeName.Identifier << ObjectType;
5962      if (isSFINAEContext())
5963        return ExprError();
5964
5965      // Recover by assuming we had the right type all along.
5966      DestructedType = ObjectType;
5967    } else
5968      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5969  } else {
5970    // Resolve the template-id to a type.
5971    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5972    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5973                                       TemplateId->NumArgs);
5974    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5975                                       TemplateId->TemplateKWLoc,
5976                                       TemplateId->Template,
5977                                       TemplateId->TemplateNameLoc,
5978                                       TemplateId->LAngleLoc,
5979                                       TemplateArgsPtr,
5980                                       TemplateId->RAngleLoc);
5981    if (T.isInvalid() || !T.get()) {
5982      // Recover by assuming we had the right type all along.
5983      DestructedType = ObjectType;
5984    } else
5985      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5986  }
5987
5988  // If we've performed some kind of recovery, (re-)build the type source
5989  // information.
5990  if (!DestructedType.isNull()) {
5991    if (!DestructedTypeInfo)
5992      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5993                                                  SecondTypeName.StartLocation);
5994    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5995  }
5996
5997  // Convert the name of the scope type (the type prior to '::') into a type.
5998  TypeSourceInfo *ScopeTypeInfo = nullptr;
5999  QualType ScopeType;
6000  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6001      FirstTypeName.Identifier) {
6002    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6003      ParsedType T = getTypeName(*FirstTypeName.Identifier,
6004                                 FirstTypeName.StartLocation,
6005                                 S, &SS, true, false, ObjectTypePtrForLookup);
6006      if (!T) {
6007        Diag(FirstTypeName.StartLocation,
6008             diag::err_pseudo_dtor_destructor_non_type)
6009          << FirstTypeName.Identifier << ObjectType;
6010
6011        if (isSFINAEContext())
6012          return ExprError();
6013
6014        // Just drop this type. It's unnecessary anyway.
6015        ScopeType = QualType();
6016      } else
6017        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
6018    } else {
6019      // Resolve the template-id to a type.
6020      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
6021      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6022                                         TemplateId->NumArgs);
6023      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6024                                         TemplateId->TemplateKWLoc,
6025                                         TemplateId->Template,
6026                                         TemplateId->TemplateNameLoc,
6027                                         TemplateId->LAngleLoc,
6028                                         TemplateArgsPtr,
6029                                         TemplateId->RAngleLoc);
6030      if (T.isInvalid() || !T.get()) {
6031        // Recover by dropping this type.
6032        ScopeType = QualType();
6033      } else
6034        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
6035    }
6036  }
6037
6038  if (!ScopeType.isNull() && !ScopeTypeInfo)
6039    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
6040                                                  FirstTypeName.StartLocation);
6041
6042
6043  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
6044                                   ScopeTypeInfo, CCLoc, TildeLoc,
6045                                   Destructed);
6046}
6047
6048ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6049                                           SourceLocation OpLoc,
6050                                           tok::TokenKind OpKind,
6051                                           SourceLocation TildeLoc,
6052                                           const DeclSpec& DS) {
6053  QualType ObjectType;
6054  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6055    return ExprError();
6056
6057  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
6058                                 false);
6059
6060  TypeLocBuilder TLB;
6061  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
6062  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
6063  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
6064  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
6065
6066  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
6067                                   nullptr, SourceLocation(), TildeLoc,
6068                                   Destructed);
6069}
6070
6071ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
6072                                        CXXConversionDecl *Method,
6073                                        bool HadMultipleCandidates) {
6074  if (Method->getParent()->isLambda() &&
6075      Method->getConversionType()->isBlockPointerType()) {
6076    // This is a lambda coversion to block pointer; check if the argument
6077    // is a LambdaExpr.
6078    Expr *SubE = E;
6079    CastExpr *CE = dyn_cast<CastExpr>(SubE);
6080    if (CE && CE->getCastKind() == CK_NoOp)
6081      SubE = CE->getSubExpr();
6082    SubE = SubE->IgnoreParens();
6083    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
6084      SubE = BE->getSubExpr();
6085    if (isa<LambdaExpr>(SubE)) {
6086      // For the conversion to block pointer on a lambda expression, we
6087      // construct a special BlockLiteral instead; this doesn't really make
6088      // a difference in ARC, but outside of ARC the resulting block literal
6089      // follows the normal lifetime rules for block literals instead of being
6090      // autoreleased.
6091      DiagnosticErrorTrap Trap(Diags);
6092      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
6093                                                     E->getExprLoc(),
6094                                                     Method, E);
6095      if (Exp.isInvalid())
6096        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
6097      return Exp;
6098    }
6099  }
6100
6101  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
6102                                          FoundDecl, Method);
6103  if (Exp.isInvalid())
6104    return true;
6105
6106  MemberExpr *ME = new (Context) MemberExpr(
6107      Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
6108      Context.BoundMemberTy, VK_RValue, OK_Ordinary);
6109  if (HadMultipleCandidates)
6110    ME->setHadMultipleCandidates(true);
6111  MarkMemberReferenced(ME);
6112
6113  QualType ResultType = Method->getReturnType();
6114  ExprValueKind VK = Expr::getValueKindForType(ResultType);
6115  ResultType = ResultType.getNonLValueExprType(Context);
6116
6117  CXXMemberCallExpr *CE =
6118    new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
6119                                    Exp.get()->getLocEnd());
6120  return CE;
6121}
6122
6123ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6124                                      SourceLocation RParen) {
6125  // If the operand is an unresolved lookup expression, the expression is ill-
6126  // formed per [over.over]p1, because overloaded function names cannot be used
6127  // without arguments except in explicit contexts.
6128  ExprResult R = CheckPlaceholderExpr(Operand);
6129  if (R.isInvalid())
6130    return R;
6131
6132  // The operand may have been modified when checking the placeholder type.
6133  Operand = R.get();
6134
6135  if (ActiveTemplateInstantiations.empty() &&
6136      Operand->HasSideEffects(Context, false)) {
6137    // The expression operand for noexcept is in an unevaluated expression
6138    // context, so side effects could result in unintended consequences.
6139    Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6140  }
6141
6142  CanThrowResult CanThrow = canThrow(Operand);
6143  return new (Context)
6144      CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
6145}
6146
6147ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
6148                                   Expr *Operand, SourceLocation RParen) {
6149  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
6150}
6151
6152static bool IsSpecialDiscardedValue(Expr *E) {
6153  // In C++11, discarded-value expressions of a certain form are special,
6154  // according to [expr]p10:
6155  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
6156  //   expression is an lvalue of volatile-qualified type and it has
6157  //   one of the following forms:
6158  E = E->IgnoreParens();
6159
6160  //   - id-expression (5.1.1),
6161  if (isa<DeclRefExpr>(E))
6162    return true;
6163
6164  //   - subscripting (5.2.1),
6165  if (isa<ArraySubscriptExpr>(E))
6166    return true;
6167
6168  //   - class member access (5.2.5),
6169  if (isa<MemberExpr>(E))
6170    return true;
6171
6172  //   - indirection (5.3.1),
6173  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
6174    if (UO->getOpcode() == UO_Deref)
6175      return true;
6176
6177  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6178    //   - pointer-to-member operation (5.5),
6179    if (BO->isPtrMemOp())
6180      return true;
6181
6182    //   - comma expression (5.18) where the right operand is one of the above.
6183    if (BO->getOpcode() == BO_Comma)
6184      return IsSpecialDiscardedValue(BO->getRHS());
6185  }
6186
6187  //   - conditional expression (5.16) where both the second and the third
6188  //     operands are one of the above, or
6189  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
6190    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
6191           IsSpecialDiscardedValue(CO->getFalseExpr());
6192  // The related edge case of "*x ?: *x".
6193  if (BinaryConditionalOperator *BCO =
6194          dyn_cast<BinaryConditionalOperator>(E)) {
6195    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
6196      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
6197             IsSpecialDiscardedValue(BCO->getFalseExpr());
6198  }
6199
6200  // Objective-C++ extensions to the rule.
6201  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
6202    return true;
6203
6204  return false;
6205}
6206
6207/// Perform the conversions required for an expression used in a
6208/// context that ignores the result.
6209ExprResult Sema::IgnoredValueConversions(Expr *E) {
6210  if (E->hasPlaceholderType()) {
6211    ExprResult result = CheckPlaceholderExpr(E);
6212    if (result.isInvalid()) return E;
6213    E = result.get();
6214  }
6215
6216  // C99 6.3.2.1:
6217  //   [Except in specific positions,] an lvalue that does not have
6218  //   array type is converted to the value stored in the
6219  //   designated object (and is no longer an lvalue).
6220  if (E->isRValue()) {
6221    // In C, function designators (i.e. expressions of function type)
6222    // are r-values, but we still want to do function-to-pointer decay
6223    // on them.  This is both technically correct and convenient for
6224    // some clients.
6225    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
6226      return DefaultFunctionArrayConversion(E);
6227
6228    return E;
6229  }
6230
6231  if (getLangOpts().CPlusPlus)  {
6232    // The C++11 standard defines the notion of a discarded-value expression;
6233    // normally, we don't need to do anything to handle it, but if it is a
6234    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
6235    // conversion.
6236    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
6237        E->getType().isVolatileQualified() &&
6238        IsSpecialDiscardedValue(E)) {
6239      ExprResult Res = DefaultLvalueConversion(E);
6240      if (Res.isInvalid())
6241        return E;
6242      E = Res.get();
6243    }
6244    return E;
6245  }
6246
6247  // GCC seems to also exclude expressions of incomplete enum type.
6248  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
6249    if (!T->getDecl()->isComplete()) {
6250      // FIXME: stupid workaround for a codegen bug!
6251      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
6252      return E;
6253    }
6254  }
6255
6256  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
6257  if (Res.isInvalid())
6258    return E;
6259  E = Res.get();
6260
6261  if (!E->getType()->isVoidType())
6262    RequireCompleteType(E->getExprLoc(), E->getType(),
6263                        diag::err_incomplete_type);
6264  return E;
6265}
6266
6267// If we can unambiguously determine whether Var can never be used
6268// in a constant expression, return true.
6269//  - if the variable and its initializer are non-dependent, then
6270//    we can unambiguously check if the variable is a constant expression.
6271//  - if the initializer is not value dependent - we can determine whether
6272//    it can be used to initialize a constant expression.  If Init can not
6273//    be used to initialize a constant expression we conclude that Var can
6274//    never be a constant expression.
6275//  - FXIME: if the initializer is dependent, we can still do some analysis and
6276//    identify certain cases unambiguously as non-const by using a Visitor:
6277//      - such as those that involve odr-use of a ParmVarDecl, involve a new
6278//        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
6279static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
6280    ASTContext &Context) {
6281  if (isa<ParmVarDecl>(Var)) return true;
6282  const VarDecl *DefVD = nullptr;
6283
6284  // If there is no initializer - this can not be a constant expression.
6285  if (!Var->getAnyInitializer(DefVD)) return true;
6286  assert(DefVD);
6287  if (DefVD->isWeak()) return false;
6288  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
6289
6290  Expr *Init = cast<Expr>(Eval->Value);
6291
6292  if (Var->getType()->isDependentType() || Init->isValueDependent()) {
6293    // FIXME: Teach the constant evaluator to deal with the non-dependent parts
6294    // of value-dependent expressions, and use it here to determine whether the
6295    // initializer is a potential constant expression.
6296    return false;
6297  }
6298
6299  return !IsVariableAConstantExpression(Var, Context);
6300}
6301
6302/// \brief Check if the current lambda has any potential captures
6303/// that must be captured by any of its enclosing lambdas that are ready to
6304/// capture. If there is a lambda that can capture a nested
6305/// potential-capture, go ahead and do so.  Also, check to see if any
6306/// variables are uncaptureable or do not involve an odr-use so do not
6307/// need to be captured.
6308
6309static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
6310    Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
6311
6312  assert(!S.isUnevaluatedContext());
6313  assert(S.CurContext->isDependentContext());
6314  assert(CurrentLSI->CallOperator == S.CurContext &&
6315      "The current call operator must be synchronized with Sema's CurContext");
6316
6317  const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
6318
6319  ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
6320      S.FunctionScopes.data(), S.FunctionScopes.size());
6321
6322  // All the potentially captureable variables in the current nested
6323  // lambda (within a generic outer lambda), must be captured by an
6324  // outer lambda that is enclosed within a non-dependent context.
6325  const unsigned NumPotentialCaptures =
6326      CurrentLSI->getNumPotentialVariableCaptures();
6327  for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
6328    Expr *VarExpr = nullptr;
6329    VarDecl *Var = nullptr;
6330    CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
6331    // If the variable is clearly identified as non-odr-used and the full
6332    // expression is not instantiation dependent, only then do we not
6333    // need to check enclosing lambda's for speculative captures.
6334    // For e.g.:
6335    // Even though 'x' is not odr-used, it should be captured.
6336    // int test() {
6337    //   const int x = 10;
6338    //   auto L = [=](auto a) {
6339    //     (void) +x + a;
6340    //   };
6341    // }
6342    if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
6343        !IsFullExprInstantiationDependent)
6344      continue;
6345
6346    // If we have a capture-capable lambda for the variable, go ahead and
6347    // capture the variable in that lambda (and all its enclosing lambdas).
6348    if (const Optional<unsigned> Index =
6349            getStackIndexOfNearestEnclosingCaptureCapableLambda(
6350                FunctionScopesArrayRef, Var, S)) {
6351      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6352      MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
6353                         &FunctionScopeIndexOfCapturableLambda);
6354    }
6355    const bool IsVarNeverAConstantExpression =
6356        VariableCanNeverBeAConstantExpression(Var, S.Context);
6357    if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
6358      // This full expression is not instantiation dependent or the variable
6359      // can not be used in a constant expression - which means
6360      // this variable must be odr-used here, so diagnose a
6361      // capture violation early, if the variable is un-captureable.
6362      // This is purely for diagnosing errors early.  Otherwise, this
6363      // error would get diagnosed when the lambda becomes capture ready.
6364      QualType CaptureType, DeclRefType;
6365      SourceLocation ExprLoc = VarExpr->getExprLoc();
6366      if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6367                          /*EllipsisLoc*/ SourceLocation(),
6368                          /*BuildAndDiagnose*/false, CaptureType,
6369                          DeclRefType, nullptr)) {
6370        // We will never be able to capture this variable, and we need
6371        // to be able to in any and all instantiations, so diagnose it.
6372        S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6373                          /*EllipsisLoc*/ SourceLocation(),
6374                          /*BuildAndDiagnose*/true, CaptureType,
6375                          DeclRefType, nullptr);
6376      }
6377    }
6378  }
6379
6380  // Check if 'this' needs to be captured.
6381  if (CurrentLSI->hasPotentialThisCapture()) {
6382    // If we have a capture-capable lambda for 'this', go ahead and capture
6383    // 'this' in that lambda (and all its enclosing lambdas).
6384    if (const Optional<unsigned> Index =
6385            getStackIndexOfNearestEnclosingCaptureCapableLambda(
6386                FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
6387      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6388      S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
6389                            /*Explicit*/ false, /*BuildAndDiagnose*/ true,
6390                            &FunctionScopeIndexOfCapturableLambda);
6391    }
6392  }
6393
6394  // Reset all the potential captures at the end of each full-expression.
6395  CurrentLSI->clearPotentialCaptures();
6396}
6397
6398static ExprResult attemptRecovery(Sema &SemaRef,
6399                                  const TypoCorrectionConsumer &Consumer,
6400                                  TypoCorrection TC) {
6401  LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
6402                 Consumer.getLookupResult().getLookupKind());
6403  const CXXScopeSpec *SS = Consumer.getSS();
6404  CXXScopeSpec NewSS;
6405
6406  // Use an approprate CXXScopeSpec for building the expr.
6407  if (auto *NNS = TC.getCorrectionSpecifier())
6408    NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
6409  else if (SS && !TC.WillReplaceSpecifier())
6410    NewSS = *SS;
6411
6412  if (auto *ND = TC.getCorrectionDecl()) {
6413    R.setLookupName(ND->getDeclName());
6414    R.addDecl(ND);
6415    if (ND->isCXXClassMember()) {
6416      // Figure out the correct naming class to add to the LookupResult.
6417      CXXRecordDecl *Record = nullptr;
6418      if (auto *NNS = TC.getCorrectionSpecifier())
6419        Record = NNS->getAsType()->getAsCXXRecordDecl();
6420      if (!Record)
6421        Record =
6422            dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
6423      if (Record)
6424        R.setNamingClass(Record);
6425
6426      // Detect and handle the case where the decl might be an implicit
6427      // member.
6428      bool MightBeImplicitMember;
6429      if (!Consumer.isAddressOfOperand())
6430        MightBeImplicitMember = true;
6431      else if (!NewSS.isEmpty())
6432        MightBeImplicitMember = false;
6433      else if (R.isOverloadedResult())
6434        MightBeImplicitMember = false;
6435      else if (R.isUnresolvableResult())
6436        MightBeImplicitMember = true;
6437      else
6438        MightBeImplicitMember = isa<FieldDecl>(ND) ||
6439                                isa<IndirectFieldDecl>(ND) ||
6440                                isa<MSPropertyDecl>(ND);
6441
6442      if (MightBeImplicitMember)
6443        return SemaRef.BuildPossibleImplicitMemberExpr(
6444            NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
6445            /*TemplateArgs*/ nullptr, /*S*/ nullptr);
6446    } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
6447      return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
6448                                        Ivar->getIdentifier());
6449    }
6450  }
6451
6452  return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
6453                                          /*AcceptInvalidDecl*/ true);
6454}
6455
6456namespace {
6457class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
6458  llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
6459
6460public:
6461  explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
6462      : TypoExprs(TypoExprs) {}
6463  bool VisitTypoExpr(TypoExpr *TE) {
6464    TypoExprs.insert(TE);
6465    return true;
6466  }
6467};
6468
6469class TransformTypos : public TreeTransform<TransformTypos> {
6470  typedef TreeTransform<TransformTypos> BaseTransform;
6471
6472  VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
6473                     // process of being initialized.
6474  llvm::function_ref<ExprResult(Expr *)> ExprFilter;
6475  llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
6476  llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
6477  llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
6478
6479  /// \brief Emit diagnostics for all of the TypoExprs encountered.
6480  /// If the TypoExprs were successfully corrected, then the diagnostics should
6481  /// suggest the corrections. Otherwise the diagnostics will not suggest
6482  /// anything (having been passed an empty TypoCorrection).
6483  void EmitAllDiagnostics() {
6484    for (auto E : TypoExprs) {
6485      TypoExpr *TE = cast<TypoExpr>(E);
6486      auto &State = SemaRef.getTypoExprState(TE);
6487      if (State.DiagHandler) {
6488        TypoCorrection TC = State.Consumer->getCurrentCorrection();
6489        ExprResult Replacement = TransformCache[TE];
6490
6491        // Extract the NamedDecl from the transformed TypoExpr and add it to the
6492        // TypoCorrection, replacing the existing decls. This ensures the right
6493        // NamedDecl is used in diagnostics e.g. in the case where overload
6494        // resolution was used to select one from several possible decls that
6495        // had been stored in the TypoCorrection.
6496        if (auto *ND = getDeclFromExpr(
6497                Replacement.isInvalid() ? nullptr : Replacement.get()))
6498          TC.setCorrectionDecl(ND);
6499
6500        State.DiagHandler(TC);
6501      }
6502      SemaRef.clearDelayedTypo(TE);
6503    }
6504  }
6505
6506  /// \brief If corrections for the first TypoExpr have been exhausted for a
6507  /// given combination of the other TypoExprs, retry those corrections against
6508  /// the next combination of substitutions for the other TypoExprs by advancing
6509  /// to the next potential correction of the second TypoExpr. For the second
6510  /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
6511  /// the stream is reset and the next TypoExpr's stream is advanced by one (a
6512  /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
6513  /// TransformCache). Returns true if there is still any untried combinations
6514  /// of corrections.
6515  bool CheckAndAdvanceTypoExprCorrectionStreams() {
6516    for (auto TE : TypoExprs) {
6517      auto &State = SemaRef.getTypoExprState(TE);
6518      TransformCache.erase(TE);
6519      if (!State.Consumer->finished())
6520        return true;
6521      State.Consumer->resetCorrectionStream();
6522    }
6523    return false;
6524  }
6525
6526  NamedDecl *getDeclFromExpr(Expr *E) {
6527    if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
6528      E = OverloadResolution[OE];
6529
6530    if (!E)
6531      return nullptr;
6532    if (auto *DRE = dyn_cast<DeclRefExpr>(E))
6533      return DRE->getDecl();
6534    if (auto *ME = dyn_cast<MemberExpr>(E))
6535      return ME->getMemberDecl();
6536    // FIXME: Add any other expr types that could be be seen by the delayed typo
6537    // correction TreeTransform for which the corresponding TypoCorrection could
6538    // contain multiple decls.
6539    return nullptr;
6540  }
6541
6542  ExprResult TryTransform(Expr *E) {
6543    Sema::SFINAETrap Trap(SemaRef);
6544    ExprResult Res = TransformExpr(E);
6545    if (Trap.hasErrorOccurred() || Res.isInvalid())
6546      return ExprError();
6547
6548    return ExprFilter(Res.get());
6549  }
6550
6551public:
6552  TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
6553      : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
6554
6555  ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
6556                                   MultiExprArg Args,
6557                                   SourceLocation RParenLoc,
6558                                   Expr *ExecConfig = nullptr) {
6559    auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
6560                                                 RParenLoc, ExecConfig);
6561    if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
6562      if (Result.isUsable()) {
6563        Expr *ResultCall = Result.get();
6564        if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
6565          ResultCall = BE->getSubExpr();
6566        if (auto *CE = dyn_cast<CallExpr>(ResultCall))
6567          OverloadResolution[OE] = CE->getCallee();
6568      }
6569    }
6570    return Result;
6571  }
6572
6573  ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
6574
6575  ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
6576
6577  ExprResult Transform(Expr *E) {
6578    ExprResult Res;
6579    while (true) {
6580      Res = TryTransform(E);
6581
6582      // Exit if either the transform was valid or if there were no TypoExprs
6583      // to transform that still have any untried correction candidates..
6584      if (!Res.isInvalid() ||
6585          !CheckAndAdvanceTypoExprCorrectionStreams())
6586        break;
6587    }
6588
6589    // Ensure none of the TypoExprs have multiple typo correction candidates
6590    // with the same edit length that pass all the checks and filters.
6591    // TODO: Properly handle various permutations of possible corrections when
6592    // there is more than one potentially ambiguous typo correction.
6593    // Also, disable typo correction while attempting the transform when
6594    // handling potentially ambiguous typo corrections as any new TypoExprs will
6595    // have been introduced by the application of one of the correction
6596    // candidates and add little to no value if corrected.
6597    SemaRef.DisableTypoCorrection = true;
6598    while (!AmbiguousTypoExprs.empty()) {
6599      auto TE  = AmbiguousTypoExprs.back();
6600      auto Cached = TransformCache[TE];
6601      auto &State = SemaRef.getTypoExprState(TE);
6602      State.Consumer->saveCurrentPosition();
6603      TransformCache.erase(TE);
6604      if (!TryTransform(E).isInvalid()) {
6605        State.Consumer->resetCorrectionStream();
6606        TransformCache.erase(TE);
6607        Res = ExprError();
6608        break;
6609      }
6610      AmbiguousTypoExprs.remove(TE);
6611      State.Consumer->restoreSavedPosition();
6612      TransformCache[TE] = Cached;
6613    }
6614    SemaRef.DisableTypoCorrection = false;
6615
6616    // Ensure that all of the TypoExprs within the current Expr have been found.
6617    if (!Res.isUsable())
6618      FindTypoExprs(TypoExprs).TraverseStmt(E);
6619
6620    EmitAllDiagnostics();
6621
6622    return Res;
6623  }
6624
6625  ExprResult TransformTypoExpr(TypoExpr *E) {
6626    // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
6627    // cached transformation result if there is one and the TypoExpr isn't the
6628    // first one that was encountered.
6629    auto &CacheEntry = TransformCache[E];
6630    if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
6631      return CacheEntry;
6632    }
6633
6634    auto &State = SemaRef.getTypoExprState(E);
6635    assert(State.Consumer && "Cannot transform a cleared TypoExpr");
6636
6637    // For the first TypoExpr and an uncached TypoExpr, find the next likely
6638    // typo correction and return it.
6639    while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
6640      if (InitDecl && TC.getCorrectionDecl() == InitDecl)
6641        continue;
6642      ExprResult NE = State.RecoveryHandler ?
6643          State.RecoveryHandler(SemaRef, E, TC) :
6644          attemptRecovery(SemaRef, *State.Consumer, TC);
6645      if (!NE.isInvalid()) {
6646        // Check whether there may be a second viable correction with the same
6647        // edit distance; if so, remember this TypoExpr may have an ambiguous
6648        // correction so it can be more thoroughly vetted later.
6649        TypoCorrection Next;
6650        if ((Next = State.Consumer->peekNextCorrection()) &&
6651            Next.getEditDistance(false) == TC.getEditDistance(false)) {
6652          AmbiguousTypoExprs.insert(E);
6653        } else {
6654          AmbiguousTypoExprs.remove(E);
6655        }
6656        assert(!NE.isUnset() &&
6657               "Typo was transformed into a valid-but-null ExprResult");
6658        return CacheEntry = NE;
6659      }
6660    }
6661    return CacheEntry = ExprError();
6662  }
6663};
6664}
6665
6666ExprResult
6667Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
6668                                llvm::function_ref<ExprResult(Expr *)> Filter) {
6669  // If the current evaluation context indicates there are uncorrected typos
6670  // and the current expression isn't guaranteed to not have typos, try to
6671  // resolve any TypoExpr nodes that might be in the expression.
6672  if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
6673      (E->isTypeDependent() || E->isValueDependent() ||
6674       E->isInstantiationDependent())) {
6675    auto TyposInContext = ExprEvalContexts.back().NumTypos;
6676    assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
6677    ExprEvalContexts.back().NumTypos = ~0U;
6678    auto TyposResolved = DelayedTypos.size();
6679    auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
6680    ExprEvalContexts.back().NumTypos = TyposInContext;
6681    TyposResolved -= DelayedTypos.size();
6682    if (Result.isInvalid() || Result.get() != E) {
6683      ExprEvalContexts.back().NumTypos -= TyposResolved;
6684      return Result;
6685    }
6686    assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
6687  }
6688  return E;
6689}
6690
6691ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
6692                                     bool DiscardedValue,
6693                                     bool IsConstexpr,
6694                                     bool IsLambdaInitCaptureInitializer) {
6695  ExprResult FullExpr = FE;
6696
6697  if (!FullExpr.get())
6698    return ExprError();
6699
6700  // If we are an init-expression in a lambdas init-capture, we should not
6701  // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
6702  // containing full-expression is done).
6703  // template<class ... Ts> void test(Ts ... t) {
6704  //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
6705  //     return a;
6706  //   }() ...);
6707  // }
6708  // FIXME: This is a hack. It would be better if we pushed the lambda scope
6709  // when we parse the lambda introducer, and teach capturing (but not
6710  // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
6711  // corresponding class yet (that is, have LambdaScopeInfo either represent a
6712  // lambda where we've entered the introducer but not the body, or represent a
6713  // lambda where we've entered the body, depending on where the
6714  // parser/instantiation has got to).
6715  if (!IsLambdaInitCaptureInitializer &&
6716      DiagnoseUnexpandedParameterPack(FullExpr.get()))
6717    return ExprError();
6718
6719  // Top-level expressions default to 'id' when we're in a debugger.
6720  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
6721      FullExpr.get()->getType() == Context.UnknownAnyTy) {
6722    FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
6723    if (FullExpr.isInvalid())
6724      return ExprError();
6725  }
6726
6727  if (DiscardedValue) {
6728    FullExpr = CheckPlaceholderExpr(FullExpr.get());
6729    if (FullExpr.isInvalid())
6730      return ExprError();
6731
6732    FullExpr = IgnoredValueConversions(FullExpr.get());
6733    if (FullExpr.isInvalid())
6734      return ExprError();
6735  }
6736
6737  FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
6738  if (FullExpr.isInvalid())
6739    return ExprError();
6740
6741  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
6742
6743  // At the end of this full expression (which could be a deeply nested
6744  // lambda), if there is a potential capture within the nested lambda,
6745  // have the outer capture-able lambda try and capture it.
6746  // Consider the following code:
6747  // void f(int, int);
6748  // void f(const int&, double);
6749  // void foo() {
6750  //  const int x = 10, y = 20;
6751  //  auto L = [=](auto a) {
6752  //      auto M = [=](auto b) {
6753  //         f(x, b); <-- requires x to be captured by L and M
6754  //         f(y, a); <-- requires y to be captured by L, but not all Ms
6755  //      };
6756  //   };
6757  // }
6758
6759  // FIXME: Also consider what happens for something like this that involves
6760  // the gnu-extension statement-expressions or even lambda-init-captures:
6761  //   void f() {
6762  //     const int n = 0;
6763  //     auto L =  [&](auto a) {
6764  //       +n + ({ 0; a; });
6765  //     };
6766  //   }
6767  //
6768  // Here, we see +n, and then the full-expression 0; ends, so we don't
6769  // capture n (and instead remove it from our list of potential captures),
6770  // and then the full-expression +n + ({ 0; }); ends, but it's too late
6771  // for us to see that we need to capture n after all.
6772
6773  LambdaScopeInfo *const CurrentLSI = getCurLambda();
6774  // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6775  // even if CurContext is not a lambda call operator. Refer to that Bug Report
6776  // for an example of the code that might cause this asynchrony.
6777  // By ensuring we are in the context of a lambda's call operator
6778  // we can fix the bug (we only need to check whether we need to capture
6779  // if we are within a lambda's body); but per the comments in that
6780  // PR, a proper fix would entail :
6781  //   "Alternative suggestion:
6782  //   - Add to Sema an integer holding the smallest (outermost) scope
6783  //     index that we are *lexically* within, and save/restore/set to
6784  //     FunctionScopes.size() in InstantiatingTemplate's
6785  //     constructor/destructor.
6786  //  - Teach the handful of places that iterate over FunctionScopes to
6787  //    stop at the outermost enclosing lexical scope."
6788  const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6789  if (IsInLambdaDeclContext && CurrentLSI &&
6790      CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6791    CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6792                                                              *this);
6793  return MaybeCreateExprWithCleanups(FullExpr);
6794}
6795
6796StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6797  if (!FullStmt) return StmtError();
6798
6799  return MaybeCreateStmtWithCleanups(FullStmt);
6800}
6801
6802Sema::IfExistsResult
6803Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6804                                   CXXScopeSpec &SS,
6805                                   const DeclarationNameInfo &TargetNameInfo) {
6806  DeclarationName TargetName = TargetNameInfo.getName();
6807  if (!TargetName)
6808    return IER_DoesNotExist;
6809
6810  // If the name itself is dependent, then the result is dependent.
6811  if (TargetName.isDependentName())
6812    return IER_Dependent;
6813
6814  // Do the redeclaration lookup in the current scope.
6815  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6816                 Sema::NotForRedeclaration);
6817  LookupParsedName(R, S, &SS);
6818  R.suppressDiagnostics();
6819
6820  switch (R.getResultKind()) {
6821  case LookupResult::Found:
6822  case LookupResult::FoundOverloaded:
6823  case LookupResult::FoundUnresolvedValue:
6824  case LookupResult::Ambiguous:
6825    return IER_Exists;
6826
6827  case LookupResult::NotFound:
6828    return IER_DoesNotExist;
6829
6830  case LookupResult::NotFoundInCurrentInstantiation:
6831    return IER_Dependent;
6832  }
6833
6834  llvm_unreachable("Invalid LookupResult Kind!");
6835}
6836
6837Sema::IfExistsResult
6838Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6839                                   bool IsIfExists, CXXScopeSpec &SS,
6840                                   UnqualifiedId &Name) {
6841  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6842
6843  // Check for unexpanded parameter packs.
6844  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6845  collectUnexpandedParameterPacks(SS, Unexpanded);
6846  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6847  if (!Unexpanded.empty()) {
6848    DiagnoseUnexpandedParameterPacks(KeywordLoc,
6849                                     IsIfExists? UPPC_IfExists
6850                                               : UPPC_IfNotExists,
6851                                     Unexpanded);
6852    return IER_Error;
6853  }
6854
6855  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6856}
6857