1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56#include "lib/tp.h"
57
58static pthread_t helper_thread;
59static pthread_mutex_t helper_lock;
60pthread_cond_t helper_cond;
61int helper_do_stat = 0;
62
63static struct fio_mutex *startup_mutex;
64static struct flist_head *cgroup_list;
65static char *cgroup_mnt;
66static int exit_value;
67static volatile int fio_abort;
68static unsigned int nr_process = 0;
69static unsigned int nr_thread = 0;
70
71struct io_log *agg_io_log[DDIR_RWDIR_CNT];
72
73int groupid = 0;
74unsigned int thread_number = 0;
75unsigned int stat_number = 0;
76int shm_id = 0;
77int temp_stall_ts;
78unsigned long done_secs = 0;
79volatile int helper_exit = 0;
80
81#define PAGE_ALIGN(buf)	\
82	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
83
84#define JOB_START_TIMEOUT	(5 * 1000)
85
86static void sig_int(int sig)
87{
88	if (threads) {
89		if (is_backend)
90			fio_server_got_signal(sig);
91		else {
92			log_info("\nfio: terminating on signal %d\n", sig);
93			log_info_flush();
94			exit_value = 128;
95		}
96
97		fio_terminate_threads(TERMINATE_ALL);
98	}
99}
100
101static void sig_show_status(int sig)
102{
103	show_running_run_stats();
104}
105
106static void set_sig_handlers(void)
107{
108	struct sigaction act;
109
110	memset(&act, 0, sizeof(act));
111	act.sa_handler = sig_int;
112	act.sa_flags = SA_RESTART;
113	sigaction(SIGINT, &act, NULL);
114
115	memset(&act, 0, sizeof(act));
116	act.sa_handler = sig_int;
117	act.sa_flags = SA_RESTART;
118	sigaction(SIGTERM, &act, NULL);
119
120/* Windows uses SIGBREAK as a quit signal from other applications */
121#ifdef WIN32
122	memset(&act, 0, sizeof(act));
123	act.sa_handler = sig_int;
124	act.sa_flags = SA_RESTART;
125	sigaction(SIGBREAK, &act, NULL);
126#endif
127
128	memset(&act, 0, sizeof(act));
129	act.sa_handler = sig_show_status;
130	act.sa_flags = SA_RESTART;
131	sigaction(SIGUSR1, &act, NULL);
132
133	if (is_backend) {
134		memset(&act, 0, sizeof(act));
135		act.sa_handler = sig_int;
136		act.sa_flags = SA_RESTART;
137		sigaction(SIGPIPE, &act, NULL);
138	}
139}
140
141/*
142 * Check if we are above the minimum rate given.
143 */
144static int __check_min_rate(struct thread_data *td, struct timeval *now,
145			    enum fio_ddir ddir)
146{
147	unsigned long long bytes = 0;
148	unsigned long iops = 0;
149	unsigned long spent;
150	unsigned long rate;
151	unsigned int ratemin = 0;
152	unsigned int rate_iops = 0;
153	unsigned int rate_iops_min = 0;
154
155	assert(ddir_rw(ddir));
156
157	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
158		return 0;
159
160	/*
161	 * allow a 2 second settle period in the beginning
162	 */
163	if (mtime_since(&td->start, now) < 2000)
164		return 0;
165
166	iops += td->this_io_blocks[ddir];
167	bytes += td->this_io_bytes[ddir];
168	ratemin += td->o.ratemin[ddir];
169	rate_iops += td->o.rate_iops[ddir];
170	rate_iops_min += td->o.rate_iops_min[ddir];
171
172	/*
173	 * if rate blocks is set, sample is running
174	 */
175	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
176		spent = mtime_since(&td->lastrate[ddir], now);
177		if (spent < td->o.ratecycle)
178			return 0;
179
180		if (td->o.rate[ddir]) {
181			/*
182			 * check bandwidth specified rate
183			 */
184			if (bytes < td->rate_bytes[ddir]) {
185				log_err("%s: min rate %u not met\n", td->o.name,
186								ratemin);
187				return 1;
188			} else {
189				if (spent)
190					rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
191				else
192					rate = 0;
193
194				if (rate < ratemin ||
195				    bytes < td->rate_bytes[ddir]) {
196					log_err("%s: min rate %u not met, got"
197						" %luKB/sec\n", td->o.name,
198							ratemin, rate);
199					return 1;
200				}
201			}
202		} else {
203			/*
204			 * checks iops specified rate
205			 */
206			if (iops < rate_iops) {
207				log_err("%s: min iops rate %u not met\n",
208						td->o.name, rate_iops);
209				return 1;
210			} else {
211				if (spent)
212					rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
213				else
214					rate = 0;
215
216				if (rate < rate_iops_min ||
217				    iops < td->rate_blocks[ddir]) {
218					log_err("%s: min iops rate %u not met,"
219						" got %lu\n", td->o.name,
220							rate_iops_min, rate);
221				}
222			}
223		}
224	}
225
226	td->rate_bytes[ddir] = bytes;
227	td->rate_blocks[ddir] = iops;
228	memcpy(&td->lastrate[ddir], now, sizeof(*now));
229	return 0;
230}
231
232static int check_min_rate(struct thread_data *td, struct timeval *now,
233			  uint64_t *bytes_done)
234{
235	int ret = 0;
236
237	if (bytes_done[DDIR_READ])
238		ret |= __check_min_rate(td, now, DDIR_READ);
239	if (bytes_done[DDIR_WRITE])
240		ret |= __check_min_rate(td, now, DDIR_WRITE);
241	if (bytes_done[DDIR_TRIM])
242		ret |= __check_min_rate(td, now, DDIR_TRIM);
243
244	return ret;
245}
246
247/*
248 * When job exits, we can cancel the in-flight IO if we are using async
249 * io. Attempt to do so.
250 */
251static void cleanup_pending_aio(struct thread_data *td)
252{
253	int r;
254
255	/*
256	 * get immediately available events, if any
257	 */
258	r = io_u_queued_complete(td, 0, NULL);
259	if (r < 0)
260		return;
261
262	/*
263	 * now cancel remaining active events
264	 */
265	if (td->io_ops->cancel) {
266		struct io_u *io_u;
267		int i;
268
269		io_u_qiter(&td->io_u_all, io_u, i) {
270			if (io_u->flags & IO_U_F_FLIGHT) {
271				r = td->io_ops->cancel(td, io_u);
272				if (!r)
273					put_io_u(td, io_u);
274			}
275		}
276	}
277
278	if (td->cur_depth)
279		r = io_u_queued_complete(td, td->cur_depth, NULL);
280}
281
282/*
283 * Helper to handle the final sync of a file. Works just like the normal
284 * io path, just does everything sync.
285 */
286static int fio_io_sync(struct thread_data *td, struct fio_file *f)
287{
288	struct io_u *io_u = __get_io_u(td);
289	int ret;
290
291	if (!io_u)
292		return 1;
293
294	io_u->ddir = DDIR_SYNC;
295	io_u->file = f;
296
297	if (td_io_prep(td, io_u)) {
298		put_io_u(td, io_u);
299		return 1;
300	}
301
302requeue:
303	ret = td_io_queue(td, io_u);
304	if (ret < 0) {
305		td_verror(td, io_u->error, "td_io_queue");
306		put_io_u(td, io_u);
307		return 1;
308	} else if (ret == FIO_Q_QUEUED) {
309		if (io_u_queued_complete(td, 1, NULL) < 0)
310			return 1;
311	} else if (ret == FIO_Q_COMPLETED) {
312		if (io_u->error) {
313			td_verror(td, io_u->error, "td_io_queue");
314			return 1;
315		}
316
317		if (io_u_sync_complete(td, io_u, NULL) < 0)
318			return 1;
319	} else if (ret == FIO_Q_BUSY) {
320		if (td_io_commit(td))
321			return 1;
322		goto requeue;
323	}
324
325	return 0;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330	int ret;
331
332	if (fio_file_open(f))
333		return fio_io_sync(td, f);
334
335	if (td_io_open_file(td, f))
336		return 1;
337
338	ret = fio_io_sync(td, f);
339	td_io_close_file(td, f);
340	return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345	fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351		__update_tv_cache(td);
352}
353
354static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356	if (in_ramp_time(td))
357		return 0;
358	if (!td->o.timeout)
359		return 0;
360	if (utime_since(&td->epoch, t) >= td->o.timeout)
361		return 1;
362
363	return 0;
364}
365
366static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
367			       int *retptr)
368{
369	int ret = *retptr;
370
371	if (ret < 0 || td->error) {
372		int err = td->error;
373		enum error_type_bit eb;
374
375		if (ret < 0)
376			err = -ret;
377
378		eb = td_error_type(ddir, err);
379		if (!(td->o.continue_on_error & (1 << eb)))
380			return 1;
381
382		if (td_non_fatal_error(td, eb, err)) {
383		        /*
384		         * Continue with the I/Os in case of
385			 * a non fatal error.
386			 */
387			update_error_count(td, err);
388			td_clear_error(td);
389			*retptr = 0;
390			return 0;
391		} else if (td->o.fill_device && err == ENOSPC) {
392			/*
393			 * We expect to hit this error if
394			 * fill_device option is set.
395			 */
396			td_clear_error(td);
397			fio_mark_td_terminate(td);
398			return 1;
399		} else {
400			/*
401			 * Stop the I/O in case of a fatal
402			 * error.
403			 */
404			update_error_count(td, err);
405			return 1;
406		}
407	}
408
409	return 0;
410}
411
412static void check_update_rusage(struct thread_data *td)
413{
414	if (td->update_rusage) {
415		td->update_rusage = 0;
416		update_rusage_stat(td);
417		fio_mutex_up(td->rusage_sem);
418	}
419}
420
421static int wait_for_completions(struct thread_data *td, struct timeval *time,
422				uint64_t *bytes_done)
423{
424	const int full = queue_full(td);
425	int min_evts = 0;
426	int ret;
427
428	/*
429	 * if the queue is full, we MUST reap at least 1 event
430	 */
431	min_evts = min(td->o.iodepth_batch_complete, td->cur_depth);
432	if (full && !min_evts)
433		min_evts = 1;
434
435	if (time && (__should_check_rate(td, DDIR_READ) ||
436	    __should_check_rate(td, DDIR_WRITE) ||
437	    __should_check_rate(td, DDIR_TRIM)))
438		fio_gettime(time, NULL);
439
440	do {
441		ret = io_u_queued_complete(td, min_evts, bytes_done);
442		if (ret < 0)
443			break;
444	} while (full && (td->cur_depth > td->o.iodepth_low));
445
446	return ret;
447}
448
449/*
450 * The main verify engine. Runs over the writes we previously submitted,
451 * reads the blocks back in, and checks the crc/md5 of the data.
452 */
453static void do_verify(struct thread_data *td, uint64_t verify_bytes)
454{
455	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
456	struct fio_file *f;
457	struct io_u *io_u;
458	int ret, min_events;
459	unsigned int i;
460
461	dprint(FD_VERIFY, "starting loop\n");
462
463	/*
464	 * sync io first and invalidate cache, to make sure we really
465	 * read from disk.
466	 */
467	for_each_file(td, f, i) {
468		if (!fio_file_open(f))
469			continue;
470		if (fio_io_sync(td, f))
471			break;
472		if (file_invalidate_cache(td, f))
473			break;
474	}
475
476	check_update_rusage(td);
477
478	if (td->error)
479		return;
480
481	td_set_runstate(td, TD_VERIFYING);
482
483	io_u = NULL;
484	while (!td->terminate) {
485		enum fio_ddir ddir;
486		int ret2, full;
487
488		update_tv_cache(td);
489		check_update_rusage(td);
490
491		if (runtime_exceeded(td, &td->tv_cache)) {
492			__update_tv_cache(td);
493			if (runtime_exceeded(td, &td->tv_cache)) {
494				fio_mark_td_terminate(td);
495				break;
496			}
497		}
498
499		if (flow_threshold_exceeded(td))
500			continue;
501
502		if (!td->o.experimental_verify) {
503			io_u = __get_io_u(td);
504			if (!io_u)
505				break;
506
507			if (get_next_verify(td, io_u)) {
508				put_io_u(td, io_u);
509				break;
510			}
511
512			if (td_io_prep(td, io_u)) {
513				put_io_u(td, io_u);
514				break;
515			}
516		} else {
517			if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
518				break;
519
520			while ((io_u = get_io_u(td)) != NULL) {
521				if (IS_ERR(io_u)) {
522					io_u = NULL;
523					ret = FIO_Q_BUSY;
524					goto reap;
525				}
526
527				/*
528				 * We are only interested in the places where
529				 * we wrote or trimmed IOs. Turn those into
530				 * reads for verification purposes.
531				 */
532				if (io_u->ddir == DDIR_READ) {
533					/*
534					 * Pretend we issued it for rwmix
535					 * accounting
536					 */
537					td->io_issues[DDIR_READ]++;
538					put_io_u(td, io_u);
539					continue;
540				} else if (io_u->ddir == DDIR_TRIM) {
541					io_u->ddir = DDIR_READ;
542					io_u->flags |= IO_U_F_TRIMMED;
543					break;
544				} else if (io_u->ddir == DDIR_WRITE) {
545					io_u->ddir = DDIR_READ;
546					break;
547				} else {
548					put_io_u(td, io_u);
549					continue;
550				}
551			}
552
553			if (!io_u)
554				break;
555		}
556
557		if (verify_state_should_stop(td, io_u)) {
558			put_io_u(td, io_u);
559			break;
560		}
561
562		if (td->o.verify_async)
563			io_u->end_io = verify_io_u_async;
564		else
565			io_u->end_io = verify_io_u;
566
567		ddir = io_u->ddir;
568		if (!td->o.disable_slat)
569			fio_gettime(&io_u->start_time, NULL);
570
571		ret = td_io_queue(td, io_u);
572		switch (ret) {
573		case FIO_Q_COMPLETED:
574			if (io_u->error) {
575				ret = -io_u->error;
576				clear_io_u(td, io_u);
577			} else if (io_u->resid) {
578				int bytes = io_u->xfer_buflen - io_u->resid;
579
580				/*
581				 * zero read, fail
582				 */
583				if (!bytes) {
584					td_verror(td, EIO, "full resid");
585					put_io_u(td, io_u);
586					break;
587				}
588
589				io_u->xfer_buflen = io_u->resid;
590				io_u->xfer_buf += bytes;
591				io_u->offset += bytes;
592
593				if (ddir_rw(io_u->ddir))
594					td->ts.short_io_u[io_u->ddir]++;
595
596				f = io_u->file;
597				if (io_u->offset == f->real_file_size)
598					goto sync_done;
599
600				requeue_io_u(td, &io_u);
601			} else {
602sync_done:
603				ret = io_u_sync_complete(td, io_u, bytes_done);
604				if (ret < 0)
605					break;
606			}
607			continue;
608		case FIO_Q_QUEUED:
609			break;
610		case FIO_Q_BUSY:
611			requeue_io_u(td, &io_u);
612			ret2 = td_io_commit(td);
613			if (ret2 < 0)
614				ret = ret2;
615			break;
616		default:
617			assert(ret < 0);
618			td_verror(td, -ret, "td_io_queue");
619			break;
620		}
621
622		if (break_on_this_error(td, ddir, &ret))
623			break;
624
625		/*
626		 * if we can queue more, do so. but check if there are
627		 * completed io_u's first. Note that we can get BUSY even
628		 * without IO queued, if the system is resource starved.
629		 */
630reap:
631		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
632		if (full || !td->o.iodepth_batch_complete)
633			ret = wait_for_completions(td, NULL, bytes_done);
634
635		if (ret < 0)
636			break;
637	}
638
639	check_update_rusage(td);
640
641	if (!td->error) {
642		min_events = td->cur_depth;
643
644		if (min_events)
645			ret = io_u_queued_complete(td, min_events, NULL);
646	} else
647		cleanup_pending_aio(td);
648
649	td_set_runstate(td, TD_RUNNING);
650
651	dprint(FD_VERIFY, "exiting loop\n");
652}
653
654static unsigned int exceeds_number_ios(struct thread_data *td)
655{
656	unsigned long long number_ios;
657
658	if (!td->o.number_ios)
659		return 0;
660
661	number_ios = ddir_rw_sum(td->io_blocks);
662	number_ios += td->io_u_queued + td->io_u_in_flight;
663
664	return number_ios >= (td->o.number_ios * td->loops);
665}
666
667static int io_issue_bytes_exceeded(struct thread_data *td)
668{
669	unsigned long long bytes, limit;
670
671	if (td_rw(td))
672		bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
673	else if (td_write(td))
674		bytes = td->io_issue_bytes[DDIR_WRITE];
675	else if (td_read(td))
676		bytes = td->io_issue_bytes[DDIR_READ];
677	else
678		bytes = td->io_issue_bytes[DDIR_TRIM];
679
680	if (td->o.io_limit)
681		limit = td->o.io_limit;
682	else
683		limit = td->o.size;
684
685	limit *= td->loops;
686	return bytes >= limit || exceeds_number_ios(td);
687}
688
689static int io_complete_bytes_exceeded(struct thread_data *td)
690{
691	unsigned long long bytes, limit;
692
693	if (td_rw(td))
694		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
695	else if (td_write(td))
696		bytes = td->this_io_bytes[DDIR_WRITE];
697	else if (td_read(td))
698		bytes = td->this_io_bytes[DDIR_READ];
699	else
700		bytes = td->this_io_bytes[DDIR_TRIM];
701
702	if (td->o.io_limit)
703		limit = td->o.io_limit;
704	else
705		limit = td->o.size;
706
707	limit *= td->loops;
708	return bytes >= limit || exceeds_number_ios(td);
709}
710
711/*
712 * Main IO worker function. It retrieves io_u's to process and queues
713 * and reaps them, checking for rate and errors along the way.
714 *
715 * Returns number of bytes written and trimmed.
716 */
717static uint64_t do_io(struct thread_data *td)
718{
719	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
720	unsigned int i;
721	int ret = 0;
722	uint64_t total_bytes, bytes_issued = 0;
723
724	if (in_ramp_time(td))
725		td_set_runstate(td, TD_RAMP);
726	else
727		td_set_runstate(td, TD_RUNNING);
728
729	lat_target_init(td);
730
731	total_bytes = td->o.size;
732	/*
733	* Allow random overwrite workloads to write up to io_limit
734	* before starting verification phase as 'size' doesn't apply.
735	*/
736	if (td_write(td) && td_random(td) && td->o.norandommap)
737		total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
738	/*
739	 * If verify_backlog is enabled, we'll run the verify in this
740	 * handler as well. For that case, we may need up to twice the
741	 * amount of bytes.
742	 */
743	if (td->o.verify != VERIFY_NONE &&
744	   (td_write(td) && td->o.verify_backlog))
745		total_bytes += td->o.size;
746
747	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
748		(!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
749		td->o.time_based) {
750		struct timeval comp_time;
751		struct io_u *io_u;
752		int ret2, full;
753		enum fio_ddir ddir;
754
755		check_update_rusage(td);
756
757		if (td->terminate || td->done)
758			break;
759
760		update_tv_cache(td);
761
762		if (runtime_exceeded(td, &td->tv_cache)) {
763			__update_tv_cache(td);
764			if (runtime_exceeded(td, &td->tv_cache)) {
765				fio_mark_td_terminate(td);
766				break;
767			}
768		}
769
770		if (flow_threshold_exceeded(td))
771			continue;
772
773		if (bytes_issued >= total_bytes)
774			break;
775
776		io_u = get_io_u(td);
777		if (IS_ERR_OR_NULL(io_u)) {
778			int err = PTR_ERR(io_u);
779
780			io_u = NULL;
781			if (err == -EBUSY) {
782				ret = FIO_Q_BUSY;
783				goto reap;
784			}
785			if (td->o.latency_target)
786				goto reap;
787			break;
788		}
789
790		ddir = io_u->ddir;
791
792		/*
793		 * Add verification end_io handler if:
794		 *	- Asked to verify (!td_rw(td))
795		 *	- Or the io_u is from our verify list (mixed write/ver)
796		 */
797		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
798		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
799
800			if (!td->o.verify_pattern_bytes) {
801				io_u->rand_seed = __rand(&td->verify_state);
802				if (sizeof(int) != sizeof(long *))
803					io_u->rand_seed *= __rand(&td->verify_state);
804			}
805
806			if (verify_state_should_stop(td, io_u)) {
807				put_io_u(td, io_u);
808				break;
809			}
810
811			if (td->o.verify_async)
812				io_u->end_io = verify_io_u_async;
813			else
814				io_u->end_io = verify_io_u;
815			td_set_runstate(td, TD_VERIFYING);
816		} else if (in_ramp_time(td))
817			td_set_runstate(td, TD_RAMP);
818		else
819			td_set_runstate(td, TD_RUNNING);
820
821		/*
822		 * Always log IO before it's issued, so we know the specific
823		 * order of it. The logged unit will track when the IO has
824		 * completed.
825		 */
826		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
827		    td->o.do_verify &&
828		    td->o.verify != VERIFY_NONE &&
829		    !td->o.experimental_verify)
830			log_io_piece(td, io_u);
831
832		ret = td_io_queue(td, io_u);
833		switch (ret) {
834		case FIO_Q_COMPLETED:
835			if (io_u->error) {
836				ret = -io_u->error;
837				unlog_io_piece(td, io_u);
838				clear_io_u(td, io_u);
839			} else if (io_u->resid) {
840				int bytes = io_u->xfer_buflen - io_u->resid;
841				struct fio_file *f = io_u->file;
842
843				bytes_issued += bytes;
844
845				trim_io_piece(td, io_u);
846
847				/*
848				 * zero read, fail
849				 */
850				if (!bytes) {
851					unlog_io_piece(td, io_u);
852					td_verror(td, EIO, "full resid");
853					put_io_u(td, io_u);
854					break;
855				}
856
857				io_u->xfer_buflen = io_u->resid;
858				io_u->xfer_buf += bytes;
859				io_u->offset += bytes;
860
861				if (ddir_rw(io_u->ddir))
862					td->ts.short_io_u[io_u->ddir]++;
863
864				if (io_u->offset == f->real_file_size)
865					goto sync_done;
866
867				requeue_io_u(td, &io_u);
868			} else {
869sync_done:
870				if (__should_check_rate(td, DDIR_READ) ||
871				    __should_check_rate(td, DDIR_WRITE) ||
872				    __should_check_rate(td, DDIR_TRIM))
873					fio_gettime(&comp_time, NULL);
874
875				ret = io_u_sync_complete(td, io_u, bytes_done);
876				if (ret < 0)
877					break;
878				bytes_issued += io_u->xfer_buflen;
879			}
880			break;
881		case FIO_Q_QUEUED:
882			/*
883			 * if the engine doesn't have a commit hook,
884			 * the io_u is really queued. if it does have such
885			 * a hook, it has to call io_u_queued() itself.
886			 */
887			if (td->io_ops->commit == NULL)
888				io_u_queued(td, io_u);
889			bytes_issued += io_u->xfer_buflen;
890			break;
891		case FIO_Q_BUSY:
892			unlog_io_piece(td, io_u);
893			requeue_io_u(td, &io_u);
894			ret2 = td_io_commit(td);
895			if (ret2 < 0)
896				ret = ret2;
897			break;
898		default:
899			assert(ret < 0);
900			put_io_u(td, io_u);
901			break;
902		}
903
904		if (break_on_this_error(td, ddir, &ret))
905			break;
906
907		/*
908		 * See if we need to complete some commands. Note that we
909		 * can get BUSY even without IO queued, if the system is
910		 * resource starved.
911		 */
912reap:
913		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
914		if (full || !td->o.iodepth_batch_complete)
915			ret = wait_for_completions(td, &comp_time, bytes_done);
916		if (ret < 0)
917			break;
918		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
919			continue;
920
921		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
922			if (check_min_rate(td, &comp_time, bytes_done)) {
923				if (exitall_on_terminate)
924					fio_terminate_threads(td->groupid);
925				td_verror(td, EIO, "check_min_rate");
926				break;
927			}
928		}
929		if (!in_ramp_time(td) && td->o.latency_target)
930			lat_target_check(td);
931
932		if (td->o.thinktime) {
933			unsigned long long b;
934
935			b = ddir_rw_sum(td->io_blocks);
936			if (!(b % td->o.thinktime_blocks)) {
937				int left;
938
939				io_u_quiesce(td);
940
941				if (td->o.thinktime_spin)
942					usec_spin(td->o.thinktime_spin);
943
944				left = td->o.thinktime - td->o.thinktime_spin;
945				if (left)
946					usec_sleep(td, left);
947			}
948		}
949	}
950
951	check_update_rusage(td);
952
953	if (td->trim_entries)
954		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
955
956	if (td->o.fill_device && td->error == ENOSPC) {
957		td->error = 0;
958		fio_mark_td_terminate(td);
959	}
960	if (!td->error) {
961		struct fio_file *f;
962
963		i = td->cur_depth;
964		if (i) {
965			ret = io_u_queued_complete(td, i, bytes_done);
966			if (td->o.fill_device && td->error == ENOSPC)
967				td->error = 0;
968		}
969
970		if (should_fsync(td) && td->o.end_fsync) {
971			td_set_runstate(td, TD_FSYNCING);
972
973			for_each_file(td, f, i) {
974				if (!fio_file_fsync(td, f))
975					continue;
976
977				log_err("fio: end_fsync failed for file %s\n",
978								f->file_name);
979			}
980		}
981	} else
982		cleanup_pending_aio(td);
983
984	/*
985	 * stop job if we failed doing any IO
986	 */
987	if (!ddir_rw_sum(td->this_io_bytes))
988		td->done = 1;
989
990	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
991}
992
993static void cleanup_io_u(struct thread_data *td)
994{
995	struct io_u *io_u;
996
997	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
998
999		if (td->io_ops->io_u_free)
1000			td->io_ops->io_u_free(td, io_u);
1001
1002		fio_memfree(io_u, sizeof(*io_u));
1003	}
1004
1005	free_io_mem(td);
1006
1007	io_u_rexit(&td->io_u_requeues);
1008	io_u_qexit(&td->io_u_freelist);
1009	io_u_qexit(&td->io_u_all);
1010
1011	if (td->last_write_comp)
1012		sfree(td->last_write_comp);
1013}
1014
1015static int init_io_u(struct thread_data *td)
1016{
1017	struct io_u *io_u;
1018	unsigned int max_bs, min_write;
1019	int cl_align, i, max_units;
1020	int data_xfer = 1, err;
1021	char *p;
1022
1023	max_units = td->o.iodepth;
1024	max_bs = td_max_bs(td);
1025	min_write = td->o.min_bs[DDIR_WRITE];
1026	td->orig_buffer_size = (unsigned long long) max_bs
1027					* (unsigned long long) max_units;
1028
1029	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1030		data_xfer = 0;
1031
1032	err = 0;
1033	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1034	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1035	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1036
1037	if (err) {
1038		log_err("fio: failed setting up IO queues\n");
1039		return 1;
1040	}
1041
1042	/*
1043	 * if we may later need to do address alignment, then add any
1044	 * possible adjustment here so that we don't cause a buffer
1045	 * overflow later. this adjustment may be too much if we get
1046	 * lucky and the allocator gives us an aligned address.
1047	 */
1048	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1049	    (td->io_ops->flags & FIO_RAWIO))
1050		td->orig_buffer_size += page_mask + td->o.mem_align;
1051
1052	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1053		unsigned long bs;
1054
1055		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1056		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1057	}
1058
1059	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1060		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1061		return 1;
1062	}
1063
1064	if (data_xfer && allocate_io_mem(td))
1065		return 1;
1066
1067	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1068	    (td->io_ops->flags & FIO_RAWIO))
1069		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1070	else
1071		p = td->orig_buffer;
1072
1073	cl_align = os_cache_line_size();
1074
1075	for (i = 0; i < max_units; i++) {
1076		void *ptr;
1077
1078		if (td->terminate)
1079			return 1;
1080
1081		ptr = fio_memalign(cl_align, sizeof(*io_u));
1082		if (!ptr) {
1083			log_err("fio: unable to allocate aligned memory\n");
1084			break;
1085		}
1086
1087		io_u = ptr;
1088		memset(io_u, 0, sizeof(*io_u));
1089		INIT_FLIST_HEAD(&io_u->verify_list);
1090		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1091
1092		if (data_xfer) {
1093			io_u->buf = p;
1094			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1095
1096			if (td_write(td))
1097				io_u_fill_buffer(td, io_u, min_write, max_bs);
1098			if (td_write(td) && td->o.verify_pattern_bytes) {
1099				/*
1100				 * Fill the buffer with the pattern if we are
1101				 * going to be doing writes.
1102				 */
1103				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1104			}
1105		}
1106
1107		io_u->index = i;
1108		io_u->flags = IO_U_F_FREE;
1109		io_u_qpush(&td->io_u_freelist, io_u);
1110
1111		/*
1112		 * io_u never leaves this stack, used for iteration of all
1113		 * io_u buffers.
1114		 */
1115		io_u_qpush(&td->io_u_all, io_u);
1116
1117		if (td->io_ops->io_u_init) {
1118			int ret = td->io_ops->io_u_init(td, io_u);
1119
1120			if (ret) {
1121				log_err("fio: failed to init engine data: %d\n", ret);
1122				return 1;
1123			}
1124		}
1125
1126		p += max_bs;
1127	}
1128
1129	if (td->o.verify != VERIFY_NONE) {
1130		td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1131		if (!td->last_write_comp) {
1132			log_err("fio: failed to alloc write comp data\n");
1133			return 1;
1134		}
1135	}
1136
1137	return 0;
1138}
1139
1140static int switch_ioscheduler(struct thread_data *td)
1141{
1142	char tmp[256], tmp2[128];
1143	FILE *f;
1144	int ret;
1145
1146	if (td->io_ops->flags & FIO_DISKLESSIO)
1147		return 0;
1148
1149	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1150
1151	f = fopen(tmp, "r+");
1152	if (!f) {
1153		if (errno == ENOENT) {
1154			log_err("fio: os or kernel doesn't support IO scheduler"
1155				" switching\n");
1156			return 0;
1157		}
1158		td_verror(td, errno, "fopen iosched");
1159		return 1;
1160	}
1161
1162	/*
1163	 * Set io scheduler.
1164	 */
1165	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1166	if (ferror(f) || ret != 1) {
1167		td_verror(td, errno, "fwrite");
1168		fclose(f);
1169		return 1;
1170	}
1171
1172	rewind(f);
1173
1174	/*
1175	 * Read back and check that the selected scheduler is now the default.
1176	 */
1177	ret = fread(tmp, sizeof(tmp), 1, f);
1178	if (ferror(f) || ret < 0) {
1179		td_verror(td, errno, "fread");
1180		fclose(f);
1181		return 1;
1182	}
1183	tmp[sizeof(tmp) - 1] = '\0';
1184
1185
1186	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1187	if (!strstr(tmp, tmp2)) {
1188		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1189		td_verror(td, EINVAL, "iosched_switch");
1190		fclose(f);
1191		return 1;
1192	}
1193
1194	fclose(f);
1195	return 0;
1196}
1197
1198static int keep_running(struct thread_data *td)
1199{
1200	unsigned long long limit;
1201
1202	if (td->done)
1203		return 0;
1204	if (td->o.time_based)
1205		return 1;
1206	if (td->o.loops) {
1207		td->o.loops--;
1208		return 1;
1209	}
1210	if (exceeds_number_ios(td))
1211		return 0;
1212
1213	if (td->o.io_limit)
1214		limit = td->o.io_limit;
1215	else
1216		limit = td->o.size;
1217
1218	if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1219		uint64_t diff;
1220
1221		/*
1222		 * If the difference is less than the minimum IO size, we
1223		 * are done.
1224		 */
1225		diff = limit - ddir_rw_sum(td->io_bytes);
1226		if (diff < td_max_bs(td))
1227			return 0;
1228
1229		if (fio_files_done(td))
1230			return 0;
1231
1232		return 1;
1233	}
1234
1235	return 0;
1236}
1237
1238static int exec_string(struct thread_options *o, const char *string, const char *mode)
1239{
1240	int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1241	char *str;
1242
1243	str = malloc(newlen);
1244	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1245
1246	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1247	ret = system(str);
1248	if (ret == -1)
1249		log_err("fio: exec of cmd <%s> failed\n", str);
1250
1251	free(str);
1252	return ret;
1253}
1254
1255/*
1256 * Dry run to compute correct state of numberio for verification.
1257 */
1258static uint64_t do_dry_run(struct thread_data *td)
1259{
1260	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1261
1262	td_set_runstate(td, TD_RUNNING);
1263
1264	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1265		(!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1266		struct io_u *io_u;
1267		int ret;
1268
1269		if (td->terminate || td->done)
1270			break;
1271
1272		io_u = get_io_u(td);
1273		if (!io_u)
1274			break;
1275
1276		io_u->flags |= IO_U_F_FLIGHT;
1277		io_u->error = 0;
1278		io_u->resid = 0;
1279		if (ddir_rw(acct_ddir(io_u)))
1280			td->io_issues[acct_ddir(io_u)]++;
1281		if (ddir_rw(io_u->ddir)) {
1282			io_u_mark_depth(td, 1);
1283			td->ts.total_io_u[io_u->ddir]++;
1284		}
1285
1286		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1287		    td->o.do_verify &&
1288		    td->o.verify != VERIFY_NONE &&
1289		    !td->o.experimental_verify)
1290			log_io_piece(td, io_u);
1291
1292		ret = io_u_sync_complete(td, io_u, bytes_done);
1293		(void) ret;
1294	}
1295
1296	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1297}
1298
1299/*
1300 * Entry point for the thread based jobs. The process based jobs end up
1301 * here as well, after a little setup.
1302 */
1303static void *thread_main(void *data)
1304{
1305	unsigned long long elapsed;
1306	struct thread_data *td = data;
1307	struct thread_options *o = &td->o;
1308	pthread_condattr_t attr;
1309	int clear_state;
1310	int ret;
1311
1312	if (!o->use_thread) {
1313		setsid();
1314		td->pid = getpid();
1315	} else
1316		td->pid = gettid();
1317
1318	fio_local_clock_init(o->use_thread);
1319
1320	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1321
1322	if (is_backend)
1323		fio_server_send_start(td);
1324
1325	INIT_FLIST_HEAD(&td->io_log_list);
1326	INIT_FLIST_HEAD(&td->io_hist_list);
1327	INIT_FLIST_HEAD(&td->verify_list);
1328	INIT_FLIST_HEAD(&td->trim_list);
1329	INIT_FLIST_HEAD(&td->next_rand_list);
1330	pthread_mutex_init(&td->io_u_lock, NULL);
1331	td->io_hist_tree = RB_ROOT;
1332
1333	pthread_condattr_init(&attr);
1334	pthread_cond_init(&td->verify_cond, &attr);
1335	pthread_cond_init(&td->free_cond, &attr);
1336
1337	td_set_runstate(td, TD_INITIALIZED);
1338	dprint(FD_MUTEX, "up startup_mutex\n");
1339	fio_mutex_up(startup_mutex);
1340	dprint(FD_MUTEX, "wait on td->mutex\n");
1341	fio_mutex_down(td->mutex);
1342	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1343
1344	/*
1345	 * A new gid requires privilege, so we need to do this before setting
1346	 * the uid.
1347	 */
1348	if (o->gid != -1U && setgid(o->gid)) {
1349		td_verror(td, errno, "setgid");
1350		goto err;
1351	}
1352	if (o->uid != -1U && setuid(o->uid)) {
1353		td_verror(td, errno, "setuid");
1354		goto err;
1355	}
1356
1357	/*
1358	 * If we have a gettimeofday() thread, make sure we exclude that
1359	 * thread from this job
1360	 */
1361	if (o->gtod_cpu)
1362		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1363
1364	/*
1365	 * Set affinity first, in case it has an impact on the memory
1366	 * allocations.
1367	 */
1368	if (fio_option_is_set(o, cpumask)) {
1369		if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1370			ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1371			if (!ret) {
1372				log_err("fio: no CPUs set\n");
1373				log_err("fio: Try increasing number of available CPUs\n");
1374				td_verror(td, EINVAL, "cpus_split");
1375				goto err;
1376			}
1377		}
1378		ret = fio_setaffinity(td->pid, o->cpumask);
1379		if (ret == -1) {
1380			td_verror(td, errno, "cpu_set_affinity");
1381			goto err;
1382		}
1383	}
1384
1385#ifdef CONFIG_LIBNUMA
1386	/* numa node setup */
1387	if (fio_option_is_set(o, numa_cpunodes) ||
1388	    fio_option_is_set(o, numa_memnodes)) {
1389		struct bitmask *mask;
1390
1391		if (numa_available() < 0) {
1392			td_verror(td, errno, "Does not support NUMA API\n");
1393			goto err;
1394		}
1395
1396		if (fio_option_is_set(o, numa_cpunodes)) {
1397			mask = numa_parse_nodestring(o->numa_cpunodes);
1398			ret = numa_run_on_node_mask(mask);
1399			numa_free_nodemask(mask);
1400			if (ret == -1) {
1401				td_verror(td, errno, \
1402					"numa_run_on_node_mask failed\n");
1403				goto err;
1404			}
1405		}
1406
1407		if (fio_option_is_set(o, numa_memnodes)) {
1408			mask = NULL;
1409			if (o->numa_memnodes)
1410				mask = numa_parse_nodestring(o->numa_memnodes);
1411
1412			switch (o->numa_mem_mode) {
1413			case MPOL_INTERLEAVE:
1414				numa_set_interleave_mask(mask);
1415				break;
1416			case MPOL_BIND:
1417				numa_set_membind(mask);
1418				break;
1419			case MPOL_LOCAL:
1420				numa_set_localalloc();
1421				break;
1422			case MPOL_PREFERRED:
1423				numa_set_preferred(o->numa_mem_prefer_node);
1424				break;
1425			case MPOL_DEFAULT:
1426			default:
1427				break;
1428			}
1429
1430			if (mask)
1431				numa_free_nodemask(mask);
1432
1433		}
1434	}
1435#endif
1436
1437	if (fio_pin_memory(td))
1438		goto err;
1439
1440	/*
1441	 * May alter parameters that init_io_u() will use, so we need to
1442	 * do this first.
1443	 */
1444	if (init_iolog(td))
1445		goto err;
1446
1447	if (init_io_u(td))
1448		goto err;
1449
1450	if (o->verify_async && verify_async_init(td))
1451		goto err;
1452
1453	if (fio_option_is_set(o, ioprio) ||
1454	    fio_option_is_set(o, ioprio_class)) {
1455		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1456		if (ret == -1) {
1457			td_verror(td, errno, "ioprio_set");
1458			goto err;
1459		}
1460	}
1461
1462	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1463		goto err;
1464
1465	errno = 0;
1466	if (nice(o->nice) == -1 && errno != 0) {
1467		td_verror(td, errno, "nice");
1468		goto err;
1469	}
1470
1471	if (o->ioscheduler && switch_ioscheduler(td))
1472		goto err;
1473
1474	if (!o->create_serialize && setup_files(td))
1475		goto err;
1476
1477	if (td_io_init(td))
1478		goto err;
1479
1480	if (init_random_map(td))
1481		goto err;
1482
1483	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1484		goto err;
1485
1486	if (o->pre_read) {
1487		if (pre_read_files(td) < 0)
1488			goto err;
1489	}
1490
1491	if (td->flags & TD_F_COMPRESS_LOG)
1492		tp_init(&td->tp_data);
1493
1494	fio_verify_init(td);
1495
1496	fio_gettime(&td->epoch, NULL);
1497	fio_getrusage(&td->ru_start);
1498	clear_state = 0;
1499	while (keep_running(td)) {
1500		uint64_t verify_bytes;
1501
1502		fio_gettime(&td->start, NULL);
1503		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1504		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1505		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1506
1507		if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1508				o->ratemin[DDIR_TRIM]) {
1509		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1510						sizeof(td->bw_sample_time));
1511		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1512						sizeof(td->bw_sample_time));
1513		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1514						sizeof(td->bw_sample_time));
1515		}
1516
1517		if (clear_state)
1518			clear_io_state(td);
1519
1520		prune_io_piece_log(td);
1521
1522		if (td->o.verify_only && (td_write(td) || td_rw(td)))
1523			verify_bytes = do_dry_run(td);
1524		else
1525			verify_bytes = do_io(td);
1526
1527		clear_state = 1;
1528
1529		fio_mutex_down(stat_mutex);
1530		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1531			elapsed = mtime_since_now(&td->start);
1532			td->ts.runtime[DDIR_READ] += elapsed;
1533		}
1534		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1535			elapsed = mtime_since_now(&td->start);
1536			td->ts.runtime[DDIR_WRITE] += elapsed;
1537		}
1538		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1539			elapsed = mtime_since_now(&td->start);
1540			td->ts.runtime[DDIR_TRIM] += elapsed;
1541		}
1542		fio_gettime(&td->start, NULL);
1543		fio_mutex_up(stat_mutex);
1544
1545		if (td->error || td->terminate)
1546			break;
1547
1548		if (!o->do_verify ||
1549		    o->verify == VERIFY_NONE ||
1550		    (td->io_ops->flags & FIO_UNIDIR))
1551			continue;
1552
1553		clear_io_state(td);
1554
1555		fio_gettime(&td->start, NULL);
1556
1557		do_verify(td, verify_bytes);
1558
1559		fio_mutex_down(stat_mutex);
1560		td->ts.runtime[DDIR_READ] += mtime_since_now(&td->start);
1561		fio_gettime(&td->start, NULL);
1562		fio_mutex_up(stat_mutex);
1563
1564		if (td->error || td->terminate)
1565			break;
1566	}
1567
1568	update_rusage_stat(td);
1569	td->ts.total_run_time = mtime_since_now(&td->epoch);
1570	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1571	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1572	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1573
1574	if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1575	    (td->o.verify != VERIFY_NONE && td_write(td))) {
1576		struct all_io_list *state;
1577		size_t sz;
1578
1579		state = get_all_io_list(td->thread_number, &sz);
1580		if (state) {
1581			__verify_save_state(state, "local");
1582			free(state);
1583		}
1584	}
1585
1586	fio_unpin_memory(td);
1587
1588	fio_writeout_logs(td);
1589
1590	if (td->flags & TD_F_COMPRESS_LOG)
1591		tp_exit(&td->tp_data);
1592
1593	if (o->exec_postrun)
1594		exec_string(o, o->exec_postrun, (const char *)"postrun");
1595
1596	if (exitall_on_terminate)
1597		fio_terminate_threads(td->groupid);
1598
1599err:
1600	if (td->error)
1601		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1602							td->verror);
1603
1604	if (o->verify_async)
1605		verify_async_exit(td);
1606
1607	close_and_free_files(td);
1608	cleanup_io_u(td);
1609	close_ioengine(td);
1610	cgroup_shutdown(td, &cgroup_mnt);
1611	verify_free_state(td);
1612
1613	if (fio_option_is_set(o, cpumask)) {
1614		ret = fio_cpuset_exit(&o->cpumask);
1615		if (ret)
1616			td_verror(td, ret, "fio_cpuset_exit");
1617	}
1618
1619	/*
1620	 * do this very late, it will log file closing as well
1621	 */
1622	if (o->write_iolog_file)
1623		write_iolog_close(td);
1624
1625	fio_mutex_remove(td->mutex);
1626	td->mutex = NULL;
1627
1628	td_set_runstate(td, TD_EXITED);
1629
1630	/*
1631	 * Do this last after setting our runstate to exited, so we
1632	 * know that the stat thread is signaled.
1633	 */
1634	check_update_rusage(td);
1635
1636	return (void *) (uintptr_t) td->error;
1637}
1638
1639
1640/*
1641 * We cannot pass the td data into a forked process, so attach the td and
1642 * pass it to the thread worker.
1643 */
1644static int fork_main(int shmid, int offset)
1645{
1646	struct thread_data *td;
1647	void *data, *ret;
1648
1649#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1650	data = shmat(shmid, NULL, 0);
1651	if (data == (void *) -1) {
1652		int __err = errno;
1653
1654		perror("shmat");
1655		return __err;
1656	}
1657#else
1658	/*
1659	 * HP-UX inherits shm mappings?
1660	 */
1661	data = threads;
1662#endif
1663
1664	td = data + offset * sizeof(struct thread_data);
1665	ret = thread_main(td);
1666	shmdt(data);
1667	return (int) (uintptr_t) ret;
1668}
1669
1670static void dump_td_info(struct thread_data *td)
1671{
1672	log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1673		"be stuck. Doing forceful exit of this job.\n", td->o.name,
1674			(unsigned long) time_since_now(&td->terminate_time));
1675}
1676
1677/*
1678 * Run over the job map and reap the threads that have exited, if any.
1679 */
1680static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1681			 unsigned int *m_rate)
1682{
1683	struct thread_data *td;
1684	unsigned int cputhreads, realthreads, pending;
1685	int i, status, ret;
1686
1687	/*
1688	 * reap exited threads (TD_EXITED -> TD_REAPED)
1689	 */
1690	realthreads = pending = cputhreads = 0;
1691	for_each_td(td, i) {
1692		int flags = 0;
1693
1694		/*
1695		 * ->io_ops is NULL for a thread that has closed its
1696		 * io engine
1697		 */
1698		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1699			cputhreads++;
1700		else
1701			realthreads++;
1702
1703		if (!td->pid) {
1704			pending++;
1705			continue;
1706		}
1707		if (td->runstate == TD_REAPED)
1708			continue;
1709		if (td->o.use_thread) {
1710			if (td->runstate == TD_EXITED) {
1711				td_set_runstate(td, TD_REAPED);
1712				goto reaped;
1713			}
1714			continue;
1715		}
1716
1717		flags = WNOHANG;
1718		if (td->runstate == TD_EXITED)
1719			flags = 0;
1720
1721		/*
1722		 * check if someone quit or got killed in an unusual way
1723		 */
1724		ret = waitpid(td->pid, &status, flags);
1725		if (ret < 0) {
1726			if (errno == ECHILD) {
1727				log_err("fio: pid=%d disappeared %d\n",
1728						(int) td->pid, td->runstate);
1729				td->sig = ECHILD;
1730				td_set_runstate(td, TD_REAPED);
1731				goto reaped;
1732			}
1733			perror("waitpid");
1734		} else if (ret == td->pid) {
1735			if (WIFSIGNALED(status)) {
1736				int sig = WTERMSIG(status);
1737
1738				if (sig != SIGTERM && sig != SIGUSR2)
1739					log_err("fio: pid=%d, got signal=%d\n",
1740							(int) td->pid, sig);
1741				td->sig = sig;
1742				td_set_runstate(td, TD_REAPED);
1743				goto reaped;
1744			}
1745			if (WIFEXITED(status)) {
1746				if (WEXITSTATUS(status) && !td->error)
1747					td->error = WEXITSTATUS(status);
1748
1749				td_set_runstate(td, TD_REAPED);
1750				goto reaped;
1751			}
1752		}
1753
1754		/*
1755		 * If the job is stuck, do a forceful timeout of it and
1756		 * move on.
1757		 */
1758		if (td->terminate &&
1759		    time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1760			dump_td_info(td);
1761			td_set_runstate(td, TD_REAPED);
1762			goto reaped;
1763		}
1764
1765		/*
1766		 * thread is not dead, continue
1767		 */
1768		pending++;
1769		continue;
1770reaped:
1771		(*nr_running)--;
1772		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1773		(*t_rate) -= ddir_rw_sum(td->o.rate);
1774		if (!td->pid)
1775			pending--;
1776
1777		if (td->error)
1778			exit_value++;
1779
1780		done_secs += mtime_since_now(&td->epoch) / 1000;
1781		profile_td_exit(td);
1782	}
1783
1784	if (*nr_running == cputhreads && !pending && realthreads)
1785		fio_terminate_threads(TERMINATE_ALL);
1786}
1787
1788static int __check_trigger_file(void)
1789{
1790	struct stat sb;
1791
1792	if (!trigger_file)
1793		return 0;
1794
1795	if (stat(trigger_file, &sb))
1796		return 0;
1797
1798	if (unlink(trigger_file) < 0)
1799		log_err("fio: failed to unlink %s: %s\n", trigger_file,
1800							strerror(errno));
1801
1802	return 1;
1803}
1804
1805static int trigger_timedout(void)
1806{
1807	if (trigger_timeout)
1808		return time_since_genesis() >= trigger_timeout;
1809
1810	return 0;
1811}
1812
1813void exec_trigger(const char *cmd)
1814{
1815	int ret;
1816
1817	if (!cmd)
1818		return;
1819
1820	ret = system(cmd);
1821	if (ret == -1)
1822		log_err("fio: failed executing %s trigger\n", cmd);
1823}
1824
1825void check_trigger_file(void)
1826{
1827	if (__check_trigger_file() || trigger_timedout()) {
1828		if (nr_clients)
1829			fio_clients_send_trigger(trigger_remote_cmd);
1830		else {
1831			verify_save_state();
1832			fio_terminate_threads(TERMINATE_ALL);
1833			exec_trigger(trigger_cmd);
1834		}
1835	}
1836}
1837
1838static int fio_verify_load_state(struct thread_data *td)
1839{
1840	int ret;
1841
1842	if (!td->o.verify_state)
1843		return 0;
1844
1845	if (is_backend) {
1846		void *data;
1847
1848		ret = fio_server_get_verify_state(td->o.name,
1849					td->thread_number - 1, &data);
1850		if (!ret)
1851			verify_convert_assign_state(td, data);
1852	} else
1853		ret = verify_load_state(td, "local");
1854
1855	return ret;
1856}
1857
1858static void do_usleep(unsigned int usecs)
1859{
1860	check_for_running_stats();
1861	check_trigger_file();
1862	usleep(usecs);
1863}
1864
1865/*
1866 * Main function for kicking off and reaping jobs, as needed.
1867 */
1868static void run_threads(void)
1869{
1870	struct thread_data *td;
1871	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1872	uint64_t spent;
1873
1874	if (fio_gtod_offload && fio_start_gtod_thread())
1875		return;
1876
1877	fio_idle_prof_init();
1878
1879	set_sig_handlers();
1880
1881	nr_thread = nr_process = 0;
1882	for_each_td(td, i) {
1883		if (td->o.use_thread)
1884			nr_thread++;
1885		else
1886			nr_process++;
1887	}
1888
1889	if (output_format == FIO_OUTPUT_NORMAL) {
1890		log_info("Starting ");
1891		if (nr_thread)
1892			log_info("%d thread%s", nr_thread,
1893						nr_thread > 1 ? "s" : "");
1894		if (nr_process) {
1895			if (nr_thread)
1896				log_info(" and ");
1897			log_info("%d process%s", nr_process,
1898						nr_process > 1 ? "es" : "");
1899		}
1900		log_info("\n");
1901		log_info_flush();
1902	}
1903
1904	todo = thread_number;
1905	nr_running = 0;
1906	nr_started = 0;
1907	m_rate = t_rate = 0;
1908
1909	for_each_td(td, i) {
1910		print_status_init(td->thread_number - 1);
1911
1912		if (!td->o.create_serialize)
1913			continue;
1914
1915		if (fio_verify_load_state(td))
1916			goto reap;
1917
1918		/*
1919		 * do file setup here so it happens sequentially,
1920		 * we don't want X number of threads getting their
1921		 * client data interspersed on disk
1922		 */
1923		if (setup_files(td)) {
1924reap:
1925			exit_value++;
1926			if (td->error)
1927				log_err("fio: pid=%d, err=%d/%s\n",
1928					(int) td->pid, td->error, td->verror);
1929			td_set_runstate(td, TD_REAPED);
1930			todo--;
1931		} else {
1932			struct fio_file *f;
1933			unsigned int j;
1934
1935			/*
1936			 * for sharing to work, each job must always open
1937			 * its own files. so close them, if we opened them
1938			 * for creation
1939			 */
1940			for_each_file(td, f, j) {
1941				if (fio_file_open(f))
1942					td_io_close_file(td, f);
1943			}
1944		}
1945	}
1946
1947	/* start idle threads before io threads start to run */
1948	fio_idle_prof_start();
1949
1950	set_genesis_time();
1951
1952	while (todo) {
1953		struct thread_data *map[REAL_MAX_JOBS];
1954		struct timeval this_start;
1955		int this_jobs = 0, left;
1956
1957		/*
1958		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1959		 */
1960		for_each_td(td, i) {
1961			if (td->runstate != TD_NOT_CREATED)
1962				continue;
1963
1964			/*
1965			 * never got a chance to start, killed by other
1966			 * thread for some reason
1967			 */
1968			if (td->terminate) {
1969				todo--;
1970				continue;
1971			}
1972
1973			if (td->o.start_delay) {
1974				spent = utime_since_genesis();
1975
1976				if (td->o.start_delay > spent)
1977					continue;
1978			}
1979
1980			if (td->o.stonewall && (nr_started || nr_running)) {
1981				dprint(FD_PROCESS, "%s: stonewall wait\n",
1982							td->o.name);
1983				break;
1984			}
1985
1986			init_disk_util(td);
1987
1988			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1989			td->update_rusage = 0;
1990
1991			/*
1992			 * Set state to created. Thread will transition
1993			 * to TD_INITIALIZED when it's done setting up.
1994			 */
1995			td_set_runstate(td, TD_CREATED);
1996			map[this_jobs++] = td;
1997			nr_started++;
1998
1999			if (td->o.use_thread) {
2000				int ret;
2001
2002				dprint(FD_PROCESS, "will pthread_create\n");
2003				ret = pthread_create(&td->thread, NULL,
2004							thread_main, td);
2005				if (ret) {
2006					log_err("pthread_create: %s\n",
2007							strerror(ret));
2008					nr_started--;
2009					break;
2010				}
2011				ret = pthread_detach(td->thread);
2012				if (ret)
2013					log_err("pthread_detach: %s",
2014							strerror(ret));
2015			} else {
2016				pid_t pid;
2017				dprint(FD_PROCESS, "will fork\n");
2018				pid = fork();
2019				if (!pid) {
2020					int ret = fork_main(shm_id, i);
2021
2022					_exit(ret);
2023				} else if (i == fio_debug_jobno)
2024					*fio_debug_jobp = pid;
2025			}
2026			dprint(FD_MUTEX, "wait on startup_mutex\n");
2027			if (fio_mutex_down_timeout(startup_mutex, 10)) {
2028				log_err("fio: job startup hung? exiting.\n");
2029				fio_terminate_threads(TERMINATE_ALL);
2030				fio_abort = 1;
2031				nr_started--;
2032				break;
2033			}
2034			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2035		}
2036
2037		/*
2038		 * Wait for the started threads to transition to
2039		 * TD_INITIALIZED.
2040		 */
2041		fio_gettime(&this_start, NULL);
2042		left = this_jobs;
2043		while (left && !fio_abort) {
2044			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2045				break;
2046
2047			do_usleep(100000);
2048
2049			for (i = 0; i < this_jobs; i++) {
2050				td = map[i];
2051				if (!td)
2052					continue;
2053				if (td->runstate == TD_INITIALIZED) {
2054					map[i] = NULL;
2055					left--;
2056				} else if (td->runstate >= TD_EXITED) {
2057					map[i] = NULL;
2058					left--;
2059					todo--;
2060					nr_running++; /* work-around... */
2061				}
2062			}
2063		}
2064
2065		if (left) {
2066			log_err("fio: %d job%s failed to start\n", left,
2067					left > 1 ? "s" : "");
2068			for (i = 0; i < this_jobs; i++) {
2069				td = map[i];
2070				if (!td)
2071					continue;
2072				kill(td->pid, SIGTERM);
2073			}
2074			break;
2075		}
2076
2077		/*
2078		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2079		 */
2080		for_each_td(td, i) {
2081			if (td->runstate != TD_INITIALIZED)
2082				continue;
2083
2084			if (in_ramp_time(td))
2085				td_set_runstate(td, TD_RAMP);
2086			else
2087				td_set_runstate(td, TD_RUNNING);
2088			nr_running++;
2089			nr_started--;
2090			m_rate += ddir_rw_sum(td->o.ratemin);
2091			t_rate += ddir_rw_sum(td->o.rate);
2092			todo--;
2093			fio_mutex_up(td->mutex);
2094		}
2095
2096		reap_threads(&nr_running, &t_rate, &m_rate);
2097
2098		if (todo)
2099			do_usleep(100000);
2100	}
2101
2102	while (nr_running) {
2103		reap_threads(&nr_running, &t_rate, &m_rate);
2104		do_usleep(10000);
2105	}
2106
2107	fio_idle_prof_stop();
2108
2109	update_io_ticks();
2110}
2111
2112static void wait_for_helper_thread_exit(void)
2113{
2114	void *ret;
2115
2116	helper_exit = 1;
2117	pthread_cond_signal(&helper_cond);
2118	pthread_join(helper_thread, &ret);
2119}
2120
2121static void free_disk_util(void)
2122{
2123	disk_util_prune_entries();
2124
2125	pthread_cond_destroy(&helper_cond);
2126}
2127
2128static void *helper_thread_main(void *data)
2129{
2130	int ret = 0;
2131
2132	fio_mutex_up(startup_mutex);
2133
2134	while (!ret) {
2135		uint64_t sec = DISK_UTIL_MSEC / 1000;
2136		uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2137		struct timespec ts;
2138		struct timeval tv;
2139
2140		gettimeofday(&tv, NULL);
2141		ts.tv_sec = tv.tv_sec + sec;
2142		ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2143
2144		if (ts.tv_nsec >= 1000000000ULL) {
2145			ts.tv_nsec -= 1000000000ULL;
2146			ts.tv_sec++;
2147		}
2148
2149		pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2150
2151		ret = update_io_ticks();
2152
2153		if (helper_do_stat) {
2154			helper_do_stat = 0;
2155			__show_running_run_stats();
2156		}
2157
2158		if (!is_backend)
2159			print_thread_status();
2160	}
2161
2162	return NULL;
2163}
2164
2165static int create_helper_thread(void)
2166{
2167	int ret;
2168
2169	setup_disk_util();
2170
2171	pthread_cond_init(&helper_cond, NULL);
2172	pthread_mutex_init(&helper_lock, NULL);
2173
2174	ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2175	if (ret) {
2176		log_err("Can't create helper thread: %s\n", strerror(ret));
2177		return 1;
2178	}
2179
2180	dprint(FD_MUTEX, "wait on startup_mutex\n");
2181	fio_mutex_down(startup_mutex);
2182	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2183	return 0;
2184}
2185
2186int fio_backend(void)
2187{
2188	struct thread_data *td;
2189	int i;
2190
2191	if (exec_profile) {
2192		if (load_profile(exec_profile))
2193			return 1;
2194		free(exec_profile);
2195		exec_profile = NULL;
2196	}
2197	if (!thread_number)
2198		return 0;
2199
2200	if (write_bw_log) {
2201		struct log_params p = {
2202			.log_type = IO_LOG_TYPE_BW,
2203		};
2204
2205		setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2206		setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2207		setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2208	}
2209
2210	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2211	if (startup_mutex == NULL)
2212		return 1;
2213
2214	set_genesis_time();
2215	stat_init();
2216	create_helper_thread();
2217
2218	cgroup_list = smalloc(sizeof(*cgroup_list));
2219	INIT_FLIST_HEAD(cgroup_list);
2220
2221	run_threads();
2222
2223	wait_for_helper_thread_exit();
2224
2225	if (!fio_abort) {
2226		__show_run_stats();
2227		if (write_bw_log) {
2228			for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2229				struct io_log *log = agg_io_log[i];
2230
2231				flush_log(log);
2232				free_log(log);
2233			}
2234		}
2235	}
2236
2237	for_each_td(td, i) {
2238		fio_options_free(td);
2239		if (td->rusage_sem) {
2240			fio_mutex_remove(td->rusage_sem);
2241			td->rusage_sem = NULL;
2242		}
2243	}
2244
2245	free_disk_util();
2246	cgroup_kill(cgroup_list);
2247	sfree(cgroup_list);
2248	sfree(cgroup_mnt);
2249
2250	fio_mutex_remove(startup_mutex);
2251	stat_exit();
2252	return exit_value;
2253}
2254