backend.c revision 20876c53b5d32f2da9049af5e7fb102133946981
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55
56static pthread_t disk_util_thread;
57static struct fio_mutex *disk_thread_mutex;
58static struct fio_mutex *startup_mutex;
59static struct fio_mutex *writeout_mutex;
60static struct flist_head *cgroup_list;
61static char *cgroup_mnt;
62static int exit_value;
63static volatile int fio_abort;
64static unsigned int nr_process = 0;
65static unsigned int nr_thread = 0;
66
67struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69int groupid = 0;
70unsigned int thread_number = 0;
71unsigned int stat_number = 0;
72int shm_id = 0;
73int temp_stall_ts;
74unsigned long done_secs = 0;
75volatile int disk_util_exit = 0;
76
77#define PAGE_ALIGN(buf)	\
78	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80#define JOB_START_TIMEOUT	(5 * 1000)
81
82static void sig_int(int sig)
83{
84	if (threads) {
85		if (is_backend)
86			fio_server_got_signal(sig);
87		else {
88			log_info("\nfio: terminating on signal %d\n", sig);
89			fflush(stdout);
90			exit_value = 128;
91		}
92
93		fio_terminate_threads(TERMINATE_ALL);
94	}
95}
96
97static void sig_show_status(int sig)
98{
99	show_running_run_stats();
100}
101
102static void set_sig_handlers(void)
103{
104	struct sigaction act;
105
106	memset(&act, 0, sizeof(act));
107	act.sa_handler = sig_int;
108	act.sa_flags = SA_RESTART;
109	sigaction(SIGINT, &act, NULL);
110
111	memset(&act, 0, sizeof(act));
112	act.sa_handler = sig_int;
113	act.sa_flags = SA_RESTART;
114	sigaction(SIGTERM, &act, NULL);
115
116/* Windows uses SIGBREAK as a quit signal from other applications */
117#ifdef WIN32
118	memset(&act, 0, sizeof(act));
119	act.sa_handler = sig_int;
120	act.sa_flags = SA_RESTART;
121	sigaction(SIGBREAK, &act, NULL);
122#endif
123
124	memset(&act, 0, sizeof(act));
125	act.sa_handler = sig_show_status;
126	act.sa_flags = SA_RESTART;
127	sigaction(SIGUSR1, &act, NULL);
128
129	if (is_backend) {
130		memset(&act, 0, sizeof(act));
131		act.sa_handler = sig_int;
132		act.sa_flags = SA_RESTART;
133		sigaction(SIGPIPE, &act, NULL);
134	}
135}
136
137/*
138 * Check if we are above the minimum rate given.
139 */
140static int __check_min_rate(struct thread_data *td, struct timeval *now,
141			    enum fio_ddir ddir)
142{
143	unsigned long long bytes = 0;
144	unsigned long iops = 0;
145	unsigned long spent;
146	unsigned long rate;
147	unsigned int ratemin = 0;
148	unsigned int rate_iops = 0;
149	unsigned int rate_iops_min = 0;
150
151	assert(ddir_rw(ddir));
152
153	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154		return 0;
155
156	/*
157	 * allow a 2 second settle period in the beginning
158	 */
159	if (mtime_since(&td->start, now) < 2000)
160		return 0;
161
162	iops += td->this_io_blocks[ddir];
163	bytes += td->this_io_bytes[ddir];
164	ratemin += td->o.ratemin[ddir];
165	rate_iops += td->o.rate_iops[ddir];
166	rate_iops_min += td->o.rate_iops_min[ddir];
167
168	/*
169	 * if rate blocks is set, sample is running
170	 */
171	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172		spent = mtime_since(&td->lastrate[ddir], now);
173		if (spent < td->o.ratecycle)
174			return 0;
175
176		if (td->o.rate[ddir]) {
177			/*
178			 * check bandwidth specified rate
179			 */
180			if (bytes < td->rate_bytes[ddir]) {
181				log_err("%s: min rate %u not met\n", td->o.name,
182								ratemin);
183				return 1;
184			} else {
185				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186				if (rate < ratemin ||
187				    bytes < td->rate_bytes[ddir]) {
188					log_err("%s: min rate %u not met, got"
189						" %luKB/sec\n", td->o.name,
190							ratemin, rate);
191					return 1;
192				}
193			}
194		} else {
195			/*
196			 * checks iops specified rate
197			 */
198			if (iops < rate_iops) {
199				log_err("%s: min iops rate %u not met\n",
200						td->o.name, rate_iops);
201				return 1;
202			} else {
203				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204				if (rate < rate_iops_min ||
205				    iops < td->rate_blocks[ddir]) {
206					log_err("%s: min iops rate %u not met,"
207						" got %lu\n", td->o.name,
208							rate_iops_min, rate);
209				}
210			}
211		}
212	}
213
214	td->rate_bytes[ddir] = bytes;
215	td->rate_blocks[ddir] = iops;
216	memcpy(&td->lastrate[ddir], now, sizeof(*now));
217	return 0;
218}
219
220static int check_min_rate(struct thread_data *td, struct timeval *now,
221			  uint64_t *bytes_done)
222{
223	int ret = 0;
224
225	if (bytes_done[DDIR_READ])
226		ret |= __check_min_rate(td, now, DDIR_READ);
227	if (bytes_done[DDIR_WRITE])
228		ret |= __check_min_rate(td, now, DDIR_WRITE);
229	if (bytes_done[DDIR_TRIM])
230		ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232	return ret;
233}
234
235/*
236 * When job exits, we can cancel the in-flight IO if we are using async
237 * io. Attempt to do so.
238 */
239static void cleanup_pending_aio(struct thread_data *td)
240{
241	int r;
242
243	/*
244	 * get immediately available events, if any
245	 */
246	r = io_u_queued_complete(td, 0, NULL);
247	if (r < 0)
248		return;
249
250	/*
251	 * now cancel remaining active events
252	 */
253	if (td->io_ops->cancel) {
254		struct io_u *io_u;
255		int i;
256
257		io_u_qiter(&td->io_u_all, io_u, i) {
258			if (io_u->flags & IO_U_F_FLIGHT) {
259				r = td->io_ops->cancel(td, io_u);
260				if (!r)
261					put_io_u(td, io_u);
262			}
263		}
264	}
265
266	if (td->cur_depth)
267		r = io_u_queued_complete(td, td->cur_depth, NULL);
268}
269
270/*
271 * Helper to handle the final sync of a file. Works just like the normal
272 * io path, just does everything sync.
273 */
274static int fio_io_sync(struct thread_data *td, struct fio_file *f)
275{
276	struct io_u *io_u = __get_io_u(td);
277	int ret;
278
279	if (!io_u)
280		return 1;
281
282	io_u->ddir = DDIR_SYNC;
283	io_u->file = f;
284
285	if (td_io_prep(td, io_u)) {
286		put_io_u(td, io_u);
287		return 1;
288	}
289
290requeue:
291	ret = td_io_queue(td, io_u);
292	if (ret < 0) {
293		td_verror(td, io_u->error, "td_io_queue");
294		put_io_u(td, io_u);
295		return 1;
296	} else if (ret == FIO_Q_QUEUED) {
297		if (io_u_queued_complete(td, 1, NULL) < 0)
298			return 1;
299	} else if (ret == FIO_Q_COMPLETED) {
300		if (io_u->error) {
301			td_verror(td, io_u->error, "td_io_queue");
302			return 1;
303		}
304
305		if (io_u_sync_complete(td, io_u, NULL) < 0)
306			return 1;
307	} else if (ret == FIO_Q_BUSY) {
308		if (td_io_commit(td))
309			return 1;
310		goto requeue;
311	}
312
313	return 0;
314}
315
316static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
317{
318	int ret;
319
320	if (fio_file_open(f))
321		return fio_io_sync(td, f);
322
323	if (td_io_open_file(td, f))
324		return 1;
325
326	ret = fio_io_sync(td, f);
327	td_io_close_file(td, f);
328	return ret;
329}
330
331static inline void __update_tv_cache(struct thread_data *td)
332{
333	fio_gettime(&td->tv_cache, NULL);
334}
335
336static inline void update_tv_cache(struct thread_data *td)
337{
338	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
339		__update_tv_cache(td);
340}
341
342static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
343{
344	if (in_ramp_time(td))
345		return 0;
346	if (!td->o.timeout)
347		return 0;
348	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
349		return 1;
350
351	return 0;
352}
353
354static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
355			       int *retptr)
356{
357	int ret = *retptr;
358
359	if (ret < 0 || td->error) {
360		int err = td->error;
361		enum error_type_bit eb;
362
363		if (ret < 0)
364			err = -ret;
365
366		eb = td_error_type(ddir, err);
367		if (!(td->o.continue_on_error & (1 << eb)))
368			return 1;
369
370		if (td_non_fatal_error(td, eb, err)) {
371		        /*
372		         * Continue with the I/Os in case of
373			 * a non fatal error.
374			 */
375			update_error_count(td, err);
376			td_clear_error(td);
377			*retptr = 0;
378			return 0;
379		} else if (td->o.fill_device && err == ENOSPC) {
380			/*
381			 * We expect to hit this error if
382			 * fill_device option is set.
383			 */
384			td_clear_error(td);
385			td->terminate = 1;
386			return 1;
387		} else {
388			/*
389			 * Stop the I/O in case of a fatal
390			 * error.
391			 */
392			update_error_count(td, err);
393			return 1;
394		}
395	}
396
397	return 0;
398}
399
400static void check_update_rusage(struct thread_data *td)
401{
402	if (td->update_rusage) {
403		td->update_rusage = 0;
404		update_rusage_stat(td);
405		fio_mutex_up(td->rusage_sem);
406	}
407}
408
409/*
410 * The main verify engine. Runs over the writes we previously submitted,
411 * reads the blocks back in, and checks the crc/md5 of the data.
412 */
413static void do_verify(struct thread_data *td, uint64_t verify_bytes)
414{
415	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
416	struct fio_file *f;
417	struct io_u *io_u;
418	int ret, min_events;
419	unsigned int i;
420
421	dprint(FD_VERIFY, "starting loop\n");
422
423	/*
424	 * sync io first and invalidate cache, to make sure we really
425	 * read from disk.
426	 */
427	for_each_file(td, f, i) {
428		if (!fio_file_open(f))
429			continue;
430		if (fio_io_sync(td, f))
431			break;
432		if (file_invalidate_cache(td, f))
433			break;
434	}
435
436	check_update_rusage(td);
437
438	if (td->error)
439		return;
440
441	td_set_runstate(td, TD_VERIFYING);
442
443	io_u = NULL;
444	while (!td->terminate) {
445		enum fio_ddir ddir;
446		int ret2, full;
447
448		update_tv_cache(td);
449		check_update_rusage(td);
450
451		if (runtime_exceeded(td, &td->tv_cache)) {
452			__update_tv_cache(td);
453			if (runtime_exceeded(td, &td->tv_cache)) {
454				td->terminate = 1;
455				break;
456			}
457		}
458
459		if (flow_threshold_exceeded(td))
460			continue;
461
462		if (!td->o.experimental_verify) {
463			io_u = __get_io_u(td);
464			if (!io_u)
465				break;
466
467			if (get_next_verify(td, io_u)) {
468				put_io_u(td, io_u);
469				break;
470			}
471
472			if (td_io_prep(td, io_u)) {
473				put_io_u(td, io_u);
474				break;
475			}
476		} else {
477			if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
478				break;
479
480			while ((io_u = get_io_u(td)) != NULL) {
481				/*
482				 * We are only interested in the places where
483				 * we wrote or trimmed IOs. Turn those into
484				 * reads for verification purposes.
485				 */
486				if (io_u->ddir == DDIR_READ) {
487					/*
488					 * Pretend we issued it for rwmix
489					 * accounting
490					 */
491					td->io_issues[DDIR_READ]++;
492					put_io_u(td, io_u);
493					continue;
494				} else if (io_u->ddir == DDIR_TRIM) {
495					io_u->ddir = DDIR_READ;
496					io_u->flags |= IO_U_F_TRIMMED;
497					break;
498				} else if (io_u->ddir == DDIR_WRITE) {
499					io_u->ddir = DDIR_READ;
500					break;
501				} else {
502					put_io_u(td, io_u);
503					continue;
504				}
505			}
506
507			if (!io_u)
508				break;
509		}
510
511		if (td->o.verify_async)
512			io_u->end_io = verify_io_u_async;
513		else
514			io_u->end_io = verify_io_u;
515
516		ddir = io_u->ddir;
517
518		ret = td_io_queue(td, io_u);
519		switch (ret) {
520		case FIO_Q_COMPLETED:
521			if (io_u->error) {
522				ret = -io_u->error;
523				clear_io_u(td, io_u);
524			} else if (io_u->resid) {
525				int bytes = io_u->xfer_buflen - io_u->resid;
526
527				/*
528				 * zero read, fail
529				 */
530				if (!bytes) {
531					td_verror(td, EIO, "full resid");
532					put_io_u(td, io_u);
533					break;
534				}
535
536				io_u->xfer_buflen = io_u->resid;
537				io_u->xfer_buf += bytes;
538				io_u->offset += bytes;
539
540				if (ddir_rw(io_u->ddir))
541					td->ts.short_io_u[io_u->ddir]++;
542
543				f = io_u->file;
544				if (io_u->offset == f->real_file_size)
545					goto sync_done;
546
547				requeue_io_u(td, &io_u);
548			} else {
549sync_done:
550				ret = io_u_sync_complete(td, io_u, bytes_done);
551				if (ret < 0)
552					break;
553			}
554			continue;
555		case FIO_Q_QUEUED:
556			break;
557		case FIO_Q_BUSY:
558			requeue_io_u(td, &io_u);
559			ret2 = td_io_commit(td);
560			if (ret2 < 0)
561				ret = ret2;
562			break;
563		default:
564			assert(ret < 0);
565			td_verror(td, -ret, "td_io_queue");
566			break;
567		}
568
569		if (break_on_this_error(td, ddir, &ret))
570			break;
571
572		/*
573		 * if we can queue more, do so. but check if there are
574		 * completed io_u's first. Note that we can get BUSY even
575		 * without IO queued, if the system is resource starved.
576		 */
577		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
578		if (full || !td->o.iodepth_batch_complete) {
579			min_events = min(td->o.iodepth_batch_complete,
580					 td->cur_depth);
581			/*
582			 * if the queue is full, we MUST reap at least 1 event
583			 */
584			if (full && !min_events)
585				min_events = 1;
586
587			do {
588				/*
589				 * Reap required number of io units, if any,
590				 * and do the verification on them through
591				 * the callback handler
592				 */
593				if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
594					ret = -1;
595					break;
596				}
597			} while (full && (td->cur_depth > td->o.iodepth_low));
598		}
599		if (ret < 0)
600			break;
601	}
602
603	check_update_rusage(td);
604
605	if (!td->error) {
606		min_events = td->cur_depth;
607
608		if (min_events)
609			ret = io_u_queued_complete(td, min_events, NULL);
610	} else
611		cleanup_pending_aio(td);
612
613	td_set_runstate(td, TD_RUNNING);
614
615	dprint(FD_VERIFY, "exiting loop\n");
616}
617
618static int io_bytes_exceeded(struct thread_data *td)
619{
620	unsigned long long bytes;
621
622	if (td_rw(td))
623		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
624	else if (td_write(td))
625		bytes = td->this_io_bytes[DDIR_WRITE];
626	else if (td_read(td))
627		bytes = td->this_io_bytes[DDIR_READ];
628	else
629		bytes = td->this_io_bytes[DDIR_TRIM];
630
631	return bytes >= td->o.size;
632}
633
634/*
635 * Main IO worker function. It retrieves io_u's to process and queues
636 * and reaps them, checking for rate and errors along the way.
637 *
638 * Returns number of bytes written and trimmed.
639 */
640static uint64_t do_io(struct thread_data *td)
641{
642	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
643	unsigned int i;
644	int ret = 0;
645	uint64_t bytes_issued = 0;
646
647	if (in_ramp_time(td))
648		td_set_runstate(td, TD_RAMP);
649	else
650		td_set_runstate(td, TD_RUNNING);
651
652	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
653		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
654		td->o.time_based) {
655		struct timeval comp_time;
656		int min_evts = 0;
657		struct io_u *io_u;
658		int ret2, full;
659		enum fio_ddir ddir;
660
661		check_update_rusage(td);
662
663		if (td->terminate || td->done)
664			break;
665
666		update_tv_cache(td);
667
668		if (runtime_exceeded(td, &td->tv_cache)) {
669			__update_tv_cache(td);
670			if (runtime_exceeded(td, &td->tv_cache)) {
671				td->terminate = 1;
672				break;
673			}
674		}
675
676		if (flow_threshold_exceeded(td))
677			continue;
678
679		if (bytes_issued >= (uint64_t) td->o.size)
680			break;
681
682		io_u = get_io_u(td);
683		if (!io_u)
684			break;
685
686		ddir = io_u->ddir;
687
688		/*
689		 * Add verification end_io handler if:
690		 *	- Asked to verify (!td_rw(td))
691		 *	- Or the io_u is from our verify list (mixed write/ver)
692		 */
693		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
694		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
695			if (td->o.verify_async)
696				io_u->end_io = verify_io_u_async;
697			else
698				io_u->end_io = verify_io_u;
699			td_set_runstate(td, TD_VERIFYING);
700		} else if (in_ramp_time(td))
701			td_set_runstate(td, TD_RAMP);
702		else
703			td_set_runstate(td, TD_RUNNING);
704
705		ret = td_io_queue(td, io_u);
706		switch (ret) {
707		case FIO_Q_COMPLETED:
708			if (io_u->error) {
709				ret = -io_u->error;
710				clear_io_u(td, io_u);
711			} else if (io_u->resid) {
712				int bytes = io_u->xfer_buflen - io_u->resid;
713				struct fio_file *f = io_u->file;
714
715				bytes_issued += bytes;
716				/*
717				 * zero read, fail
718				 */
719				if (!bytes) {
720					td_verror(td, EIO, "full resid");
721					put_io_u(td, io_u);
722					break;
723				}
724
725				io_u->xfer_buflen = io_u->resid;
726				io_u->xfer_buf += bytes;
727				io_u->offset += bytes;
728
729				if (ddir_rw(io_u->ddir))
730					td->ts.short_io_u[io_u->ddir]++;
731
732				if (io_u->offset == f->real_file_size)
733					goto sync_done;
734
735				requeue_io_u(td, &io_u);
736			} else {
737sync_done:
738				if (__should_check_rate(td, DDIR_READ) ||
739				    __should_check_rate(td, DDIR_WRITE) ||
740				    __should_check_rate(td, DDIR_TRIM))
741					fio_gettime(&comp_time, NULL);
742
743				ret = io_u_sync_complete(td, io_u, bytes_done);
744				if (ret < 0)
745					break;
746				bytes_issued += io_u->xfer_buflen;
747			}
748			break;
749		case FIO_Q_QUEUED:
750			/*
751			 * if the engine doesn't have a commit hook,
752			 * the io_u is really queued. if it does have such
753			 * a hook, it has to call io_u_queued() itself.
754			 */
755			if (td->io_ops->commit == NULL)
756				io_u_queued(td, io_u);
757			bytes_issued += io_u->xfer_buflen;
758			break;
759		case FIO_Q_BUSY:
760			requeue_io_u(td, &io_u);
761			ret2 = td_io_commit(td);
762			if (ret2 < 0)
763				ret = ret2;
764			break;
765		default:
766			assert(ret < 0);
767			put_io_u(td, io_u);
768			break;
769		}
770
771		if (break_on_this_error(td, ddir, &ret))
772			break;
773
774		/*
775		 * See if we need to complete some commands. Note that we
776		 * can get BUSY even without IO queued, if the system is
777		 * resource starved.
778		 */
779		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
780		if (full || !td->o.iodepth_batch_complete) {
781			min_evts = min(td->o.iodepth_batch_complete,
782					td->cur_depth);
783			/*
784			 * if the queue is full, we MUST reap at least 1 event
785			 */
786			if (full && !min_evts)
787				min_evts = 1;
788
789			if (__should_check_rate(td, DDIR_READ) ||
790			    __should_check_rate(td, DDIR_WRITE) ||
791			    __should_check_rate(td, DDIR_TRIM))
792				fio_gettime(&comp_time, NULL);
793
794			do {
795				ret = io_u_queued_complete(td, min_evts, bytes_done);
796				if (ret < 0)
797					break;
798
799			} while (full && (td->cur_depth > td->o.iodepth_low));
800		}
801
802		if (ret < 0)
803			break;
804		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
805			continue;
806
807		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
808			if (check_min_rate(td, &comp_time, bytes_done)) {
809				if (exitall_on_terminate)
810					fio_terminate_threads(td->groupid);
811				td_verror(td, EIO, "check_min_rate");
812				break;
813			}
814		}
815
816		if (td->o.thinktime) {
817			unsigned long long b;
818
819			b = ddir_rw_sum(td->io_blocks);
820			if (!(b % td->o.thinktime_blocks)) {
821				int left;
822
823				io_u_quiesce(td);
824
825				if (td->o.thinktime_spin)
826					usec_spin(td->o.thinktime_spin);
827
828				left = td->o.thinktime - td->o.thinktime_spin;
829				if (left)
830					usec_sleep(td, left);
831			}
832		}
833	}
834
835	check_update_rusage(td);
836
837	if (td->trim_entries)
838		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
839
840	if (td->o.fill_device && td->error == ENOSPC) {
841		td->error = 0;
842		td->terminate = 1;
843	}
844	if (!td->error) {
845		struct fio_file *f;
846
847		i = td->cur_depth;
848		if (i) {
849			ret = io_u_queued_complete(td, i, bytes_done);
850			if (td->o.fill_device && td->error == ENOSPC)
851				td->error = 0;
852		}
853
854		if (should_fsync(td) && td->o.end_fsync) {
855			td_set_runstate(td, TD_FSYNCING);
856
857			for_each_file(td, f, i) {
858				if (!fio_file_fsync(td, f))
859					continue;
860
861				log_err("fio: end_fsync failed for file %s\n",
862								f->file_name);
863			}
864		}
865	} else
866		cleanup_pending_aio(td);
867
868	/*
869	 * stop job if we failed doing any IO
870	 */
871	if (!ddir_rw_sum(td->this_io_bytes))
872		td->done = 1;
873
874	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
875}
876
877static void cleanup_io_u(struct thread_data *td)
878{
879	struct io_u *io_u;
880
881	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
882
883		if (td->io_ops->io_u_free)
884			td->io_ops->io_u_free(td, io_u);
885
886		fio_memfree(io_u, sizeof(*io_u));
887	}
888
889	free_io_mem(td);
890
891	io_u_rexit(&td->io_u_requeues);
892	io_u_qexit(&td->io_u_freelist);
893	io_u_qexit(&td->io_u_all);
894}
895
896static int init_io_u(struct thread_data *td)
897{
898	struct io_u *io_u;
899	unsigned int max_bs, min_write;
900	int cl_align, i, max_units;
901	int data_xfer = 1, err;
902	char *p;
903
904	max_units = td->o.iodepth;
905	max_bs = td_max_bs(td);
906	min_write = td->o.min_bs[DDIR_WRITE];
907	td->orig_buffer_size = (unsigned long long) max_bs
908					* (unsigned long long) max_units;
909
910	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
911		data_xfer = 0;
912
913	err = 0;
914	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
915	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
916	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
917
918	if (err) {
919		log_err("fio: failed setting up IO queues\n");
920		return 1;
921	}
922
923	/*
924	 * if we may later need to do address alignment, then add any
925	 * possible adjustment here so that we don't cause a buffer
926	 * overflow later. this adjustment may be too much if we get
927	 * lucky and the allocator gives us an aligned address.
928	 */
929	if (td->o.odirect || td->o.mem_align || (td->io_ops->flags & FIO_RAWIO))
930		td->orig_buffer_size += page_mask + td->o.mem_align;
931
932	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
933		unsigned long bs;
934
935		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
936		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
937	}
938
939	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
940		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
941		return 1;
942	}
943
944	if (data_xfer && allocate_io_mem(td))
945		return 1;
946
947	if (td->o.odirect || td->o.mem_align ||
948	    (td->io_ops->flags & FIO_RAWIO))
949		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
950	else
951		p = td->orig_buffer;
952
953	cl_align = os_cache_line_size();
954
955	for (i = 0; i < max_units; i++) {
956		void *ptr;
957
958		if (td->terminate)
959			return 1;
960
961		ptr = fio_memalign(cl_align, sizeof(*io_u));
962		if (!ptr) {
963			log_err("fio: unable to allocate aligned memory\n");
964			break;
965		}
966
967		io_u = ptr;
968		memset(io_u, 0, sizeof(*io_u));
969		INIT_FLIST_HEAD(&io_u->verify_list);
970		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
971
972		if (data_xfer) {
973			io_u->buf = p;
974			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
975
976			if (td_write(td))
977				io_u_fill_buffer(td, io_u, min_write, max_bs);
978			if (td_write(td) && td->o.verify_pattern_bytes) {
979				/*
980				 * Fill the buffer with the pattern if we are
981				 * going to be doing writes.
982				 */
983				fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
984			}
985		}
986
987		io_u->index = i;
988		io_u->flags = IO_U_F_FREE;
989		io_u_qpush(&td->io_u_freelist, io_u);
990
991		/*
992		 * io_u never leaves this stack, used for iteration of all
993		 * io_u buffers.
994		 */
995		io_u_qpush(&td->io_u_all, io_u);
996
997		if (td->io_ops->io_u_init) {
998			int ret = td->io_ops->io_u_init(td, io_u);
999
1000			if (ret) {
1001				log_err("fio: failed to init engine data: %d\n", ret);
1002				return 1;
1003			}
1004		}
1005
1006		p += max_bs;
1007	}
1008
1009	return 0;
1010}
1011
1012static int switch_ioscheduler(struct thread_data *td)
1013{
1014	char tmp[256], tmp2[128];
1015	FILE *f;
1016	int ret;
1017
1018	if (td->io_ops->flags & FIO_DISKLESSIO)
1019		return 0;
1020
1021	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1022
1023	f = fopen(tmp, "r+");
1024	if (!f) {
1025		if (errno == ENOENT) {
1026			log_err("fio: os or kernel doesn't support IO scheduler"
1027				" switching\n");
1028			return 0;
1029		}
1030		td_verror(td, errno, "fopen iosched");
1031		return 1;
1032	}
1033
1034	/*
1035	 * Set io scheduler.
1036	 */
1037	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1038	if (ferror(f) || ret != 1) {
1039		td_verror(td, errno, "fwrite");
1040		fclose(f);
1041		return 1;
1042	}
1043
1044	rewind(f);
1045
1046	/*
1047	 * Read back and check that the selected scheduler is now the default.
1048	 */
1049	ret = fread(tmp, 1, sizeof(tmp), f);
1050	if (ferror(f) || ret < 0) {
1051		td_verror(td, errno, "fread");
1052		fclose(f);
1053		return 1;
1054	}
1055
1056	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1057	if (!strstr(tmp, tmp2)) {
1058		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1059		td_verror(td, EINVAL, "iosched_switch");
1060		fclose(f);
1061		return 1;
1062	}
1063
1064	fclose(f);
1065	return 0;
1066}
1067
1068static int keep_running(struct thread_data *td)
1069{
1070	if (td->done)
1071		return 0;
1072	if (td->o.time_based)
1073		return 1;
1074	if (td->o.loops) {
1075		td->o.loops--;
1076		return 1;
1077	}
1078
1079	if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1080		uint64_t diff;
1081
1082		/*
1083		 * If the difference is less than the minimum IO size, we
1084		 * are done.
1085		 */
1086		diff = td->o.size - ddir_rw_sum(td->io_bytes);
1087		if (diff < td_max_bs(td))
1088			return 0;
1089
1090		return 1;
1091	}
1092
1093	return 0;
1094}
1095
1096static int exec_string(struct thread_options *o, const char *string, const char *mode)
1097{
1098	int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1099	char *str;
1100
1101	str = malloc(newlen);
1102	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1103
1104	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1105	ret = system(str);
1106	if (ret == -1)
1107		log_err("fio: exec of cmd <%s> failed\n", str);
1108
1109	free(str);
1110	return ret;
1111}
1112
1113/*
1114 * Entry point for the thread based jobs. The process based jobs end up
1115 * here as well, after a little setup.
1116 */
1117static void *thread_main(void *data)
1118{
1119	unsigned long long elapsed;
1120	struct thread_data *td = data;
1121	struct thread_options *o = &td->o;
1122	pthread_condattr_t attr;
1123	int clear_state;
1124	int ret;
1125
1126	if (!o->use_thread) {
1127		setsid();
1128		td->pid = getpid();
1129	} else
1130		td->pid = gettid();
1131
1132	fio_local_clock_init(o->use_thread);
1133
1134	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1135
1136	if (is_backend)
1137		fio_server_send_start(td);
1138
1139	INIT_FLIST_HEAD(&td->io_log_list);
1140	INIT_FLIST_HEAD(&td->io_hist_list);
1141	INIT_FLIST_HEAD(&td->verify_list);
1142	INIT_FLIST_HEAD(&td->trim_list);
1143	INIT_FLIST_HEAD(&td->next_rand_list);
1144	pthread_mutex_init(&td->io_u_lock, NULL);
1145	td->io_hist_tree = RB_ROOT;
1146
1147	pthread_condattr_init(&attr);
1148	pthread_cond_init(&td->verify_cond, &attr);
1149	pthread_cond_init(&td->free_cond, &attr);
1150
1151	td_set_runstate(td, TD_INITIALIZED);
1152	dprint(FD_MUTEX, "up startup_mutex\n");
1153	fio_mutex_up(startup_mutex);
1154	dprint(FD_MUTEX, "wait on td->mutex\n");
1155	fio_mutex_down(td->mutex);
1156	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1157
1158	/*
1159	 * the ->mutex mutex is now no longer used, close it to avoid
1160	 * eating a file descriptor
1161	 */
1162	fio_mutex_remove(td->mutex);
1163	td->mutex = NULL;
1164
1165	/*
1166	 * A new gid requires privilege, so we need to do this before setting
1167	 * the uid.
1168	 */
1169	if (o->gid != -1U && setgid(o->gid)) {
1170		td_verror(td, errno, "setgid");
1171		goto err;
1172	}
1173	if (o->uid != -1U && setuid(o->uid)) {
1174		td_verror(td, errno, "setuid");
1175		goto err;
1176	}
1177
1178	/*
1179	 * If we have a gettimeofday() thread, make sure we exclude that
1180	 * thread from this job
1181	 */
1182	if (o->gtod_cpu)
1183		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1184
1185	/*
1186	 * Set affinity first, in case it has an impact on the memory
1187	 * allocations.
1188	 */
1189	if (o->cpumask_set) {
1190		ret = fio_setaffinity(td->pid, o->cpumask);
1191		if (ret == -1) {
1192			td_verror(td, errno, "cpu_set_affinity");
1193			goto err;
1194		}
1195	}
1196
1197#ifdef CONFIG_LIBNUMA
1198	/* numa node setup */
1199	if (o->numa_cpumask_set || o->numa_memmask_set) {
1200		int ret;
1201
1202		if (numa_available() < 0) {
1203			td_verror(td, errno, "Does not support NUMA API\n");
1204			goto err;
1205		}
1206
1207		if (o->numa_cpumask_set) {
1208			ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1209			if (ret == -1) {
1210				td_verror(td, errno, \
1211					"numa_run_on_node_mask failed\n");
1212				goto err;
1213			}
1214		}
1215
1216		if (o->numa_memmask_set) {
1217
1218			switch (o->numa_mem_mode) {
1219			case MPOL_INTERLEAVE:
1220				numa_set_interleave_mask(o->numa_memnodesmask);
1221				break;
1222			case MPOL_BIND:
1223				numa_set_membind(o->numa_memnodesmask);
1224				break;
1225			case MPOL_LOCAL:
1226				numa_set_localalloc();
1227				break;
1228			case MPOL_PREFERRED:
1229				numa_set_preferred(o->numa_mem_prefer_node);
1230				break;
1231			case MPOL_DEFAULT:
1232			default:
1233				break;
1234			}
1235
1236		}
1237	}
1238#endif
1239
1240	if (fio_pin_memory(td))
1241		goto err;
1242
1243	/*
1244	 * May alter parameters that init_io_u() will use, so we need to
1245	 * do this first.
1246	 */
1247	if (init_iolog(td))
1248		goto err;
1249
1250	if (init_io_u(td))
1251		goto err;
1252
1253	if (o->verify_async && verify_async_init(td))
1254		goto err;
1255
1256	if (o->ioprio) {
1257		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1258		if (ret == -1) {
1259			td_verror(td, errno, "ioprio_set");
1260			goto err;
1261		}
1262	}
1263
1264	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1265		goto err;
1266
1267	errno = 0;
1268	if (nice(o->nice) == -1 && errno != 0) {
1269		td_verror(td, errno, "nice");
1270		goto err;
1271	}
1272
1273	if (o->ioscheduler && switch_ioscheduler(td))
1274		goto err;
1275
1276	if (!o->create_serialize && setup_files(td))
1277		goto err;
1278
1279	if (td_io_init(td))
1280		goto err;
1281
1282	if (init_random_map(td))
1283		goto err;
1284
1285	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1286		goto err;
1287
1288	if (o->pre_read) {
1289		if (pre_read_files(td) < 0)
1290			goto err;
1291	}
1292
1293	fio_verify_init(td);
1294
1295	fio_gettime(&td->epoch, NULL);
1296	fio_getrusage(&td->ru_start);
1297	clear_state = 0;
1298	while (keep_running(td)) {
1299		uint64_t verify_bytes;
1300
1301		fio_gettime(&td->start, NULL);
1302		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1303		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1304		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1305
1306		if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1307				o->ratemin[DDIR_TRIM]) {
1308		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1309						sizeof(td->bw_sample_time));
1310		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1311						sizeof(td->bw_sample_time));
1312		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1313						sizeof(td->bw_sample_time));
1314		}
1315
1316		if (clear_state)
1317			clear_io_state(td);
1318
1319		prune_io_piece_log(td);
1320
1321		verify_bytes = do_io(td);
1322
1323		clear_state = 1;
1324
1325		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1326			elapsed = utime_since_now(&td->start);
1327			td->ts.runtime[DDIR_READ] += elapsed;
1328		}
1329		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1330			elapsed = utime_since_now(&td->start);
1331			td->ts.runtime[DDIR_WRITE] += elapsed;
1332		}
1333		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1334			elapsed = utime_since_now(&td->start);
1335			td->ts.runtime[DDIR_TRIM] += elapsed;
1336		}
1337
1338		if (td->error || td->terminate)
1339			break;
1340
1341		if (!o->do_verify ||
1342		    o->verify == VERIFY_NONE ||
1343		    (td->io_ops->flags & FIO_UNIDIR))
1344			continue;
1345
1346		clear_io_state(td);
1347
1348		fio_gettime(&td->start, NULL);
1349
1350		do_verify(td, verify_bytes);
1351
1352		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1353
1354		if (td->error || td->terminate)
1355			break;
1356	}
1357
1358	update_rusage_stat(td);
1359	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1360	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1361	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1362	td->ts.total_run_time = mtime_since_now(&td->epoch);
1363	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1364	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1365	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1366
1367	fio_unpin_memory(td);
1368
1369	fio_mutex_down(writeout_mutex);
1370	if (td->bw_log) {
1371		if (o->bw_log_file) {
1372			finish_log_named(td, td->bw_log,
1373						o->bw_log_file, "bw");
1374		} else
1375			finish_log(td, td->bw_log, "bw");
1376	}
1377	if (td->lat_log) {
1378		if (o->lat_log_file) {
1379			finish_log_named(td, td->lat_log,
1380						o->lat_log_file, "lat");
1381		} else
1382			finish_log(td, td->lat_log, "lat");
1383	}
1384	if (td->slat_log) {
1385		if (o->lat_log_file) {
1386			finish_log_named(td, td->slat_log,
1387						o->lat_log_file, "slat");
1388		} else
1389			finish_log(td, td->slat_log, "slat");
1390	}
1391	if (td->clat_log) {
1392		if (o->lat_log_file) {
1393			finish_log_named(td, td->clat_log,
1394						o->lat_log_file, "clat");
1395		} else
1396			finish_log(td, td->clat_log, "clat");
1397	}
1398	if (td->iops_log) {
1399		if (o->iops_log_file) {
1400			finish_log_named(td, td->iops_log,
1401						o->iops_log_file, "iops");
1402		} else
1403			finish_log(td, td->iops_log, "iops");
1404	}
1405
1406	fio_mutex_up(writeout_mutex);
1407	if (o->exec_postrun)
1408		exec_string(o, o->exec_postrun, (const char *)"postrun");
1409
1410	if (exitall_on_terminate)
1411		fio_terminate_threads(td->groupid);
1412
1413err:
1414	if (td->error)
1415		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1416							td->verror);
1417
1418	if (o->verify_async)
1419		verify_async_exit(td);
1420
1421	close_and_free_files(td);
1422	cleanup_io_u(td);
1423	close_ioengine(td);
1424	cgroup_shutdown(td, &cgroup_mnt);
1425
1426	if (o->cpumask_set) {
1427		int ret = fio_cpuset_exit(&o->cpumask);
1428
1429		td_verror(td, ret, "fio_cpuset_exit");
1430	}
1431
1432	/*
1433	 * do this very late, it will log file closing as well
1434	 */
1435	if (o->write_iolog_file)
1436		write_iolog_close(td);
1437
1438	fio_mutex_remove(td->rusage_sem);
1439	td->rusage_sem = NULL;
1440
1441	td_set_runstate(td, TD_EXITED);
1442	return (void *) (uintptr_t) td->error;
1443}
1444
1445
1446/*
1447 * We cannot pass the td data into a forked process, so attach the td and
1448 * pass it to the thread worker.
1449 */
1450static int fork_main(int shmid, int offset)
1451{
1452	struct thread_data *td;
1453	void *data, *ret;
1454
1455#ifndef __hpux
1456	data = shmat(shmid, NULL, 0);
1457	if (data == (void *) -1) {
1458		int __err = errno;
1459
1460		perror("shmat");
1461		return __err;
1462	}
1463#else
1464	/*
1465	 * HP-UX inherits shm mappings?
1466	 */
1467	data = threads;
1468#endif
1469
1470	td = data + offset * sizeof(struct thread_data);
1471	ret = thread_main(td);
1472	shmdt(data);
1473	return (int) (uintptr_t) ret;
1474}
1475
1476/*
1477 * Run over the job map and reap the threads that have exited, if any.
1478 */
1479static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1480			 unsigned int *m_rate)
1481{
1482	struct thread_data *td;
1483	unsigned int cputhreads, realthreads, pending;
1484	int i, status, ret;
1485
1486	/*
1487	 * reap exited threads (TD_EXITED -> TD_REAPED)
1488	 */
1489	realthreads = pending = cputhreads = 0;
1490	for_each_td(td, i) {
1491		int flags = 0;
1492
1493		/*
1494		 * ->io_ops is NULL for a thread that has closed its
1495		 * io engine
1496		 */
1497		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1498			cputhreads++;
1499		else
1500			realthreads++;
1501
1502		if (!td->pid) {
1503			pending++;
1504			continue;
1505		}
1506		if (td->runstate == TD_REAPED)
1507			continue;
1508		if (td->o.use_thread) {
1509			if (td->runstate == TD_EXITED) {
1510				td_set_runstate(td, TD_REAPED);
1511				goto reaped;
1512			}
1513			continue;
1514		}
1515
1516		flags = WNOHANG;
1517		if (td->runstate == TD_EXITED)
1518			flags = 0;
1519
1520		/*
1521		 * check if someone quit or got killed in an unusual way
1522		 */
1523		ret = waitpid(td->pid, &status, flags);
1524		if (ret < 0) {
1525			if (errno == ECHILD) {
1526				log_err("fio: pid=%d disappeared %d\n",
1527						(int) td->pid, td->runstate);
1528				td->sig = ECHILD;
1529				td_set_runstate(td, TD_REAPED);
1530				goto reaped;
1531			}
1532			perror("waitpid");
1533		} else if (ret == td->pid) {
1534			if (WIFSIGNALED(status)) {
1535				int sig = WTERMSIG(status);
1536
1537				if (sig != SIGTERM && sig != SIGUSR2)
1538					log_err("fio: pid=%d, got signal=%d\n",
1539							(int) td->pid, sig);
1540				td->sig = sig;
1541				td_set_runstate(td, TD_REAPED);
1542				goto reaped;
1543			}
1544			if (WIFEXITED(status)) {
1545				if (WEXITSTATUS(status) && !td->error)
1546					td->error = WEXITSTATUS(status);
1547
1548				td_set_runstate(td, TD_REAPED);
1549				goto reaped;
1550			}
1551		}
1552
1553		/*
1554		 * thread is not dead, continue
1555		 */
1556		pending++;
1557		continue;
1558reaped:
1559		(*nr_running)--;
1560		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1561		(*t_rate) -= ddir_rw_sum(td->o.rate);
1562		if (!td->pid)
1563			pending--;
1564
1565		if (td->error)
1566			exit_value++;
1567
1568		done_secs += mtime_since_now(&td->epoch) / 1000;
1569		profile_td_exit(td);
1570	}
1571
1572	if (*nr_running == cputhreads && !pending && realthreads)
1573		fio_terminate_threads(TERMINATE_ALL);
1574}
1575
1576static void do_usleep(unsigned int usecs)
1577{
1578	check_for_running_stats();
1579	usleep(usecs);
1580}
1581
1582/*
1583 * Main function for kicking off and reaping jobs, as needed.
1584 */
1585static void run_threads(void)
1586{
1587	struct thread_data *td;
1588	unsigned long spent;
1589	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1590
1591	if (fio_gtod_offload && fio_start_gtod_thread())
1592		return;
1593
1594	fio_idle_prof_init();
1595
1596	set_sig_handlers();
1597
1598	nr_thread = nr_process = 0;
1599	for_each_td(td, i) {
1600		if (td->o.use_thread)
1601			nr_thread++;
1602		else
1603			nr_process++;
1604	}
1605
1606	if (output_format == FIO_OUTPUT_NORMAL) {
1607		log_info("Starting ");
1608		if (nr_thread)
1609			log_info("%d thread%s", nr_thread,
1610						nr_thread > 1 ? "s" : "");
1611		if (nr_process) {
1612			if (nr_thread)
1613				log_info(" and ");
1614			log_info("%d process%s", nr_process,
1615						nr_process > 1 ? "es" : "");
1616		}
1617		log_info("\n");
1618		fflush(stdout);
1619	}
1620
1621	todo = thread_number;
1622	nr_running = 0;
1623	nr_started = 0;
1624	m_rate = t_rate = 0;
1625
1626	for_each_td(td, i) {
1627		print_status_init(td->thread_number - 1);
1628
1629		if (!td->o.create_serialize)
1630			continue;
1631
1632		/*
1633		 * do file setup here so it happens sequentially,
1634		 * we don't want X number of threads getting their
1635		 * client data interspersed on disk
1636		 */
1637		if (setup_files(td)) {
1638			exit_value++;
1639			if (td->error)
1640				log_err("fio: pid=%d, err=%d/%s\n",
1641					(int) td->pid, td->error, td->verror);
1642			td_set_runstate(td, TD_REAPED);
1643			todo--;
1644		} else {
1645			struct fio_file *f;
1646			unsigned int j;
1647
1648			/*
1649			 * for sharing to work, each job must always open
1650			 * its own files. so close them, if we opened them
1651			 * for creation
1652			 */
1653			for_each_file(td, f, j) {
1654				if (fio_file_open(f))
1655					td_io_close_file(td, f);
1656			}
1657		}
1658	}
1659
1660	/* start idle threads before io threads start to run */
1661	fio_idle_prof_start();
1662
1663	set_genesis_time();
1664
1665	while (todo) {
1666		struct thread_data *map[REAL_MAX_JOBS];
1667		struct timeval this_start;
1668		int this_jobs = 0, left;
1669
1670		/*
1671		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1672		 */
1673		for_each_td(td, i) {
1674			if (td->runstate != TD_NOT_CREATED)
1675				continue;
1676
1677			/*
1678			 * never got a chance to start, killed by other
1679			 * thread for some reason
1680			 */
1681			if (td->terminate) {
1682				todo--;
1683				continue;
1684			}
1685
1686			if (td->o.start_delay) {
1687				spent = mtime_since_genesis();
1688
1689				if (td->o.start_delay * 1000 > spent)
1690					continue;
1691			}
1692
1693			if (td->o.stonewall && (nr_started || nr_running)) {
1694				dprint(FD_PROCESS, "%s: stonewall wait\n",
1695							td->o.name);
1696				break;
1697			}
1698
1699			init_disk_util(td);
1700
1701			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1702			td->update_rusage = 0;
1703
1704			/*
1705			 * Set state to created. Thread will transition
1706			 * to TD_INITIALIZED when it's done setting up.
1707			 */
1708			td_set_runstate(td, TD_CREATED);
1709			map[this_jobs++] = td;
1710			nr_started++;
1711
1712			if (td->o.use_thread) {
1713				int ret;
1714
1715				dprint(FD_PROCESS, "will pthread_create\n");
1716				ret = pthread_create(&td->thread, NULL,
1717							thread_main, td);
1718				if (ret) {
1719					log_err("pthread_create: %s\n",
1720							strerror(ret));
1721					nr_started--;
1722					break;
1723				}
1724				ret = pthread_detach(td->thread);
1725				if (ret)
1726					log_err("pthread_detach: %s",
1727							strerror(ret));
1728			} else {
1729				pid_t pid;
1730				dprint(FD_PROCESS, "will fork\n");
1731				pid = fork();
1732				if (!pid) {
1733					int ret = fork_main(shm_id, i);
1734
1735					_exit(ret);
1736				} else if (i == fio_debug_jobno)
1737					*fio_debug_jobp = pid;
1738			}
1739			dprint(FD_MUTEX, "wait on startup_mutex\n");
1740			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1741				log_err("fio: job startup hung? exiting.\n");
1742				fio_terminate_threads(TERMINATE_ALL);
1743				fio_abort = 1;
1744				nr_started--;
1745				break;
1746			}
1747			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1748		}
1749
1750		/*
1751		 * Wait for the started threads to transition to
1752		 * TD_INITIALIZED.
1753		 */
1754		fio_gettime(&this_start, NULL);
1755		left = this_jobs;
1756		while (left && !fio_abort) {
1757			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1758				break;
1759
1760			do_usleep(100000);
1761
1762			for (i = 0; i < this_jobs; i++) {
1763				td = map[i];
1764				if (!td)
1765					continue;
1766				if (td->runstate == TD_INITIALIZED) {
1767					map[i] = NULL;
1768					left--;
1769				} else if (td->runstate >= TD_EXITED) {
1770					map[i] = NULL;
1771					left--;
1772					todo--;
1773					nr_running++; /* work-around... */
1774				}
1775			}
1776		}
1777
1778		if (left) {
1779			log_err("fio: %d job%s failed to start\n", left,
1780					left > 1 ? "s" : "");
1781			for (i = 0; i < this_jobs; i++) {
1782				td = map[i];
1783				if (!td)
1784					continue;
1785				kill(td->pid, SIGTERM);
1786			}
1787			break;
1788		}
1789
1790		/*
1791		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1792		 */
1793		for_each_td(td, i) {
1794			if (td->runstate != TD_INITIALIZED)
1795				continue;
1796
1797			if (in_ramp_time(td))
1798				td_set_runstate(td, TD_RAMP);
1799			else
1800				td_set_runstate(td, TD_RUNNING);
1801			nr_running++;
1802			nr_started--;
1803			m_rate += ddir_rw_sum(td->o.ratemin);
1804			t_rate += ddir_rw_sum(td->o.rate);
1805			todo--;
1806			fio_mutex_up(td->mutex);
1807		}
1808
1809		reap_threads(&nr_running, &t_rate, &m_rate);
1810
1811		if (todo)
1812			do_usleep(100000);
1813	}
1814
1815	while (nr_running) {
1816		reap_threads(&nr_running, &t_rate, &m_rate);
1817		do_usleep(10000);
1818	}
1819
1820	fio_idle_prof_stop();
1821
1822	update_io_ticks();
1823}
1824
1825void wait_for_disk_thread_exit(void)
1826{
1827	fio_mutex_down(disk_thread_mutex);
1828}
1829
1830static void free_disk_util(void)
1831{
1832	disk_util_start_exit();
1833	wait_for_disk_thread_exit();
1834	disk_util_prune_entries();
1835}
1836
1837static void *disk_thread_main(void *data)
1838{
1839	int ret = 0;
1840
1841	fio_mutex_up(startup_mutex);
1842
1843	while (threads && !ret) {
1844		usleep(DISK_UTIL_MSEC * 1000);
1845		if (!threads)
1846			break;
1847		ret = update_io_ticks();
1848
1849		if (!is_backend)
1850			print_thread_status();
1851	}
1852
1853	fio_mutex_up(disk_thread_mutex);
1854	return NULL;
1855}
1856
1857static int create_disk_util_thread(void)
1858{
1859	int ret;
1860
1861	setup_disk_util();
1862
1863	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1864
1865	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1866	if (ret) {
1867		fio_mutex_remove(disk_thread_mutex);
1868		log_err("Can't create disk util thread: %s\n", strerror(ret));
1869		return 1;
1870	}
1871
1872	ret = pthread_detach(disk_util_thread);
1873	if (ret) {
1874		fio_mutex_remove(disk_thread_mutex);
1875		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1876		return 1;
1877	}
1878
1879	dprint(FD_MUTEX, "wait on startup_mutex\n");
1880	fio_mutex_down(startup_mutex);
1881	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1882	return 0;
1883}
1884
1885int fio_backend(void)
1886{
1887	struct thread_data *td;
1888	int i;
1889
1890	if (exec_profile) {
1891		if (load_profile(exec_profile))
1892			return 1;
1893		free(exec_profile);
1894		exec_profile = NULL;
1895	}
1896	if (!thread_number)
1897		return 0;
1898
1899	if (write_bw_log) {
1900		setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1901		setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1902		setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1903	}
1904
1905	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1906	if (startup_mutex == NULL)
1907		return 1;
1908	writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1909	if (writeout_mutex == NULL)
1910		return 1;
1911
1912	set_genesis_time();
1913	stat_init();
1914	create_disk_util_thread();
1915
1916	cgroup_list = smalloc(sizeof(*cgroup_list));
1917	INIT_FLIST_HEAD(cgroup_list);
1918
1919	run_threads();
1920
1921	if (!fio_abort) {
1922		show_run_stats();
1923		if (write_bw_log) {
1924			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1925			__finish_log(agg_io_log[DDIR_WRITE],
1926					"agg-write_bw.log");
1927			__finish_log(agg_io_log[DDIR_TRIM],
1928					"agg-write_bw.log");
1929		}
1930	}
1931
1932	for_each_td(td, i)
1933		fio_options_free(td);
1934
1935	free_disk_util();
1936	cgroup_kill(cgroup_list);
1937	sfree(cgroup_list);
1938	sfree(cgroup_mnt);
1939
1940	fio_mutex_remove(startup_mutex);
1941	fio_mutex_remove(writeout_mutex);
1942	fio_mutex_remove(disk_thread_mutex);
1943	stat_exit();
1944	return exit_value;
1945}
1946