backend.c revision 2e1df07d1ea30e0304cc65370f3ed161a6f22cd4
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51static pthread_t disk_util_thread;
52static struct fio_mutex *startup_mutex;
53static struct fio_mutex *writeout_mutex;
54static struct flist_head *cgroup_list;
55static char *cgroup_mnt;
56static int exit_value;
57static volatile int fio_abort;
58
59struct io_log *agg_io_log[2];
60
61#define PAGE_ALIGN(buf)	\
62	(char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
63
64#define JOB_START_TIMEOUT	(5 * 1000)
65
66static void sig_int(int sig)
67{
68	if (threads) {
69		if (is_backend)
70			fio_server_got_signal(sig);
71		else {
72			log_info("\nfio: terminating on signal %d\n", sig);
73			fflush(stdout);
74			exit_value = 128;
75		}
76
77		fio_terminate_threads(TERMINATE_ALL);
78	}
79}
80
81static void set_sig_handlers(void)
82{
83	struct sigaction act;
84
85	memset(&act, 0, sizeof(act));
86	act.sa_handler = sig_int;
87	act.sa_flags = SA_RESTART;
88	sigaction(SIGINT, &act, NULL);
89
90	memset(&act, 0, sizeof(act));
91	act.sa_handler = sig_int;
92	act.sa_flags = SA_RESTART;
93	sigaction(SIGTERM, &act, NULL);
94
95	if (is_backend) {
96		memset(&act, 0, sizeof(act));
97		act.sa_handler = sig_int;
98		act.sa_flags = SA_RESTART;
99		sigaction(SIGPIPE, &act, NULL);
100	}
101}
102
103/*
104 * Check if we are above the minimum rate given.
105 */
106static int __check_min_rate(struct thread_data *td, struct timeval *now,
107			    enum fio_ddir ddir)
108{
109	unsigned long long bytes = 0;
110	unsigned long iops = 0;
111	unsigned long spent;
112	unsigned long rate;
113	unsigned int ratemin = 0;
114	unsigned int rate_iops = 0;
115	unsigned int rate_iops_min = 0;
116
117	assert(ddir_rw(ddir));
118
119	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
120		return 0;
121
122	/*
123	 * allow a 2 second settle period in the beginning
124	 */
125	if (mtime_since(&td->start, now) < 2000)
126		return 0;
127
128	iops += td->this_io_blocks[ddir];
129	bytes += td->this_io_bytes[ddir];
130	ratemin += td->o.ratemin[ddir];
131	rate_iops += td->o.rate_iops[ddir];
132	rate_iops_min += td->o.rate_iops_min[ddir];
133
134	/*
135	 * if rate blocks is set, sample is running
136	 */
137	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
138		spent = mtime_since(&td->lastrate[ddir], now);
139		if (spent < td->o.ratecycle)
140			return 0;
141
142		if (td->o.rate[ddir]) {
143			/*
144			 * check bandwidth specified rate
145			 */
146			if (bytes < td->rate_bytes[ddir]) {
147				log_err("%s: min rate %u not met\n", td->o.name,
148								ratemin);
149				return 1;
150			} else {
151				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
152				if (rate < ratemin ||
153				    bytes < td->rate_bytes[ddir]) {
154					log_err("%s: min rate %u not met, got"
155						" %luKB/sec\n", td->o.name,
156							ratemin, rate);
157					return 1;
158				}
159			}
160		} else {
161			/*
162			 * checks iops specified rate
163			 */
164			if (iops < rate_iops) {
165				log_err("%s: min iops rate %u not met\n",
166						td->o.name, rate_iops);
167				return 1;
168			} else {
169				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
170				if (rate < rate_iops_min ||
171				    iops < td->rate_blocks[ddir]) {
172					log_err("%s: min iops rate %u not met,"
173						" got %lu\n", td->o.name,
174							rate_iops_min, rate);
175				}
176			}
177		}
178	}
179
180	td->rate_bytes[ddir] = bytes;
181	td->rate_blocks[ddir] = iops;
182	memcpy(&td->lastrate[ddir], now, sizeof(*now));
183	return 0;
184}
185
186static int check_min_rate(struct thread_data *td, struct timeval *now,
187			  unsigned long *bytes_done)
188{
189	int ret = 0;
190
191	if (bytes_done[0])
192		ret |= __check_min_rate(td, now, 0);
193	if (bytes_done[1])
194		ret |= __check_min_rate(td, now, 1);
195
196	return ret;
197}
198
199/*
200 * When job exits, we can cancel the in-flight IO if we are using async
201 * io. Attempt to do so.
202 */
203static void cleanup_pending_aio(struct thread_data *td)
204{
205	struct flist_head *entry, *n;
206	struct io_u *io_u;
207	int r;
208
209	/*
210	 * get immediately available events, if any
211	 */
212	r = io_u_queued_complete(td, 0, NULL);
213	if (r < 0)
214		return;
215
216	/*
217	 * now cancel remaining active events
218	 */
219	if (td->io_ops->cancel) {
220		flist_for_each_safe(entry, n, &td->io_u_busylist) {
221			io_u = flist_entry(entry, struct io_u, list);
222
223			/*
224			 * if the io_u isn't in flight, then that generally
225			 * means someone leaked an io_u. complain but fix
226			 * it up, so we don't stall here.
227			 */
228			if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
229				log_err("fio: non-busy IO on busy list\n");
230				put_io_u(td, io_u);
231			} else {
232				r = td->io_ops->cancel(td, io_u);
233				if (!r)
234					put_io_u(td, io_u);
235			}
236		}
237	}
238
239	if (td->cur_depth)
240		r = io_u_queued_complete(td, td->cur_depth, NULL);
241}
242
243/*
244 * Helper to handle the final sync of a file. Works just like the normal
245 * io path, just does everything sync.
246 */
247static int fio_io_sync(struct thread_data *td, struct fio_file *f)
248{
249	struct io_u *io_u = __get_io_u(td);
250	int ret;
251
252	if (!io_u)
253		return 1;
254
255	io_u->ddir = DDIR_SYNC;
256	io_u->file = f;
257
258	if (td_io_prep(td, io_u)) {
259		put_io_u(td, io_u);
260		return 1;
261	}
262
263requeue:
264	ret = td_io_queue(td, io_u);
265	if (ret < 0) {
266		td_verror(td, io_u->error, "td_io_queue");
267		put_io_u(td, io_u);
268		return 1;
269	} else if (ret == FIO_Q_QUEUED) {
270		if (io_u_queued_complete(td, 1, NULL) < 0)
271			return 1;
272	} else if (ret == FIO_Q_COMPLETED) {
273		if (io_u->error) {
274			td_verror(td, io_u->error, "td_io_queue");
275			return 1;
276		}
277
278		if (io_u_sync_complete(td, io_u, NULL) < 0)
279			return 1;
280	} else if (ret == FIO_Q_BUSY) {
281		if (td_io_commit(td))
282			return 1;
283		goto requeue;
284	}
285
286	return 0;
287}
288static inline void __update_tv_cache(struct thread_data *td)
289{
290	fio_gettime(&td->tv_cache, NULL);
291}
292
293static inline void update_tv_cache(struct thread_data *td)
294{
295	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
296		__update_tv_cache(td);
297}
298
299static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
300{
301	if (in_ramp_time(td))
302		return 0;
303	if (!td->o.timeout)
304		return 0;
305	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
306		return 1;
307
308	return 0;
309}
310
311static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
312			       int *retptr)
313{
314	int ret = *retptr;
315
316	if (ret < 0 || td->error) {
317		int err;
318
319		if (ret < 0)
320			err = -ret;
321		else
322			err = td->error;
323
324		if (!(td->o.continue_on_error & td_error_type(ddir, err)))
325			return 1;
326
327		if (td_non_fatal_error(err)) {
328		        /*
329		         * Continue with the I/Os in case of
330			 * a non fatal error.
331			 */
332			update_error_count(td, err);
333			td_clear_error(td);
334			*retptr = 0;
335			return 0;
336		} else if (td->o.fill_device && err == ENOSPC) {
337			/*
338			 * We expect to hit this error if
339			 * fill_device option is set.
340			 */
341			td_clear_error(td);
342			td->terminate = 1;
343			return 1;
344		} else {
345			/*
346			 * Stop the I/O in case of a fatal
347			 * error.
348			 */
349			update_error_count(td, err);
350			return 1;
351		}
352	}
353
354	return 0;
355}
356
357
358
359/*
360 * The main verify engine. Runs over the writes we previously submitted,
361 * reads the blocks back in, and checks the crc/md5 of the data.
362 */
363static void do_verify(struct thread_data *td)
364{
365	struct fio_file *f;
366	struct io_u *io_u;
367	int ret, min_events;
368	unsigned int i;
369
370	dprint(FD_VERIFY, "starting loop\n");
371
372	/*
373	 * sync io first and invalidate cache, to make sure we really
374	 * read from disk.
375	 */
376	for_each_file(td, f, i) {
377		if (!fio_file_open(f))
378			continue;
379		if (fio_io_sync(td, f))
380			break;
381		if (file_invalidate_cache(td, f))
382			break;
383	}
384
385	if (td->error)
386		return;
387
388	td_set_runstate(td, TD_VERIFYING);
389
390	io_u = NULL;
391	while (!td->terminate) {
392		int ret2, full;
393
394		update_tv_cache(td);
395
396		if (runtime_exceeded(td, &td->tv_cache)) {
397			__update_tv_cache(td);
398			if (runtime_exceeded(td, &td->tv_cache)) {
399				td->terminate = 1;
400				break;
401			}
402		}
403
404		io_u = __get_io_u(td);
405		if (!io_u)
406			break;
407
408		if (get_next_verify(td, io_u)) {
409			put_io_u(td, io_u);
410			break;
411		}
412
413		if (td_io_prep(td, io_u)) {
414			put_io_u(td, io_u);
415			break;
416		}
417
418		if (td->o.verify_async)
419			io_u->end_io = verify_io_u_async;
420		else
421			io_u->end_io = verify_io_u;
422
423		ret = td_io_queue(td, io_u);
424		switch (ret) {
425		case FIO_Q_COMPLETED:
426			if (io_u->error) {
427				ret = -io_u->error;
428				clear_io_u(td, io_u);
429			} else if (io_u->resid) {
430				int bytes = io_u->xfer_buflen - io_u->resid;
431
432				/*
433				 * zero read, fail
434				 */
435				if (!bytes) {
436					td_verror(td, EIO, "full resid");
437					put_io_u(td, io_u);
438					break;
439				}
440
441				io_u->xfer_buflen = io_u->resid;
442				io_u->xfer_buf += bytes;
443				io_u->offset += bytes;
444
445				if (ddir_rw(io_u->ddir))
446					td->ts.short_io_u[io_u->ddir]++;
447
448				f = io_u->file;
449				if (io_u->offset == f->real_file_size)
450					goto sync_done;
451
452				requeue_io_u(td, &io_u);
453			} else {
454sync_done:
455				ret = io_u_sync_complete(td, io_u, NULL);
456				if (ret < 0)
457					break;
458			}
459			continue;
460		case FIO_Q_QUEUED:
461			break;
462		case FIO_Q_BUSY:
463			requeue_io_u(td, &io_u);
464			ret2 = td_io_commit(td);
465			if (ret2 < 0)
466				ret = ret2;
467			break;
468		default:
469			assert(ret < 0);
470			td_verror(td, -ret, "td_io_queue");
471			break;
472		}
473
474		if (break_on_this_error(td, io_u->ddir, &ret))
475			break;
476
477		/*
478		 * if we can queue more, do so. but check if there are
479		 * completed io_u's first. Note that we can get BUSY even
480		 * without IO queued, if the system is resource starved.
481		 */
482		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
483		if (full || !td->o.iodepth_batch_complete) {
484			min_events = min(td->o.iodepth_batch_complete,
485					 td->cur_depth);
486			if (full && !min_events && td->o.iodepth_batch_complete != 0)
487				min_events = 1;
488
489			do {
490				/*
491				 * Reap required number of io units, if any,
492				 * and do the verification on them through
493				 * the callback handler
494				 */
495				if (io_u_queued_complete(td, min_events, NULL) < 0) {
496					ret = -1;
497					break;
498				}
499			} while (full && (td->cur_depth > td->o.iodepth_low));
500		}
501		if (ret < 0)
502			break;
503	}
504
505	if (!td->error) {
506		min_events = td->cur_depth;
507
508		if (min_events)
509			ret = io_u_queued_complete(td, min_events, NULL);
510	} else
511		cleanup_pending_aio(td);
512
513	td_set_runstate(td, TD_RUNNING);
514
515	dprint(FD_VERIFY, "exiting loop\n");
516}
517
518/*
519 * Main IO worker function. It retrieves io_u's to process and queues
520 * and reaps them, checking for rate and errors along the way.
521 */
522static void do_io(struct thread_data *td)
523{
524	unsigned int i;
525	int ret = 0;
526
527	if (in_ramp_time(td))
528		td_set_runstate(td, TD_RAMP);
529	else
530		td_set_runstate(td, TD_RUNNING);
531
532	while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
533		(!flist_empty(&td->trim_list)) ||
534	        ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
535		struct timeval comp_time;
536		unsigned long bytes_done[2] = { 0, 0 };
537		int min_evts = 0;
538		struct io_u *io_u;
539		int ret2, full;
540		enum fio_ddir ddir;
541
542		if (td->terminate)
543			break;
544
545		update_tv_cache(td);
546
547		if (runtime_exceeded(td, &td->tv_cache)) {
548			__update_tv_cache(td);
549			if (runtime_exceeded(td, &td->tv_cache)) {
550				td->terminate = 1;
551				break;
552			}
553		}
554
555		io_u = get_io_u(td);
556		if (!io_u)
557			break;
558
559		ddir = io_u->ddir;
560
561		/*
562		 * Add verification end_io handler, if asked to verify
563		 * a previously written file.
564		 */
565		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
566		    !td_rw(td)) {
567			if (td->o.verify_async)
568				io_u->end_io = verify_io_u_async;
569			else
570				io_u->end_io = verify_io_u;
571			td_set_runstate(td, TD_VERIFYING);
572		} else if (in_ramp_time(td))
573			td_set_runstate(td, TD_RAMP);
574		else
575			td_set_runstate(td, TD_RUNNING);
576
577		ret = td_io_queue(td, io_u);
578		switch (ret) {
579		case FIO_Q_COMPLETED:
580			if (io_u->error) {
581				ret = -io_u->error;
582				clear_io_u(td, io_u);
583			} else if (io_u->resid) {
584				int bytes = io_u->xfer_buflen - io_u->resid;
585				struct fio_file *f = io_u->file;
586
587				/*
588				 * zero read, fail
589				 */
590				if (!bytes) {
591					td_verror(td, EIO, "full resid");
592					put_io_u(td, io_u);
593					break;
594				}
595
596				io_u->xfer_buflen = io_u->resid;
597				io_u->xfer_buf += bytes;
598				io_u->offset += bytes;
599
600				if (ddir_rw(io_u->ddir))
601					td->ts.short_io_u[io_u->ddir]++;
602
603				if (io_u->offset == f->real_file_size)
604					goto sync_done;
605
606				requeue_io_u(td, &io_u);
607			} else {
608sync_done:
609				if (__should_check_rate(td, 0) ||
610				    __should_check_rate(td, 1))
611					fio_gettime(&comp_time, NULL);
612
613				ret = io_u_sync_complete(td, io_u, bytes_done);
614				if (ret < 0)
615					break;
616			}
617			break;
618		case FIO_Q_QUEUED:
619			/*
620			 * if the engine doesn't have a commit hook,
621			 * the io_u is really queued. if it does have such
622			 * a hook, it has to call io_u_queued() itself.
623			 */
624			if (td->io_ops->commit == NULL)
625				io_u_queued(td, io_u);
626			break;
627		case FIO_Q_BUSY:
628			requeue_io_u(td, &io_u);
629			ret2 = td_io_commit(td);
630			if (ret2 < 0)
631				ret = ret2;
632			break;
633		default:
634			assert(ret < 0);
635			put_io_u(td, io_u);
636			break;
637		}
638
639		if (break_on_this_error(td, ddir, &ret))
640			break;
641
642		/*
643		 * See if we need to complete some commands. Note that we
644		 * can get BUSY even without IO queued, if the system is
645		 * resource starved.
646		 */
647		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
648		if (full || !td->o.iodepth_batch_complete) {
649			min_evts = min(td->o.iodepth_batch_complete,
650					td->cur_depth);
651			if (full && !min_evts && td->o.iodepth_batch_complete != 0)
652				min_evts = 1;
653
654			if (__should_check_rate(td, 0) ||
655			    __should_check_rate(td, 1))
656				fio_gettime(&comp_time, NULL);
657
658			do {
659				ret = io_u_queued_complete(td, min_evts, bytes_done);
660				if (ret < 0)
661					break;
662
663			} while (full && (td->cur_depth > td->o.iodepth_low));
664		}
665
666		if (ret < 0)
667			break;
668		if (!(bytes_done[0] + bytes_done[1]))
669			continue;
670
671		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
672			if (check_min_rate(td, &comp_time, bytes_done)) {
673				if (exitall_on_terminate)
674					fio_terminate_threads(td->groupid);
675				td_verror(td, EIO, "check_min_rate");
676				break;
677			}
678		}
679
680		if (td->o.thinktime) {
681			unsigned long long b;
682
683			b = td->io_blocks[0] + td->io_blocks[1];
684			if (!(b % td->o.thinktime_blocks)) {
685				int left;
686
687				if (td->o.thinktime_spin)
688					usec_spin(td->o.thinktime_spin);
689
690				left = td->o.thinktime - td->o.thinktime_spin;
691				if (left)
692					usec_sleep(td, left);
693			}
694		}
695	}
696
697	if (td->trim_entries)
698		log_err("fio: %d trim entries leaked?\n", td->trim_entries);
699
700	if (td->o.fill_device && td->error == ENOSPC) {
701		td->error = 0;
702		td->terminate = 1;
703	}
704	if (!td->error) {
705		struct fio_file *f;
706
707		i = td->cur_depth;
708		if (i) {
709			ret = io_u_queued_complete(td, i, NULL);
710			if (td->o.fill_device && td->error == ENOSPC)
711				td->error = 0;
712		}
713
714		if (should_fsync(td) && td->o.end_fsync) {
715			td_set_runstate(td, TD_FSYNCING);
716
717			for_each_file(td, f, i) {
718				if (!fio_file_open(f))
719					continue;
720				fio_io_sync(td, f);
721			}
722		}
723	} else
724		cleanup_pending_aio(td);
725
726	/*
727	 * stop job if we failed doing any IO
728	 */
729	if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
730		td->done = 1;
731}
732
733static void cleanup_io_u(struct thread_data *td)
734{
735	struct flist_head *entry, *n;
736	struct io_u *io_u;
737
738	flist_for_each_safe(entry, n, &td->io_u_freelist) {
739		io_u = flist_entry(entry, struct io_u, list);
740
741		flist_del(&io_u->list);
742		fio_memfree(io_u, sizeof(*io_u));
743	}
744
745	free_io_mem(td);
746}
747
748static int init_io_u(struct thread_data *td)
749{
750	struct io_u *io_u;
751	unsigned int max_bs;
752	int cl_align, i, max_units;
753	char *p;
754
755	max_units = td->o.iodepth;
756	max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
757	td->orig_buffer_size = (unsigned long long) max_bs
758					* (unsigned long long) max_units;
759
760	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
761		unsigned long bs;
762
763		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
764		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
765	}
766
767	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
768		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
769		return 1;
770	}
771
772	if (allocate_io_mem(td))
773		return 1;
774
775	if (td->o.odirect || td->o.mem_align ||
776	    (td->io_ops->flags & FIO_RAWIO))
777		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
778	else
779		p = td->orig_buffer;
780
781	cl_align = os_cache_line_size();
782
783	for (i = 0; i < max_units; i++) {
784		void *ptr;
785
786		if (td->terminate)
787			return 1;
788
789		ptr = fio_memalign(cl_align, sizeof(*io_u));
790		if (!ptr) {
791			log_err("fio: unable to allocate aligned memory\n");
792			break;
793		}
794
795		io_u = ptr;
796		memset(io_u, 0, sizeof(*io_u));
797		INIT_FLIST_HEAD(&io_u->list);
798		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
799
800		if (!(td->io_ops->flags & FIO_NOIO)) {
801			io_u->buf = p;
802			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
803
804			if (td_write(td))
805				io_u_fill_buffer(td, io_u, max_bs);
806			if (td_write(td) && td->o.verify_pattern_bytes) {
807				/*
808				 * Fill the buffer with the pattern if we are
809				 * going to be doing writes.
810				 */
811				fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
812			}
813		}
814
815		io_u->index = i;
816		io_u->flags = IO_U_F_FREE;
817		flist_add(&io_u->list, &td->io_u_freelist);
818		p += max_bs;
819	}
820
821	return 0;
822}
823
824static int switch_ioscheduler(struct thread_data *td)
825{
826	char tmp[256], tmp2[128];
827	FILE *f;
828	int ret;
829
830	if (td->io_ops->flags & FIO_DISKLESSIO)
831		return 0;
832
833	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
834
835	f = fopen(tmp, "r+");
836	if (!f) {
837		if (errno == ENOENT) {
838			log_err("fio: os or kernel doesn't support IO scheduler"
839				" switching\n");
840			return 0;
841		}
842		td_verror(td, errno, "fopen iosched");
843		return 1;
844	}
845
846	/*
847	 * Set io scheduler.
848	 */
849	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
850	if (ferror(f) || ret != 1) {
851		td_verror(td, errno, "fwrite");
852		fclose(f);
853		return 1;
854	}
855
856	rewind(f);
857
858	/*
859	 * Read back and check that the selected scheduler is now the default.
860	 */
861	ret = fread(tmp, 1, sizeof(tmp), f);
862	if (ferror(f) || ret < 0) {
863		td_verror(td, errno, "fread");
864		fclose(f);
865		return 1;
866	}
867
868	sprintf(tmp2, "[%s]", td->o.ioscheduler);
869	if (!strstr(tmp, tmp2)) {
870		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
871		td_verror(td, EINVAL, "iosched_switch");
872		fclose(f);
873		return 1;
874	}
875
876	fclose(f);
877	return 0;
878}
879
880static int keep_running(struct thread_data *td)
881{
882	unsigned long long io_done;
883
884	if (td->done)
885		return 0;
886	if (td->o.time_based)
887		return 1;
888	if (td->o.loops) {
889		td->o.loops--;
890		return 1;
891	}
892
893	io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
894			+ td->io_skip_bytes;
895	if (io_done < td->o.size)
896		return 1;
897
898	return 0;
899}
900
901static int exec_string(const char *string)
902{
903	int ret, newlen = strlen(string) + 1 + 8;
904	char *str;
905
906	str = malloc(newlen);
907	sprintf(str, "sh -c %s", string);
908
909	ret = system(str);
910	if (ret == -1)
911		log_err("fio: exec of cmd <%s> failed\n", str);
912
913	free(str);
914	return ret;
915}
916
917/*
918 * Entry point for the thread based jobs. The process based jobs end up
919 * here as well, after a little setup.
920 */
921static void *thread_main(void *data)
922{
923	unsigned long long elapsed;
924	struct thread_data *td = data;
925	pthread_condattr_t attr;
926	int clear_state;
927
928	if (!td->o.use_thread) {
929		setsid();
930		td->pid = getpid();
931	} else
932		td->pid = gettid();
933
934	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
935
936	INIT_FLIST_HEAD(&td->io_u_freelist);
937	INIT_FLIST_HEAD(&td->io_u_busylist);
938	INIT_FLIST_HEAD(&td->io_u_requeues);
939	INIT_FLIST_HEAD(&td->io_log_list);
940	INIT_FLIST_HEAD(&td->io_hist_list);
941	INIT_FLIST_HEAD(&td->verify_list);
942	INIT_FLIST_HEAD(&td->trim_list);
943	pthread_mutex_init(&td->io_u_lock, NULL);
944	td->io_hist_tree = RB_ROOT;
945
946	pthread_condattr_init(&attr);
947	pthread_cond_init(&td->verify_cond, &attr);
948	pthread_cond_init(&td->free_cond, &attr);
949
950	td_set_runstate(td, TD_INITIALIZED);
951	dprint(FD_MUTEX, "up startup_mutex\n");
952	fio_mutex_up(startup_mutex);
953	dprint(FD_MUTEX, "wait on td->mutex\n");
954	fio_mutex_down(td->mutex);
955	dprint(FD_MUTEX, "done waiting on td->mutex\n");
956
957	/*
958	 * the ->mutex mutex is now no longer used, close it to avoid
959	 * eating a file descriptor
960	 */
961	fio_mutex_remove(td->mutex);
962
963	/*
964	 * A new gid requires privilege, so we need to do this before setting
965	 * the uid.
966	 */
967	if (td->o.gid != -1U && setgid(td->o.gid)) {
968		td_verror(td, errno, "setgid");
969		goto err;
970	}
971	if (td->o.uid != -1U && setuid(td->o.uid)) {
972		td_verror(td, errno, "setuid");
973		goto err;
974	}
975
976	/*
977	 * If we have a gettimeofday() thread, make sure we exclude that
978	 * thread from this job
979	 */
980	if (td->o.gtod_cpu)
981		fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
982
983	/*
984	 * Set affinity first, in case it has an impact on the memory
985	 * allocations.
986	 */
987	if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
988		td_verror(td, errno, "cpu_set_affinity");
989		goto err;
990	}
991
992	/*
993	 * May alter parameters that init_io_u() will use, so we need to
994	 * do this first.
995	 */
996	if (init_iolog(td))
997		goto err;
998
999	if (init_io_u(td))
1000		goto err;
1001
1002	if (td->o.verify_async && verify_async_init(td))
1003		goto err;
1004
1005	if (td->ioprio_set) {
1006		if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1007			td_verror(td, errno, "ioprio_set");
1008			goto err;
1009		}
1010	}
1011
1012	if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1013		goto err;
1014
1015	if (nice(td->o.nice) == -1) {
1016		td_verror(td, errno, "nice");
1017		goto err;
1018	}
1019
1020	if (td->o.ioscheduler && switch_ioscheduler(td))
1021		goto err;
1022
1023	if (!td->o.create_serialize && setup_files(td))
1024		goto err;
1025
1026	if (td_io_init(td))
1027		goto err;
1028
1029	if (init_random_map(td))
1030		goto err;
1031
1032	if (td->o.exec_prerun) {
1033		if (exec_string(td->o.exec_prerun))
1034			goto err;
1035	}
1036
1037	if (td->o.pre_read) {
1038		if (pre_read_files(td) < 0)
1039			goto err;
1040	}
1041
1042	fio_gettime(&td->epoch, NULL);
1043	getrusage(RUSAGE_SELF, &td->ru_start);
1044
1045	clear_state = 0;
1046	while (keep_running(td)) {
1047		fio_gettime(&td->start, NULL);
1048		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1049		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1050		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1051
1052		if (td->o.ratemin[0] || td->o.ratemin[1]) {
1053		        memcpy(&td->lastrate[0], &td->bw_sample_time,
1054						sizeof(td->bw_sample_time));
1055		        memcpy(&td->lastrate[1], &td->bw_sample_time,
1056						sizeof(td->bw_sample_time));
1057		}
1058
1059		if (clear_state)
1060			clear_io_state(td);
1061
1062		prune_io_piece_log(td);
1063
1064		do_io(td);
1065
1066		clear_state = 1;
1067
1068		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1069			elapsed = utime_since_now(&td->start);
1070			td->ts.runtime[DDIR_READ] += elapsed;
1071		}
1072		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1073			elapsed = utime_since_now(&td->start);
1074			td->ts.runtime[DDIR_WRITE] += elapsed;
1075		}
1076
1077		if (td->error || td->terminate)
1078			break;
1079
1080		if (!td->o.do_verify ||
1081		    td->o.verify == VERIFY_NONE ||
1082		    (td->io_ops->flags & FIO_UNIDIR))
1083			continue;
1084
1085		clear_io_state(td);
1086
1087		fio_gettime(&td->start, NULL);
1088
1089		do_verify(td);
1090
1091		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1092
1093		if (td->error || td->terminate)
1094			break;
1095	}
1096
1097	update_rusage_stat(td);
1098	td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1099	td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1100	td->ts.total_run_time = mtime_since_now(&td->epoch);
1101	td->ts.io_bytes[0] = td->io_bytes[0];
1102	td->ts.io_bytes[1] = td->io_bytes[1];
1103
1104	fio_mutex_down(writeout_mutex);
1105	if (td->bw_log) {
1106		if (td->o.bw_log_file) {
1107			finish_log_named(td, td->bw_log,
1108						td->o.bw_log_file, "bw");
1109		} else
1110			finish_log(td, td->bw_log, "bw");
1111	}
1112	if (td->lat_log) {
1113		if (td->o.lat_log_file) {
1114			finish_log_named(td, td->lat_log,
1115						td->o.lat_log_file, "lat");
1116		} else
1117			finish_log(td, td->lat_log, "lat");
1118	}
1119	if (td->slat_log) {
1120		if (td->o.lat_log_file) {
1121			finish_log_named(td, td->slat_log,
1122						td->o.lat_log_file, "slat");
1123		} else
1124			finish_log(td, td->slat_log, "slat");
1125	}
1126	if (td->clat_log) {
1127		if (td->o.lat_log_file) {
1128			finish_log_named(td, td->clat_log,
1129						td->o.lat_log_file, "clat");
1130		} else
1131			finish_log(td, td->clat_log, "clat");
1132	}
1133	if (td->iops_log) {
1134		if (td->o.iops_log_file) {
1135			finish_log_named(td, td->iops_log,
1136						td->o.iops_log_file, "iops");
1137		} else
1138			finish_log(td, td->iops_log, "iops");
1139	}
1140
1141	fio_mutex_up(writeout_mutex);
1142	if (td->o.exec_postrun)
1143		exec_string(td->o.exec_postrun);
1144
1145	if (exitall_on_terminate)
1146		fio_terminate_threads(td->groupid);
1147
1148err:
1149	if (td->error)
1150		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1151							td->verror);
1152
1153	if (td->o.verify_async)
1154		verify_async_exit(td);
1155
1156	close_and_free_files(td);
1157	close_ioengine(td);
1158	cleanup_io_u(td);
1159	cgroup_shutdown(td, &cgroup_mnt);
1160
1161	if (td->o.cpumask_set) {
1162		int ret = fio_cpuset_exit(&td->o.cpumask);
1163
1164		td_verror(td, ret, "fio_cpuset_exit");
1165	}
1166
1167	/*
1168	 * do this very late, it will log file closing as well
1169	 */
1170	if (td->o.write_iolog_file)
1171		write_iolog_close(td);
1172
1173	td_set_runstate(td, TD_EXITED);
1174	return (void *) (unsigned long) td->error;
1175}
1176
1177
1178/*
1179 * We cannot pass the td data into a forked process, so attach the td and
1180 * pass it to the thread worker.
1181 */
1182static int fork_main(int shmid, int offset)
1183{
1184	struct thread_data *td;
1185	void *data, *ret;
1186
1187#ifndef __hpux
1188	data = shmat(shmid, NULL, 0);
1189	if (data == (void *) -1) {
1190		int __err = errno;
1191
1192		perror("shmat");
1193		return __err;
1194	}
1195#else
1196	/*
1197	 * HP-UX inherits shm mappings?
1198	 */
1199	data = threads;
1200#endif
1201
1202	td = data + offset * sizeof(struct thread_data);
1203	ret = thread_main(td);
1204	shmdt(data);
1205	return (int) (unsigned long) ret;
1206}
1207
1208/*
1209 * Run over the job map and reap the threads that have exited, if any.
1210 */
1211static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1212			 unsigned int *m_rate)
1213{
1214	struct thread_data *td;
1215	unsigned int cputhreads, realthreads, pending;
1216	int i, status, ret;
1217
1218	/*
1219	 * reap exited threads (TD_EXITED -> TD_REAPED)
1220	 */
1221	realthreads = pending = cputhreads = 0;
1222	for_each_td(td, i) {
1223		int flags = 0;
1224
1225		/*
1226		 * ->io_ops is NULL for a thread that has closed its
1227		 * io engine
1228		 */
1229		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1230			cputhreads++;
1231		else
1232			realthreads++;
1233
1234		if (!td->pid) {
1235			pending++;
1236			continue;
1237		}
1238		if (td->runstate == TD_REAPED)
1239			continue;
1240		if (td->o.use_thread) {
1241			if (td->runstate == TD_EXITED) {
1242				td_set_runstate(td, TD_REAPED);
1243				goto reaped;
1244			}
1245			continue;
1246		}
1247
1248		flags = WNOHANG;
1249		if (td->runstate == TD_EXITED)
1250			flags = 0;
1251
1252		/*
1253		 * check if someone quit or got killed in an unusual way
1254		 */
1255		ret = waitpid(td->pid, &status, flags);
1256		if (ret < 0) {
1257			if (errno == ECHILD) {
1258				log_err("fio: pid=%d disappeared %d\n",
1259						(int) td->pid, td->runstate);
1260				td_set_runstate(td, TD_REAPED);
1261				goto reaped;
1262			}
1263			perror("waitpid");
1264		} else if (ret == td->pid) {
1265			if (WIFSIGNALED(status)) {
1266				int sig = WTERMSIG(status);
1267
1268				if (sig != SIGTERM)
1269					log_err("fio: pid=%d, got signal=%d\n",
1270							(int) td->pid, sig);
1271				td_set_runstate(td, TD_REAPED);
1272				goto reaped;
1273			}
1274			if (WIFEXITED(status)) {
1275				if (WEXITSTATUS(status) && !td->error)
1276					td->error = WEXITSTATUS(status);
1277
1278				td_set_runstate(td, TD_REAPED);
1279				goto reaped;
1280			}
1281		}
1282
1283		/*
1284		 * thread is not dead, continue
1285		 */
1286		pending++;
1287		continue;
1288reaped:
1289		(*nr_running)--;
1290		(*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1291		(*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1292		if (!td->pid)
1293			pending--;
1294
1295		if (td->error)
1296			exit_value++;
1297
1298		done_secs += mtime_since_now(&td->epoch) / 1000;
1299	}
1300
1301	if (*nr_running == cputhreads && !pending && realthreads)
1302		fio_terminate_threads(TERMINATE_ALL);
1303}
1304
1305
1306
1307/*
1308 * Main function for kicking off and reaping jobs, as needed.
1309 */
1310static void run_threads(void)
1311{
1312	struct thread_data *td;
1313	unsigned long spent;
1314	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1315
1316	if (fio_pin_memory())
1317		return;
1318
1319	if (fio_gtod_offload && fio_start_gtod_thread())
1320		return;
1321
1322	set_sig_handlers();
1323
1324	if (!terse_output) {
1325		log_info("Starting ");
1326		if (nr_thread)
1327			log_info("%d thread%s", nr_thread,
1328						nr_thread > 1 ? "s" : "");
1329		if (nr_process) {
1330			if (nr_thread)
1331				log_info(" and ");
1332			log_info("%d process%s", nr_process,
1333						nr_process > 1 ? "es" : "");
1334		}
1335		log_info("\n");
1336		fflush(stdout);
1337	}
1338
1339	todo = thread_number;
1340	nr_running = 0;
1341	nr_started = 0;
1342	m_rate = t_rate = 0;
1343
1344	for_each_td(td, i) {
1345		print_status_init(td->thread_number - 1);
1346
1347		if (!td->o.create_serialize)
1348			continue;
1349
1350		/*
1351		 * do file setup here so it happens sequentially,
1352		 * we don't want X number of threads getting their
1353		 * client data interspersed on disk
1354		 */
1355		if (setup_files(td)) {
1356			exit_value++;
1357			if (td->error)
1358				log_err("fio: pid=%d, err=%d/%s\n",
1359					(int) td->pid, td->error, td->verror);
1360			td_set_runstate(td, TD_REAPED);
1361			todo--;
1362		} else {
1363			struct fio_file *f;
1364			unsigned int j;
1365
1366			/*
1367			 * for sharing to work, each job must always open
1368			 * its own files. so close them, if we opened them
1369			 * for creation
1370			 */
1371			for_each_file(td, f, j) {
1372				if (fio_file_open(f))
1373					td_io_close_file(td, f);
1374			}
1375		}
1376	}
1377
1378	set_genesis_time();
1379
1380	while (todo) {
1381		struct thread_data *map[REAL_MAX_JOBS];
1382		struct timeval this_start;
1383		int this_jobs = 0, left;
1384
1385		/*
1386		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1387		 */
1388		for_each_td(td, i) {
1389			if (td->runstate != TD_NOT_CREATED)
1390				continue;
1391
1392			/*
1393			 * never got a chance to start, killed by other
1394			 * thread for some reason
1395			 */
1396			if (td->terminate) {
1397				todo--;
1398				continue;
1399			}
1400
1401			if (td->o.start_delay) {
1402				spent = mtime_since_genesis();
1403
1404				if (td->o.start_delay * 1000 > spent)
1405					continue;
1406			}
1407
1408			if (td->o.stonewall && (nr_started || nr_running)) {
1409				dprint(FD_PROCESS, "%s: stonewall wait\n",
1410							td->o.name);
1411				break;
1412			}
1413
1414			init_disk_util(td);
1415
1416			/*
1417			 * Set state to created. Thread will transition
1418			 * to TD_INITIALIZED when it's done setting up.
1419			 */
1420			td_set_runstate(td, TD_CREATED);
1421			map[this_jobs++] = td;
1422			nr_started++;
1423
1424			if (td->o.use_thread) {
1425				int ret;
1426
1427				dprint(FD_PROCESS, "will pthread_create\n");
1428				ret = pthread_create(&td->thread, NULL,
1429							thread_main, td);
1430				if (ret) {
1431					log_err("pthread_create: %s\n",
1432							strerror(ret));
1433					nr_started--;
1434					break;
1435				}
1436				ret = pthread_detach(td->thread);
1437				if (ret)
1438					log_err("pthread_detach: %s",
1439							strerror(ret));
1440			} else {
1441				pid_t pid;
1442				dprint(FD_PROCESS, "will fork\n");
1443				pid = fork();
1444				if (!pid) {
1445					int ret = fork_main(shm_id, i);
1446
1447					_exit(ret);
1448				} else if (i == fio_debug_jobno)
1449					*fio_debug_jobp = pid;
1450			}
1451			dprint(FD_MUTEX, "wait on startup_mutex\n");
1452			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1453				log_err("fio: job startup hung? exiting.\n");
1454				fio_terminate_threads(TERMINATE_ALL);
1455				fio_abort = 1;
1456				nr_started--;
1457				break;
1458			}
1459			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1460		}
1461
1462		/*
1463		 * Wait for the started threads to transition to
1464		 * TD_INITIALIZED.
1465		 */
1466		fio_gettime(&this_start, NULL);
1467		left = this_jobs;
1468		while (left && !fio_abort) {
1469			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1470				break;
1471
1472			usleep(100000);
1473
1474			for (i = 0; i < this_jobs; i++) {
1475				td = map[i];
1476				if (!td)
1477					continue;
1478				if (td->runstate == TD_INITIALIZED) {
1479					map[i] = NULL;
1480					left--;
1481				} else if (td->runstate >= TD_EXITED) {
1482					map[i] = NULL;
1483					left--;
1484					todo--;
1485					nr_running++; /* work-around... */
1486				}
1487			}
1488		}
1489
1490		if (left) {
1491			log_err("fio: %d jobs failed to start\n", left);
1492			for (i = 0; i < this_jobs; i++) {
1493				td = map[i];
1494				if (!td)
1495					continue;
1496				kill(td->pid, SIGTERM);
1497			}
1498			break;
1499		}
1500
1501		/*
1502		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1503		 */
1504		for_each_td(td, i) {
1505			if (td->runstate != TD_INITIALIZED)
1506				continue;
1507
1508			if (in_ramp_time(td))
1509				td_set_runstate(td, TD_RAMP);
1510			else
1511				td_set_runstate(td, TD_RUNNING);
1512			nr_running++;
1513			nr_started--;
1514			m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1515			t_rate += td->o.rate[0] + td->o.rate[1];
1516			todo--;
1517			fio_mutex_up(td->mutex);
1518		}
1519
1520		reap_threads(&nr_running, &t_rate, &m_rate);
1521
1522		if (todo) {
1523			if (is_backend)
1524				fio_server_idle_loop();
1525			else
1526				usleep(100000);
1527		}
1528	}
1529
1530	while (nr_running) {
1531		reap_threads(&nr_running, &t_rate, &m_rate);
1532
1533		if (is_backend)
1534			fio_server_idle_loop();
1535		else
1536			usleep(10000);
1537	}
1538
1539	update_io_ticks();
1540	fio_unpin_memory();
1541}
1542
1543static void *disk_thread_main(void *data)
1544{
1545	fio_mutex_up(startup_mutex);
1546
1547	while (threads) {
1548		usleep(DISK_UTIL_MSEC * 1000);
1549		if (!threads)
1550			break;
1551		update_io_ticks();
1552
1553		if (!is_backend)
1554			print_thread_status();
1555	}
1556
1557	return NULL;
1558}
1559
1560static int create_disk_util_thread(void)
1561{
1562	int ret;
1563
1564	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1565	if (ret) {
1566		log_err("Can't create disk util thread: %s\n", strerror(ret));
1567		return 1;
1568	}
1569
1570	ret = pthread_detach(disk_util_thread);
1571	if (ret) {
1572		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1573		return 1;
1574	}
1575
1576	dprint(FD_MUTEX, "wait on startup_mutex\n");
1577	fio_mutex_down(startup_mutex);
1578	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1579	return 0;
1580}
1581
1582
1583int fio_backend(void)
1584{
1585	struct thread_data *td;
1586	int i;
1587
1588	if (exec_profile) {
1589		if (load_profile(exec_profile))
1590			return 1;
1591		free(exec_profile);
1592		exec_profile = NULL;
1593	}
1594	if (!thread_number)
1595		return 0;
1596
1597	if (write_bw_log) {
1598		setup_log(&agg_io_log[DDIR_READ], 0);
1599		setup_log(&agg_io_log[DDIR_WRITE], 0);
1600	}
1601
1602	startup_mutex = fio_mutex_init(0);
1603	if (startup_mutex == NULL)
1604		return 1;
1605	writeout_mutex = fio_mutex_init(1);
1606	if (writeout_mutex == NULL)
1607		return 1;
1608
1609	set_genesis_time();
1610	create_disk_util_thread();
1611
1612	cgroup_list = smalloc(sizeof(*cgroup_list));
1613	INIT_FLIST_HEAD(cgroup_list);
1614
1615	run_threads();
1616
1617	if (!fio_abort) {
1618		show_run_stats();
1619		if (write_bw_log) {
1620			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1621			__finish_log(agg_io_log[DDIR_WRITE],
1622					"agg-write_bw.log");
1623		}
1624	}
1625
1626	for_each_td(td, i)
1627		fio_options_free(td);
1628
1629	cgroup_kill(cgroup_list);
1630	sfree(cgroup_list);
1631	sfree(cgroup_mnt);
1632
1633	fio_mutex_remove(startup_mutex);
1634	fio_mutex_remove(writeout_mutex);
1635	return exit_value;
1636}
1637
1638
1639