backend.c revision 36d80bc7c7f7fbc2612941b7dd7ceaf645798c7f
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#ifndef FIO_NO_HAVE_SHM_H
38#include <sys/shm.h>
39#endif
40#include <sys/mman.h>
41
42#include "fio.h"
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53
54static pthread_t disk_util_thread;
55static struct fio_mutex *disk_thread_mutex;
56static struct fio_mutex *startup_mutex;
57static struct fio_mutex *writeout_mutex;
58static struct flist_head *cgroup_list;
59static char *cgroup_mnt;
60static int exit_value;
61static volatile int fio_abort;
62
63struct io_log *agg_io_log[DDIR_RWDIR_CNT];
64
65int groupid = 0;
66unsigned int thread_number = 0;
67unsigned int stat_number = 0;
68unsigned int nr_process = 0;
69unsigned int nr_thread = 0;
70int shm_id = 0;
71int temp_stall_ts;
72unsigned long done_secs = 0;
73volatile int disk_util_exit = 0;
74
75#define PAGE_ALIGN(buf)	\
76	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
77
78#define JOB_START_TIMEOUT	(5 * 1000)
79
80static void sig_int(int sig)
81{
82	if (threads) {
83		if (is_backend)
84			fio_server_got_signal(sig);
85		else {
86			log_info("\nfio: terminating on signal %d\n", sig);
87			fflush(stdout);
88			exit_value = 128;
89		}
90
91		fio_terminate_threads(TERMINATE_ALL);
92	}
93}
94
95static void sig_show_status(int sig)
96{
97	show_running_run_stats();
98}
99
100static void set_sig_handlers(void)
101{
102	struct sigaction act;
103
104	memset(&act, 0, sizeof(act));
105	act.sa_handler = sig_int;
106	act.sa_flags = SA_RESTART;
107	sigaction(SIGINT, &act, NULL);
108
109	memset(&act, 0, sizeof(act));
110	act.sa_handler = sig_int;
111	act.sa_flags = SA_RESTART;
112	sigaction(SIGTERM, &act, NULL);
113
114/* Windows uses SIGBREAK as a quit signal from other applications */
115#ifdef WIN32
116	memset(&act, 0, sizeof(act));
117	act.sa_handler = sig_int;
118	act.sa_flags = SA_RESTART;
119	sigaction(SIGBREAK, &act, NULL);
120#endif
121
122	memset(&act, 0, sizeof(act));
123	act.sa_handler = sig_show_status;
124	act.sa_flags = SA_RESTART;
125	sigaction(SIGUSR1, &act, NULL);
126
127	if (is_backend) {
128		memset(&act, 0, sizeof(act));
129		act.sa_handler = sig_int;
130		act.sa_flags = SA_RESTART;
131		sigaction(SIGPIPE, &act, NULL);
132	}
133}
134
135/*
136 * Check if we are above the minimum rate given.
137 */
138static int __check_min_rate(struct thread_data *td, struct timeval *now,
139			    enum fio_ddir ddir)
140{
141	unsigned long long bytes = 0;
142	unsigned long iops = 0;
143	unsigned long spent;
144	unsigned long rate;
145	unsigned int ratemin = 0;
146	unsigned int rate_iops = 0;
147	unsigned int rate_iops_min = 0;
148
149	assert(ddir_rw(ddir));
150
151	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
152		return 0;
153
154	/*
155	 * allow a 2 second settle period in the beginning
156	 */
157	if (mtime_since(&td->start, now) < 2000)
158		return 0;
159
160	iops += td->this_io_blocks[ddir];
161	bytes += td->this_io_bytes[ddir];
162	ratemin += td->o.ratemin[ddir];
163	rate_iops += td->o.rate_iops[ddir];
164	rate_iops_min += td->o.rate_iops_min[ddir];
165
166	/*
167	 * if rate blocks is set, sample is running
168	 */
169	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
170		spent = mtime_since(&td->lastrate[ddir], now);
171		if (spent < td->o.ratecycle)
172			return 0;
173
174		if (td->o.rate[ddir]) {
175			/*
176			 * check bandwidth specified rate
177			 */
178			if (bytes < td->rate_bytes[ddir]) {
179				log_err("%s: min rate %u not met\n", td->o.name,
180								ratemin);
181				return 1;
182			} else {
183				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
184				if (rate < ratemin ||
185				    bytes < td->rate_bytes[ddir]) {
186					log_err("%s: min rate %u not met, got"
187						" %luKB/sec\n", td->o.name,
188							ratemin, rate);
189					return 1;
190				}
191			}
192		} else {
193			/*
194			 * checks iops specified rate
195			 */
196			if (iops < rate_iops) {
197				log_err("%s: min iops rate %u not met\n",
198						td->o.name, rate_iops);
199				return 1;
200			} else {
201				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
202				if (rate < rate_iops_min ||
203				    iops < td->rate_blocks[ddir]) {
204					log_err("%s: min iops rate %u not met,"
205						" got %lu\n", td->o.name,
206							rate_iops_min, rate);
207				}
208			}
209		}
210	}
211
212	td->rate_bytes[ddir] = bytes;
213	td->rate_blocks[ddir] = iops;
214	memcpy(&td->lastrate[ddir], now, sizeof(*now));
215	return 0;
216}
217
218static int check_min_rate(struct thread_data *td, struct timeval *now,
219			  unsigned long *bytes_done)
220{
221	int ret = 0;
222
223	if (bytes_done[DDIR_READ])
224		ret |= __check_min_rate(td, now, DDIR_READ);
225	if (bytes_done[DDIR_WRITE])
226		ret |= __check_min_rate(td, now, DDIR_WRITE);
227	if (bytes_done[DDIR_TRIM])
228		ret |= __check_min_rate(td, now, DDIR_TRIM);
229
230	return ret;
231}
232
233/*
234 * When job exits, we can cancel the in-flight IO if we are using async
235 * io. Attempt to do so.
236 */
237static void cleanup_pending_aio(struct thread_data *td)
238{
239	struct flist_head *entry, *n;
240	struct io_u *io_u;
241	int r;
242
243	/*
244	 * get immediately available events, if any
245	 */
246	r = io_u_queued_complete(td, 0, NULL);
247	if (r < 0)
248		return;
249
250	/*
251	 * now cancel remaining active events
252	 */
253	if (td->io_ops->cancel) {
254		flist_for_each_safe(entry, n, &td->io_u_busylist) {
255			io_u = flist_entry(entry, struct io_u, list);
256
257			/*
258			 * if the io_u isn't in flight, then that generally
259			 * means someone leaked an io_u. complain but fix
260			 * it up, so we don't stall here.
261			 */
262			if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
263				log_err("fio: non-busy IO on busy list\n");
264				put_io_u(td, io_u);
265			} else {
266				r = td->io_ops->cancel(td, io_u);
267				if (!r)
268					put_io_u(td, io_u);
269			}
270		}
271	}
272
273	if (td->cur_depth)
274		r = io_u_queued_complete(td, td->cur_depth, NULL);
275}
276
277/*
278 * Helper to handle the final sync of a file. Works just like the normal
279 * io path, just does everything sync.
280 */
281static int fio_io_sync(struct thread_data *td, struct fio_file *f)
282{
283	struct io_u *io_u = __get_io_u(td);
284	int ret;
285
286	if (!io_u)
287		return 1;
288
289	io_u->ddir = DDIR_SYNC;
290	io_u->file = f;
291
292	if (td_io_prep(td, io_u)) {
293		put_io_u(td, io_u);
294		return 1;
295	}
296
297requeue:
298	ret = td_io_queue(td, io_u);
299	if (ret < 0) {
300		td_verror(td, io_u->error, "td_io_queue");
301		put_io_u(td, io_u);
302		return 1;
303	} else if (ret == FIO_Q_QUEUED) {
304		if (io_u_queued_complete(td, 1, NULL) < 0)
305			return 1;
306	} else if (ret == FIO_Q_COMPLETED) {
307		if (io_u->error) {
308			td_verror(td, io_u->error, "td_io_queue");
309			return 1;
310		}
311
312		if (io_u_sync_complete(td, io_u, NULL) < 0)
313			return 1;
314	} else if (ret == FIO_Q_BUSY) {
315		if (td_io_commit(td))
316			return 1;
317		goto requeue;
318	}
319
320	return 0;
321}
322
323static inline void __update_tv_cache(struct thread_data *td)
324{
325	fio_gettime(&td->tv_cache, NULL);
326}
327
328static inline void update_tv_cache(struct thread_data *td)
329{
330	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
331		__update_tv_cache(td);
332}
333
334static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
335{
336	if (in_ramp_time(td))
337		return 0;
338	if (!td->o.timeout)
339		return 0;
340	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
341		return 1;
342
343	return 0;
344}
345
346static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
347			       int *retptr)
348{
349	int ret = *retptr;
350
351	if (ret < 0 || td->error) {
352		int err = td->error;
353		enum error_type_bit eb;
354
355		if (ret < 0)
356			err = -ret;
357
358		eb = td_error_type(ddir, err);
359		if (!(td->o.continue_on_error & (1 << eb)))
360			return 1;
361
362		if (td_non_fatal_error(td, eb, err)) {
363		        /*
364		         * Continue with the I/Os in case of
365			 * a non fatal error.
366			 */
367			update_error_count(td, err);
368			td_clear_error(td);
369			*retptr = 0;
370			return 0;
371		} else if (td->o.fill_device && err == ENOSPC) {
372			/*
373			 * We expect to hit this error if
374			 * fill_device option is set.
375			 */
376			td_clear_error(td);
377			td->terminate = 1;
378			return 1;
379		} else {
380			/*
381			 * Stop the I/O in case of a fatal
382			 * error.
383			 */
384			update_error_count(td, err);
385			return 1;
386		}
387	}
388
389	return 0;
390}
391
392/*
393 * The main verify engine. Runs over the writes we previously submitted,
394 * reads the blocks back in, and checks the crc/md5 of the data.
395 */
396static void do_verify(struct thread_data *td)
397{
398	struct fio_file *f;
399	struct io_u *io_u;
400	int ret, min_events;
401	unsigned int i;
402
403	dprint(FD_VERIFY, "starting loop\n");
404
405	/*
406	 * sync io first and invalidate cache, to make sure we really
407	 * read from disk.
408	 */
409	for_each_file(td, f, i) {
410		if (!fio_file_open(f))
411			continue;
412		if (fio_io_sync(td, f))
413			break;
414		if (file_invalidate_cache(td, f))
415			break;
416	}
417
418	if (td->error)
419		return;
420
421	td_set_runstate(td, TD_VERIFYING);
422
423	io_u = NULL;
424	while (!td->terminate) {
425		int ret2, full;
426
427		update_tv_cache(td);
428
429		if (runtime_exceeded(td, &td->tv_cache)) {
430			__update_tv_cache(td);
431			if (runtime_exceeded(td, &td->tv_cache)) {
432				td->terminate = 1;
433				break;
434			}
435		}
436
437		if (flow_threshold_exceeded(td))
438			continue;
439
440		io_u = __get_io_u(td);
441		if (!io_u)
442			break;
443
444		if (get_next_verify(td, io_u)) {
445			put_io_u(td, io_u);
446			break;
447		}
448
449		if (td_io_prep(td, io_u)) {
450			put_io_u(td, io_u);
451			break;
452		}
453
454		if (td->o.verify_async)
455			io_u->end_io = verify_io_u_async;
456		else
457			io_u->end_io = verify_io_u;
458
459		ret = td_io_queue(td, io_u);
460		switch (ret) {
461		case FIO_Q_COMPLETED:
462			if (io_u->error) {
463				ret = -io_u->error;
464				clear_io_u(td, io_u);
465			} else if (io_u->resid) {
466				int bytes = io_u->xfer_buflen - io_u->resid;
467
468				/*
469				 * zero read, fail
470				 */
471				if (!bytes) {
472					td_verror(td, EIO, "full resid");
473					put_io_u(td, io_u);
474					break;
475				}
476
477				io_u->xfer_buflen = io_u->resid;
478				io_u->xfer_buf += bytes;
479				io_u->offset += bytes;
480
481				if (ddir_rw(io_u->ddir))
482					td->ts.short_io_u[io_u->ddir]++;
483
484				f = io_u->file;
485				if (io_u->offset == f->real_file_size)
486					goto sync_done;
487
488				requeue_io_u(td, &io_u);
489			} else {
490sync_done:
491				ret = io_u_sync_complete(td, io_u, NULL);
492				if (ret < 0)
493					break;
494			}
495			continue;
496		case FIO_Q_QUEUED:
497			break;
498		case FIO_Q_BUSY:
499			requeue_io_u(td, &io_u);
500			ret2 = td_io_commit(td);
501			if (ret2 < 0)
502				ret = ret2;
503			break;
504		default:
505			assert(ret < 0);
506			td_verror(td, -ret, "td_io_queue");
507			break;
508		}
509
510		if (break_on_this_error(td, io_u->ddir, &ret))
511			break;
512
513		/*
514		 * if we can queue more, do so. but check if there are
515		 * completed io_u's first. Note that we can get BUSY even
516		 * without IO queued, if the system is resource starved.
517		 */
518		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
519		if (full || !td->o.iodepth_batch_complete) {
520			min_events = min(td->o.iodepth_batch_complete,
521					 td->cur_depth);
522			/*
523			 * if the queue is full, we MUST reap at least 1 event
524			 */
525			if (full && !min_events)
526				min_events = 1;
527
528			do {
529				/*
530				 * Reap required number of io units, if any,
531				 * and do the verification on them through
532				 * the callback handler
533				 */
534				if (io_u_queued_complete(td, min_events, NULL) < 0) {
535					ret = -1;
536					break;
537				}
538			} while (full && (td->cur_depth > td->o.iodepth_low));
539		}
540		if (ret < 0)
541			break;
542	}
543
544	if (!td->error) {
545		min_events = td->cur_depth;
546
547		if (min_events)
548			ret = io_u_queued_complete(td, min_events, NULL);
549	} else
550		cleanup_pending_aio(td);
551
552	td_set_runstate(td, TD_RUNNING);
553
554	dprint(FD_VERIFY, "exiting loop\n");
555}
556
557static int io_bytes_exceeded(struct thread_data *td)
558{
559	unsigned long long bytes;
560
561	if (td_rw(td))
562		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
563	else if (td_write(td))
564		bytes = td->this_io_bytes[DDIR_WRITE];
565	else if (td_read(td))
566		bytes = td->this_io_bytes[DDIR_READ];
567	else
568		bytes = td->this_io_bytes[DDIR_TRIM];
569
570	return bytes >= td->o.size;
571}
572
573/*
574 * Main IO worker function. It retrieves io_u's to process and queues
575 * and reaps them, checking for rate and errors along the way.
576 */
577static void do_io(struct thread_data *td)
578{
579	unsigned int i;
580	int ret = 0;
581
582	if (in_ramp_time(td))
583		td_set_runstate(td, TD_RAMP);
584	else
585		td_set_runstate(td, TD_RUNNING);
586
587	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
588		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
589		td->o.time_based) {
590		struct timeval comp_time;
591		unsigned long bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
592		int min_evts = 0;
593		struct io_u *io_u;
594		int ret2, full;
595		enum fio_ddir ddir;
596
597		if (td->terminate || td->done)
598			break;
599
600		update_tv_cache(td);
601
602		if (runtime_exceeded(td, &td->tv_cache)) {
603			__update_tv_cache(td);
604			if (runtime_exceeded(td, &td->tv_cache)) {
605				td->terminate = 1;
606				break;
607			}
608		}
609
610		if (flow_threshold_exceeded(td))
611			continue;
612
613		io_u = get_io_u(td);
614		if (!io_u)
615			break;
616
617		ddir = io_u->ddir;
618
619		/*
620		 * Add verification end_io handler if:
621		 *	- Asked to verify (!td_rw(td))
622		 *	- Or the io_u is from our verify list (mixed write/ver)
623		 */
624		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
625		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
626			if (td->o.verify_async)
627				io_u->end_io = verify_io_u_async;
628			else
629				io_u->end_io = verify_io_u;
630			td_set_runstate(td, TD_VERIFYING);
631		} else if (in_ramp_time(td))
632			td_set_runstate(td, TD_RAMP);
633		else
634			td_set_runstate(td, TD_RUNNING);
635
636		ret = td_io_queue(td, io_u);
637		switch (ret) {
638		case FIO_Q_COMPLETED:
639			if (io_u->error) {
640				ret = -io_u->error;
641				clear_io_u(td, io_u);
642			} else if (io_u->resid) {
643				int bytes = io_u->xfer_buflen - io_u->resid;
644				struct fio_file *f = io_u->file;
645
646				/*
647				 * zero read, fail
648				 */
649				if (!bytes) {
650					td_verror(td, EIO, "full resid");
651					put_io_u(td, io_u);
652					break;
653				}
654
655				io_u->xfer_buflen = io_u->resid;
656				io_u->xfer_buf += bytes;
657				io_u->offset += bytes;
658
659				if (ddir_rw(io_u->ddir))
660					td->ts.short_io_u[io_u->ddir]++;
661
662				if (io_u->offset == f->real_file_size)
663					goto sync_done;
664
665				requeue_io_u(td, &io_u);
666			} else {
667sync_done:
668				if (__should_check_rate(td, DDIR_READ) ||
669				    __should_check_rate(td, DDIR_WRITE) ||
670				    __should_check_rate(td, DDIR_TRIM))
671					fio_gettime(&comp_time, NULL);
672
673				ret = io_u_sync_complete(td, io_u, bytes_done);
674				if (ret < 0)
675					break;
676			}
677			break;
678		case FIO_Q_QUEUED:
679			/*
680			 * if the engine doesn't have a commit hook,
681			 * the io_u is really queued. if it does have such
682			 * a hook, it has to call io_u_queued() itself.
683			 */
684			if (td->io_ops->commit == NULL)
685				io_u_queued(td, io_u);
686			break;
687		case FIO_Q_BUSY:
688			requeue_io_u(td, &io_u);
689			ret2 = td_io_commit(td);
690			if (ret2 < 0)
691				ret = ret2;
692			break;
693		default:
694			assert(ret < 0);
695			put_io_u(td, io_u);
696			break;
697		}
698
699		if (break_on_this_error(td, ddir, &ret))
700			break;
701
702		/*
703		 * See if we need to complete some commands. Note that we
704		 * can get BUSY even without IO queued, if the system is
705		 * resource starved.
706		 */
707		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
708		if (full || !td->o.iodepth_batch_complete) {
709			min_evts = min(td->o.iodepth_batch_complete,
710					td->cur_depth);
711			/*
712			 * if the queue is full, we MUST reap at least 1 event
713			 */
714			if (full && !min_evts)
715				min_evts = 1;
716
717			if (__should_check_rate(td, DDIR_READ) ||
718			    __should_check_rate(td, DDIR_WRITE) ||
719			    __should_check_rate(td, DDIR_TRIM))
720				fio_gettime(&comp_time, NULL);
721
722			do {
723				ret = io_u_queued_complete(td, min_evts, bytes_done);
724				if (ret < 0)
725					break;
726
727			} while (full && (td->cur_depth > td->o.iodepth_low));
728		}
729
730		if (ret < 0)
731			break;
732		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
733			continue;
734
735		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
736			if (check_min_rate(td, &comp_time, bytes_done)) {
737				if (exitall_on_terminate)
738					fio_terminate_threads(td->groupid);
739				td_verror(td, EIO, "check_min_rate");
740				break;
741			}
742		}
743
744		if (td->o.thinktime) {
745			unsigned long long b;
746
747			b = ddir_rw_sum(td->io_blocks);
748			if (!(b % td->o.thinktime_blocks)) {
749				int left;
750
751				if (td->o.thinktime_spin)
752					usec_spin(td->o.thinktime_spin);
753
754				left = td->o.thinktime - td->o.thinktime_spin;
755				if (left)
756					usec_sleep(td, left);
757			}
758		}
759	}
760
761	if (td->trim_entries)
762		log_err("fio: %d trim entries leaked?\n", td->trim_entries);
763
764	if (td->o.fill_device && td->error == ENOSPC) {
765		td->error = 0;
766		td->terminate = 1;
767	}
768	if (!td->error) {
769		struct fio_file *f;
770
771		i = td->cur_depth;
772		if (i) {
773			ret = io_u_queued_complete(td, i, NULL);
774			if (td->o.fill_device && td->error == ENOSPC)
775				td->error = 0;
776		}
777
778		if (should_fsync(td) && td->o.end_fsync) {
779			td_set_runstate(td, TD_FSYNCING);
780
781			for_each_file(td, f, i) {
782				if (!fio_file_open(f))
783					continue;
784				fio_io_sync(td, f);
785			}
786		}
787	} else
788		cleanup_pending_aio(td);
789
790	/*
791	 * stop job if we failed doing any IO
792	 */
793	if (!ddir_rw_sum(td->this_io_bytes))
794		td->done = 1;
795}
796
797static void cleanup_io_u(struct thread_data *td)
798{
799	struct flist_head *entry, *n;
800	struct io_u *io_u;
801
802	flist_for_each_safe(entry, n, &td->io_u_freelist) {
803		io_u = flist_entry(entry, struct io_u, list);
804
805		flist_del(&io_u->list);
806		fio_memfree(io_u, sizeof(*io_u));
807	}
808
809	free_io_mem(td);
810}
811
812static int init_io_u(struct thread_data *td)
813{
814	struct io_u *io_u;
815	unsigned int max_bs, min_write;
816	int cl_align, i, max_units;
817	int data_xfer = 1;
818	char *p;
819
820	max_units = td->o.iodepth;
821	max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
822	max_bs = max(td->o.max_bs[DDIR_TRIM], max_bs);
823	min_write = td->o.min_bs[DDIR_WRITE];
824	td->orig_buffer_size = (unsigned long long) max_bs
825					* (unsigned long long) max_units;
826
827	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
828		data_xfer = 0;
829
830	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
831		unsigned long bs;
832
833		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
834		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
835	}
836
837	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
838		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
839		return 1;
840	}
841
842	if (data_xfer && allocate_io_mem(td))
843		return 1;
844
845	if (td->o.odirect || td->o.mem_align ||
846	    (td->io_ops->flags & FIO_RAWIO))
847		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
848	else
849		p = td->orig_buffer;
850
851	cl_align = os_cache_line_size();
852
853	for (i = 0; i < max_units; i++) {
854		void *ptr;
855
856		if (td->terminate)
857			return 1;
858
859		ptr = fio_memalign(cl_align, sizeof(*io_u));
860		if (!ptr) {
861			log_err("fio: unable to allocate aligned memory\n");
862			break;
863		}
864
865		io_u = ptr;
866		memset(io_u, 0, sizeof(*io_u));
867		INIT_FLIST_HEAD(&io_u->list);
868		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
869
870		if (data_xfer) {
871			io_u->buf = p;
872			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
873
874			if (td_write(td))
875				io_u_fill_buffer(td, io_u, min_write, max_bs);
876			if (td_write(td) && td->o.verify_pattern_bytes) {
877				/*
878				 * Fill the buffer with the pattern if we are
879				 * going to be doing writes.
880				 */
881				fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
882			}
883		}
884
885		io_u->index = i;
886		io_u->flags = IO_U_F_FREE;
887		flist_add(&io_u->list, &td->io_u_freelist);
888		p += max_bs;
889	}
890
891	return 0;
892}
893
894static int switch_ioscheduler(struct thread_data *td)
895{
896	char tmp[256], tmp2[128];
897	FILE *f;
898	int ret;
899
900	if (td->io_ops->flags & FIO_DISKLESSIO)
901		return 0;
902
903	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
904
905	f = fopen(tmp, "r+");
906	if (!f) {
907		if (errno == ENOENT) {
908			log_err("fio: os or kernel doesn't support IO scheduler"
909				" switching\n");
910			return 0;
911		}
912		td_verror(td, errno, "fopen iosched");
913		return 1;
914	}
915
916	/*
917	 * Set io scheduler.
918	 */
919	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
920	if (ferror(f) || ret != 1) {
921		td_verror(td, errno, "fwrite");
922		fclose(f);
923		return 1;
924	}
925
926	rewind(f);
927
928	/*
929	 * Read back and check that the selected scheduler is now the default.
930	 */
931	ret = fread(tmp, 1, sizeof(tmp), f);
932	if (ferror(f) || ret < 0) {
933		td_verror(td, errno, "fread");
934		fclose(f);
935		return 1;
936	}
937
938	sprintf(tmp2, "[%s]", td->o.ioscheduler);
939	if (!strstr(tmp, tmp2)) {
940		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
941		td_verror(td, EINVAL, "iosched_switch");
942		fclose(f);
943		return 1;
944	}
945
946	fclose(f);
947	return 0;
948}
949
950static int keep_running(struct thread_data *td)
951{
952	if (td->done)
953		return 0;
954	if (td->o.time_based)
955		return 1;
956	if (td->o.loops) {
957		td->o.loops--;
958		return 1;
959	}
960
961	if (ddir_rw_sum(td->io_bytes) < td->o.size)
962		return 1;
963
964	return 0;
965}
966
967static int exec_string(const char *string)
968{
969	int ret, newlen = strlen(string) + 1 + 8;
970	char *str;
971
972	str = malloc(newlen);
973	sprintf(str, "sh -c %s", string);
974
975	ret = system(str);
976	if (ret == -1)
977		log_err("fio: exec of cmd <%s> failed\n", str);
978
979	free(str);
980	return ret;
981}
982
983/*
984 * Entry point for the thread based jobs. The process based jobs end up
985 * here as well, after a little setup.
986 */
987static void *thread_main(void *data)
988{
989	unsigned long long elapsed;
990	struct thread_data *td = data;
991	pthread_condattr_t attr;
992	int clear_state;
993
994	if (!td->o.use_thread) {
995		setsid();
996		td->pid = getpid();
997	} else
998		td->pid = gettid();
999
1000	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1001
1002	INIT_FLIST_HEAD(&td->io_u_freelist);
1003	INIT_FLIST_HEAD(&td->io_u_busylist);
1004	INIT_FLIST_HEAD(&td->io_u_requeues);
1005	INIT_FLIST_HEAD(&td->io_log_list);
1006	INIT_FLIST_HEAD(&td->io_hist_list);
1007	INIT_FLIST_HEAD(&td->verify_list);
1008	INIT_FLIST_HEAD(&td->trim_list);
1009	pthread_mutex_init(&td->io_u_lock, NULL);
1010	td->io_hist_tree = RB_ROOT;
1011
1012	pthread_condattr_init(&attr);
1013	pthread_cond_init(&td->verify_cond, &attr);
1014	pthread_cond_init(&td->free_cond, &attr);
1015
1016	td_set_runstate(td, TD_INITIALIZED);
1017	dprint(FD_MUTEX, "up startup_mutex\n");
1018	fio_mutex_up(startup_mutex);
1019	dprint(FD_MUTEX, "wait on td->mutex\n");
1020	fio_mutex_down(td->mutex);
1021	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1022
1023	/*
1024	 * the ->mutex mutex is now no longer used, close it to avoid
1025	 * eating a file descriptor
1026	 */
1027	fio_mutex_remove(td->mutex);
1028
1029	/*
1030	 * A new gid requires privilege, so we need to do this before setting
1031	 * the uid.
1032	 */
1033	if (td->o.gid != -1U && setgid(td->o.gid)) {
1034		td_verror(td, errno, "setgid");
1035		goto err;
1036	}
1037	if (td->o.uid != -1U && setuid(td->o.uid)) {
1038		td_verror(td, errno, "setuid");
1039		goto err;
1040	}
1041
1042	/*
1043	 * If we have a gettimeofday() thread, make sure we exclude that
1044	 * thread from this job
1045	 */
1046	if (td->o.gtod_cpu)
1047		fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1048
1049	/*
1050	 * Set affinity first, in case it has an impact on the memory
1051	 * allocations.
1052	 */
1053	if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1054		td_verror(td, errno, "cpu_set_affinity");
1055		goto err;
1056	}
1057
1058#ifdef FIO_HAVE_LIBNUMA
1059	/* numa node setup */
1060	if (td->o.numa_cpumask_set || td->o.numa_memmask_set) {
1061		int ret;
1062
1063		if (numa_available() < 0) {
1064			td_verror(td, errno, "Does not support NUMA API\n");
1065			goto err;
1066		}
1067
1068		if (td->o.numa_cpumask_set) {
1069			ret = numa_run_on_node_mask(td->o.numa_cpunodesmask);
1070			if (ret == -1) {
1071				td_verror(td, errno, \
1072					"numa_run_on_node_mask failed\n");
1073				goto err;
1074			}
1075		}
1076
1077		if (td->o.numa_memmask_set) {
1078
1079			switch (td->o.numa_mem_mode) {
1080			case MPOL_INTERLEAVE:
1081				numa_set_interleave_mask(td->o.numa_memnodesmask);
1082				break;
1083			case MPOL_BIND:
1084				numa_set_membind(td->o.numa_memnodesmask);
1085				break;
1086			case MPOL_LOCAL:
1087				numa_set_localalloc();
1088				break;
1089			case MPOL_PREFERRED:
1090				numa_set_preferred(td->o.numa_mem_prefer_node);
1091				break;
1092			case MPOL_DEFAULT:
1093			default:
1094				break;
1095			}
1096
1097		}
1098	}
1099#endif
1100
1101	/*
1102	 * May alter parameters that init_io_u() will use, so we need to
1103	 * do this first.
1104	 */
1105	if (init_iolog(td))
1106		goto err;
1107
1108	if (init_io_u(td))
1109		goto err;
1110
1111	if (td->o.verify_async && verify_async_init(td))
1112		goto err;
1113
1114	if (td->ioprio_set) {
1115		if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1116			td_verror(td, errno, "ioprio_set");
1117			goto err;
1118		}
1119	}
1120
1121	if (td->o.cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1122		goto err;
1123
1124	errno = 0;
1125	if (nice(td->o.nice) == -1 && errno != 0) {
1126		td_verror(td, errno, "nice");
1127		goto err;
1128	}
1129
1130	if (td->o.ioscheduler && switch_ioscheduler(td))
1131		goto err;
1132
1133	if (!td->o.create_serialize && setup_files(td))
1134		goto err;
1135
1136	if (td_io_init(td))
1137		goto err;
1138
1139	if (init_random_map(td))
1140		goto err;
1141
1142	if (td->o.exec_prerun) {
1143		if (exec_string(td->o.exec_prerun))
1144			goto err;
1145	}
1146
1147	if (td->o.pre_read) {
1148		if (pre_read_files(td) < 0)
1149			goto err;
1150	}
1151
1152	fio_gettime(&td->epoch, NULL);
1153	getrusage(RUSAGE_SELF, &td->ru_start);
1154
1155	clear_state = 0;
1156	while (keep_running(td)) {
1157		fio_gettime(&td->start, NULL);
1158		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1159		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1160		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1161
1162		if (td->o.ratemin[DDIR_READ] || td->o.ratemin[DDIR_WRITE] ||
1163				td->o.ratemin[DDIR_TRIM]) {
1164		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1165						sizeof(td->bw_sample_time));
1166		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1167						sizeof(td->bw_sample_time));
1168		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1169						sizeof(td->bw_sample_time));
1170		}
1171
1172		if (clear_state)
1173			clear_io_state(td);
1174
1175		prune_io_piece_log(td);
1176
1177		do_io(td);
1178
1179		clear_state = 1;
1180
1181		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1182			elapsed = utime_since_now(&td->start);
1183			td->ts.runtime[DDIR_READ] += elapsed;
1184		}
1185		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1186			elapsed = utime_since_now(&td->start);
1187			td->ts.runtime[DDIR_WRITE] += elapsed;
1188		}
1189		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1190			elapsed = utime_since_now(&td->start);
1191			td->ts.runtime[DDIR_TRIM] += elapsed;
1192		}
1193
1194		if (td->error || td->terminate)
1195			break;
1196
1197		if (!td->o.do_verify ||
1198		    td->o.verify == VERIFY_NONE ||
1199		    (td->io_ops->flags & FIO_UNIDIR))
1200			continue;
1201
1202		clear_io_state(td);
1203
1204		fio_gettime(&td->start, NULL);
1205
1206		do_verify(td);
1207
1208		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1209
1210		if (td->error || td->terminate)
1211			break;
1212	}
1213
1214	update_rusage_stat(td);
1215	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1216	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1217	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1218	td->ts.total_run_time = mtime_since_now(&td->epoch);
1219	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1220	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1221	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1222
1223	fio_mutex_down(writeout_mutex);
1224	if (td->bw_log) {
1225		if (td->o.bw_log_file) {
1226			finish_log_named(td, td->bw_log,
1227						td->o.bw_log_file, "bw");
1228		} else
1229			finish_log(td, td->bw_log, "bw");
1230	}
1231	if (td->lat_log) {
1232		if (td->o.lat_log_file) {
1233			finish_log_named(td, td->lat_log,
1234						td->o.lat_log_file, "lat");
1235		} else
1236			finish_log(td, td->lat_log, "lat");
1237	}
1238	if (td->slat_log) {
1239		if (td->o.lat_log_file) {
1240			finish_log_named(td, td->slat_log,
1241						td->o.lat_log_file, "slat");
1242		} else
1243			finish_log(td, td->slat_log, "slat");
1244	}
1245	if (td->clat_log) {
1246		if (td->o.lat_log_file) {
1247			finish_log_named(td, td->clat_log,
1248						td->o.lat_log_file, "clat");
1249		} else
1250			finish_log(td, td->clat_log, "clat");
1251	}
1252	if (td->iops_log) {
1253		if (td->o.iops_log_file) {
1254			finish_log_named(td, td->iops_log,
1255						td->o.iops_log_file, "iops");
1256		} else
1257			finish_log(td, td->iops_log, "iops");
1258	}
1259
1260	fio_mutex_up(writeout_mutex);
1261	if (td->o.exec_postrun)
1262		exec_string(td->o.exec_postrun);
1263
1264	if (exitall_on_terminate)
1265		fio_terminate_threads(td->groupid);
1266
1267err:
1268	if (td->error)
1269		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1270							td->verror);
1271
1272	if (td->o.verify_async)
1273		verify_async_exit(td);
1274
1275	close_and_free_files(td);
1276	close_ioengine(td);
1277	cleanup_io_u(td);
1278	cgroup_shutdown(td, &cgroup_mnt);
1279
1280	if (td->o.cpumask_set) {
1281		int ret = fio_cpuset_exit(&td->o.cpumask);
1282
1283		td_verror(td, ret, "fio_cpuset_exit");
1284	}
1285
1286	/*
1287	 * do this very late, it will log file closing as well
1288	 */
1289	if (td->o.write_iolog_file)
1290		write_iolog_close(td);
1291
1292	td_set_runstate(td, TD_EXITED);
1293	return (void *) (uintptr_t) td->error;
1294}
1295
1296
1297/*
1298 * We cannot pass the td data into a forked process, so attach the td and
1299 * pass it to the thread worker.
1300 */
1301static int fork_main(int shmid, int offset)
1302{
1303	struct thread_data *td;
1304	void *data, *ret;
1305
1306#ifndef __hpux
1307	data = shmat(shmid, NULL, 0);
1308	if (data == (void *) -1) {
1309		int __err = errno;
1310
1311		perror("shmat");
1312		return __err;
1313	}
1314#else
1315	/*
1316	 * HP-UX inherits shm mappings?
1317	 */
1318	data = threads;
1319#endif
1320
1321	td = data + offset * sizeof(struct thread_data);
1322	ret = thread_main(td);
1323	shmdt(data);
1324	return (int) (uintptr_t) ret;
1325}
1326
1327/*
1328 * Run over the job map and reap the threads that have exited, if any.
1329 */
1330static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1331			 unsigned int *m_rate)
1332{
1333	struct thread_data *td;
1334	unsigned int cputhreads, realthreads, pending;
1335	int i, status, ret;
1336
1337	/*
1338	 * reap exited threads (TD_EXITED -> TD_REAPED)
1339	 */
1340	realthreads = pending = cputhreads = 0;
1341	for_each_td(td, i) {
1342		int flags = 0;
1343
1344		/*
1345		 * ->io_ops is NULL for a thread that has closed its
1346		 * io engine
1347		 */
1348		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1349			cputhreads++;
1350		else
1351			realthreads++;
1352
1353		if (!td->pid) {
1354			pending++;
1355			continue;
1356		}
1357		if (td->runstate == TD_REAPED)
1358			continue;
1359		if (td->o.use_thread) {
1360			if (td->runstate == TD_EXITED) {
1361				td_set_runstate(td, TD_REAPED);
1362				goto reaped;
1363			}
1364			continue;
1365		}
1366
1367		flags = WNOHANG;
1368		if (td->runstate == TD_EXITED)
1369			flags = 0;
1370
1371		/*
1372		 * check if someone quit or got killed in an unusual way
1373		 */
1374		ret = waitpid(td->pid, &status, flags);
1375		if (ret < 0) {
1376			if (errno == ECHILD) {
1377				log_err("fio: pid=%d disappeared %d\n",
1378						(int) td->pid, td->runstate);
1379				td->sig = ECHILD;
1380				td_set_runstate(td, TD_REAPED);
1381				goto reaped;
1382			}
1383			perror("waitpid");
1384		} else if (ret == td->pid) {
1385			if (WIFSIGNALED(status)) {
1386				int sig = WTERMSIG(status);
1387
1388				if (sig != SIGTERM && sig != SIGUSR2)
1389					log_err("fio: pid=%d, got signal=%d\n",
1390							(int) td->pid, sig);
1391				td->sig = sig;
1392				td_set_runstate(td, TD_REAPED);
1393				goto reaped;
1394			}
1395			if (WIFEXITED(status)) {
1396				if (WEXITSTATUS(status) && !td->error)
1397					td->error = WEXITSTATUS(status);
1398
1399				td_set_runstate(td, TD_REAPED);
1400				goto reaped;
1401			}
1402		}
1403
1404		/*
1405		 * thread is not dead, continue
1406		 */
1407		pending++;
1408		continue;
1409reaped:
1410		(*nr_running)--;
1411		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1412		(*t_rate) -= ddir_rw_sum(td->o.rate);
1413		if (!td->pid)
1414			pending--;
1415
1416		if (td->error)
1417			exit_value++;
1418
1419		done_secs += mtime_since_now(&td->epoch) / 1000;
1420	}
1421
1422	if (*nr_running == cputhreads && !pending && realthreads)
1423		fio_terminate_threads(TERMINATE_ALL);
1424}
1425
1426/*
1427 * Main function for kicking off and reaping jobs, as needed.
1428 */
1429static void run_threads(void)
1430{
1431	struct thread_data *td;
1432	unsigned long spent;
1433	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1434
1435	if (fio_pin_memory())
1436		return;
1437
1438	if (fio_gtod_offload && fio_start_gtod_thread())
1439		return;
1440
1441	set_sig_handlers();
1442
1443	if (output_format == FIO_OUTPUT_NORMAL) {
1444		log_info("Starting ");
1445		if (nr_thread)
1446			log_info("%d thread%s", nr_thread,
1447						nr_thread > 1 ? "s" : "");
1448		if (nr_process) {
1449			if (nr_thread)
1450				log_info(" and ");
1451			log_info("%d process%s", nr_process,
1452						nr_process > 1 ? "es" : "");
1453		}
1454		log_info("\n");
1455		fflush(stdout);
1456	}
1457
1458	todo = thread_number;
1459	nr_running = 0;
1460	nr_started = 0;
1461	m_rate = t_rate = 0;
1462
1463	for_each_td(td, i) {
1464		print_status_init(td->thread_number - 1);
1465
1466		if (!td->o.create_serialize)
1467			continue;
1468
1469		/*
1470		 * do file setup here so it happens sequentially,
1471		 * we don't want X number of threads getting their
1472		 * client data interspersed on disk
1473		 */
1474		if (setup_files(td)) {
1475			exit_value++;
1476			if (td->error)
1477				log_err("fio: pid=%d, err=%d/%s\n",
1478					(int) td->pid, td->error, td->verror);
1479			td_set_runstate(td, TD_REAPED);
1480			todo--;
1481		} else {
1482			struct fio_file *f;
1483			unsigned int j;
1484
1485			/*
1486			 * for sharing to work, each job must always open
1487			 * its own files. so close them, if we opened them
1488			 * for creation
1489			 */
1490			for_each_file(td, f, j) {
1491				if (fio_file_open(f))
1492					td_io_close_file(td, f);
1493			}
1494		}
1495	}
1496
1497	set_genesis_time();
1498
1499	while (todo) {
1500		struct thread_data *map[REAL_MAX_JOBS];
1501		struct timeval this_start;
1502		int this_jobs = 0, left;
1503
1504		/*
1505		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1506		 */
1507		for_each_td(td, i) {
1508			if (td->runstate != TD_NOT_CREATED)
1509				continue;
1510
1511			/*
1512			 * never got a chance to start, killed by other
1513			 * thread for some reason
1514			 */
1515			if (td->terminate) {
1516				todo--;
1517				continue;
1518			}
1519
1520			if (td->o.start_delay) {
1521				spent = mtime_since_genesis();
1522
1523				if (td->o.start_delay * 1000 > spent)
1524					continue;
1525			}
1526
1527			if (td->o.stonewall && (nr_started || nr_running)) {
1528				dprint(FD_PROCESS, "%s: stonewall wait\n",
1529							td->o.name);
1530				break;
1531			}
1532
1533			init_disk_util(td);
1534
1535			/*
1536			 * Set state to created. Thread will transition
1537			 * to TD_INITIALIZED when it's done setting up.
1538			 */
1539			td_set_runstate(td, TD_CREATED);
1540			map[this_jobs++] = td;
1541			nr_started++;
1542
1543			if (td->o.use_thread) {
1544				int ret;
1545
1546				dprint(FD_PROCESS, "will pthread_create\n");
1547				ret = pthread_create(&td->thread, NULL,
1548							thread_main, td);
1549				if (ret) {
1550					log_err("pthread_create: %s\n",
1551							strerror(ret));
1552					nr_started--;
1553					break;
1554				}
1555				ret = pthread_detach(td->thread);
1556				if (ret)
1557					log_err("pthread_detach: %s",
1558							strerror(ret));
1559			} else {
1560				pid_t pid;
1561				dprint(FD_PROCESS, "will fork\n");
1562				pid = fork();
1563				if (!pid) {
1564					int ret = fork_main(shm_id, i);
1565
1566					_exit(ret);
1567				} else if (i == fio_debug_jobno)
1568					*fio_debug_jobp = pid;
1569			}
1570			dprint(FD_MUTEX, "wait on startup_mutex\n");
1571			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1572				log_err("fio: job startup hung? exiting.\n");
1573				fio_terminate_threads(TERMINATE_ALL);
1574				fio_abort = 1;
1575				nr_started--;
1576				break;
1577			}
1578			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1579		}
1580
1581		/*
1582		 * Wait for the started threads to transition to
1583		 * TD_INITIALIZED.
1584		 */
1585		fio_gettime(&this_start, NULL);
1586		left = this_jobs;
1587		while (left && !fio_abort) {
1588			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1589				break;
1590
1591			usleep(100000);
1592
1593			for (i = 0; i < this_jobs; i++) {
1594				td = map[i];
1595				if (!td)
1596					continue;
1597				if (td->runstate == TD_INITIALIZED) {
1598					map[i] = NULL;
1599					left--;
1600				} else if (td->runstate >= TD_EXITED) {
1601					map[i] = NULL;
1602					left--;
1603					todo--;
1604					nr_running++; /* work-around... */
1605				}
1606			}
1607		}
1608
1609		if (left) {
1610			log_err("fio: %d job%s failed to start\n", left,
1611					left > 1 ? "s" : "");
1612			for (i = 0; i < this_jobs; i++) {
1613				td = map[i];
1614				if (!td)
1615					continue;
1616				kill(td->pid, SIGTERM);
1617			}
1618			break;
1619		}
1620
1621		/*
1622		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1623		 */
1624		for_each_td(td, i) {
1625			if (td->runstate != TD_INITIALIZED)
1626				continue;
1627
1628			if (in_ramp_time(td))
1629				td_set_runstate(td, TD_RAMP);
1630			else
1631				td_set_runstate(td, TD_RUNNING);
1632			nr_running++;
1633			nr_started--;
1634			m_rate += ddir_rw_sum(td->o.ratemin);
1635			t_rate += ddir_rw_sum(td->o.rate);
1636			todo--;
1637			fio_mutex_up(td->mutex);
1638		}
1639
1640		reap_threads(&nr_running, &t_rate, &m_rate);
1641
1642		if (todo) {
1643			if (is_backend)
1644				fio_server_idle_loop();
1645			else
1646				usleep(100000);
1647		}
1648	}
1649
1650	while (nr_running) {
1651		reap_threads(&nr_running, &t_rate, &m_rate);
1652
1653		if (is_backend)
1654			fio_server_idle_loop();
1655		else
1656			usleep(10000);
1657	}
1658
1659	update_io_ticks();
1660	fio_unpin_memory();
1661}
1662
1663void wait_for_disk_thread_exit(void)
1664{
1665	fio_mutex_down(disk_thread_mutex);
1666}
1667
1668static void free_disk_util(void)
1669{
1670	disk_util_start_exit();
1671	wait_for_disk_thread_exit();
1672	disk_util_prune_entries();
1673}
1674
1675static void *disk_thread_main(void *data)
1676{
1677	int ret = 0;
1678
1679	fio_mutex_up(startup_mutex);
1680
1681	while (threads && !ret) {
1682		usleep(DISK_UTIL_MSEC * 1000);
1683		if (!threads)
1684			break;
1685		ret = update_io_ticks();
1686
1687		if (!is_backend)
1688			print_thread_status();
1689	}
1690
1691	fio_mutex_up(disk_thread_mutex);
1692	return NULL;
1693}
1694
1695static int create_disk_util_thread(void)
1696{
1697	int ret;
1698
1699	setup_disk_util();
1700
1701	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1702
1703	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1704	if (ret) {
1705		fio_mutex_remove(disk_thread_mutex);
1706		log_err("Can't create disk util thread: %s\n", strerror(ret));
1707		return 1;
1708	}
1709
1710	ret = pthread_detach(disk_util_thread);
1711	if (ret) {
1712		fio_mutex_remove(disk_thread_mutex);
1713		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1714		return 1;
1715	}
1716
1717	dprint(FD_MUTEX, "wait on startup_mutex\n");
1718	fio_mutex_down(startup_mutex);
1719	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1720	return 0;
1721}
1722
1723int fio_backend(void)
1724{
1725	struct thread_data *td;
1726	int i;
1727
1728	if (exec_profile) {
1729		if (load_profile(exec_profile))
1730			return 1;
1731		free(exec_profile);
1732		exec_profile = NULL;
1733	}
1734	if (!thread_number)
1735		return 0;
1736
1737	if (write_bw_log) {
1738		setup_log(&agg_io_log[DDIR_READ], 0);
1739		setup_log(&agg_io_log[DDIR_WRITE], 0);
1740		setup_log(&agg_io_log[DDIR_TRIM], 0);
1741	}
1742
1743	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1744	if (startup_mutex == NULL)
1745		return 1;
1746	writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1747	if (writeout_mutex == NULL)
1748		return 1;
1749
1750	set_genesis_time();
1751	create_disk_util_thread();
1752
1753	cgroup_list = smalloc(sizeof(*cgroup_list));
1754	INIT_FLIST_HEAD(cgroup_list);
1755
1756	run_threads();
1757
1758	if (!fio_abort) {
1759		show_run_stats();
1760		if (write_bw_log) {
1761			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1762			__finish_log(agg_io_log[DDIR_WRITE],
1763					"agg-write_bw.log");
1764			__finish_log(agg_io_log[DDIR_TRIM],
1765					"agg-write_bw.log");
1766		}
1767	}
1768
1769	for_each_td(td, i)
1770		fio_options_free(td);
1771
1772	free_disk_util();
1773	cgroup_kill(cgroup_list);
1774	sfree(cgroup_list);
1775	sfree(cgroup_mnt);
1776
1777	fio_mutex_remove(startup_mutex);
1778	fio_mutex_remove(writeout_mutex);
1779	fio_mutex_remove(disk_thread_mutex);
1780	return exit_value;
1781}
1782