backend.c revision 621677626f2551bedfdc4a5fc3b3e5f8492b94fa
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55
56static pthread_t disk_util_thread;
57static struct fio_mutex *disk_thread_mutex;
58static struct fio_mutex *startup_mutex;
59static struct fio_mutex *writeout_mutex;
60static struct flist_head *cgroup_list;
61static char *cgroup_mnt;
62static int exit_value;
63static volatile int fio_abort;
64static unsigned int nr_process = 0;
65static unsigned int nr_thread = 0;
66
67struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69int groupid = 0;
70unsigned int thread_number = 0;
71unsigned int stat_number = 0;
72int shm_id = 0;
73int temp_stall_ts;
74unsigned long done_secs = 0;
75volatile int disk_util_exit = 0;
76
77#define PAGE_ALIGN(buf)	\
78	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80#define JOB_START_TIMEOUT	(5 * 1000)
81
82static void sig_int(int sig)
83{
84	if (threads) {
85		if (is_backend)
86			fio_server_got_signal(sig);
87		else {
88			log_info("\nfio: terminating on signal %d\n", sig);
89			fflush(stdout);
90			exit_value = 128;
91		}
92
93		fio_terminate_threads(TERMINATE_ALL);
94	}
95}
96
97static void sig_show_status(int sig)
98{
99	show_running_run_stats();
100}
101
102static void set_sig_handlers(void)
103{
104	struct sigaction act;
105
106	memset(&act, 0, sizeof(act));
107	act.sa_handler = sig_int;
108	act.sa_flags = SA_RESTART;
109	sigaction(SIGINT, &act, NULL);
110
111	memset(&act, 0, sizeof(act));
112	act.sa_handler = sig_int;
113	act.sa_flags = SA_RESTART;
114	sigaction(SIGTERM, &act, NULL);
115
116/* Windows uses SIGBREAK as a quit signal from other applications */
117#ifdef WIN32
118	memset(&act, 0, sizeof(act));
119	act.sa_handler = sig_int;
120	act.sa_flags = SA_RESTART;
121	sigaction(SIGBREAK, &act, NULL);
122#endif
123
124	memset(&act, 0, sizeof(act));
125	act.sa_handler = sig_show_status;
126	act.sa_flags = SA_RESTART;
127	sigaction(SIGUSR1, &act, NULL);
128
129	if (is_backend) {
130		memset(&act, 0, sizeof(act));
131		act.sa_handler = sig_int;
132		act.sa_flags = SA_RESTART;
133		sigaction(SIGPIPE, &act, NULL);
134	}
135}
136
137/*
138 * Check if we are above the minimum rate given.
139 */
140static int __check_min_rate(struct thread_data *td, struct timeval *now,
141			    enum fio_ddir ddir)
142{
143	unsigned long long bytes = 0;
144	unsigned long iops = 0;
145	unsigned long spent;
146	unsigned long rate;
147	unsigned int ratemin = 0;
148	unsigned int rate_iops = 0;
149	unsigned int rate_iops_min = 0;
150
151	assert(ddir_rw(ddir));
152
153	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154		return 0;
155
156	/*
157	 * allow a 2 second settle period in the beginning
158	 */
159	if (mtime_since(&td->start, now) < 2000)
160		return 0;
161
162	iops += td->this_io_blocks[ddir];
163	bytes += td->this_io_bytes[ddir];
164	ratemin += td->o.ratemin[ddir];
165	rate_iops += td->o.rate_iops[ddir];
166	rate_iops_min += td->o.rate_iops_min[ddir];
167
168	/*
169	 * if rate blocks is set, sample is running
170	 */
171	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172		spent = mtime_since(&td->lastrate[ddir], now);
173		if (spent < td->o.ratecycle)
174			return 0;
175
176		if (td->o.rate[ddir]) {
177			/*
178			 * check bandwidth specified rate
179			 */
180			if (bytes < td->rate_bytes[ddir]) {
181				log_err("%s: min rate %u not met\n", td->o.name,
182								ratemin);
183				return 1;
184			} else {
185				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186				if (rate < ratemin ||
187				    bytes < td->rate_bytes[ddir]) {
188					log_err("%s: min rate %u not met, got"
189						" %luKB/sec\n", td->o.name,
190							ratemin, rate);
191					return 1;
192				}
193			}
194		} else {
195			/*
196			 * checks iops specified rate
197			 */
198			if (iops < rate_iops) {
199				log_err("%s: min iops rate %u not met\n",
200						td->o.name, rate_iops);
201				return 1;
202			} else {
203				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204				if (rate < rate_iops_min ||
205				    iops < td->rate_blocks[ddir]) {
206					log_err("%s: min iops rate %u not met,"
207						" got %lu\n", td->o.name,
208							rate_iops_min, rate);
209				}
210			}
211		}
212	}
213
214	td->rate_bytes[ddir] = bytes;
215	td->rate_blocks[ddir] = iops;
216	memcpy(&td->lastrate[ddir], now, sizeof(*now));
217	return 0;
218}
219
220static int check_min_rate(struct thread_data *td, struct timeval *now,
221			  uint64_t *bytes_done)
222{
223	int ret = 0;
224
225	if (bytes_done[DDIR_READ])
226		ret |= __check_min_rate(td, now, DDIR_READ);
227	if (bytes_done[DDIR_WRITE])
228		ret |= __check_min_rate(td, now, DDIR_WRITE);
229	if (bytes_done[DDIR_TRIM])
230		ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232	return ret;
233}
234
235/*
236 * When job exits, we can cancel the in-flight IO if we are using async
237 * io. Attempt to do so.
238 */
239static void cleanup_pending_aio(struct thread_data *td)
240{
241	int r;
242
243	/*
244	 * get immediately available events, if any
245	 */
246	r = io_u_queued_complete(td, 0, NULL);
247	if (r < 0)
248		return;
249
250	/*
251	 * now cancel remaining active events
252	 */
253	if (td->io_ops->cancel) {
254		struct io_u *io_u;
255		int i;
256
257		io_u_qiter(&td->io_u_all, io_u, i) {
258			if (io_u->flags & IO_U_F_FLIGHT) {
259				r = td->io_ops->cancel(td, io_u);
260				if (!r)
261					put_io_u(td, io_u);
262			}
263		}
264	}
265
266	if (td->cur_depth)
267		r = io_u_queued_complete(td, td->cur_depth, NULL);
268}
269
270/*
271 * Helper to handle the final sync of a file. Works just like the normal
272 * io path, just does everything sync.
273 */
274static int fio_io_sync(struct thread_data *td, struct fio_file *f)
275{
276	struct io_u *io_u = __get_io_u(td);
277	int ret;
278
279	if (!io_u)
280		return 1;
281
282	io_u->ddir = DDIR_SYNC;
283	io_u->file = f;
284
285	if (td_io_prep(td, io_u)) {
286		put_io_u(td, io_u);
287		return 1;
288	}
289
290requeue:
291	ret = td_io_queue(td, io_u);
292	if (ret < 0) {
293		td_verror(td, io_u->error, "td_io_queue");
294		put_io_u(td, io_u);
295		return 1;
296	} else if (ret == FIO_Q_QUEUED) {
297		if (io_u_queued_complete(td, 1, NULL) < 0)
298			return 1;
299	} else if (ret == FIO_Q_COMPLETED) {
300		if (io_u->error) {
301			td_verror(td, io_u->error, "td_io_queue");
302			return 1;
303		}
304
305		if (io_u_sync_complete(td, io_u, NULL) < 0)
306			return 1;
307	} else if (ret == FIO_Q_BUSY) {
308		if (td_io_commit(td))
309			return 1;
310		goto requeue;
311	}
312
313	return 0;
314}
315
316static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
317{
318	int ret;
319
320	if (fio_file_open(f))
321		return fio_io_sync(td, f);
322
323	if (td_io_open_file(td, f))
324		return 1;
325
326	ret = fio_io_sync(td, f);
327	td_io_close_file(td, f);
328	return ret;
329}
330
331static inline void __update_tv_cache(struct thread_data *td)
332{
333	fio_gettime(&td->tv_cache, NULL);
334}
335
336static inline void update_tv_cache(struct thread_data *td)
337{
338	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
339		__update_tv_cache(td);
340}
341
342static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
343{
344	if (in_ramp_time(td))
345		return 0;
346	if (!td->o.timeout)
347		return 0;
348	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
349		return 1;
350
351	return 0;
352}
353
354static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
355			       int *retptr)
356{
357	int ret = *retptr;
358
359	if (ret < 0 || td->error) {
360		int err = td->error;
361		enum error_type_bit eb;
362
363		if (ret < 0)
364			err = -ret;
365
366		eb = td_error_type(ddir, err);
367		if (!(td->o.continue_on_error & (1 << eb)))
368			return 1;
369
370		if (td_non_fatal_error(td, eb, err)) {
371		        /*
372		         * Continue with the I/Os in case of
373			 * a non fatal error.
374			 */
375			update_error_count(td, err);
376			td_clear_error(td);
377			*retptr = 0;
378			return 0;
379		} else if (td->o.fill_device && err == ENOSPC) {
380			/*
381			 * We expect to hit this error if
382			 * fill_device option is set.
383			 */
384			td_clear_error(td);
385			td->terminate = 1;
386			return 1;
387		} else {
388			/*
389			 * Stop the I/O in case of a fatal
390			 * error.
391			 */
392			update_error_count(td, err);
393			return 1;
394		}
395	}
396
397	return 0;
398}
399
400static void check_update_rusage(struct thread_data *td)
401{
402	if (td->update_rusage) {
403		td->update_rusage = 0;
404		update_rusage_stat(td);
405		fio_mutex_up(td->rusage_sem);
406	}
407}
408
409/*
410 * The main verify engine. Runs over the writes we previously submitted,
411 * reads the blocks back in, and checks the crc/md5 of the data.
412 */
413static void do_verify(struct thread_data *td, uint64_t verify_bytes)
414{
415	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
416	struct fio_file *f;
417	struct io_u *io_u;
418	int ret, min_events;
419	unsigned int i;
420
421	dprint(FD_VERIFY, "starting loop\n");
422
423	/*
424	 * sync io first and invalidate cache, to make sure we really
425	 * read from disk.
426	 */
427	for_each_file(td, f, i) {
428		if (!fio_file_open(f))
429			continue;
430		if (fio_io_sync(td, f))
431			break;
432		if (file_invalidate_cache(td, f))
433			break;
434	}
435
436	check_update_rusage(td);
437
438	if (td->error)
439		return;
440
441	td_set_runstate(td, TD_VERIFYING);
442
443	io_u = NULL;
444	while (!td->terminate) {
445		enum fio_ddir ddir;
446		int ret2, full;
447
448		update_tv_cache(td);
449		check_update_rusage(td);
450
451		if (runtime_exceeded(td, &td->tv_cache)) {
452			__update_tv_cache(td);
453			if (runtime_exceeded(td, &td->tv_cache)) {
454				td->terminate = 1;
455				break;
456			}
457		}
458
459		if (flow_threshold_exceeded(td))
460			continue;
461
462		if (!td->o.experimental_verify) {
463			io_u = __get_io_u(td);
464			if (!io_u)
465				break;
466
467			if (get_next_verify(td, io_u)) {
468				put_io_u(td, io_u);
469				break;
470			}
471
472			if (td_io_prep(td, io_u)) {
473				put_io_u(td, io_u);
474				break;
475			}
476		} else {
477			if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
478				break;
479
480			while ((io_u = get_io_u(td)) != NULL) {
481				/*
482				 * We are only interested in the places where
483				 * we wrote or trimmed IOs. Turn those into
484				 * reads for verification purposes.
485				 */
486				if (io_u->ddir == DDIR_READ) {
487					/*
488					 * Pretend we issued it for rwmix
489					 * accounting
490					 */
491					td->io_issues[DDIR_READ]++;
492					put_io_u(td, io_u);
493					continue;
494				} else if (io_u->ddir == DDIR_TRIM) {
495					io_u->ddir = DDIR_READ;
496					io_u->flags |= IO_U_F_TRIMMED;
497					break;
498				} else if (io_u->ddir == DDIR_WRITE) {
499					io_u->ddir = DDIR_READ;
500					break;
501				} else {
502					put_io_u(td, io_u);
503					continue;
504				}
505			}
506
507			if (!io_u)
508				break;
509		}
510
511		if (td->o.verify_async)
512			io_u->end_io = verify_io_u_async;
513		else
514			io_u->end_io = verify_io_u;
515
516		ddir = io_u->ddir;
517
518		ret = td_io_queue(td, io_u);
519		switch (ret) {
520		case FIO_Q_COMPLETED:
521			if (io_u->error) {
522				ret = -io_u->error;
523				clear_io_u(td, io_u);
524			} else if (io_u->resid) {
525				int bytes = io_u->xfer_buflen - io_u->resid;
526
527				/*
528				 * zero read, fail
529				 */
530				if (!bytes) {
531					td_verror(td, EIO, "full resid");
532					put_io_u(td, io_u);
533					break;
534				}
535
536				io_u->xfer_buflen = io_u->resid;
537				io_u->xfer_buf += bytes;
538				io_u->offset += bytes;
539
540				if (ddir_rw(io_u->ddir))
541					td->ts.short_io_u[io_u->ddir]++;
542
543				f = io_u->file;
544				if (io_u->offset == f->real_file_size)
545					goto sync_done;
546
547				requeue_io_u(td, &io_u);
548			} else {
549sync_done:
550				ret = io_u_sync_complete(td, io_u, bytes_done);
551				if (ret < 0)
552					break;
553			}
554			continue;
555		case FIO_Q_QUEUED:
556			break;
557		case FIO_Q_BUSY:
558			requeue_io_u(td, &io_u);
559			ret2 = td_io_commit(td);
560			if (ret2 < 0)
561				ret = ret2;
562			break;
563		default:
564			assert(ret < 0);
565			td_verror(td, -ret, "td_io_queue");
566			break;
567		}
568
569		if (break_on_this_error(td, ddir, &ret))
570			break;
571
572		/*
573		 * if we can queue more, do so. but check if there are
574		 * completed io_u's first. Note that we can get BUSY even
575		 * without IO queued, if the system is resource starved.
576		 */
577		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
578		if (full || !td->o.iodepth_batch_complete) {
579			min_events = min(td->o.iodepth_batch_complete,
580					 td->cur_depth);
581			/*
582			 * if the queue is full, we MUST reap at least 1 event
583			 */
584			if (full && !min_events)
585				min_events = 1;
586
587			do {
588				/*
589				 * Reap required number of io units, if any,
590				 * and do the verification on them through
591				 * the callback handler
592				 */
593				if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
594					ret = -1;
595					break;
596				}
597			} while (full && (td->cur_depth > td->o.iodepth_low));
598		}
599		if (ret < 0)
600			break;
601	}
602
603	check_update_rusage(td);
604
605	if (!td->error) {
606		min_events = td->cur_depth;
607
608		if (min_events)
609			ret = io_u_queued_complete(td, min_events, NULL);
610	} else
611		cleanup_pending_aio(td);
612
613	td_set_runstate(td, TD_RUNNING);
614
615	dprint(FD_VERIFY, "exiting loop\n");
616}
617
618static int io_bytes_exceeded(struct thread_data *td)
619{
620	unsigned long long bytes;
621
622	if (td_rw(td))
623		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
624	else if (td_write(td))
625		bytes = td->this_io_bytes[DDIR_WRITE];
626	else if (td_read(td))
627		bytes = td->this_io_bytes[DDIR_READ];
628	else
629		bytes = td->this_io_bytes[DDIR_TRIM];
630
631	return bytes >= td->o.size;
632}
633
634/*
635 * Main IO worker function. It retrieves io_u's to process and queues
636 * and reaps them, checking for rate and errors along the way.
637 *
638 * Returns number of bytes written and trimmed.
639 */
640static uint64_t do_io(struct thread_data *td)
641{
642	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
643	unsigned int i;
644	int ret = 0;
645	uint64_t bytes_issued = 0;
646
647	if (in_ramp_time(td))
648		td_set_runstate(td, TD_RAMP);
649	else
650		td_set_runstate(td, TD_RUNNING);
651
652	lat_target_init(td);
653
654	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
655		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
656		td->o.time_based) {
657		struct timeval comp_time;
658		int min_evts = 0;
659		struct io_u *io_u;
660		int ret2, full;
661		enum fio_ddir ddir;
662
663		check_update_rusage(td);
664
665		if (td->terminate || td->done)
666			break;
667
668		update_tv_cache(td);
669
670		if (runtime_exceeded(td, &td->tv_cache)) {
671			__update_tv_cache(td);
672			if (runtime_exceeded(td, &td->tv_cache)) {
673				td->terminate = 1;
674				break;
675			}
676		}
677
678		if (flow_threshold_exceeded(td))
679			continue;
680
681		if (bytes_issued >= (uint64_t) td->o.size)
682			break;
683
684		io_u = get_io_u(td);
685		if (!io_u) {
686			if (td->o.latency_target)
687				goto reap;
688			break;
689		}
690
691		ddir = io_u->ddir;
692
693		/*
694		 * Add verification end_io handler if:
695		 *	- Asked to verify (!td_rw(td))
696		 *	- Or the io_u is from our verify list (mixed write/ver)
697		 */
698		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
699		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
700			if (td->o.verify_async)
701				io_u->end_io = verify_io_u_async;
702			else
703				io_u->end_io = verify_io_u;
704			td_set_runstate(td, TD_VERIFYING);
705		} else if (in_ramp_time(td))
706			td_set_runstate(td, TD_RAMP);
707		else
708			td_set_runstate(td, TD_RUNNING);
709
710		ret = td_io_queue(td, io_u);
711		switch (ret) {
712		case FIO_Q_COMPLETED:
713			if (io_u->error) {
714				ret = -io_u->error;
715				clear_io_u(td, io_u);
716			} else if (io_u->resid) {
717				int bytes = io_u->xfer_buflen - io_u->resid;
718				struct fio_file *f = io_u->file;
719
720				bytes_issued += bytes;
721				/*
722				 * zero read, fail
723				 */
724				if (!bytes) {
725					td_verror(td, EIO, "full resid");
726					put_io_u(td, io_u);
727					break;
728				}
729
730				io_u->xfer_buflen = io_u->resid;
731				io_u->xfer_buf += bytes;
732				io_u->offset += bytes;
733
734				if (ddir_rw(io_u->ddir))
735					td->ts.short_io_u[io_u->ddir]++;
736
737				if (io_u->offset == f->real_file_size)
738					goto sync_done;
739
740				requeue_io_u(td, &io_u);
741			} else {
742sync_done:
743				if (__should_check_rate(td, DDIR_READ) ||
744				    __should_check_rate(td, DDIR_WRITE) ||
745				    __should_check_rate(td, DDIR_TRIM))
746					fio_gettime(&comp_time, NULL);
747
748				ret = io_u_sync_complete(td, io_u, bytes_done);
749				if (ret < 0)
750					break;
751				bytes_issued += io_u->xfer_buflen;
752			}
753			break;
754		case FIO_Q_QUEUED:
755			/*
756			 * if the engine doesn't have a commit hook,
757			 * the io_u is really queued. if it does have such
758			 * a hook, it has to call io_u_queued() itself.
759			 */
760			if (td->io_ops->commit == NULL)
761				io_u_queued(td, io_u);
762			bytes_issued += io_u->xfer_buflen;
763			break;
764		case FIO_Q_BUSY:
765			requeue_io_u(td, &io_u);
766			ret2 = td_io_commit(td);
767			if (ret2 < 0)
768				ret = ret2;
769			break;
770		default:
771			assert(ret < 0);
772			put_io_u(td, io_u);
773			break;
774		}
775
776		if (break_on_this_error(td, ddir, &ret))
777			break;
778
779		/*
780		 * See if we need to complete some commands. Note that we
781		 * can get BUSY even without IO queued, if the system is
782		 * resource starved.
783		 */
784reap:
785		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
786		if (full || !td->o.iodepth_batch_complete) {
787			min_evts = min(td->o.iodepth_batch_complete,
788					td->cur_depth);
789			/*
790			 * if the queue is full, we MUST reap at least 1 event
791			 */
792			if (full && !min_evts)
793				min_evts = 1;
794
795			if (__should_check_rate(td, DDIR_READ) ||
796			    __should_check_rate(td, DDIR_WRITE) ||
797			    __should_check_rate(td, DDIR_TRIM))
798				fio_gettime(&comp_time, NULL);
799
800			do {
801				ret = io_u_queued_complete(td, min_evts, bytes_done);
802				if (ret < 0)
803					break;
804
805			} while (full && (td->cur_depth > td->o.iodepth_low));
806		}
807
808		if (ret < 0)
809			break;
810		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
811			continue;
812
813		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
814			if (check_min_rate(td, &comp_time, bytes_done)) {
815				if (exitall_on_terminate)
816					fio_terminate_threads(td->groupid);
817				td_verror(td, EIO, "check_min_rate");
818				break;
819			}
820		}
821		if (!in_ramp_time(td) && td->o.latency_target)
822			lat_target_check(td);
823
824		if (td->o.thinktime) {
825			unsigned long long b;
826
827			b = ddir_rw_sum(td->io_blocks);
828			if (!(b % td->o.thinktime_blocks)) {
829				int left;
830
831				io_u_quiesce(td);
832
833				if (td->o.thinktime_spin)
834					usec_spin(td->o.thinktime_spin);
835
836				left = td->o.thinktime - td->o.thinktime_spin;
837				if (left)
838					usec_sleep(td, left);
839			}
840		}
841	}
842
843	check_update_rusage(td);
844
845	if (td->trim_entries)
846		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
847
848	if (td->o.fill_device && td->error == ENOSPC) {
849		td->error = 0;
850		td->terminate = 1;
851	}
852	if (!td->error) {
853		struct fio_file *f;
854
855		i = td->cur_depth;
856		if (i) {
857			ret = io_u_queued_complete(td, i, bytes_done);
858			if (td->o.fill_device && td->error == ENOSPC)
859				td->error = 0;
860		}
861
862		if (should_fsync(td) && td->o.end_fsync) {
863			td_set_runstate(td, TD_FSYNCING);
864
865			for_each_file(td, f, i) {
866				if (!fio_file_fsync(td, f))
867					continue;
868
869				log_err("fio: end_fsync failed for file %s\n",
870								f->file_name);
871			}
872		}
873	} else
874		cleanup_pending_aio(td);
875
876	/*
877	 * stop job if we failed doing any IO
878	 */
879	if (!ddir_rw_sum(td->this_io_bytes))
880		td->done = 1;
881
882	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
883}
884
885static void cleanup_io_u(struct thread_data *td)
886{
887	struct io_u *io_u;
888
889	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
890
891		if (td->io_ops->io_u_free)
892			td->io_ops->io_u_free(td, io_u);
893
894		fio_memfree(io_u, sizeof(*io_u));
895	}
896
897	free_io_mem(td);
898
899	io_u_rexit(&td->io_u_requeues);
900	io_u_qexit(&td->io_u_freelist);
901	io_u_qexit(&td->io_u_all);
902}
903
904static int init_io_u(struct thread_data *td)
905{
906	struct io_u *io_u;
907	unsigned int max_bs, min_write;
908	int cl_align, i, max_units;
909	int data_xfer = 1, err;
910	char *p;
911
912	max_units = td->o.iodepth;
913	max_bs = td_max_bs(td);
914	min_write = td->o.min_bs[DDIR_WRITE];
915	td->orig_buffer_size = (unsigned long long) max_bs
916					* (unsigned long long) max_units;
917
918	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
919		data_xfer = 0;
920
921	err = 0;
922	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
923	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
924	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
925
926	if (err) {
927		log_err("fio: failed setting up IO queues\n");
928		return 1;
929	}
930
931	/*
932	 * if we may later need to do address alignment, then add any
933	 * possible adjustment here so that we don't cause a buffer
934	 * overflow later. this adjustment may be too much if we get
935	 * lucky and the allocator gives us an aligned address.
936	 */
937	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
938	    (td->io_ops->flags & FIO_RAWIO))
939		td->orig_buffer_size += page_mask + td->o.mem_align;
940
941	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
942		unsigned long bs;
943
944		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
945		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
946	}
947
948	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
949		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
950		return 1;
951	}
952
953	if (data_xfer && allocate_io_mem(td))
954		return 1;
955
956	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
957	    (td->io_ops->flags & FIO_RAWIO))
958		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
959	else
960		p = td->orig_buffer;
961
962	cl_align = os_cache_line_size();
963
964	for (i = 0; i < max_units; i++) {
965		void *ptr;
966
967		if (td->terminate)
968			return 1;
969
970		ptr = fio_memalign(cl_align, sizeof(*io_u));
971		if (!ptr) {
972			log_err("fio: unable to allocate aligned memory\n");
973			break;
974		}
975
976		io_u = ptr;
977		memset(io_u, 0, sizeof(*io_u));
978		INIT_FLIST_HEAD(&io_u->verify_list);
979		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
980
981		if (data_xfer) {
982			io_u->buf = p;
983			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
984
985			if (td_write(td))
986				io_u_fill_buffer(td, io_u, min_write, max_bs);
987			if (td_write(td) && td->o.verify_pattern_bytes) {
988				/*
989				 * Fill the buffer with the pattern if we are
990				 * going to be doing writes.
991				 */
992				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
993			}
994		}
995
996		io_u->index = i;
997		io_u->flags = IO_U_F_FREE;
998		io_u_qpush(&td->io_u_freelist, io_u);
999
1000		/*
1001		 * io_u never leaves this stack, used for iteration of all
1002		 * io_u buffers.
1003		 */
1004		io_u_qpush(&td->io_u_all, io_u);
1005
1006		if (td->io_ops->io_u_init) {
1007			int ret = td->io_ops->io_u_init(td, io_u);
1008
1009			if (ret) {
1010				log_err("fio: failed to init engine data: %d\n", ret);
1011				return 1;
1012			}
1013		}
1014
1015		p += max_bs;
1016	}
1017
1018	return 0;
1019}
1020
1021static int switch_ioscheduler(struct thread_data *td)
1022{
1023	char tmp[256], tmp2[128];
1024	FILE *f;
1025	int ret;
1026
1027	if (td->io_ops->flags & FIO_DISKLESSIO)
1028		return 0;
1029
1030	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1031
1032	f = fopen(tmp, "r+");
1033	if (!f) {
1034		if (errno == ENOENT) {
1035			log_err("fio: os or kernel doesn't support IO scheduler"
1036				" switching\n");
1037			return 0;
1038		}
1039		td_verror(td, errno, "fopen iosched");
1040		return 1;
1041	}
1042
1043	/*
1044	 * Set io scheduler.
1045	 */
1046	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1047	if (ferror(f) || ret != 1) {
1048		td_verror(td, errno, "fwrite");
1049		fclose(f);
1050		return 1;
1051	}
1052
1053	rewind(f);
1054
1055	/*
1056	 * Read back and check that the selected scheduler is now the default.
1057	 */
1058	ret = fread(tmp, 1, sizeof(tmp), f);
1059	if (ferror(f) || ret < 0) {
1060		td_verror(td, errno, "fread");
1061		fclose(f);
1062		return 1;
1063	}
1064
1065	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1066	if (!strstr(tmp, tmp2)) {
1067		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1068		td_verror(td, EINVAL, "iosched_switch");
1069		fclose(f);
1070		return 1;
1071	}
1072
1073	fclose(f);
1074	return 0;
1075}
1076
1077static int keep_running(struct thread_data *td)
1078{
1079	if (td->done)
1080		return 0;
1081	if (td->o.time_based)
1082		return 1;
1083	if (td->o.loops) {
1084		td->o.loops--;
1085		return 1;
1086	}
1087
1088	if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1089		uint64_t diff;
1090
1091		/*
1092		 * If the difference is less than the minimum IO size, we
1093		 * are done.
1094		 */
1095		diff = td->o.size - ddir_rw_sum(td->io_bytes);
1096		if (diff < td_max_bs(td))
1097			return 0;
1098
1099		return 1;
1100	}
1101
1102	return 0;
1103}
1104
1105static int exec_string(struct thread_options *o, const char *string, const char *mode)
1106{
1107	int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1108	char *str;
1109
1110	str = malloc(newlen);
1111	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1112
1113	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1114	ret = system(str);
1115	if (ret == -1)
1116		log_err("fio: exec of cmd <%s> failed\n", str);
1117
1118	free(str);
1119	return ret;
1120}
1121
1122/*
1123 * Dry run to compute correct state of numberio for verification.
1124 */
1125static uint64_t do_dry_run(struct thread_data *td)
1126{
1127	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1128
1129	td_set_runstate(td, TD_RUNNING);
1130
1131	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1132		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1133		struct io_u *io_u;
1134		int ret;
1135
1136		if (td->terminate || td->done)
1137			break;
1138
1139		io_u = get_io_u(td);
1140		if (!io_u)
1141			break;
1142
1143		io_u->flags |= IO_U_F_FLIGHT;
1144		io_u->error = 0;
1145		io_u->resid = 0;
1146		if (ddir_rw(acct_ddir(io_u)))
1147			td->io_issues[acct_ddir(io_u)]++;
1148		if (ddir_rw(io_u->ddir)) {
1149			io_u_mark_depth(td, 1);
1150			td->ts.total_io_u[io_u->ddir]++;
1151		}
1152
1153		ret = io_u_sync_complete(td, io_u, bytes_done);
1154		(void) ret;
1155	}
1156
1157	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1158}
1159
1160/*
1161 * Entry point for the thread based jobs. The process based jobs end up
1162 * here as well, after a little setup.
1163 */
1164static void *thread_main(void *data)
1165{
1166	unsigned long long elapsed;
1167	struct thread_data *td = data;
1168	struct thread_options *o = &td->o;
1169	pthread_condattr_t attr;
1170	int clear_state;
1171	int ret;
1172
1173	if (!o->use_thread) {
1174		setsid();
1175		td->pid = getpid();
1176	} else
1177		td->pid = gettid();
1178
1179	/*
1180	 * fio_time_init() may not have been called yet if running as a server
1181	 */
1182	fio_time_init();
1183
1184	fio_local_clock_init(o->use_thread);
1185
1186	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1187
1188	if (is_backend)
1189		fio_server_send_start(td);
1190
1191	INIT_FLIST_HEAD(&td->io_log_list);
1192	INIT_FLIST_HEAD(&td->io_hist_list);
1193	INIT_FLIST_HEAD(&td->verify_list);
1194	INIT_FLIST_HEAD(&td->trim_list);
1195	INIT_FLIST_HEAD(&td->next_rand_list);
1196	pthread_mutex_init(&td->io_u_lock, NULL);
1197	td->io_hist_tree = RB_ROOT;
1198
1199	pthread_condattr_init(&attr);
1200	pthread_cond_init(&td->verify_cond, &attr);
1201	pthread_cond_init(&td->free_cond, &attr);
1202
1203	td_set_runstate(td, TD_INITIALIZED);
1204	dprint(FD_MUTEX, "up startup_mutex\n");
1205	fio_mutex_up(startup_mutex);
1206	dprint(FD_MUTEX, "wait on td->mutex\n");
1207	fio_mutex_down(td->mutex);
1208	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1209
1210	/*
1211	 * the ->mutex mutex is now no longer used, close it to avoid
1212	 * eating a file descriptor
1213	 */
1214	fio_mutex_remove(td->mutex);
1215	td->mutex = NULL;
1216
1217	/*
1218	 * A new gid requires privilege, so we need to do this before setting
1219	 * the uid.
1220	 */
1221	if (o->gid != -1U && setgid(o->gid)) {
1222		td_verror(td, errno, "setgid");
1223		goto err;
1224	}
1225	if (o->uid != -1U && setuid(o->uid)) {
1226		td_verror(td, errno, "setuid");
1227		goto err;
1228	}
1229
1230	/*
1231	 * If we have a gettimeofday() thread, make sure we exclude that
1232	 * thread from this job
1233	 */
1234	if (o->gtod_cpu)
1235		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1236
1237	/*
1238	 * Set affinity first, in case it has an impact on the memory
1239	 * allocations.
1240	 */
1241	if (o->cpumask_set) {
1242		ret = fio_setaffinity(td->pid, o->cpumask);
1243		if (ret == -1) {
1244			td_verror(td, errno, "cpu_set_affinity");
1245			goto err;
1246		}
1247	}
1248
1249#ifdef CONFIG_LIBNUMA
1250	/* numa node setup */
1251	if (o->numa_cpumask_set || o->numa_memmask_set) {
1252		int ret;
1253
1254		if (numa_available() < 0) {
1255			td_verror(td, errno, "Does not support NUMA API\n");
1256			goto err;
1257		}
1258
1259		if (o->numa_cpumask_set) {
1260			ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1261			if (ret == -1) {
1262				td_verror(td, errno, \
1263					"numa_run_on_node_mask failed\n");
1264				goto err;
1265			}
1266		}
1267
1268		if (o->numa_memmask_set) {
1269
1270			switch (o->numa_mem_mode) {
1271			case MPOL_INTERLEAVE:
1272				numa_set_interleave_mask(o->numa_memnodesmask);
1273				break;
1274			case MPOL_BIND:
1275				numa_set_membind(o->numa_memnodesmask);
1276				break;
1277			case MPOL_LOCAL:
1278				numa_set_localalloc();
1279				break;
1280			case MPOL_PREFERRED:
1281				numa_set_preferred(o->numa_mem_prefer_node);
1282				break;
1283			case MPOL_DEFAULT:
1284			default:
1285				break;
1286			}
1287
1288		}
1289	}
1290#endif
1291
1292	if (fio_pin_memory(td))
1293		goto err;
1294
1295	/*
1296	 * May alter parameters that init_io_u() will use, so we need to
1297	 * do this first.
1298	 */
1299	if (init_iolog(td))
1300		goto err;
1301
1302	if (init_io_u(td))
1303		goto err;
1304
1305	if (o->verify_async && verify_async_init(td))
1306		goto err;
1307
1308	if (o->ioprio) {
1309		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1310		if (ret == -1) {
1311			td_verror(td, errno, "ioprio_set");
1312			goto err;
1313		}
1314	}
1315
1316	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1317		goto err;
1318
1319	errno = 0;
1320	if (nice(o->nice) == -1 && errno != 0) {
1321		td_verror(td, errno, "nice");
1322		goto err;
1323	}
1324
1325	if (o->ioscheduler && switch_ioscheduler(td))
1326		goto err;
1327
1328	if (!o->create_serialize && setup_files(td))
1329		goto err;
1330
1331	if (td_io_init(td))
1332		goto err;
1333
1334	if (init_random_map(td))
1335		goto err;
1336
1337	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1338		goto err;
1339
1340	if (o->pre_read) {
1341		if (pre_read_files(td) < 0)
1342			goto err;
1343	}
1344
1345	fio_verify_init(td);
1346
1347	fio_gettime(&td->epoch, NULL);
1348	fio_getrusage(&td->ru_start);
1349	clear_state = 0;
1350	while (keep_running(td)) {
1351		uint64_t verify_bytes;
1352
1353		fio_gettime(&td->start, NULL);
1354		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1355		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1356		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1357
1358		if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1359				o->ratemin[DDIR_TRIM]) {
1360		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1361						sizeof(td->bw_sample_time));
1362		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1363						sizeof(td->bw_sample_time));
1364		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1365						sizeof(td->bw_sample_time));
1366		}
1367
1368		if (clear_state)
1369			clear_io_state(td);
1370
1371		prune_io_piece_log(td);
1372
1373		if (td->o.verify_only && (td_write(td) || td_rw(td)))
1374			verify_bytes = do_dry_run(td);
1375		else
1376			verify_bytes = do_io(td);
1377
1378		clear_state = 1;
1379
1380		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1381			elapsed = utime_since_now(&td->start);
1382			td->ts.runtime[DDIR_READ] += elapsed;
1383		}
1384		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1385			elapsed = utime_since_now(&td->start);
1386			td->ts.runtime[DDIR_WRITE] += elapsed;
1387		}
1388		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1389			elapsed = utime_since_now(&td->start);
1390			td->ts.runtime[DDIR_TRIM] += elapsed;
1391		}
1392
1393		if (td->error || td->terminate)
1394			break;
1395
1396		if (!o->do_verify ||
1397		    o->verify == VERIFY_NONE ||
1398		    (td->io_ops->flags & FIO_UNIDIR))
1399			continue;
1400
1401		clear_io_state(td);
1402
1403		fio_gettime(&td->start, NULL);
1404
1405		do_verify(td, verify_bytes);
1406
1407		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1408
1409		if (td->error || td->terminate)
1410			break;
1411	}
1412
1413	update_rusage_stat(td);
1414	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1415	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1416	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1417	td->ts.total_run_time = mtime_since_now(&td->epoch);
1418	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1419	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1420	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1421
1422	fio_unpin_memory(td);
1423
1424	fio_mutex_down(writeout_mutex);
1425	if (td->bw_log) {
1426		if (o->bw_log_file) {
1427			finish_log_named(td, td->bw_log,
1428						o->bw_log_file, "bw");
1429		} else
1430			finish_log(td, td->bw_log, "bw");
1431	}
1432	if (td->lat_log) {
1433		if (o->lat_log_file) {
1434			finish_log_named(td, td->lat_log,
1435						o->lat_log_file, "lat");
1436		} else
1437			finish_log(td, td->lat_log, "lat");
1438	}
1439	if (td->slat_log) {
1440		if (o->lat_log_file) {
1441			finish_log_named(td, td->slat_log,
1442						o->lat_log_file, "slat");
1443		} else
1444			finish_log(td, td->slat_log, "slat");
1445	}
1446	if (td->clat_log) {
1447		if (o->lat_log_file) {
1448			finish_log_named(td, td->clat_log,
1449						o->lat_log_file, "clat");
1450		} else
1451			finish_log(td, td->clat_log, "clat");
1452	}
1453	if (td->iops_log) {
1454		if (o->iops_log_file) {
1455			finish_log_named(td, td->iops_log,
1456						o->iops_log_file, "iops");
1457		} else
1458			finish_log(td, td->iops_log, "iops");
1459	}
1460
1461	fio_mutex_up(writeout_mutex);
1462	if (o->exec_postrun)
1463		exec_string(o, o->exec_postrun, (const char *)"postrun");
1464
1465	if (exitall_on_terminate)
1466		fio_terminate_threads(td->groupid);
1467
1468err:
1469	if (td->error)
1470		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1471							td->verror);
1472
1473	if (o->verify_async)
1474		verify_async_exit(td);
1475
1476	close_and_free_files(td);
1477	cleanup_io_u(td);
1478	close_ioengine(td);
1479	cgroup_shutdown(td, &cgroup_mnt);
1480
1481	if (o->cpumask_set) {
1482		int ret = fio_cpuset_exit(&o->cpumask);
1483
1484		td_verror(td, ret, "fio_cpuset_exit");
1485	}
1486
1487	/*
1488	 * do this very late, it will log file closing as well
1489	 */
1490	if (o->write_iolog_file)
1491		write_iolog_close(td);
1492
1493	fio_mutex_remove(td->rusage_sem);
1494	td->rusage_sem = NULL;
1495
1496	td_set_runstate(td, TD_EXITED);
1497	return (void *) (uintptr_t) td->error;
1498}
1499
1500
1501/*
1502 * We cannot pass the td data into a forked process, so attach the td and
1503 * pass it to the thread worker.
1504 */
1505static int fork_main(int shmid, int offset)
1506{
1507	struct thread_data *td;
1508	void *data, *ret;
1509
1510#ifndef __hpux
1511	data = shmat(shmid, NULL, 0);
1512	if (data == (void *) -1) {
1513		int __err = errno;
1514
1515		perror("shmat");
1516		return __err;
1517	}
1518#else
1519	/*
1520	 * HP-UX inherits shm mappings?
1521	 */
1522	data = threads;
1523#endif
1524
1525	td = data + offset * sizeof(struct thread_data);
1526	ret = thread_main(td);
1527	shmdt(data);
1528	return (int) (uintptr_t) ret;
1529}
1530
1531/*
1532 * Run over the job map and reap the threads that have exited, if any.
1533 */
1534static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1535			 unsigned int *m_rate)
1536{
1537	struct thread_data *td;
1538	unsigned int cputhreads, realthreads, pending;
1539	int i, status, ret;
1540
1541	/*
1542	 * reap exited threads (TD_EXITED -> TD_REAPED)
1543	 */
1544	realthreads = pending = cputhreads = 0;
1545	for_each_td(td, i) {
1546		int flags = 0;
1547
1548		/*
1549		 * ->io_ops is NULL for a thread that has closed its
1550		 * io engine
1551		 */
1552		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1553			cputhreads++;
1554		else
1555			realthreads++;
1556
1557		if (!td->pid) {
1558			pending++;
1559			continue;
1560		}
1561		if (td->runstate == TD_REAPED)
1562			continue;
1563		if (td->o.use_thread) {
1564			if (td->runstate == TD_EXITED) {
1565				td_set_runstate(td, TD_REAPED);
1566				goto reaped;
1567			}
1568			continue;
1569		}
1570
1571		flags = WNOHANG;
1572		if (td->runstate == TD_EXITED)
1573			flags = 0;
1574
1575		/*
1576		 * check if someone quit or got killed in an unusual way
1577		 */
1578		ret = waitpid(td->pid, &status, flags);
1579		if (ret < 0) {
1580			if (errno == ECHILD) {
1581				log_err("fio: pid=%d disappeared %d\n",
1582						(int) td->pid, td->runstate);
1583				td->sig = ECHILD;
1584				td_set_runstate(td, TD_REAPED);
1585				goto reaped;
1586			}
1587			perror("waitpid");
1588		} else if (ret == td->pid) {
1589			if (WIFSIGNALED(status)) {
1590				int sig = WTERMSIG(status);
1591
1592				if (sig != SIGTERM && sig != SIGUSR2)
1593					log_err("fio: pid=%d, got signal=%d\n",
1594							(int) td->pid, sig);
1595				td->sig = sig;
1596				td_set_runstate(td, TD_REAPED);
1597				goto reaped;
1598			}
1599			if (WIFEXITED(status)) {
1600				if (WEXITSTATUS(status) && !td->error)
1601					td->error = WEXITSTATUS(status);
1602
1603				td_set_runstate(td, TD_REAPED);
1604				goto reaped;
1605			}
1606		}
1607
1608		/*
1609		 * thread is not dead, continue
1610		 */
1611		pending++;
1612		continue;
1613reaped:
1614		(*nr_running)--;
1615		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1616		(*t_rate) -= ddir_rw_sum(td->o.rate);
1617		if (!td->pid)
1618			pending--;
1619
1620		if (td->error)
1621			exit_value++;
1622
1623		done_secs += mtime_since_now(&td->epoch) / 1000;
1624		profile_td_exit(td);
1625	}
1626
1627	if (*nr_running == cputhreads && !pending && realthreads)
1628		fio_terminate_threads(TERMINATE_ALL);
1629}
1630
1631static void do_usleep(unsigned int usecs)
1632{
1633	check_for_running_stats();
1634	usleep(usecs);
1635}
1636
1637/*
1638 * Main function for kicking off and reaping jobs, as needed.
1639 */
1640static void run_threads(void)
1641{
1642	struct thread_data *td;
1643	unsigned long spent;
1644	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1645
1646	if (fio_gtod_offload && fio_start_gtod_thread())
1647		return;
1648
1649	fio_idle_prof_init();
1650
1651	set_sig_handlers();
1652
1653	nr_thread = nr_process = 0;
1654	for_each_td(td, i) {
1655		if (td->o.use_thread)
1656			nr_thread++;
1657		else
1658			nr_process++;
1659	}
1660
1661	if (output_format == FIO_OUTPUT_NORMAL) {
1662		log_info("Starting ");
1663		if (nr_thread)
1664			log_info("%d thread%s", nr_thread,
1665						nr_thread > 1 ? "s" : "");
1666		if (nr_process) {
1667			if (nr_thread)
1668				log_info(" and ");
1669			log_info("%d process%s", nr_process,
1670						nr_process > 1 ? "es" : "");
1671		}
1672		log_info("\n");
1673		fflush(stdout);
1674	}
1675
1676	todo = thread_number;
1677	nr_running = 0;
1678	nr_started = 0;
1679	m_rate = t_rate = 0;
1680
1681	for_each_td(td, i) {
1682		print_status_init(td->thread_number - 1);
1683
1684		if (!td->o.create_serialize)
1685			continue;
1686
1687		/*
1688		 * do file setup here so it happens sequentially,
1689		 * we don't want X number of threads getting their
1690		 * client data interspersed on disk
1691		 */
1692		if (setup_files(td)) {
1693			exit_value++;
1694			if (td->error)
1695				log_err("fio: pid=%d, err=%d/%s\n",
1696					(int) td->pid, td->error, td->verror);
1697			td_set_runstate(td, TD_REAPED);
1698			todo--;
1699		} else {
1700			struct fio_file *f;
1701			unsigned int j;
1702
1703			/*
1704			 * for sharing to work, each job must always open
1705			 * its own files. so close them, if we opened them
1706			 * for creation
1707			 */
1708			for_each_file(td, f, j) {
1709				if (fio_file_open(f))
1710					td_io_close_file(td, f);
1711			}
1712		}
1713	}
1714
1715	/* start idle threads before io threads start to run */
1716	fio_idle_prof_start();
1717
1718	set_genesis_time();
1719
1720	while (todo) {
1721		struct thread_data *map[REAL_MAX_JOBS];
1722		struct timeval this_start;
1723		int this_jobs = 0, left;
1724
1725		/*
1726		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1727		 */
1728		for_each_td(td, i) {
1729			if (td->runstate != TD_NOT_CREATED)
1730				continue;
1731
1732			/*
1733			 * never got a chance to start, killed by other
1734			 * thread for some reason
1735			 */
1736			if (td->terminate) {
1737				todo--;
1738				continue;
1739			}
1740
1741			if (td->o.start_delay) {
1742				spent = mtime_since_genesis();
1743
1744				if (td->o.start_delay * 1000 > spent)
1745					continue;
1746			}
1747
1748			if (td->o.stonewall && (nr_started || nr_running)) {
1749				dprint(FD_PROCESS, "%s: stonewall wait\n",
1750							td->o.name);
1751				break;
1752			}
1753
1754			init_disk_util(td);
1755
1756			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1757			td->update_rusage = 0;
1758
1759			/*
1760			 * Set state to created. Thread will transition
1761			 * to TD_INITIALIZED when it's done setting up.
1762			 */
1763			td_set_runstate(td, TD_CREATED);
1764			map[this_jobs++] = td;
1765			nr_started++;
1766
1767			if (td->o.use_thread) {
1768				int ret;
1769
1770				dprint(FD_PROCESS, "will pthread_create\n");
1771				ret = pthread_create(&td->thread, NULL,
1772							thread_main, td);
1773				if (ret) {
1774					log_err("pthread_create: %s\n",
1775							strerror(ret));
1776					nr_started--;
1777					break;
1778				}
1779				ret = pthread_detach(td->thread);
1780				if (ret)
1781					log_err("pthread_detach: %s",
1782							strerror(ret));
1783			} else {
1784				pid_t pid;
1785				dprint(FD_PROCESS, "will fork\n");
1786				pid = fork();
1787				if (!pid) {
1788					int ret = fork_main(shm_id, i);
1789
1790					_exit(ret);
1791				} else if (i == fio_debug_jobno)
1792					*fio_debug_jobp = pid;
1793			}
1794			dprint(FD_MUTEX, "wait on startup_mutex\n");
1795			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1796				log_err("fio: job startup hung? exiting.\n");
1797				fio_terminate_threads(TERMINATE_ALL);
1798				fio_abort = 1;
1799				nr_started--;
1800				break;
1801			}
1802			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1803		}
1804
1805		/*
1806		 * Wait for the started threads to transition to
1807		 * TD_INITIALIZED.
1808		 */
1809		fio_gettime(&this_start, NULL);
1810		left = this_jobs;
1811		while (left && !fio_abort) {
1812			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1813				break;
1814
1815			do_usleep(100000);
1816
1817			for (i = 0; i < this_jobs; i++) {
1818				td = map[i];
1819				if (!td)
1820					continue;
1821				if (td->runstate == TD_INITIALIZED) {
1822					map[i] = NULL;
1823					left--;
1824				} else if (td->runstate >= TD_EXITED) {
1825					map[i] = NULL;
1826					left--;
1827					todo--;
1828					nr_running++; /* work-around... */
1829				}
1830			}
1831		}
1832
1833		if (left) {
1834			log_err("fio: %d job%s failed to start\n", left,
1835					left > 1 ? "s" : "");
1836			for (i = 0; i < this_jobs; i++) {
1837				td = map[i];
1838				if (!td)
1839					continue;
1840				kill(td->pid, SIGTERM);
1841			}
1842			break;
1843		}
1844
1845		/*
1846		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1847		 */
1848		for_each_td(td, i) {
1849			if (td->runstate != TD_INITIALIZED)
1850				continue;
1851
1852			if (in_ramp_time(td))
1853				td_set_runstate(td, TD_RAMP);
1854			else
1855				td_set_runstate(td, TD_RUNNING);
1856			nr_running++;
1857			nr_started--;
1858			m_rate += ddir_rw_sum(td->o.ratemin);
1859			t_rate += ddir_rw_sum(td->o.rate);
1860			todo--;
1861			fio_mutex_up(td->mutex);
1862		}
1863
1864		reap_threads(&nr_running, &t_rate, &m_rate);
1865
1866		if (todo)
1867			do_usleep(100000);
1868	}
1869
1870	while (nr_running) {
1871		reap_threads(&nr_running, &t_rate, &m_rate);
1872		do_usleep(10000);
1873	}
1874
1875	fio_idle_prof_stop();
1876
1877	update_io_ticks();
1878}
1879
1880void wait_for_disk_thread_exit(void)
1881{
1882	fio_mutex_down(disk_thread_mutex);
1883}
1884
1885static void free_disk_util(void)
1886{
1887	disk_util_start_exit();
1888	wait_for_disk_thread_exit();
1889	disk_util_prune_entries();
1890}
1891
1892static void *disk_thread_main(void *data)
1893{
1894	int ret = 0;
1895
1896	fio_mutex_up(startup_mutex);
1897
1898	while (threads && !ret) {
1899		usleep(DISK_UTIL_MSEC * 1000);
1900		if (!threads)
1901			break;
1902		ret = update_io_ticks();
1903
1904		if (!is_backend)
1905			print_thread_status();
1906	}
1907
1908	fio_mutex_up(disk_thread_mutex);
1909	return NULL;
1910}
1911
1912static int create_disk_util_thread(void)
1913{
1914	int ret;
1915
1916	setup_disk_util();
1917
1918	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1919
1920	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1921	if (ret) {
1922		fio_mutex_remove(disk_thread_mutex);
1923		log_err("Can't create disk util thread: %s\n", strerror(ret));
1924		return 1;
1925	}
1926
1927	ret = pthread_detach(disk_util_thread);
1928	if (ret) {
1929		fio_mutex_remove(disk_thread_mutex);
1930		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1931		return 1;
1932	}
1933
1934	dprint(FD_MUTEX, "wait on startup_mutex\n");
1935	fio_mutex_down(startup_mutex);
1936	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1937	return 0;
1938}
1939
1940int fio_backend(void)
1941{
1942	struct thread_data *td;
1943	int i;
1944
1945	if (exec_profile) {
1946		if (load_profile(exec_profile))
1947			return 1;
1948		free(exec_profile);
1949		exec_profile = NULL;
1950	}
1951	if (!thread_number)
1952		return 0;
1953
1954	if (write_bw_log) {
1955		setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1956		setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1957		setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1958	}
1959
1960	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1961	if (startup_mutex == NULL)
1962		return 1;
1963	writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1964	if (writeout_mutex == NULL)
1965		return 1;
1966
1967	set_genesis_time();
1968	stat_init();
1969	create_disk_util_thread();
1970
1971	cgroup_list = smalloc(sizeof(*cgroup_list));
1972	INIT_FLIST_HEAD(cgroup_list);
1973
1974	run_threads();
1975
1976	if (!fio_abort) {
1977		show_run_stats();
1978		if (write_bw_log) {
1979			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1980			__finish_log(agg_io_log[DDIR_WRITE],
1981					"agg-write_bw.log");
1982			__finish_log(agg_io_log[DDIR_TRIM],
1983					"agg-write_bw.log");
1984		}
1985	}
1986
1987	for_each_td(td, i)
1988		fio_options_free(td);
1989
1990	free_disk_util();
1991	cgroup_kill(cgroup_list);
1992	sfree(cgroup_list);
1993	sfree(cgroup_mnt);
1994
1995	fio_mutex_remove(startup_mutex);
1996	fio_mutex_remove(writeout_mutex);
1997	fio_mutex_remove(disk_thread_mutex);
1998	stat_exit();
1999	return exit_value;
2000}
2001