backend.c revision 62244c9dbfa64f54a61b26af8f15a722362ac41a
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56#include "lib/tp.h"
57
58static pthread_t disk_util_thread;
59static struct fio_mutex *disk_thread_mutex;
60static pthread_cond_t du_cond;
61static pthread_mutex_t du_lock;
62
63static struct fio_mutex *startup_mutex;
64static struct flist_head *cgroup_list;
65static char *cgroup_mnt;
66static int exit_value;
67static volatile int fio_abort;
68static unsigned int nr_process = 0;
69static unsigned int nr_thread = 0;
70
71struct io_log *agg_io_log[DDIR_RWDIR_CNT];
72
73int groupid = 0;
74unsigned int thread_number = 0;
75unsigned int stat_number = 0;
76int shm_id = 0;
77int temp_stall_ts;
78unsigned long done_secs = 0;
79volatile int disk_util_exit = 0;
80
81#define PAGE_ALIGN(buf)	\
82	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
83
84#define JOB_START_TIMEOUT	(5 * 1000)
85
86static void sig_int(int sig)
87{
88	if (threads) {
89		if (is_backend)
90			fio_server_got_signal(sig);
91		else {
92			log_info("\nfio: terminating on signal %d\n", sig);
93			log_info_flush();
94			exit_value = 128;
95		}
96
97		fio_terminate_threads(TERMINATE_ALL);
98	}
99}
100
101static void sig_show_status(int sig)
102{
103	show_running_run_stats();
104}
105
106static void set_sig_handlers(void)
107{
108	struct sigaction act;
109
110	memset(&act, 0, sizeof(act));
111	act.sa_handler = sig_int;
112	act.sa_flags = SA_RESTART;
113	sigaction(SIGINT, &act, NULL);
114
115	memset(&act, 0, sizeof(act));
116	act.sa_handler = sig_int;
117	act.sa_flags = SA_RESTART;
118	sigaction(SIGTERM, &act, NULL);
119
120/* Windows uses SIGBREAK as a quit signal from other applications */
121#ifdef WIN32
122	memset(&act, 0, sizeof(act));
123	act.sa_handler = sig_int;
124	act.sa_flags = SA_RESTART;
125	sigaction(SIGBREAK, &act, NULL);
126#endif
127
128	memset(&act, 0, sizeof(act));
129	act.sa_handler = sig_show_status;
130	act.sa_flags = SA_RESTART;
131	sigaction(SIGUSR1, &act, NULL);
132
133	if (is_backend) {
134		memset(&act, 0, sizeof(act));
135		act.sa_handler = sig_int;
136		act.sa_flags = SA_RESTART;
137		sigaction(SIGPIPE, &act, NULL);
138	}
139}
140
141/*
142 * Check if we are above the minimum rate given.
143 */
144static int __check_min_rate(struct thread_data *td, struct timeval *now,
145			    enum fio_ddir ddir)
146{
147	unsigned long long bytes = 0;
148	unsigned long iops = 0;
149	unsigned long spent;
150	unsigned long rate;
151	unsigned int ratemin = 0;
152	unsigned int rate_iops = 0;
153	unsigned int rate_iops_min = 0;
154
155	assert(ddir_rw(ddir));
156
157	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
158		return 0;
159
160	/*
161	 * allow a 2 second settle period in the beginning
162	 */
163	if (mtime_since(&td->start, now) < 2000)
164		return 0;
165
166	iops += td->this_io_blocks[ddir];
167	bytes += td->this_io_bytes[ddir];
168	ratemin += td->o.ratemin[ddir];
169	rate_iops += td->o.rate_iops[ddir];
170	rate_iops_min += td->o.rate_iops_min[ddir];
171
172	/*
173	 * if rate blocks is set, sample is running
174	 */
175	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
176		spent = mtime_since(&td->lastrate[ddir], now);
177		if (spent < td->o.ratecycle)
178			return 0;
179
180		if (td->o.rate[ddir]) {
181			/*
182			 * check bandwidth specified rate
183			 */
184			if (bytes < td->rate_bytes[ddir]) {
185				log_err("%s: min rate %u not met\n", td->o.name,
186								ratemin);
187				return 1;
188			} else {
189				if (spent)
190					rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
191				else
192					rate = 0;
193
194				if (rate < ratemin ||
195				    bytes < td->rate_bytes[ddir]) {
196					log_err("%s: min rate %u not met, got"
197						" %luKB/sec\n", td->o.name,
198							ratemin, rate);
199					return 1;
200				}
201			}
202		} else {
203			/*
204			 * checks iops specified rate
205			 */
206			if (iops < rate_iops) {
207				log_err("%s: min iops rate %u not met\n",
208						td->o.name, rate_iops);
209				return 1;
210			} else {
211				if (spent)
212					rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
213				else
214					rate = 0;
215
216				if (rate < rate_iops_min ||
217				    iops < td->rate_blocks[ddir]) {
218					log_err("%s: min iops rate %u not met,"
219						" got %lu\n", td->o.name,
220							rate_iops_min, rate);
221				}
222			}
223		}
224	}
225
226	td->rate_bytes[ddir] = bytes;
227	td->rate_blocks[ddir] = iops;
228	memcpy(&td->lastrate[ddir], now, sizeof(*now));
229	return 0;
230}
231
232static int check_min_rate(struct thread_data *td, struct timeval *now,
233			  uint64_t *bytes_done)
234{
235	int ret = 0;
236
237	if (bytes_done[DDIR_READ])
238		ret |= __check_min_rate(td, now, DDIR_READ);
239	if (bytes_done[DDIR_WRITE])
240		ret |= __check_min_rate(td, now, DDIR_WRITE);
241	if (bytes_done[DDIR_TRIM])
242		ret |= __check_min_rate(td, now, DDIR_TRIM);
243
244	return ret;
245}
246
247/*
248 * When job exits, we can cancel the in-flight IO if we are using async
249 * io. Attempt to do so.
250 */
251static void cleanup_pending_aio(struct thread_data *td)
252{
253	int r;
254
255	/*
256	 * get immediately available events, if any
257	 */
258	r = io_u_queued_complete(td, 0, NULL);
259	if (r < 0)
260		return;
261
262	/*
263	 * now cancel remaining active events
264	 */
265	if (td->io_ops->cancel) {
266		struct io_u *io_u;
267		int i;
268
269		io_u_qiter(&td->io_u_all, io_u, i) {
270			if (io_u->flags & IO_U_F_FLIGHT) {
271				r = td->io_ops->cancel(td, io_u);
272				if (!r)
273					put_io_u(td, io_u);
274			}
275		}
276	}
277
278	if (td->cur_depth)
279		r = io_u_queued_complete(td, td->cur_depth, NULL);
280}
281
282/*
283 * Helper to handle the final sync of a file. Works just like the normal
284 * io path, just does everything sync.
285 */
286static int fio_io_sync(struct thread_data *td, struct fio_file *f)
287{
288	struct io_u *io_u = __get_io_u(td);
289	int ret;
290
291	if (!io_u)
292		return 1;
293
294	io_u->ddir = DDIR_SYNC;
295	io_u->file = f;
296
297	if (td_io_prep(td, io_u)) {
298		put_io_u(td, io_u);
299		return 1;
300	}
301
302requeue:
303	ret = td_io_queue(td, io_u);
304	if (ret < 0) {
305		td_verror(td, io_u->error, "td_io_queue");
306		put_io_u(td, io_u);
307		return 1;
308	} else if (ret == FIO_Q_QUEUED) {
309		if (io_u_queued_complete(td, 1, NULL) < 0)
310			return 1;
311	} else if (ret == FIO_Q_COMPLETED) {
312		if (io_u->error) {
313			td_verror(td, io_u->error, "td_io_queue");
314			return 1;
315		}
316
317		if (io_u_sync_complete(td, io_u, NULL) < 0)
318			return 1;
319	} else if (ret == FIO_Q_BUSY) {
320		if (td_io_commit(td))
321			return 1;
322		goto requeue;
323	}
324
325	return 0;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330	int ret;
331
332	if (fio_file_open(f))
333		return fio_io_sync(td, f);
334
335	if (td_io_open_file(td, f))
336		return 1;
337
338	ret = fio_io_sync(td, f);
339	td_io_close_file(td, f);
340	return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345	fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351		__update_tv_cache(td);
352}
353
354static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356	if (in_ramp_time(td))
357		return 0;
358	if (!td->o.timeout)
359		return 0;
360	if (utime_since(&td->epoch, t) >= td->o.timeout)
361		return 1;
362
363	return 0;
364}
365
366static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
367			       int *retptr)
368{
369	int ret = *retptr;
370
371	if (ret < 0 || td->error) {
372		int err = td->error;
373		enum error_type_bit eb;
374
375		if (ret < 0)
376			err = -ret;
377
378		eb = td_error_type(ddir, err);
379		if (!(td->o.continue_on_error & (1 << eb)))
380			return 1;
381
382		if (td_non_fatal_error(td, eb, err)) {
383		        /*
384		         * Continue with the I/Os in case of
385			 * a non fatal error.
386			 */
387			update_error_count(td, err);
388			td_clear_error(td);
389			*retptr = 0;
390			return 0;
391		} else if (td->o.fill_device && err == ENOSPC) {
392			/*
393			 * We expect to hit this error if
394			 * fill_device option is set.
395			 */
396			td_clear_error(td);
397			fio_mark_td_terminate(td);
398			return 1;
399		} else {
400			/*
401			 * Stop the I/O in case of a fatal
402			 * error.
403			 */
404			update_error_count(td, err);
405			return 1;
406		}
407	}
408
409	return 0;
410}
411
412static void check_update_rusage(struct thread_data *td)
413{
414	if (td->update_rusage) {
415		td->update_rusage = 0;
416		update_rusage_stat(td);
417		fio_mutex_up(td->rusage_sem);
418	}
419}
420
421/*
422 * The main verify engine. Runs over the writes we previously submitted,
423 * reads the blocks back in, and checks the crc/md5 of the data.
424 */
425static void do_verify(struct thread_data *td, uint64_t verify_bytes)
426{
427	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
428	struct fio_file *f;
429	struct io_u *io_u;
430	int ret, min_events;
431	unsigned int i;
432
433	dprint(FD_VERIFY, "starting loop\n");
434
435	/*
436	 * sync io first and invalidate cache, to make sure we really
437	 * read from disk.
438	 */
439	for_each_file(td, f, i) {
440		if (!fio_file_open(f))
441			continue;
442		if (fio_io_sync(td, f))
443			break;
444		if (file_invalidate_cache(td, f))
445			break;
446	}
447
448	check_update_rusage(td);
449
450	if (td->error)
451		return;
452
453	td_set_runstate(td, TD_VERIFYING);
454
455	io_u = NULL;
456	while (!td->terminate) {
457		enum fio_ddir ddir;
458		int ret2, full;
459
460		update_tv_cache(td);
461		check_update_rusage(td);
462
463		if (runtime_exceeded(td, &td->tv_cache)) {
464			__update_tv_cache(td);
465			if (runtime_exceeded(td, &td->tv_cache)) {
466				fio_mark_td_terminate(td);
467				break;
468			}
469		}
470
471		if (flow_threshold_exceeded(td))
472			continue;
473
474		if (!td->o.experimental_verify) {
475			io_u = __get_io_u(td);
476			if (!io_u)
477				break;
478
479			if (get_next_verify(td, io_u)) {
480				put_io_u(td, io_u);
481				break;
482			}
483
484			if (td_io_prep(td, io_u)) {
485				put_io_u(td, io_u);
486				break;
487			}
488		} else {
489			if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
490				break;
491
492			while ((io_u = get_io_u(td)) != NULL) {
493				if (IS_ERR(io_u)) {
494					io_u = NULL;
495					ret = FIO_Q_BUSY;
496					goto reap;
497				}
498
499				/*
500				 * We are only interested in the places where
501				 * we wrote or trimmed IOs. Turn those into
502				 * reads for verification purposes.
503				 */
504				if (io_u->ddir == DDIR_READ) {
505					/*
506					 * Pretend we issued it for rwmix
507					 * accounting
508					 */
509					td->io_issues[DDIR_READ]++;
510					put_io_u(td, io_u);
511					continue;
512				} else if (io_u->ddir == DDIR_TRIM) {
513					io_u->ddir = DDIR_READ;
514					io_u->flags |= IO_U_F_TRIMMED;
515					break;
516				} else if (io_u->ddir == DDIR_WRITE) {
517					io_u->ddir = DDIR_READ;
518					break;
519				} else {
520					put_io_u(td, io_u);
521					continue;
522				}
523			}
524
525			if (!io_u)
526				break;
527		}
528
529		if (td->o.verify_async)
530			io_u->end_io = verify_io_u_async;
531		else
532			io_u->end_io = verify_io_u;
533
534		ddir = io_u->ddir;
535
536		ret = td_io_queue(td, io_u);
537		switch (ret) {
538		case FIO_Q_COMPLETED:
539			if (io_u->error) {
540				ret = -io_u->error;
541				clear_io_u(td, io_u);
542			} else if (io_u->resid) {
543				int bytes = io_u->xfer_buflen - io_u->resid;
544
545				/*
546				 * zero read, fail
547				 */
548				if (!bytes) {
549					td_verror(td, EIO, "full resid");
550					put_io_u(td, io_u);
551					break;
552				}
553
554				io_u->xfer_buflen = io_u->resid;
555				io_u->xfer_buf += bytes;
556				io_u->offset += bytes;
557
558				if (ddir_rw(io_u->ddir))
559					td->ts.short_io_u[io_u->ddir]++;
560
561				f = io_u->file;
562				if (io_u->offset == f->real_file_size)
563					goto sync_done;
564
565				requeue_io_u(td, &io_u);
566			} else {
567sync_done:
568				ret = io_u_sync_complete(td, io_u, bytes_done);
569				if (ret < 0)
570					break;
571			}
572			continue;
573		case FIO_Q_QUEUED:
574			break;
575		case FIO_Q_BUSY:
576			requeue_io_u(td, &io_u);
577			ret2 = td_io_commit(td);
578			if (ret2 < 0)
579				ret = ret2;
580			break;
581		default:
582			assert(ret < 0);
583			td_verror(td, -ret, "td_io_queue");
584			break;
585		}
586
587		if (break_on_this_error(td, ddir, &ret))
588			break;
589
590		/*
591		 * if we can queue more, do so. but check if there are
592		 * completed io_u's first. Note that we can get BUSY even
593		 * without IO queued, if the system is resource starved.
594		 */
595reap:
596		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
597		if (full || !td->o.iodepth_batch_complete) {
598			min_events = min(td->o.iodepth_batch_complete,
599					 td->cur_depth);
600			/*
601			 * if the queue is full, we MUST reap at least 1 event
602			 */
603			if (full && !min_events)
604				min_events = 1;
605
606			do {
607				/*
608				 * Reap required number of io units, if any,
609				 * and do the verification on them through
610				 * the callback handler
611				 */
612				if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
613					ret = -1;
614					break;
615				}
616			} while (full && (td->cur_depth > td->o.iodepth_low));
617		}
618		if (ret < 0)
619			break;
620	}
621
622	check_update_rusage(td);
623
624	if (!td->error) {
625		min_events = td->cur_depth;
626
627		if (min_events)
628			ret = io_u_queued_complete(td, min_events, NULL);
629	} else
630		cleanup_pending_aio(td);
631
632	td_set_runstate(td, TD_RUNNING);
633
634	dprint(FD_VERIFY, "exiting loop\n");
635}
636
637static unsigned int exceeds_number_ios(struct thread_data *td)
638{
639	unsigned long long number_ios;
640
641	if (!td->o.number_ios)
642		return 0;
643
644	number_ios = ddir_rw_sum(td->this_io_blocks);
645	number_ios += td->io_u_queued + td->io_u_in_flight;
646
647	return number_ios >= td->o.number_ios;
648}
649
650static int io_bytes_exceeded(struct thread_data *td)
651{
652	unsigned long long bytes, limit;
653
654	if (td_rw(td))
655		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
656	else if (td_write(td))
657		bytes = td->this_io_bytes[DDIR_WRITE];
658	else if (td_read(td))
659		bytes = td->this_io_bytes[DDIR_READ];
660	else
661		bytes = td->this_io_bytes[DDIR_TRIM];
662
663	if (td->o.io_limit)
664		limit = td->o.io_limit;
665	else
666		limit = td->o.size;
667
668	return bytes >= limit || exceeds_number_ios(td);
669}
670
671/*
672 * Main IO worker function. It retrieves io_u's to process and queues
673 * and reaps them, checking for rate and errors along the way.
674 *
675 * Returns number of bytes written and trimmed.
676 */
677static uint64_t do_io(struct thread_data *td)
678{
679	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
680	unsigned int i;
681	int ret = 0;
682	uint64_t total_bytes, bytes_issued = 0;
683
684	if (in_ramp_time(td))
685		td_set_runstate(td, TD_RAMP);
686	else
687		td_set_runstate(td, TD_RUNNING);
688
689	lat_target_init(td);
690
691	/*
692	 * If verify_backlog is enabled, we'll run the verify in this
693	 * handler as well. For that case, we may need up to twice the
694	 * amount of bytes.
695	 */
696	total_bytes = td->o.size;
697	if (td->o.verify != VERIFY_NONE &&
698	   (td_write(td) && td->o.verify_backlog))
699		total_bytes += td->o.size;
700
701	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
702		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
703		td->o.time_based) {
704		struct timeval comp_time;
705		int min_evts = 0;
706		struct io_u *io_u;
707		int ret2, full;
708		enum fio_ddir ddir;
709
710		check_update_rusage(td);
711
712		if (td->terminate || td->done)
713			break;
714
715		update_tv_cache(td);
716
717		if (runtime_exceeded(td, &td->tv_cache)) {
718			__update_tv_cache(td);
719			if (runtime_exceeded(td, &td->tv_cache)) {
720				fio_mark_td_terminate(td);
721				break;
722			}
723		}
724
725		if (flow_threshold_exceeded(td))
726			continue;
727
728		if (bytes_issued >= total_bytes)
729			break;
730
731		io_u = get_io_u(td);
732		if (IS_ERR_OR_NULL(io_u)) {
733			int err = PTR_ERR(io_u);
734
735			io_u = NULL;
736			if (err == -EBUSY) {
737				ret = FIO_Q_BUSY;
738				goto reap;
739			}
740			if (td->o.latency_target)
741				goto reap;
742			break;
743		}
744
745		ddir = io_u->ddir;
746
747		/*
748		 * Add verification end_io handler if:
749		 *	- Asked to verify (!td_rw(td))
750		 *	- Or the io_u is from our verify list (mixed write/ver)
751		 */
752		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
753		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
754
755			if (!td->o.verify_pattern_bytes) {
756				io_u->rand_seed = __rand(&td->__verify_state);
757				if (sizeof(int) != sizeof(long *))
758					io_u->rand_seed *= __rand(&td->__verify_state);
759			}
760
761			if (td->o.verify_async)
762				io_u->end_io = verify_io_u_async;
763			else
764				io_u->end_io = verify_io_u;
765			td_set_runstate(td, TD_VERIFYING);
766		} else if (in_ramp_time(td))
767			td_set_runstate(td, TD_RAMP);
768		else
769			td_set_runstate(td, TD_RUNNING);
770
771		/*
772		 * Always log IO before it's issued, so we know the specific
773		 * order of it. The logged unit will track when the IO has
774		 * completed.
775		 */
776		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
777		    td->o.do_verify &&
778		    td->o.verify != VERIFY_NONE &&
779		    !td->o.experimental_verify)
780			log_io_piece(td, io_u);
781
782		ret = td_io_queue(td, io_u);
783		switch (ret) {
784		case FIO_Q_COMPLETED:
785			if (io_u->error) {
786				ret = -io_u->error;
787				unlog_io_piece(td, io_u);
788				clear_io_u(td, io_u);
789			} else if (io_u->resid) {
790				int bytes = io_u->xfer_buflen - io_u->resid;
791				struct fio_file *f = io_u->file;
792
793				bytes_issued += bytes;
794
795				trim_io_piece(td, io_u);
796
797				/*
798				 * zero read, fail
799				 */
800				if (!bytes) {
801					unlog_io_piece(td, io_u);
802					td_verror(td, EIO, "full resid");
803					put_io_u(td, io_u);
804					break;
805				}
806
807				io_u->xfer_buflen = io_u->resid;
808				io_u->xfer_buf += bytes;
809				io_u->offset += bytes;
810
811				if (ddir_rw(io_u->ddir))
812					td->ts.short_io_u[io_u->ddir]++;
813
814				if (io_u->offset == f->real_file_size)
815					goto sync_done;
816
817				requeue_io_u(td, &io_u);
818			} else {
819sync_done:
820				if (__should_check_rate(td, DDIR_READ) ||
821				    __should_check_rate(td, DDIR_WRITE) ||
822				    __should_check_rate(td, DDIR_TRIM))
823					fio_gettime(&comp_time, NULL);
824
825				ret = io_u_sync_complete(td, io_u, bytes_done);
826				if (ret < 0)
827					break;
828				bytes_issued += io_u->xfer_buflen;
829			}
830			break;
831		case FIO_Q_QUEUED:
832			/*
833			 * if the engine doesn't have a commit hook,
834			 * the io_u is really queued. if it does have such
835			 * a hook, it has to call io_u_queued() itself.
836			 */
837			if (td->io_ops->commit == NULL)
838				io_u_queued(td, io_u);
839			bytes_issued += io_u->xfer_buflen;
840			break;
841		case FIO_Q_BUSY:
842			unlog_io_piece(td, io_u);
843			requeue_io_u(td, &io_u);
844			ret2 = td_io_commit(td);
845			if (ret2 < 0)
846				ret = ret2;
847			break;
848		default:
849			assert(ret < 0);
850			put_io_u(td, io_u);
851			break;
852		}
853
854		if (break_on_this_error(td, ddir, &ret))
855			break;
856
857		/*
858		 * See if we need to complete some commands. Note that we
859		 * can get BUSY even without IO queued, if the system is
860		 * resource starved.
861		 */
862reap:
863		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
864		if (full || !td->o.iodepth_batch_complete) {
865			min_evts = min(td->o.iodepth_batch_complete,
866					td->cur_depth);
867			/*
868			 * if the queue is full, we MUST reap at least 1 event
869			 */
870			if (full && !min_evts)
871				min_evts = 1;
872
873			if (__should_check_rate(td, DDIR_READ) ||
874			    __should_check_rate(td, DDIR_WRITE) ||
875			    __should_check_rate(td, DDIR_TRIM))
876				fio_gettime(&comp_time, NULL);
877
878			do {
879				ret = io_u_queued_complete(td, min_evts, bytes_done);
880				if (ret < 0)
881					break;
882
883			} while (full && (td->cur_depth > td->o.iodepth_low));
884		}
885
886		if (ret < 0)
887			break;
888		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
889			continue;
890
891		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
892			if (check_min_rate(td, &comp_time, bytes_done)) {
893				if (exitall_on_terminate)
894					fio_terminate_threads(td->groupid);
895				td_verror(td, EIO, "check_min_rate");
896				break;
897			}
898		}
899		if (!in_ramp_time(td) && td->o.latency_target)
900			lat_target_check(td);
901
902		if (td->o.thinktime) {
903			unsigned long long b;
904
905			b = ddir_rw_sum(td->io_blocks);
906			if (!(b % td->o.thinktime_blocks)) {
907				int left;
908
909				io_u_quiesce(td);
910
911				if (td->o.thinktime_spin)
912					usec_spin(td->o.thinktime_spin);
913
914				left = td->o.thinktime - td->o.thinktime_spin;
915				if (left)
916					usec_sleep(td, left);
917			}
918		}
919	}
920
921	check_update_rusage(td);
922
923	if (td->trim_entries)
924		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
925
926	if (td->o.fill_device && td->error == ENOSPC) {
927		td->error = 0;
928		fio_mark_td_terminate(td);
929	}
930	if (!td->error) {
931		struct fio_file *f;
932
933		i = td->cur_depth;
934		if (i) {
935			ret = io_u_queued_complete(td, i, bytes_done);
936			if (td->o.fill_device && td->error == ENOSPC)
937				td->error = 0;
938		}
939
940		if (should_fsync(td) && td->o.end_fsync) {
941			td_set_runstate(td, TD_FSYNCING);
942
943			for_each_file(td, f, i) {
944				if (!fio_file_fsync(td, f))
945					continue;
946
947				log_err("fio: end_fsync failed for file %s\n",
948								f->file_name);
949			}
950		}
951	} else
952		cleanup_pending_aio(td);
953
954	/*
955	 * stop job if we failed doing any IO
956	 */
957	if (!ddir_rw_sum(td->this_io_bytes))
958		td->done = 1;
959
960	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
961}
962
963static void cleanup_io_u(struct thread_data *td)
964{
965	struct io_u *io_u;
966
967	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
968
969		if (td->io_ops->io_u_free)
970			td->io_ops->io_u_free(td, io_u);
971
972		fio_memfree(io_u, sizeof(*io_u));
973	}
974
975	free_io_mem(td);
976
977	io_u_rexit(&td->io_u_requeues);
978	io_u_qexit(&td->io_u_freelist);
979	io_u_qexit(&td->io_u_all);
980}
981
982static int init_io_u(struct thread_data *td)
983{
984	struct io_u *io_u;
985	unsigned int max_bs, min_write;
986	int cl_align, i, max_units;
987	int data_xfer = 1, err;
988	char *p;
989
990	max_units = td->o.iodepth;
991	max_bs = td_max_bs(td);
992	min_write = td->o.min_bs[DDIR_WRITE];
993	td->orig_buffer_size = (unsigned long long) max_bs
994					* (unsigned long long) max_units;
995
996	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
997		data_xfer = 0;
998
999	err = 0;
1000	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1001	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1002	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1003
1004	if (err) {
1005		log_err("fio: failed setting up IO queues\n");
1006		return 1;
1007	}
1008
1009	/*
1010	 * if we may later need to do address alignment, then add any
1011	 * possible adjustment here so that we don't cause a buffer
1012	 * overflow later. this adjustment may be too much if we get
1013	 * lucky and the allocator gives us an aligned address.
1014	 */
1015	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1016	    (td->io_ops->flags & FIO_RAWIO))
1017		td->orig_buffer_size += page_mask + td->o.mem_align;
1018
1019	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1020		unsigned long bs;
1021
1022		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1023		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1024	}
1025
1026	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1027		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1028		return 1;
1029	}
1030
1031	if (data_xfer && allocate_io_mem(td))
1032		return 1;
1033
1034	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1035	    (td->io_ops->flags & FIO_RAWIO))
1036		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1037	else
1038		p = td->orig_buffer;
1039
1040	cl_align = os_cache_line_size();
1041
1042	for (i = 0; i < max_units; i++) {
1043		void *ptr;
1044
1045		if (td->terminate)
1046			return 1;
1047
1048		ptr = fio_memalign(cl_align, sizeof(*io_u));
1049		if (!ptr) {
1050			log_err("fio: unable to allocate aligned memory\n");
1051			break;
1052		}
1053
1054		io_u = ptr;
1055		memset(io_u, 0, sizeof(*io_u));
1056		INIT_FLIST_HEAD(&io_u->verify_list);
1057		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1058
1059		if (data_xfer) {
1060			io_u->buf = p;
1061			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1062
1063			if (td_write(td))
1064				io_u_fill_buffer(td, io_u, min_write, max_bs);
1065			if (td_write(td) && td->o.verify_pattern_bytes) {
1066				/*
1067				 * Fill the buffer with the pattern if we are
1068				 * going to be doing writes.
1069				 */
1070				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1071			}
1072		}
1073
1074		io_u->index = i;
1075		io_u->flags = IO_U_F_FREE;
1076		io_u_qpush(&td->io_u_freelist, io_u);
1077
1078		/*
1079		 * io_u never leaves this stack, used for iteration of all
1080		 * io_u buffers.
1081		 */
1082		io_u_qpush(&td->io_u_all, io_u);
1083
1084		if (td->io_ops->io_u_init) {
1085			int ret = td->io_ops->io_u_init(td, io_u);
1086
1087			if (ret) {
1088				log_err("fio: failed to init engine data: %d\n", ret);
1089				return 1;
1090			}
1091		}
1092
1093		p += max_bs;
1094	}
1095
1096	return 0;
1097}
1098
1099static int switch_ioscheduler(struct thread_data *td)
1100{
1101	char tmp[256], tmp2[128];
1102	FILE *f;
1103	int ret;
1104
1105	if (td->io_ops->flags & FIO_DISKLESSIO)
1106		return 0;
1107
1108	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1109
1110	f = fopen(tmp, "r+");
1111	if (!f) {
1112		if (errno == ENOENT) {
1113			log_err("fio: os or kernel doesn't support IO scheduler"
1114				" switching\n");
1115			return 0;
1116		}
1117		td_verror(td, errno, "fopen iosched");
1118		return 1;
1119	}
1120
1121	/*
1122	 * Set io scheduler.
1123	 */
1124	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1125	if (ferror(f) || ret != 1) {
1126		td_verror(td, errno, "fwrite");
1127		fclose(f);
1128		return 1;
1129	}
1130
1131	rewind(f);
1132
1133	/*
1134	 * Read back and check that the selected scheduler is now the default.
1135	 */
1136	ret = fread(tmp, sizeof(tmp), 1, f);
1137	if (ferror(f) || ret < 0) {
1138		td_verror(td, errno, "fread");
1139		fclose(f);
1140		return 1;
1141	}
1142	tmp[sizeof(tmp) - 1] = '\0';
1143
1144
1145	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1146	if (!strstr(tmp, tmp2)) {
1147		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1148		td_verror(td, EINVAL, "iosched_switch");
1149		fclose(f);
1150		return 1;
1151	}
1152
1153	fclose(f);
1154	return 0;
1155}
1156
1157static int keep_running(struct thread_data *td)
1158{
1159	unsigned long long limit;
1160
1161	if (td->done)
1162		return 0;
1163	if (td->o.time_based)
1164		return 1;
1165	if (td->o.loops) {
1166		td->o.loops--;
1167		return 1;
1168	}
1169	if (exceeds_number_ios(td))
1170		return 0;
1171
1172	if (td->o.io_limit)
1173		limit = td->o.io_limit;
1174	else
1175		limit = td->o.size;
1176
1177	if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1178		uint64_t diff;
1179
1180		/*
1181		 * If the difference is less than the minimum IO size, we
1182		 * are done.
1183		 */
1184		diff = limit - ddir_rw_sum(td->io_bytes);
1185		if (diff < td_max_bs(td))
1186			return 0;
1187
1188		if (fio_files_done(td))
1189			return 0;
1190
1191		return 1;
1192	}
1193
1194	return 0;
1195}
1196
1197static int exec_string(struct thread_options *o, const char *string, const char *mode)
1198{
1199	int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1200	char *str;
1201
1202	str = malloc(newlen);
1203	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1204
1205	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1206	ret = system(str);
1207	if (ret == -1)
1208		log_err("fio: exec of cmd <%s> failed\n", str);
1209
1210	free(str);
1211	return ret;
1212}
1213
1214/*
1215 * Dry run to compute correct state of numberio for verification.
1216 */
1217static uint64_t do_dry_run(struct thread_data *td)
1218{
1219	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1220
1221	td_set_runstate(td, TD_RUNNING);
1222
1223	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1224		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1225		struct io_u *io_u;
1226		int ret;
1227
1228		if (td->terminate || td->done)
1229			break;
1230
1231		io_u = get_io_u(td);
1232		if (!io_u)
1233			break;
1234
1235		io_u->flags |= IO_U_F_FLIGHT;
1236		io_u->error = 0;
1237		io_u->resid = 0;
1238		if (ddir_rw(acct_ddir(io_u)))
1239			td->io_issues[acct_ddir(io_u)]++;
1240		if (ddir_rw(io_u->ddir)) {
1241			io_u_mark_depth(td, 1);
1242			td->ts.total_io_u[io_u->ddir]++;
1243		}
1244
1245		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1246		    td->o.do_verify &&
1247		    td->o.verify != VERIFY_NONE &&
1248		    !td->o.experimental_verify)
1249			log_io_piece(td, io_u);
1250
1251		ret = io_u_sync_complete(td, io_u, bytes_done);
1252		(void) ret;
1253	}
1254
1255	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1256}
1257
1258/*
1259 * Entry point for the thread based jobs. The process based jobs end up
1260 * here as well, after a little setup.
1261 */
1262static void *thread_main(void *data)
1263{
1264	unsigned long long elapsed;
1265	struct thread_data *td = data;
1266	struct thread_options *o = &td->o;
1267	pthread_condattr_t attr;
1268	int clear_state;
1269	int ret;
1270
1271	if (!o->use_thread) {
1272		setsid();
1273		td->pid = getpid();
1274	} else
1275		td->pid = gettid();
1276
1277	fio_local_clock_init(o->use_thread);
1278
1279	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1280
1281	if (is_backend)
1282		fio_server_send_start(td);
1283
1284	INIT_FLIST_HEAD(&td->io_log_list);
1285	INIT_FLIST_HEAD(&td->io_hist_list);
1286	INIT_FLIST_HEAD(&td->verify_list);
1287	INIT_FLIST_HEAD(&td->trim_list);
1288	INIT_FLIST_HEAD(&td->next_rand_list);
1289	pthread_mutex_init(&td->io_u_lock, NULL);
1290	td->io_hist_tree = RB_ROOT;
1291
1292	pthread_condattr_init(&attr);
1293	pthread_cond_init(&td->verify_cond, &attr);
1294	pthread_cond_init(&td->free_cond, &attr);
1295
1296	td_set_runstate(td, TD_INITIALIZED);
1297	dprint(FD_MUTEX, "up startup_mutex\n");
1298	fio_mutex_up(startup_mutex);
1299	dprint(FD_MUTEX, "wait on td->mutex\n");
1300	fio_mutex_down(td->mutex);
1301	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1302
1303	/*
1304	 * A new gid requires privilege, so we need to do this before setting
1305	 * the uid.
1306	 */
1307	if (o->gid != -1U && setgid(o->gid)) {
1308		td_verror(td, errno, "setgid");
1309		goto err;
1310	}
1311	if (o->uid != -1U && setuid(o->uid)) {
1312		td_verror(td, errno, "setuid");
1313		goto err;
1314	}
1315
1316	/*
1317	 * If we have a gettimeofday() thread, make sure we exclude that
1318	 * thread from this job
1319	 */
1320	if (o->gtod_cpu)
1321		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1322
1323	/*
1324	 * Set affinity first, in case it has an impact on the memory
1325	 * allocations.
1326	 */
1327	if (o->cpumask_set) {
1328		if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1329			ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1330			if (!ret) {
1331				log_err("fio: no CPUs set\n");
1332				log_err("fio: Try increasing number of available CPUs\n");
1333				td_verror(td, EINVAL, "cpus_split");
1334				goto err;
1335			}
1336		}
1337		ret = fio_setaffinity(td->pid, o->cpumask);
1338		if (ret == -1) {
1339			td_verror(td, errno, "cpu_set_affinity");
1340			goto err;
1341		}
1342	}
1343
1344#ifdef CONFIG_LIBNUMA
1345	/* numa node setup */
1346	if (o->numa_cpumask_set || o->numa_memmask_set) {
1347		struct bitmask *mask;
1348		int ret;
1349
1350		if (numa_available() < 0) {
1351			td_verror(td, errno, "Does not support NUMA API\n");
1352			goto err;
1353		}
1354
1355		if (o->numa_cpumask_set) {
1356			mask = numa_parse_nodestring(o->numa_cpunodes);
1357			ret = numa_run_on_node_mask(mask);
1358			numa_free_nodemask(mask);
1359			if (ret == -1) {
1360				td_verror(td, errno, \
1361					"numa_run_on_node_mask failed\n");
1362				goto err;
1363			}
1364		}
1365
1366		if (o->numa_memmask_set) {
1367
1368			mask = NULL;
1369			if (o->numa_memnodes)
1370				mask = numa_parse_nodestring(o->numa_memnodes);
1371
1372			switch (o->numa_mem_mode) {
1373			case MPOL_INTERLEAVE:
1374				numa_set_interleave_mask(mask);
1375				break;
1376			case MPOL_BIND:
1377				numa_set_membind(mask);
1378				break;
1379			case MPOL_LOCAL:
1380				numa_set_localalloc();
1381				break;
1382			case MPOL_PREFERRED:
1383				numa_set_preferred(o->numa_mem_prefer_node);
1384				break;
1385			case MPOL_DEFAULT:
1386			default:
1387				break;
1388			}
1389
1390			if (mask)
1391				numa_free_nodemask(mask);
1392
1393		}
1394	}
1395#endif
1396
1397	if (fio_pin_memory(td))
1398		goto err;
1399
1400	/*
1401	 * May alter parameters that init_io_u() will use, so we need to
1402	 * do this first.
1403	 */
1404	if (init_iolog(td))
1405		goto err;
1406
1407	if (init_io_u(td))
1408		goto err;
1409
1410	if (o->verify_async && verify_async_init(td))
1411		goto err;
1412
1413	if (o->ioprio) {
1414		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1415		if (ret == -1) {
1416			td_verror(td, errno, "ioprio_set");
1417			goto err;
1418		}
1419	}
1420
1421	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1422		goto err;
1423
1424	errno = 0;
1425	if (nice(o->nice) == -1 && errno != 0) {
1426		td_verror(td, errno, "nice");
1427		goto err;
1428	}
1429
1430	if (o->ioscheduler && switch_ioscheduler(td))
1431		goto err;
1432
1433	if (!o->create_serialize && setup_files(td))
1434		goto err;
1435
1436	if (td_io_init(td))
1437		goto err;
1438
1439	if (init_random_map(td))
1440		goto err;
1441
1442	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1443		goto err;
1444
1445	if (o->pre_read) {
1446		if (pre_read_files(td) < 0)
1447			goto err;
1448	}
1449
1450	if (td->flags & TD_F_COMPRESS_LOG)
1451		tp_init(&td->tp_data);
1452
1453	fio_verify_init(td);
1454
1455	fio_gettime(&td->epoch, NULL);
1456	fio_getrusage(&td->ru_start);
1457	clear_state = 0;
1458	while (keep_running(td)) {
1459		uint64_t verify_bytes;
1460
1461		fio_gettime(&td->start, NULL);
1462		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1463		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1464		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1465
1466		if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1467				o->ratemin[DDIR_TRIM]) {
1468		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1469						sizeof(td->bw_sample_time));
1470		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1471						sizeof(td->bw_sample_time));
1472		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1473						sizeof(td->bw_sample_time));
1474		}
1475
1476		if (clear_state)
1477			clear_io_state(td);
1478
1479		prune_io_piece_log(td);
1480
1481		if (td->o.verify_only && (td_write(td) || td_rw(td)))
1482			verify_bytes = do_dry_run(td);
1483		else
1484			verify_bytes = do_io(td);
1485
1486		clear_state = 1;
1487
1488		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1489			elapsed = utime_since_now(&td->start);
1490			td->ts.runtime[DDIR_READ] += elapsed;
1491		}
1492		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1493			elapsed = utime_since_now(&td->start);
1494			td->ts.runtime[DDIR_WRITE] += elapsed;
1495		}
1496		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1497			elapsed = utime_since_now(&td->start);
1498			td->ts.runtime[DDIR_TRIM] += elapsed;
1499		}
1500
1501		if (td->error || td->terminate)
1502			break;
1503
1504		if (!o->do_verify ||
1505		    o->verify == VERIFY_NONE ||
1506		    (td->io_ops->flags & FIO_UNIDIR))
1507			continue;
1508
1509		clear_io_state(td);
1510
1511		fio_gettime(&td->start, NULL);
1512
1513		do_verify(td, verify_bytes);
1514
1515		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1516
1517		if (td->error || td->terminate)
1518			break;
1519	}
1520
1521	update_rusage_stat(td);
1522	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1523	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1524	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1525	td->ts.total_run_time = mtime_since_now(&td->epoch);
1526	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1527	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1528	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1529
1530	fio_unpin_memory(td);
1531
1532	fio_writeout_logs(td);
1533
1534	if (td->flags & TD_F_COMPRESS_LOG)
1535		tp_exit(&td->tp_data);
1536
1537	if (o->exec_postrun)
1538		exec_string(o, o->exec_postrun, (const char *)"postrun");
1539
1540	if (exitall_on_terminate)
1541		fio_terminate_threads(td->groupid);
1542
1543err:
1544	if (td->error)
1545		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1546							td->verror);
1547
1548	if (o->verify_async)
1549		verify_async_exit(td);
1550
1551	close_and_free_files(td);
1552	cleanup_io_u(td);
1553	close_ioengine(td);
1554	cgroup_shutdown(td, &cgroup_mnt);
1555
1556	if (o->cpumask_set) {
1557		int ret = fio_cpuset_exit(&o->cpumask);
1558
1559		td_verror(td, ret, "fio_cpuset_exit");
1560	}
1561
1562	/*
1563	 * do this very late, it will log file closing as well
1564	 */
1565	if (o->write_iolog_file)
1566		write_iolog_close(td);
1567
1568	fio_mutex_remove(td->rusage_sem);
1569	td->rusage_sem = NULL;
1570
1571	fio_mutex_remove(td->mutex);
1572	td->mutex = NULL;
1573
1574	td_set_runstate(td, TD_EXITED);
1575	return (void *) (uintptr_t) td->error;
1576}
1577
1578
1579/*
1580 * We cannot pass the td data into a forked process, so attach the td and
1581 * pass it to the thread worker.
1582 */
1583static int fork_main(int shmid, int offset)
1584{
1585	struct thread_data *td;
1586	void *data, *ret;
1587
1588#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1589	data = shmat(shmid, NULL, 0);
1590	if (data == (void *) -1) {
1591		int __err = errno;
1592
1593		perror("shmat");
1594		return __err;
1595	}
1596#else
1597	/*
1598	 * HP-UX inherits shm mappings?
1599	 */
1600	data = threads;
1601#endif
1602
1603	td = data + offset * sizeof(struct thread_data);
1604	ret = thread_main(td);
1605	shmdt(data);
1606	return (int) (uintptr_t) ret;
1607}
1608
1609static void dump_td_info(struct thread_data *td)
1610{
1611	log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1612		"be stuck. Doing forceful exit of this job.\n", td->o.name,
1613			(unsigned long) time_since_now(&td->terminate_time));
1614}
1615
1616/*
1617 * Run over the job map and reap the threads that have exited, if any.
1618 */
1619static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1620			 unsigned int *m_rate)
1621{
1622	struct thread_data *td;
1623	unsigned int cputhreads, realthreads, pending;
1624	int i, status, ret;
1625
1626	/*
1627	 * reap exited threads (TD_EXITED -> TD_REAPED)
1628	 */
1629	realthreads = pending = cputhreads = 0;
1630	for_each_td(td, i) {
1631		int flags = 0;
1632
1633		/*
1634		 * ->io_ops is NULL for a thread that has closed its
1635		 * io engine
1636		 */
1637		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1638			cputhreads++;
1639		else
1640			realthreads++;
1641
1642		if (!td->pid) {
1643			pending++;
1644			continue;
1645		}
1646		if (td->runstate == TD_REAPED)
1647			continue;
1648		if (td->o.use_thread) {
1649			if (td->runstate == TD_EXITED) {
1650				td_set_runstate(td, TD_REAPED);
1651				goto reaped;
1652			}
1653			continue;
1654		}
1655
1656		flags = WNOHANG;
1657		if (td->runstate == TD_EXITED)
1658			flags = 0;
1659
1660		/*
1661		 * check if someone quit or got killed in an unusual way
1662		 */
1663		ret = waitpid(td->pid, &status, flags);
1664		if (ret < 0) {
1665			if (errno == ECHILD) {
1666				log_err("fio: pid=%d disappeared %d\n",
1667						(int) td->pid, td->runstate);
1668				td->sig = ECHILD;
1669				td_set_runstate(td, TD_REAPED);
1670				goto reaped;
1671			}
1672			perror("waitpid");
1673		} else if (ret == td->pid) {
1674			if (WIFSIGNALED(status)) {
1675				int sig = WTERMSIG(status);
1676
1677				if (sig != SIGTERM && sig != SIGUSR2)
1678					log_err("fio: pid=%d, got signal=%d\n",
1679							(int) td->pid, sig);
1680				td->sig = sig;
1681				td_set_runstate(td, TD_REAPED);
1682				goto reaped;
1683			}
1684			if (WIFEXITED(status)) {
1685				if (WEXITSTATUS(status) && !td->error)
1686					td->error = WEXITSTATUS(status);
1687
1688				td_set_runstate(td, TD_REAPED);
1689				goto reaped;
1690			}
1691		}
1692
1693		/*
1694		 * If the job is stuck, do a forceful timeout of it and
1695		 * move on.
1696		 */
1697		if (td->terminate &&
1698		    time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1699			dump_td_info(td);
1700			td_set_runstate(td, TD_REAPED);
1701			goto reaped;
1702		}
1703
1704		/*
1705		 * thread is not dead, continue
1706		 */
1707		pending++;
1708		continue;
1709reaped:
1710		(*nr_running)--;
1711		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1712		(*t_rate) -= ddir_rw_sum(td->o.rate);
1713		if (!td->pid)
1714			pending--;
1715
1716		if (td->error)
1717			exit_value++;
1718
1719		done_secs += mtime_since_now(&td->epoch) / 1000;
1720		profile_td_exit(td);
1721	}
1722
1723	if (*nr_running == cputhreads && !pending && realthreads)
1724		fio_terminate_threads(TERMINATE_ALL);
1725}
1726
1727static void do_usleep(unsigned int usecs)
1728{
1729	check_for_running_stats();
1730	usleep(usecs);
1731}
1732
1733/*
1734 * Main function for kicking off and reaping jobs, as needed.
1735 */
1736static void run_threads(void)
1737{
1738	struct thread_data *td;
1739	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1740	uint64_t spent;
1741
1742	if (fio_gtod_offload && fio_start_gtod_thread())
1743		return;
1744
1745	fio_idle_prof_init();
1746
1747	set_sig_handlers();
1748
1749	nr_thread = nr_process = 0;
1750	for_each_td(td, i) {
1751		if (td->o.use_thread)
1752			nr_thread++;
1753		else
1754			nr_process++;
1755	}
1756
1757	if (output_format == FIO_OUTPUT_NORMAL) {
1758		log_info("Starting ");
1759		if (nr_thread)
1760			log_info("%d thread%s", nr_thread,
1761						nr_thread > 1 ? "s" : "");
1762		if (nr_process) {
1763			if (nr_thread)
1764				log_info(" and ");
1765			log_info("%d process%s", nr_process,
1766						nr_process > 1 ? "es" : "");
1767		}
1768		log_info("\n");
1769		log_info_flush();
1770	}
1771
1772	todo = thread_number;
1773	nr_running = 0;
1774	nr_started = 0;
1775	m_rate = t_rate = 0;
1776
1777	for_each_td(td, i) {
1778		print_status_init(td->thread_number - 1);
1779
1780		if (!td->o.create_serialize)
1781			continue;
1782
1783		/*
1784		 * do file setup here so it happens sequentially,
1785		 * we don't want X number of threads getting their
1786		 * client data interspersed on disk
1787		 */
1788		if (setup_files(td)) {
1789			exit_value++;
1790			if (td->error)
1791				log_err("fio: pid=%d, err=%d/%s\n",
1792					(int) td->pid, td->error, td->verror);
1793			td_set_runstate(td, TD_REAPED);
1794			todo--;
1795		} else {
1796			struct fio_file *f;
1797			unsigned int j;
1798
1799			/*
1800			 * for sharing to work, each job must always open
1801			 * its own files. so close them, if we opened them
1802			 * for creation
1803			 */
1804			for_each_file(td, f, j) {
1805				if (fio_file_open(f))
1806					td_io_close_file(td, f);
1807			}
1808		}
1809	}
1810
1811	/* start idle threads before io threads start to run */
1812	fio_idle_prof_start();
1813
1814	set_genesis_time();
1815
1816	while (todo) {
1817		struct thread_data *map[REAL_MAX_JOBS];
1818		struct timeval this_start;
1819		int this_jobs = 0, left;
1820
1821		/*
1822		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1823		 */
1824		for_each_td(td, i) {
1825			if (td->runstate != TD_NOT_CREATED)
1826				continue;
1827
1828			/*
1829			 * never got a chance to start, killed by other
1830			 * thread for some reason
1831			 */
1832			if (td->terminate) {
1833				todo--;
1834				continue;
1835			}
1836
1837			if (td->o.start_delay) {
1838				spent = utime_since_genesis();
1839
1840				if (td->o.start_delay > spent)
1841					continue;
1842			}
1843
1844			if (td->o.stonewall && (nr_started || nr_running)) {
1845				dprint(FD_PROCESS, "%s: stonewall wait\n",
1846							td->o.name);
1847				break;
1848			}
1849
1850			init_disk_util(td);
1851
1852			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1853			td->update_rusage = 0;
1854
1855			/*
1856			 * Set state to created. Thread will transition
1857			 * to TD_INITIALIZED when it's done setting up.
1858			 */
1859			td_set_runstate(td, TD_CREATED);
1860			map[this_jobs++] = td;
1861			nr_started++;
1862
1863			if (td->o.use_thread) {
1864				int ret;
1865
1866				dprint(FD_PROCESS, "will pthread_create\n");
1867				ret = pthread_create(&td->thread, NULL,
1868							thread_main, td);
1869				if (ret) {
1870					log_err("pthread_create: %s\n",
1871							strerror(ret));
1872					nr_started--;
1873					break;
1874				}
1875				ret = pthread_detach(td->thread);
1876				if (ret)
1877					log_err("pthread_detach: %s",
1878							strerror(ret));
1879			} else {
1880				pid_t pid;
1881				dprint(FD_PROCESS, "will fork\n");
1882				pid = fork();
1883				if (!pid) {
1884					int ret = fork_main(shm_id, i);
1885
1886					_exit(ret);
1887				} else if (i == fio_debug_jobno)
1888					*fio_debug_jobp = pid;
1889			}
1890			dprint(FD_MUTEX, "wait on startup_mutex\n");
1891			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1892				log_err("fio: job startup hung? exiting.\n");
1893				fio_terminate_threads(TERMINATE_ALL);
1894				fio_abort = 1;
1895				nr_started--;
1896				break;
1897			}
1898			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1899		}
1900
1901		/*
1902		 * Wait for the started threads to transition to
1903		 * TD_INITIALIZED.
1904		 */
1905		fio_gettime(&this_start, NULL);
1906		left = this_jobs;
1907		while (left && !fio_abort) {
1908			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1909				break;
1910
1911			do_usleep(100000);
1912
1913			for (i = 0; i < this_jobs; i++) {
1914				td = map[i];
1915				if (!td)
1916					continue;
1917				if (td->runstate == TD_INITIALIZED) {
1918					map[i] = NULL;
1919					left--;
1920				} else if (td->runstate >= TD_EXITED) {
1921					map[i] = NULL;
1922					left--;
1923					todo--;
1924					nr_running++; /* work-around... */
1925				}
1926			}
1927		}
1928
1929		if (left) {
1930			log_err("fio: %d job%s failed to start\n", left,
1931					left > 1 ? "s" : "");
1932			for (i = 0; i < this_jobs; i++) {
1933				td = map[i];
1934				if (!td)
1935					continue;
1936				kill(td->pid, SIGTERM);
1937			}
1938			break;
1939		}
1940
1941		/*
1942		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1943		 */
1944		for_each_td(td, i) {
1945			if (td->runstate != TD_INITIALIZED)
1946				continue;
1947
1948			if (in_ramp_time(td))
1949				td_set_runstate(td, TD_RAMP);
1950			else
1951				td_set_runstate(td, TD_RUNNING);
1952			nr_running++;
1953			nr_started--;
1954			m_rate += ddir_rw_sum(td->o.ratemin);
1955			t_rate += ddir_rw_sum(td->o.rate);
1956			todo--;
1957			fio_mutex_up(td->mutex);
1958		}
1959
1960		reap_threads(&nr_running, &t_rate, &m_rate);
1961
1962		if (todo)
1963			do_usleep(100000);
1964	}
1965
1966	while (nr_running) {
1967		reap_threads(&nr_running, &t_rate, &m_rate);
1968		do_usleep(10000);
1969	}
1970
1971	fio_idle_prof_stop();
1972
1973	update_io_ticks();
1974}
1975
1976static void wait_for_disk_thread_exit(void)
1977{
1978	void *ret;
1979
1980	disk_util_start_exit();
1981	pthread_cond_signal(&du_cond);
1982	pthread_join(disk_util_thread, &ret);
1983}
1984
1985static void free_disk_util(void)
1986{
1987	disk_util_prune_entries();
1988
1989	pthread_cond_destroy(&du_cond);
1990}
1991
1992static void *disk_thread_main(void *data)
1993{
1994	int ret = 0;
1995
1996	fio_mutex_up(startup_mutex);
1997
1998	while (!ret) {
1999		uint64_t sec = DISK_UTIL_MSEC / 1000;
2000		uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2001		struct timespec ts;
2002		struct timeval tv;
2003
2004		gettimeofday(&tv, NULL);
2005		ts.tv_sec = tv.tv_sec + sec;
2006		ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2007		if (ts.tv_nsec > 1000000000ULL) {
2008			ts.tv_nsec -= 1000000000ULL;
2009			ts.tv_sec++;
2010		}
2011
2012		ret = pthread_cond_timedwait(&du_cond, &du_lock, &ts);
2013		if (ret != ETIMEDOUT) {
2014			printf("disk thread should exit %d\n", ret);
2015			break;
2016		}
2017
2018		ret = update_io_ticks();
2019
2020		if (!is_backend)
2021			print_thread_status();
2022	}
2023
2024	return NULL;
2025}
2026
2027static int create_disk_util_thread(void)
2028{
2029	int ret;
2030
2031	setup_disk_util();
2032
2033	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2034
2035	pthread_cond_init(&du_cond, NULL);
2036	pthread_mutex_init(&du_lock, NULL);
2037
2038	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
2039	if (ret) {
2040		fio_mutex_remove(disk_thread_mutex);
2041		log_err("Can't create disk util thread: %s\n", strerror(ret));
2042		return 1;
2043	}
2044
2045	dprint(FD_MUTEX, "wait on startup_mutex\n");
2046	fio_mutex_down(startup_mutex);
2047	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2048	return 0;
2049}
2050
2051int fio_backend(void)
2052{
2053	struct thread_data *td;
2054	int i;
2055
2056	if (exec_profile) {
2057		if (load_profile(exec_profile))
2058			return 1;
2059		free(exec_profile);
2060		exec_profile = NULL;
2061	}
2062	if (!thread_number)
2063		return 0;
2064
2065	if (write_bw_log) {
2066		struct log_params p = {
2067			.log_type = IO_LOG_TYPE_BW,
2068		};
2069
2070		setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2071		setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2072		setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2073	}
2074
2075	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2076	if (startup_mutex == NULL)
2077		return 1;
2078
2079	set_genesis_time();
2080	stat_init();
2081	create_disk_util_thread();
2082
2083	cgroup_list = smalloc(sizeof(*cgroup_list));
2084	INIT_FLIST_HEAD(cgroup_list);
2085
2086	run_threads();
2087
2088	wait_for_disk_thread_exit();
2089
2090	if (!fio_abort) {
2091		__show_run_stats();
2092		if (write_bw_log) {
2093			int i;
2094
2095			for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2096				struct io_log *log = agg_io_log[i];
2097
2098				flush_log(log);
2099				free_log(log);
2100			}
2101		}
2102	}
2103
2104	for_each_td(td, i)
2105		fio_options_free(td);
2106
2107	free_disk_util();
2108	cgroup_kill(cgroup_list);
2109	sfree(cgroup_list);
2110	sfree(cgroup_mnt);
2111
2112	fio_mutex_remove(startup_mutex);
2113	fio_mutex_remove(disk_thread_mutex);
2114	stat_exit();
2115	return exit_value;
2116}
2117