backend.c revision 633d825ccf450073e4489ee8ab66a44303b1a0d7
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56
57static pthread_t disk_util_thread;
58static struct fio_mutex *disk_thread_mutex;
59static struct fio_mutex *startup_mutex;
60static struct flist_head *cgroup_list;
61static char *cgroup_mnt;
62static int exit_value;
63static volatile int fio_abort;
64static unsigned int nr_process = 0;
65static unsigned int nr_thread = 0;
66
67struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69int groupid = 0;
70unsigned int thread_number = 0;
71unsigned int stat_number = 0;
72int shm_id = 0;
73int temp_stall_ts;
74unsigned long done_secs = 0;
75volatile int disk_util_exit = 0;
76
77#define PAGE_ALIGN(buf)	\
78	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80#define JOB_START_TIMEOUT	(5 * 1000)
81
82static void sig_int(int sig)
83{
84	if (threads) {
85		if (is_backend)
86			fio_server_got_signal(sig);
87		else {
88			log_info("\nfio: terminating on signal %d\n", sig);
89			fflush(stdout);
90			exit_value = 128;
91		}
92
93		fio_terminate_threads(TERMINATE_ALL);
94	}
95}
96
97static void sig_show_status(int sig)
98{
99	show_running_run_stats();
100}
101
102static void set_sig_handlers(void)
103{
104	struct sigaction act;
105
106	memset(&act, 0, sizeof(act));
107	act.sa_handler = sig_int;
108	act.sa_flags = SA_RESTART;
109	sigaction(SIGINT, &act, NULL);
110
111	memset(&act, 0, sizeof(act));
112	act.sa_handler = sig_int;
113	act.sa_flags = SA_RESTART;
114	sigaction(SIGTERM, &act, NULL);
115
116/* Windows uses SIGBREAK as a quit signal from other applications */
117#ifdef WIN32
118	memset(&act, 0, sizeof(act));
119	act.sa_handler = sig_int;
120	act.sa_flags = SA_RESTART;
121	sigaction(SIGBREAK, &act, NULL);
122#endif
123
124	memset(&act, 0, sizeof(act));
125	act.sa_handler = sig_show_status;
126	act.sa_flags = SA_RESTART;
127	sigaction(SIGUSR1, &act, NULL);
128
129	if (is_backend) {
130		memset(&act, 0, sizeof(act));
131		act.sa_handler = sig_int;
132		act.sa_flags = SA_RESTART;
133		sigaction(SIGPIPE, &act, NULL);
134	}
135}
136
137/*
138 * Check if we are above the minimum rate given.
139 */
140static int __check_min_rate(struct thread_data *td, struct timeval *now,
141			    enum fio_ddir ddir)
142{
143	unsigned long long bytes = 0;
144	unsigned long iops = 0;
145	unsigned long spent;
146	unsigned long rate;
147	unsigned int ratemin = 0;
148	unsigned int rate_iops = 0;
149	unsigned int rate_iops_min = 0;
150
151	assert(ddir_rw(ddir));
152
153	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154		return 0;
155
156	/*
157	 * allow a 2 second settle period in the beginning
158	 */
159	if (mtime_since(&td->start, now) < 2000)
160		return 0;
161
162	iops += td->this_io_blocks[ddir];
163	bytes += td->this_io_bytes[ddir];
164	ratemin += td->o.ratemin[ddir];
165	rate_iops += td->o.rate_iops[ddir];
166	rate_iops_min += td->o.rate_iops_min[ddir];
167
168	/*
169	 * if rate blocks is set, sample is running
170	 */
171	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172		spent = mtime_since(&td->lastrate[ddir], now);
173		if (spent < td->o.ratecycle)
174			return 0;
175
176		if (td->o.rate[ddir]) {
177			/*
178			 * check bandwidth specified rate
179			 */
180			if (bytes < td->rate_bytes[ddir]) {
181				log_err("%s: min rate %u not met\n", td->o.name,
182								ratemin);
183				return 1;
184			} else {
185				if (spent)
186					rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
187				else
188					rate = 0;
189
190				if (rate < ratemin ||
191				    bytes < td->rate_bytes[ddir]) {
192					log_err("%s: min rate %u not met, got"
193						" %luKB/sec\n", td->o.name,
194							ratemin, rate);
195					return 1;
196				}
197			}
198		} else {
199			/*
200			 * checks iops specified rate
201			 */
202			if (iops < rate_iops) {
203				log_err("%s: min iops rate %u not met\n",
204						td->o.name, rate_iops);
205				return 1;
206			} else {
207				if (spent)
208					rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
209				else
210					rate = 0;
211
212				if (rate < rate_iops_min ||
213				    iops < td->rate_blocks[ddir]) {
214					log_err("%s: min iops rate %u not met,"
215						" got %lu\n", td->o.name,
216							rate_iops_min, rate);
217				}
218			}
219		}
220	}
221
222	td->rate_bytes[ddir] = bytes;
223	td->rate_blocks[ddir] = iops;
224	memcpy(&td->lastrate[ddir], now, sizeof(*now));
225	return 0;
226}
227
228static int check_min_rate(struct thread_data *td, struct timeval *now,
229			  uint64_t *bytes_done)
230{
231	int ret = 0;
232
233	if (bytes_done[DDIR_READ])
234		ret |= __check_min_rate(td, now, DDIR_READ);
235	if (bytes_done[DDIR_WRITE])
236		ret |= __check_min_rate(td, now, DDIR_WRITE);
237	if (bytes_done[DDIR_TRIM])
238		ret |= __check_min_rate(td, now, DDIR_TRIM);
239
240	return ret;
241}
242
243/*
244 * When job exits, we can cancel the in-flight IO if we are using async
245 * io. Attempt to do so.
246 */
247static void cleanup_pending_aio(struct thread_data *td)
248{
249	int r;
250
251	/*
252	 * get immediately available events, if any
253	 */
254	r = io_u_queued_complete(td, 0, NULL);
255	if (r < 0)
256		return;
257
258	/*
259	 * now cancel remaining active events
260	 */
261	if (td->io_ops->cancel) {
262		struct io_u *io_u;
263		int i;
264
265		io_u_qiter(&td->io_u_all, io_u, i) {
266			if (io_u->flags & IO_U_F_FLIGHT) {
267				r = td->io_ops->cancel(td, io_u);
268				if (!r)
269					put_io_u(td, io_u);
270			}
271		}
272	}
273
274	if (td->cur_depth)
275		r = io_u_queued_complete(td, td->cur_depth, NULL);
276}
277
278/*
279 * Helper to handle the final sync of a file. Works just like the normal
280 * io path, just does everything sync.
281 */
282static int fio_io_sync(struct thread_data *td, struct fio_file *f)
283{
284	struct io_u *io_u = __get_io_u(td);
285	int ret;
286
287	if (!io_u)
288		return 1;
289
290	io_u->ddir = DDIR_SYNC;
291	io_u->file = f;
292
293	if (td_io_prep(td, io_u)) {
294		put_io_u(td, io_u);
295		return 1;
296	}
297
298requeue:
299	ret = td_io_queue(td, io_u);
300	if (ret < 0) {
301		td_verror(td, io_u->error, "td_io_queue");
302		put_io_u(td, io_u);
303		return 1;
304	} else if (ret == FIO_Q_QUEUED) {
305		if (io_u_queued_complete(td, 1, NULL) < 0)
306			return 1;
307	} else if (ret == FIO_Q_COMPLETED) {
308		if (io_u->error) {
309			td_verror(td, io_u->error, "td_io_queue");
310			return 1;
311		}
312
313		if (io_u_sync_complete(td, io_u, NULL) < 0)
314			return 1;
315	} else if (ret == FIO_Q_BUSY) {
316		if (td_io_commit(td))
317			return 1;
318		goto requeue;
319	}
320
321	return 0;
322}
323
324static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
325{
326	int ret;
327
328	if (fio_file_open(f))
329		return fio_io_sync(td, f);
330
331	if (td_io_open_file(td, f))
332		return 1;
333
334	ret = fio_io_sync(td, f);
335	td_io_close_file(td, f);
336	return ret;
337}
338
339static inline void __update_tv_cache(struct thread_data *td)
340{
341	fio_gettime(&td->tv_cache, NULL);
342}
343
344static inline void update_tv_cache(struct thread_data *td)
345{
346	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
347		__update_tv_cache(td);
348}
349
350static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
351{
352	if (in_ramp_time(td))
353		return 0;
354	if (!td->o.timeout)
355		return 0;
356	if (utime_since(&td->epoch, t) >= td->o.timeout)
357		return 1;
358
359	return 0;
360}
361
362static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
363			       int *retptr)
364{
365	int ret = *retptr;
366
367	if (ret < 0 || td->error) {
368		int err = td->error;
369		enum error_type_bit eb;
370
371		if (ret < 0)
372			err = -ret;
373
374		eb = td_error_type(ddir, err);
375		if (!(td->o.continue_on_error & (1 << eb)))
376			return 1;
377
378		if (td_non_fatal_error(td, eb, err)) {
379		        /*
380		         * Continue with the I/Os in case of
381			 * a non fatal error.
382			 */
383			update_error_count(td, err);
384			td_clear_error(td);
385			*retptr = 0;
386			return 0;
387		} else if (td->o.fill_device && err == ENOSPC) {
388			/*
389			 * We expect to hit this error if
390			 * fill_device option is set.
391			 */
392			td_clear_error(td);
393			td->terminate = 1;
394			return 1;
395		} else {
396			/*
397			 * Stop the I/O in case of a fatal
398			 * error.
399			 */
400			update_error_count(td, err);
401			return 1;
402		}
403	}
404
405	return 0;
406}
407
408static void check_update_rusage(struct thread_data *td)
409{
410	if (td->update_rusage) {
411		td->update_rusage = 0;
412		update_rusage_stat(td);
413		fio_mutex_up(td->rusage_sem);
414	}
415}
416
417/*
418 * The main verify engine. Runs over the writes we previously submitted,
419 * reads the blocks back in, and checks the crc/md5 of the data.
420 */
421static void do_verify(struct thread_data *td, uint64_t verify_bytes)
422{
423	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
424	struct fio_file *f;
425	struct io_u *io_u;
426	int ret, min_events;
427	unsigned int i;
428
429	dprint(FD_VERIFY, "starting loop\n");
430
431	/*
432	 * sync io first and invalidate cache, to make sure we really
433	 * read from disk.
434	 */
435	for_each_file(td, f, i) {
436		if (!fio_file_open(f))
437			continue;
438		if (fio_io_sync(td, f))
439			break;
440		if (file_invalidate_cache(td, f))
441			break;
442	}
443
444	check_update_rusage(td);
445
446	if (td->error)
447		return;
448
449	td_set_runstate(td, TD_VERIFYING);
450
451	io_u = NULL;
452	while (!td->terminate) {
453		enum fio_ddir ddir;
454		int ret2, full;
455
456		update_tv_cache(td);
457		check_update_rusage(td);
458
459		if (runtime_exceeded(td, &td->tv_cache)) {
460			__update_tv_cache(td);
461			if (runtime_exceeded(td, &td->tv_cache)) {
462				td->terminate = 1;
463				break;
464			}
465		}
466
467		if (flow_threshold_exceeded(td))
468			continue;
469
470		if (!td->o.experimental_verify) {
471			io_u = __get_io_u(td);
472			if (!io_u)
473				break;
474
475			if (get_next_verify(td, io_u)) {
476				put_io_u(td, io_u);
477				break;
478			}
479
480			if (td_io_prep(td, io_u)) {
481				put_io_u(td, io_u);
482				break;
483			}
484		} else {
485			if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
486				break;
487
488			while ((io_u = get_io_u(td)) != NULL) {
489				if (IS_ERR(io_u)) {
490					io_u = NULL;
491					ret = FIO_Q_BUSY;
492					goto reap;
493				}
494
495				/*
496				 * We are only interested in the places where
497				 * we wrote or trimmed IOs. Turn those into
498				 * reads for verification purposes.
499				 */
500				if (io_u->ddir == DDIR_READ) {
501					/*
502					 * Pretend we issued it for rwmix
503					 * accounting
504					 */
505					td->io_issues[DDIR_READ]++;
506					put_io_u(td, io_u);
507					continue;
508				} else if (io_u->ddir == DDIR_TRIM) {
509					io_u->ddir = DDIR_READ;
510					io_u->flags |= IO_U_F_TRIMMED;
511					break;
512				} else if (io_u->ddir == DDIR_WRITE) {
513					io_u->ddir = DDIR_READ;
514					break;
515				} else {
516					put_io_u(td, io_u);
517					continue;
518				}
519			}
520
521			if (!io_u)
522				break;
523		}
524
525		if (td->o.verify_async)
526			io_u->end_io = verify_io_u_async;
527		else
528			io_u->end_io = verify_io_u;
529
530		ddir = io_u->ddir;
531
532		ret = td_io_queue(td, io_u);
533		switch (ret) {
534		case FIO_Q_COMPLETED:
535			if (io_u->error) {
536				ret = -io_u->error;
537				clear_io_u(td, io_u);
538			} else if (io_u->resid) {
539				int bytes = io_u->xfer_buflen - io_u->resid;
540
541				/*
542				 * zero read, fail
543				 */
544				if (!bytes) {
545					td_verror(td, EIO, "full resid");
546					put_io_u(td, io_u);
547					break;
548				}
549
550				io_u->xfer_buflen = io_u->resid;
551				io_u->xfer_buf += bytes;
552				io_u->offset += bytes;
553
554				if (ddir_rw(io_u->ddir))
555					td->ts.short_io_u[io_u->ddir]++;
556
557				f = io_u->file;
558				if (io_u->offset == f->real_file_size)
559					goto sync_done;
560
561				requeue_io_u(td, &io_u);
562			} else {
563sync_done:
564				ret = io_u_sync_complete(td, io_u, bytes_done);
565				if (ret < 0)
566					break;
567			}
568			continue;
569		case FIO_Q_QUEUED:
570			break;
571		case FIO_Q_BUSY:
572			requeue_io_u(td, &io_u);
573			ret2 = td_io_commit(td);
574			if (ret2 < 0)
575				ret = ret2;
576			break;
577		default:
578			assert(ret < 0);
579			td_verror(td, -ret, "td_io_queue");
580			break;
581		}
582
583		if (break_on_this_error(td, ddir, &ret))
584			break;
585
586		/*
587		 * if we can queue more, do so. but check if there are
588		 * completed io_u's first. Note that we can get BUSY even
589		 * without IO queued, if the system is resource starved.
590		 */
591reap:
592		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
593		if (full || !td->o.iodepth_batch_complete) {
594			min_events = min(td->o.iodepth_batch_complete,
595					 td->cur_depth);
596			/*
597			 * if the queue is full, we MUST reap at least 1 event
598			 */
599			if (full && !min_events)
600				min_events = 1;
601
602			do {
603				/*
604				 * Reap required number of io units, if any,
605				 * and do the verification on them through
606				 * the callback handler
607				 */
608				if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
609					ret = -1;
610					break;
611				}
612			} while (full && (td->cur_depth > td->o.iodepth_low));
613		}
614		if (ret < 0)
615			break;
616	}
617
618	check_update_rusage(td);
619
620	if (!td->error) {
621		min_events = td->cur_depth;
622
623		if (min_events)
624			ret = io_u_queued_complete(td, min_events, NULL);
625	} else
626		cleanup_pending_aio(td);
627
628	td_set_runstate(td, TD_RUNNING);
629
630	dprint(FD_VERIFY, "exiting loop\n");
631}
632
633static unsigned int exceeds_number_ios(struct thread_data *td)
634{
635	unsigned long long number_ios;
636
637	if (!td->o.number_ios)
638		return 0;
639
640	number_ios = ddir_rw_sum(td->this_io_blocks);
641	number_ios += td->io_u_queued + td->io_u_in_flight;
642
643	return number_ios >= td->o.number_ios;
644}
645
646static int io_bytes_exceeded(struct thread_data *td)
647{
648	unsigned long long bytes, limit;
649
650	if (td_rw(td))
651		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
652	else if (td_write(td))
653		bytes = td->this_io_bytes[DDIR_WRITE];
654	else if (td_read(td))
655		bytes = td->this_io_bytes[DDIR_READ];
656	else
657		bytes = td->this_io_bytes[DDIR_TRIM];
658
659	if (td->o.io_limit)
660		limit = td->o.io_limit;
661	else
662		limit = td->o.size;
663
664	return bytes >= limit || exceeds_number_ios(td);
665}
666
667/*
668 * Main IO worker function. It retrieves io_u's to process and queues
669 * and reaps them, checking for rate and errors along the way.
670 *
671 * Returns number of bytes written and trimmed.
672 */
673static uint64_t do_io(struct thread_data *td)
674{
675	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
676	unsigned int i;
677	int ret = 0;
678	uint64_t total_bytes, bytes_issued = 0;
679
680	if (in_ramp_time(td))
681		td_set_runstate(td, TD_RAMP);
682	else
683		td_set_runstate(td, TD_RUNNING);
684
685	lat_target_init(td);
686
687	/*
688	 * If verify_backlog is enabled, we'll run the verify in this
689	 * handler as well. For that case, we may need up to twice the
690	 * amount of bytes.
691	 */
692	total_bytes = td->o.size;
693	if (td->o.verify != VERIFY_NONE &&
694	   (td_write(td) && td->o.verify_backlog))
695		total_bytes += td->o.size;
696
697	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
698		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
699		td->o.time_based) {
700		struct timeval comp_time;
701		int min_evts = 0;
702		struct io_u *io_u;
703		int ret2, full;
704		enum fio_ddir ddir;
705
706		check_update_rusage(td);
707
708		if (td->terminate || td->done)
709			break;
710
711		update_tv_cache(td);
712
713		if (runtime_exceeded(td, &td->tv_cache)) {
714			__update_tv_cache(td);
715			if (runtime_exceeded(td, &td->tv_cache)) {
716				td->terminate = 1;
717				break;
718			}
719		}
720
721		if (flow_threshold_exceeded(td))
722			continue;
723
724		if (bytes_issued >= total_bytes)
725			break;
726
727		io_u = get_io_u(td);
728		if (IS_ERR_OR_NULL(io_u)) {
729			int err = PTR_ERR(io_u);
730
731			io_u = NULL;
732			if (err == -EBUSY) {
733				ret = FIO_Q_BUSY;
734				goto reap;
735			}
736			if (td->o.latency_target)
737				goto reap;
738			break;
739		}
740
741		ddir = io_u->ddir;
742
743		/*
744		 * Add verification end_io handler if:
745		 *	- Asked to verify (!td_rw(td))
746		 *	- Or the io_u is from our verify list (mixed write/ver)
747		 */
748		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
749		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
750
751			if (!td->o.verify_pattern_bytes) {
752				io_u->rand_seed = __rand(&td->__verify_state);
753				if (sizeof(int) != sizeof(long *))
754					io_u->rand_seed *= __rand(&td->__verify_state);
755			}
756
757			if (td->o.verify_async)
758				io_u->end_io = verify_io_u_async;
759			else
760				io_u->end_io = verify_io_u;
761			td_set_runstate(td, TD_VERIFYING);
762		} else if (in_ramp_time(td))
763			td_set_runstate(td, TD_RAMP);
764		else
765			td_set_runstate(td, TD_RUNNING);
766
767		/*
768		 * Always log IO before it's issued, so we know the specific
769		 * order of it. The logged unit will track when the IO has
770		 * completed.
771		 */
772		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
773		    td->o.do_verify &&
774		    td->o.verify != VERIFY_NONE &&
775		    !td->o.experimental_verify)
776			log_io_piece(td, io_u);
777
778		ret = td_io_queue(td, io_u);
779		switch (ret) {
780		case FIO_Q_COMPLETED:
781			if (io_u->error) {
782				ret = -io_u->error;
783				unlog_io_piece(td, io_u);
784				clear_io_u(td, io_u);
785			} else if (io_u->resid) {
786				int bytes = io_u->xfer_buflen - io_u->resid;
787				struct fio_file *f = io_u->file;
788
789				bytes_issued += bytes;
790
791				trim_io_piece(td, io_u);
792
793				/*
794				 * zero read, fail
795				 */
796				if (!bytes) {
797					unlog_io_piece(td, io_u);
798					td_verror(td, EIO, "full resid");
799					put_io_u(td, io_u);
800					break;
801				}
802
803				io_u->xfer_buflen = io_u->resid;
804				io_u->xfer_buf += bytes;
805				io_u->offset += bytes;
806
807				if (ddir_rw(io_u->ddir))
808					td->ts.short_io_u[io_u->ddir]++;
809
810				if (io_u->offset == f->real_file_size)
811					goto sync_done;
812
813				requeue_io_u(td, &io_u);
814			} else {
815sync_done:
816				if (__should_check_rate(td, DDIR_READ) ||
817				    __should_check_rate(td, DDIR_WRITE) ||
818				    __should_check_rate(td, DDIR_TRIM))
819					fio_gettime(&comp_time, NULL);
820
821				ret = io_u_sync_complete(td, io_u, bytes_done);
822				if (ret < 0)
823					break;
824				bytes_issued += io_u->xfer_buflen;
825			}
826			break;
827		case FIO_Q_QUEUED:
828			/*
829			 * if the engine doesn't have a commit hook,
830			 * the io_u is really queued. if it does have such
831			 * a hook, it has to call io_u_queued() itself.
832			 */
833			if (td->io_ops->commit == NULL)
834				io_u_queued(td, io_u);
835			bytes_issued += io_u->xfer_buflen;
836			break;
837		case FIO_Q_BUSY:
838			unlog_io_piece(td, io_u);
839			requeue_io_u(td, &io_u);
840			ret2 = td_io_commit(td);
841			if (ret2 < 0)
842				ret = ret2;
843			break;
844		default:
845			assert(ret < 0);
846			put_io_u(td, io_u);
847			break;
848		}
849
850		if (break_on_this_error(td, ddir, &ret))
851			break;
852
853		/*
854		 * See if we need to complete some commands. Note that we
855		 * can get BUSY even without IO queued, if the system is
856		 * resource starved.
857		 */
858reap:
859		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
860		if (full || !td->o.iodepth_batch_complete) {
861			min_evts = min(td->o.iodepth_batch_complete,
862					td->cur_depth);
863			/*
864			 * if the queue is full, we MUST reap at least 1 event
865			 */
866			if (full && !min_evts)
867				min_evts = 1;
868
869			if (__should_check_rate(td, DDIR_READ) ||
870			    __should_check_rate(td, DDIR_WRITE) ||
871			    __should_check_rate(td, DDIR_TRIM))
872				fio_gettime(&comp_time, NULL);
873
874			do {
875				ret = io_u_queued_complete(td, min_evts, bytes_done);
876				if (ret < 0)
877					break;
878
879			} while (full && (td->cur_depth > td->o.iodepth_low));
880		}
881
882		if (ret < 0)
883			break;
884		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
885			continue;
886
887		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
888			if (check_min_rate(td, &comp_time, bytes_done)) {
889				if (exitall_on_terminate)
890					fio_terminate_threads(td->groupid);
891				td_verror(td, EIO, "check_min_rate");
892				break;
893			}
894		}
895		if (!in_ramp_time(td) && td->o.latency_target)
896			lat_target_check(td);
897
898		if (td->o.thinktime) {
899			unsigned long long b;
900
901			b = ddir_rw_sum(td->io_blocks);
902			if (!(b % td->o.thinktime_blocks)) {
903				int left;
904
905				io_u_quiesce(td);
906
907				if (td->o.thinktime_spin)
908					usec_spin(td->o.thinktime_spin);
909
910				left = td->o.thinktime - td->o.thinktime_spin;
911				if (left)
912					usec_sleep(td, left);
913			}
914		}
915	}
916
917	check_update_rusage(td);
918
919	if (td->trim_entries)
920		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
921
922	if (td->o.fill_device && td->error == ENOSPC) {
923		td->error = 0;
924		td->terminate = 1;
925	}
926	if (!td->error) {
927		struct fio_file *f;
928
929		i = td->cur_depth;
930		if (i) {
931			ret = io_u_queued_complete(td, i, bytes_done);
932			if (td->o.fill_device && td->error == ENOSPC)
933				td->error = 0;
934		}
935
936		if (should_fsync(td) && td->o.end_fsync) {
937			td_set_runstate(td, TD_FSYNCING);
938
939			for_each_file(td, f, i) {
940				if (!fio_file_fsync(td, f))
941					continue;
942
943				log_err("fio: end_fsync failed for file %s\n",
944								f->file_name);
945			}
946		}
947	} else
948		cleanup_pending_aio(td);
949
950	/*
951	 * stop job if we failed doing any IO
952	 */
953	if (!ddir_rw_sum(td->this_io_bytes))
954		td->done = 1;
955
956	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
957}
958
959static void cleanup_io_u(struct thread_data *td)
960{
961	struct io_u *io_u;
962
963	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
964
965		if (td->io_ops->io_u_free)
966			td->io_ops->io_u_free(td, io_u);
967
968		fio_memfree(io_u, sizeof(*io_u));
969	}
970
971	free_io_mem(td);
972
973	io_u_rexit(&td->io_u_requeues);
974	io_u_qexit(&td->io_u_freelist);
975	io_u_qexit(&td->io_u_all);
976}
977
978static int init_io_u(struct thread_data *td)
979{
980	struct io_u *io_u;
981	unsigned int max_bs, min_write;
982	int cl_align, i, max_units;
983	int data_xfer = 1, err;
984	char *p;
985
986	max_units = td->o.iodepth;
987	max_bs = td_max_bs(td);
988	min_write = td->o.min_bs[DDIR_WRITE];
989	td->orig_buffer_size = (unsigned long long) max_bs
990					* (unsigned long long) max_units;
991
992	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
993		data_xfer = 0;
994
995	err = 0;
996	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
997	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
998	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
999
1000	if (err) {
1001		log_err("fio: failed setting up IO queues\n");
1002		return 1;
1003	}
1004
1005	/*
1006	 * if we may later need to do address alignment, then add any
1007	 * possible adjustment here so that we don't cause a buffer
1008	 * overflow later. this adjustment may be too much if we get
1009	 * lucky and the allocator gives us an aligned address.
1010	 */
1011	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1012	    (td->io_ops->flags & FIO_RAWIO))
1013		td->orig_buffer_size += page_mask + td->o.mem_align;
1014
1015	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1016		unsigned long bs;
1017
1018		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1019		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1020	}
1021
1022	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1023		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1024		return 1;
1025	}
1026
1027	if (data_xfer && allocate_io_mem(td))
1028		return 1;
1029
1030	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1031	    (td->io_ops->flags & FIO_RAWIO))
1032		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1033	else
1034		p = td->orig_buffer;
1035
1036	cl_align = os_cache_line_size();
1037
1038	for (i = 0; i < max_units; i++) {
1039		void *ptr;
1040
1041		if (td->terminate)
1042			return 1;
1043
1044		ptr = fio_memalign(cl_align, sizeof(*io_u));
1045		if (!ptr) {
1046			log_err("fio: unable to allocate aligned memory\n");
1047			break;
1048		}
1049
1050		io_u = ptr;
1051		memset(io_u, 0, sizeof(*io_u));
1052		INIT_FLIST_HEAD(&io_u->verify_list);
1053		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1054
1055		if (data_xfer) {
1056			io_u->buf = p;
1057			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1058
1059			if (td_write(td))
1060				io_u_fill_buffer(td, io_u, min_write, max_bs);
1061			if (td_write(td) && td->o.verify_pattern_bytes) {
1062				/*
1063				 * Fill the buffer with the pattern if we are
1064				 * going to be doing writes.
1065				 */
1066				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1067			}
1068		}
1069
1070		io_u->index = i;
1071		io_u->flags = IO_U_F_FREE;
1072		io_u_qpush(&td->io_u_freelist, io_u);
1073
1074		/*
1075		 * io_u never leaves this stack, used for iteration of all
1076		 * io_u buffers.
1077		 */
1078		io_u_qpush(&td->io_u_all, io_u);
1079
1080		if (td->io_ops->io_u_init) {
1081			int ret = td->io_ops->io_u_init(td, io_u);
1082
1083			if (ret) {
1084				log_err("fio: failed to init engine data: %d\n", ret);
1085				return 1;
1086			}
1087		}
1088
1089		p += max_bs;
1090	}
1091
1092	return 0;
1093}
1094
1095static int switch_ioscheduler(struct thread_data *td)
1096{
1097	char tmp[256], tmp2[128];
1098	FILE *f;
1099	int ret;
1100
1101	if (td->io_ops->flags & FIO_DISKLESSIO)
1102		return 0;
1103
1104	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1105
1106	f = fopen(tmp, "r+");
1107	if (!f) {
1108		if (errno == ENOENT) {
1109			log_err("fio: os or kernel doesn't support IO scheduler"
1110				" switching\n");
1111			return 0;
1112		}
1113		td_verror(td, errno, "fopen iosched");
1114		return 1;
1115	}
1116
1117	/*
1118	 * Set io scheduler.
1119	 */
1120	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1121	if (ferror(f) || ret != 1) {
1122		td_verror(td, errno, "fwrite");
1123		fclose(f);
1124		return 1;
1125	}
1126
1127	rewind(f);
1128
1129	/*
1130	 * Read back and check that the selected scheduler is now the default.
1131	 */
1132	ret = fread(tmp, sizeof(tmp), 1, f);
1133	if (ferror(f) || ret < 0) {
1134		td_verror(td, errno, "fread");
1135		fclose(f);
1136		return 1;
1137	}
1138	tmp[sizeof(tmp) - 1] = '\0';
1139
1140
1141	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1142	if (!strstr(tmp, tmp2)) {
1143		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1144		td_verror(td, EINVAL, "iosched_switch");
1145		fclose(f);
1146		return 1;
1147	}
1148
1149	fclose(f);
1150	return 0;
1151}
1152
1153static int keep_running(struct thread_data *td)
1154{
1155	unsigned long long limit;
1156
1157	if (td->done)
1158		return 0;
1159	if (td->o.time_based)
1160		return 1;
1161	if (td->o.loops) {
1162		td->o.loops--;
1163		return 1;
1164	}
1165	if (exceeds_number_ios(td))
1166		return 0;
1167
1168	if (td->o.io_limit)
1169		limit = td->o.io_limit;
1170	else
1171		limit = td->o.size;
1172
1173	if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1174		uint64_t diff;
1175
1176		/*
1177		 * If the difference is less than the minimum IO size, we
1178		 * are done.
1179		 */
1180		diff = limit - ddir_rw_sum(td->io_bytes);
1181		if (diff < td_max_bs(td))
1182			return 0;
1183
1184		if (fio_files_done(td))
1185			return 0;
1186
1187		return 1;
1188	}
1189
1190	return 0;
1191}
1192
1193static int exec_string(struct thread_options *o, const char *string, const char *mode)
1194{
1195	int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1196	char *str;
1197
1198	str = malloc(newlen);
1199	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1200
1201	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1202	ret = system(str);
1203	if (ret == -1)
1204		log_err("fio: exec of cmd <%s> failed\n", str);
1205
1206	free(str);
1207	return ret;
1208}
1209
1210/*
1211 * Dry run to compute correct state of numberio for verification.
1212 */
1213static uint64_t do_dry_run(struct thread_data *td)
1214{
1215	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1216
1217	td_set_runstate(td, TD_RUNNING);
1218
1219	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1220		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1221		struct io_u *io_u;
1222		int ret;
1223
1224		if (td->terminate || td->done)
1225			break;
1226
1227		io_u = get_io_u(td);
1228		if (!io_u)
1229			break;
1230
1231		io_u->flags |= IO_U_F_FLIGHT;
1232		io_u->error = 0;
1233		io_u->resid = 0;
1234		if (ddir_rw(acct_ddir(io_u)))
1235			td->io_issues[acct_ddir(io_u)]++;
1236		if (ddir_rw(io_u->ddir)) {
1237			io_u_mark_depth(td, 1);
1238			td->ts.total_io_u[io_u->ddir]++;
1239		}
1240
1241		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1242		    td->o.do_verify &&
1243		    td->o.verify != VERIFY_NONE &&
1244		    !td->o.experimental_verify)
1245			log_io_piece(td, io_u);
1246
1247		ret = io_u_sync_complete(td, io_u, bytes_done);
1248		(void) ret;
1249	}
1250
1251	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1252}
1253
1254/*
1255 * Entry point for the thread based jobs. The process based jobs end up
1256 * here as well, after a little setup.
1257 */
1258static void *thread_main(void *data)
1259{
1260	unsigned long long elapsed;
1261	struct thread_data *td = data;
1262	struct thread_options *o = &td->o;
1263	pthread_condattr_t attr;
1264	int clear_state;
1265	int ret;
1266
1267	if (!o->use_thread) {
1268		setsid();
1269		td->pid = getpid();
1270	} else
1271		td->pid = gettid();
1272
1273	fio_local_clock_init(o->use_thread);
1274
1275	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1276
1277	if (is_backend)
1278		fio_server_send_start(td);
1279
1280	INIT_FLIST_HEAD(&td->io_log_list);
1281	INIT_FLIST_HEAD(&td->io_hist_list);
1282	INIT_FLIST_HEAD(&td->verify_list);
1283	INIT_FLIST_HEAD(&td->trim_list);
1284	INIT_FLIST_HEAD(&td->next_rand_list);
1285	pthread_mutex_init(&td->io_u_lock, NULL);
1286	td->io_hist_tree = RB_ROOT;
1287
1288	pthread_condattr_init(&attr);
1289	pthread_cond_init(&td->verify_cond, &attr);
1290	pthread_cond_init(&td->free_cond, &attr);
1291
1292	td_set_runstate(td, TD_INITIALIZED);
1293	dprint(FD_MUTEX, "up startup_mutex\n");
1294	fio_mutex_up(startup_mutex);
1295	dprint(FD_MUTEX, "wait on td->mutex\n");
1296	fio_mutex_down(td->mutex);
1297	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1298
1299	/*
1300	 * A new gid requires privilege, so we need to do this before setting
1301	 * the uid.
1302	 */
1303	if (o->gid != -1U && setgid(o->gid)) {
1304		td_verror(td, errno, "setgid");
1305		goto err;
1306	}
1307	if (o->uid != -1U && setuid(o->uid)) {
1308		td_verror(td, errno, "setuid");
1309		goto err;
1310	}
1311
1312	/*
1313	 * If we have a gettimeofday() thread, make sure we exclude that
1314	 * thread from this job
1315	 */
1316	if (o->gtod_cpu)
1317		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1318
1319	/*
1320	 * Set affinity first, in case it has an impact on the memory
1321	 * allocations.
1322	 */
1323	if (o->cpumask_set) {
1324		if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1325			ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1326			if (!ret) {
1327				log_err("fio: no CPUs set\n");
1328				log_err("fio: Try increasing number of available CPUs\n");
1329				td_verror(td, EINVAL, "cpus_split");
1330				goto err;
1331			}
1332		}
1333		ret = fio_setaffinity(td->pid, o->cpumask);
1334		if (ret == -1) {
1335			td_verror(td, errno, "cpu_set_affinity");
1336			goto err;
1337		}
1338	}
1339
1340#ifdef CONFIG_LIBNUMA
1341	/* numa node setup */
1342	if (o->numa_cpumask_set || o->numa_memmask_set) {
1343		struct bitmask *mask;
1344		int ret;
1345
1346		if (numa_available() < 0) {
1347			td_verror(td, errno, "Does not support NUMA API\n");
1348			goto err;
1349		}
1350
1351		if (o->numa_cpumask_set) {
1352			mask = numa_parse_nodestring(o->numa_cpunodes);
1353			ret = numa_run_on_node_mask(mask);
1354			numa_free_nodemask(mask);
1355			if (ret == -1) {
1356				td_verror(td, errno, \
1357					"numa_run_on_node_mask failed\n");
1358				goto err;
1359			}
1360		}
1361
1362		if (o->numa_memmask_set) {
1363
1364			mask = NULL;
1365			if (o->numa_memnodes)
1366				mask = numa_parse_nodestring(o->numa_memnodes);
1367
1368			switch (o->numa_mem_mode) {
1369			case MPOL_INTERLEAVE:
1370				numa_set_interleave_mask(mask);
1371				break;
1372			case MPOL_BIND:
1373				numa_set_membind(mask);
1374				break;
1375			case MPOL_LOCAL:
1376				numa_set_localalloc();
1377				break;
1378			case MPOL_PREFERRED:
1379				numa_set_preferred(o->numa_mem_prefer_node);
1380				break;
1381			case MPOL_DEFAULT:
1382			default:
1383				break;
1384			}
1385
1386			if (mask)
1387				numa_free_nodemask(mask);
1388
1389		}
1390	}
1391#endif
1392
1393	if (fio_pin_memory(td))
1394		goto err;
1395
1396	/*
1397	 * May alter parameters that init_io_u() will use, so we need to
1398	 * do this first.
1399	 */
1400	if (init_iolog(td))
1401		goto err;
1402
1403	if (init_io_u(td))
1404		goto err;
1405
1406	if (o->verify_async && verify_async_init(td))
1407		goto err;
1408
1409	if (o->ioprio) {
1410		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1411		if (ret == -1) {
1412			td_verror(td, errno, "ioprio_set");
1413			goto err;
1414		}
1415	}
1416
1417	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1418		goto err;
1419
1420	errno = 0;
1421	if (nice(o->nice) == -1 && errno != 0) {
1422		td_verror(td, errno, "nice");
1423		goto err;
1424	}
1425
1426	if (o->ioscheduler && switch_ioscheduler(td))
1427		goto err;
1428
1429	if (!o->create_serialize && setup_files(td))
1430		goto err;
1431
1432	if (td_io_init(td))
1433		goto err;
1434
1435	if (init_random_map(td))
1436		goto err;
1437
1438	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1439		goto err;
1440
1441	if (o->pre_read) {
1442		if (pre_read_files(td) < 0)
1443			goto err;
1444	}
1445
1446	fio_verify_init(td);
1447
1448	fio_gettime(&td->epoch, NULL);
1449	fio_getrusage(&td->ru_start);
1450	clear_state = 0;
1451	while (keep_running(td)) {
1452		uint64_t verify_bytes;
1453
1454		fio_gettime(&td->start, NULL);
1455		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1456		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1457		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1458
1459		if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1460				o->ratemin[DDIR_TRIM]) {
1461		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1462						sizeof(td->bw_sample_time));
1463		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1464						sizeof(td->bw_sample_time));
1465		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1466						sizeof(td->bw_sample_time));
1467		}
1468
1469		if (clear_state)
1470			clear_io_state(td);
1471
1472		prune_io_piece_log(td);
1473
1474		if (td->o.verify_only && (td_write(td) || td_rw(td)))
1475			verify_bytes = do_dry_run(td);
1476		else
1477			verify_bytes = do_io(td);
1478
1479		clear_state = 1;
1480
1481		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1482			elapsed = utime_since_now(&td->start);
1483			td->ts.runtime[DDIR_READ] += elapsed;
1484		}
1485		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1486			elapsed = utime_since_now(&td->start);
1487			td->ts.runtime[DDIR_WRITE] += elapsed;
1488		}
1489		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1490			elapsed = utime_since_now(&td->start);
1491			td->ts.runtime[DDIR_TRIM] += elapsed;
1492		}
1493
1494		if (td->error || td->terminate)
1495			break;
1496
1497		if (!o->do_verify ||
1498		    o->verify == VERIFY_NONE ||
1499		    (td->io_ops->flags & FIO_UNIDIR))
1500			continue;
1501
1502		clear_io_state(td);
1503
1504		fio_gettime(&td->start, NULL);
1505
1506		do_verify(td, verify_bytes);
1507
1508		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1509
1510		if (td->error || td->terminate)
1511			break;
1512	}
1513
1514	update_rusage_stat(td);
1515	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1516	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1517	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1518	td->ts.total_run_time = mtime_since_now(&td->epoch);
1519	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1520	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1521	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1522
1523	fio_unpin_memory(td);
1524
1525	fio_writeout_logs(td);
1526
1527	if (o->exec_postrun)
1528		exec_string(o, o->exec_postrun, (const char *)"postrun");
1529
1530	if (exitall_on_terminate)
1531		fio_terminate_threads(td->groupid);
1532
1533err:
1534	if (td->error)
1535		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1536							td->verror);
1537
1538	if (o->verify_async)
1539		verify_async_exit(td);
1540
1541	close_and_free_files(td);
1542	cleanup_io_u(td);
1543	close_ioengine(td);
1544	cgroup_shutdown(td, &cgroup_mnt);
1545
1546	if (o->cpumask_set) {
1547		int ret = fio_cpuset_exit(&o->cpumask);
1548
1549		td_verror(td, ret, "fio_cpuset_exit");
1550	}
1551
1552	/*
1553	 * do this very late, it will log file closing as well
1554	 */
1555	if (o->write_iolog_file)
1556		write_iolog_close(td);
1557
1558	fio_mutex_remove(td->rusage_sem);
1559	td->rusage_sem = NULL;
1560
1561	fio_mutex_remove(td->mutex);
1562	td->mutex = NULL;
1563
1564	td_set_runstate(td, TD_EXITED);
1565	return (void *) (uintptr_t) td->error;
1566}
1567
1568
1569/*
1570 * We cannot pass the td data into a forked process, so attach the td and
1571 * pass it to the thread worker.
1572 */
1573static int fork_main(int shmid, int offset)
1574{
1575	struct thread_data *td;
1576	void *data, *ret;
1577
1578#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1579	data = shmat(shmid, NULL, 0);
1580	if (data == (void *) -1) {
1581		int __err = errno;
1582
1583		perror("shmat");
1584		return __err;
1585	}
1586#else
1587	/*
1588	 * HP-UX inherits shm mappings?
1589	 */
1590	data = threads;
1591#endif
1592
1593	td = data + offset * sizeof(struct thread_data);
1594	ret = thread_main(td);
1595	shmdt(data);
1596	return (int) (uintptr_t) ret;
1597}
1598
1599/*
1600 * Run over the job map and reap the threads that have exited, if any.
1601 */
1602static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1603			 unsigned int *m_rate)
1604{
1605	struct thread_data *td;
1606	unsigned int cputhreads, realthreads, pending;
1607	int i, status, ret;
1608
1609	/*
1610	 * reap exited threads (TD_EXITED -> TD_REAPED)
1611	 */
1612	realthreads = pending = cputhreads = 0;
1613	for_each_td(td, i) {
1614		int flags = 0;
1615
1616		/*
1617		 * ->io_ops is NULL for a thread that has closed its
1618		 * io engine
1619		 */
1620		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1621			cputhreads++;
1622		else
1623			realthreads++;
1624
1625		if (!td->pid) {
1626			pending++;
1627			continue;
1628		}
1629		if (td->runstate == TD_REAPED)
1630			continue;
1631		if (td->o.use_thread) {
1632			if (td->runstate == TD_EXITED) {
1633				td_set_runstate(td, TD_REAPED);
1634				goto reaped;
1635			}
1636			continue;
1637		}
1638
1639		flags = WNOHANG;
1640		if (td->runstate == TD_EXITED)
1641			flags = 0;
1642
1643		/*
1644		 * check if someone quit or got killed in an unusual way
1645		 */
1646		ret = waitpid(td->pid, &status, flags);
1647		if (ret < 0) {
1648			if (errno == ECHILD) {
1649				log_err("fio: pid=%d disappeared %d\n",
1650						(int) td->pid, td->runstate);
1651				td->sig = ECHILD;
1652				td_set_runstate(td, TD_REAPED);
1653				goto reaped;
1654			}
1655			perror("waitpid");
1656		} else if (ret == td->pid) {
1657			if (WIFSIGNALED(status)) {
1658				int sig = WTERMSIG(status);
1659
1660				if (sig != SIGTERM && sig != SIGUSR2)
1661					log_err("fio: pid=%d, got signal=%d\n",
1662							(int) td->pid, sig);
1663				td->sig = sig;
1664				td_set_runstate(td, TD_REAPED);
1665				goto reaped;
1666			}
1667			if (WIFEXITED(status)) {
1668				if (WEXITSTATUS(status) && !td->error)
1669					td->error = WEXITSTATUS(status);
1670
1671				td_set_runstate(td, TD_REAPED);
1672				goto reaped;
1673			}
1674		}
1675
1676		/*
1677		 * thread is not dead, continue
1678		 */
1679		pending++;
1680		continue;
1681reaped:
1682		(*nr_running)--;
1683		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1684		(*t_rate) -= ddir_rw_sum(td->o.rate);
1685		if (!td->pid)
1686			pending--;
1687
1688		if (td->error)
1689			exit_value++;
1690
1691		done_secs += mtime_since_now(&td->epoch) / 1000;
1692		profile_td_exit(td);
1693	}
1694
1695	if (*nr_running == cputhreads && !pending && realthreads)
1696		fio_terminate_threads(TERMINATE_ALL);
1697}
1698
1699static void do_usleep(unsigned int usecs)
1700{
1701	check_for_running_stats();
1702	usleep(usecs);
1703}
1704
1705/*
1706 * Main function for kicking off and reaping jobs, as needed.
1707 */
1708static void run_threads(void)
1709{
1710	struct thread_data *td;
1711	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1712	uint64_t spent;
1713
1714	if (fio_gtod_offload && fio_start_gtod_thread())
1715		return;
1716
1717	fio_idle_prof_init();
1718
1719	set_sig_handlers();
1720
1721	nr_thread = nr_process = 0;
1722	for_each_td(td, i) {
1723		if (td->o.use_thread)
1724			nr_thread++;
1725		else
1726			nr_process++;
1727	}
1728
1729	if (output_format == FIO_OUTPUT_NORMAL) {
1730		log_info("Starting ");
1731		if (nr_thread)
1732			log_info("%d thread%s", nr_thread,
1733						nr_thread > 1 ? "s" : "");
1734		if (nr_process) {
1735			if (nr_thread)
1736				log_info(" and ");
1737			log_info("%d process%s", nr_process,
1738						nr_process > 1 ? "es" : "");
1739		}
1740		log_info("\n");
1741		fflush(stdout);
1742	}
1743
1744	todo = thread_number;
1745	nr_running = 0;
1746	nr_started = 0;
1747	m_rate = t_rate = 0;
1748
1749	for_each_td(td, i) {
1750		print_status_init(td->thread_number - 1);
1751
1752		if (!td->o.create_serialize)
1753			continue;
1754
1755		/*
1756		 * do file setup here so it happens sequentially,
1757		 * we don't want X number of threads getting their
1758		 * client data interspersed on disk
1759		 */
1760		if (setup_files(td)) {
1761			exit_value++;
1762			if (td->error)
1763				log_err("fio: pid=%d, err=%d/%s\n",
1764					(int) td->pid, td->error, td->verror);
1765			td_set_runstate(td, TD_REAPED);
1766			todo--;
1767		} else {
1768			struct fio_file *f;
1769			unsigned int j;
1770
1771			/*
1772			 * for sharing to work, each job must always open
1773			 * its own files. so close them, if we opened them
1774			 * for creation
1775			 */
1776			for_each_file(td, f, j) {
1777				if (fio_file_open(f))
1778					td_io_close_file(td, f);
1779			}
1780		}
1781	}
1782
1783	/* start idle threads before io threads start to run */
1784	fio_idle_prof_start();
1785
1786	set_genesis_time();
1787
1788	while (todo) {
1789		struct thread_data *map[REAL_MAX_JOBS];
1790		struct timeval this_start;
1791		int this_jobs = 0, left;
1792
1793		/*
1794		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1795		 */
1796		for_each_td(td, i) {
1797			if (td->runstate != TD_NOT_CREATED)
1798				continue;
1799
1800			/*
1801			 * never got a chance to start, killed by other
1802			 * thread for some reason
1803			 */
1804			if (td->terminate) {
1805				todo--;
1806				continue;
1807			}
1808
1809			if (td->o.start_delay) {
1810				spent = utime_since_genesis();
1811
1812				if (td->o.start_delay > spent)
1813					continue;
1814			}
1815
1816			if (td->o.stonewall && (nr_started || nr_running)) {
1817				dprint(FD_PROCESS, "%s: stonewall wait\n",
1818							td->o.name);
1819				break;
1820			}
1821
1822			init_disk_util(td);
1823
1824			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1825			td->update_rusage = 0;
1826
1827			/*
1828			 * Set state to created. Thread will transition
1829			 * to TD_INITIALIZED when it's done setting up.
1830			 */
1831			td_set_runstate(td, TD_CREATED);
1832			map[this_jobs++] = td;
1833			nr_started++;
1834
1835			if (td->o.use_thread) {
1836				int ret;
1837
1838				dprint(FD_PROCESS, "will pthread_create\n");
1839				ret = pthread_create(&td->thread, NULL,
1840							thread_main, td);
1841				if (ret) {
1842					log_err("pthread_create: %s\n",
1843							strerror(ret));
1844					nr_started--;
1845					break;
1846				}
1847				ret = pthread_detach(td->thread);
1848				if (ret)
1849					log_err("pthread_detach: %s",
1850							strerror(ret));
1851			} else {
1852				pid_t pid;
1853				dprint(FD_PROCESS, "will fork\n");
1854				pid = fork();
1855				if (!pid) {
1856					int ret = fork_main(shm_id, i);
1857
1858					_exit(ret);
1859				} else if (i == fio_debug_jobno)
1860					*fio_debug_jobp = pid;
1861			}
1862			dprint(FD_MUTEX, "wait on startup_mutex\n");
1863			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1864				log_err("fio: job startup hung? exiting.\n");
1865				fio_terminate_threads(TERMINATE_ALL);
1866				fio_abort = 1;
1867				nr_started--;
1868				break;
1869			}
1870			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1871		}
1872
1873		/*
1874		 * Wait for the started threads to transition to
1875		 * TD_INITIALIZED.
1876		 */
1877		fio_gettime(&this_start, NULL);
1878		left = this_jobs;
1879		while (left && !fio_abort) {
1880			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1881				break;
1882
1883			do_usleep(100000);
1884
1885			for (i = 0; i < this_jobs; i++) {
1886				td = map[i];
1887				if (!td)
1888					continue;
1889				if (td->runstate == TD_INITIALIZED) {
1890					map[i] = NULL;
1891					left--;
1892				} else if (td->runstate >= TD_EXITED) {
1893					map[i] = NULL;
1894					left--;
1895					todo--;
1896					nr_running++; /* work-around... */
1897				}
1898			}
1899		}
1900
1901		if (left) {
1902			log_err("fio: %d job%s failed to start\n", left,
1903					left > 1 ? "s" : "");
1904			for (i = 0; i < this_jobs; i++) {
1905				td = map[i];
1906				if (!td)
1907					continue;
1908				kill(td->pid, SIGTERM);
1909			}
1910			break;
1911		}
1912
1913		/*
1914		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1915		 */
1916		for_each_td(td, i) {
1917			if (td->runstate != TD_INITIALIZED)
1918				continue;
1919
1920			if (in_ramp_time(td))
1921				td_set_runstate(td, TD_RAMP);
1922			else
1923				td_set_runstate(td, TD_RUNNING);
1924			nr_running++;
1925			nr_started--;
1926			m_rate += ddir_rw_sum(td->o.ratemin);
1927			t_rate += ddir_rw_sum(td->o.rate);
1928			todo--;
1929			fio_mutex_up(td->mutex);
1930		}
1931
1932		reap_threads(&nr_running, &t_rate, &m_rate);
1933
1934		if (todo)
1935			do_usleep(100000);
1936	}
1937
1938	while (nr_running) {
1939		reap_threads(&nr_running, &t_rate, &m_rate);
1940		do_usleep(10000);
1941	}
1942
1943	fio_idle_prof_stop();
1944
1945	update_io_ticks();
1946}
1947
1948void wait_for_disk_thread_exit(void)
1949{
1950	fio_mutex_down(disk_thread_mutex);
1951}
1952
1953static void free_disk_util(void)
1954{
1955	disk_util_start_exit();
1956	wait_for_disk_thread_exit();
1957	disk_util_prune_entries();
1958}
1959
1960static void *disk_thread_main(void *data)
1961{
1962	int ret = 0;
1963
1964	fio_mutex_up(startup_mutex);
1965
1966	while (threads && !ret) {
1967		usleep(DISK_UTIL_MSEC * 1000);
1968		if (!threads)
1969			break;
1970		ret = update_io_ticks();
1971
1972		if (!is_backend)
1973			print_thread_status();
1974	}
1975
1976	fio_mutex_up(disk_thread_mutex);
1977	return NULL;
1978}
1979
1980static int create_disk_util_thread(void)
1981{
1982	int ret;
1983
1984	setup_disk_util();
1985
1986	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1987
1988	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1989	if (ret) {
1990		fio_mutex_remove(disk_thread_mutex);
1991		log_err("Can't create disk util thread: %s\n", strerror(ret));
1992		return 1;
1993	}
1994
1995	ret = pthread_detach(disk_util_thread);
1996	if (ret) {
1997		fio_mutex_remove(disk_thread_mutex);
1998		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1999		return 1;
2000	}
2001
2002	dprint(FD_MUTEX, "wait on startup_mutex\n");
2003	fio_mutex_down(startup_mutex);
2004	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2005	return 0;
2006}
2007
2008int fio_backend(void)
2009{
2010	struct thread_data *td;
2011	int i;
2012
2013	if (exec_profile) {
2014		if (load_profile(exec_profile))
2015			return 1;
2016		free(exec_profile);
2017		exec_profile = NULL;
2018	}
2019	if (!thread_number)
2020		return 0;
2021
2022	if (write_bw_log) {
2023		setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW, 0, "agg-read_bw.log");
2024		setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW, 0, "agg-write_bw.log");
2025		setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW, 0, "agg-trim_bw.log");
2026	}
2027
2028	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2029	if (startup_mutex == NULL)
2030		return 1;
2031
2032	set_genesis_time();
2033	stat_init();
2034	create_disk_util_thread();
2035
2036	cgroup_list = smalloc(sizeof(*cgroup_list));
2037	INIT_FLIST_HEAD(cgroup_list);
2038
2039	run_threads();
2040
2041	if (!fio_abort) {
2042		show_run_stats();
2043		if (write_bw_log) {
2044			int i;
2045
2046			for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2047				struct io_log *log = agg_io_log[i];
2048
2049				__finish_log(log);
2050				free_log(log);
2051			}
2052		}
2053	}
2054
2055	for_each_td(td, i)
2056		fio_options_free(td);
2057
2058	free_disk_util();
2059	cgroup_kill(cgroup_list);
2060	sfree(cgroup_list);
2061	sfree(cgroup_mnt);
2062
2063	fio_mutex_remove(startup_mutex);
2064	fio_mutex_remove(disk_thread_mutex);
2065	stat_exit();
2066	return exit_value;
2067}
2068