backend.c revision 6eaf09d6e9ca1f8accb057cdb18620b7e53ae33f
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/shm.h>
38#include <sys/mman.h>
39
40#include "fio.h"
41#include "hash.h"
42#include "smalloc.h"
43#include "verify.h"
44#include "trim.h"
45#include "diskutil.h"
46#include "cgroup.h"
47#include "profile.h"
48#include "lib/rand.h"
49#include "memalign.h"
50#include "server.h"
51
52static pthread_t disk_util_thread;
53static struct fio_mutex *disk_thread_mutex;
54static struct fio_mutex *startup_mutex;
55static struct fio_mutex *writeout_mutex;
56static struct flist_head *cgroup_list;
57static char *cgroup_mnt;
58static int exit_value;
59static volatile int fio_abort;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_process = 0;
66unsigned int nr_thread = 0;
67int shm_id = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70
71#define PAGE_ALIGN(buf)	\
72	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
73
74#define JOB_START_TIMEOUT	(5 * 1000)
75
76static void sig_int(int sig)
77{
78	if (threads) {
79		if (is_backend)
80			fio_server_got_signal(sig);
81		else {
82			log_info("\nfio: terminating on signal %d\n", sig);
83			fflush(stdout);
84			exit_value = 128;
85		}
86
87		fio_terminate_threads(TERMINATE_ALL);
88	}
89}
90
91static void sig_show_status(int sig)
92{
93	show_running_run_stats();
94}
95
96static void set_sig_handlers(void)
97{
98	struct sigaction act;
99
100	memset(&act, 0, sizeof(act));
101	act.sa_handler = sig_int;
102	act.sa_flags = SA_RESTART;
103	sigaction(SIGINT, &act, NULL);
104
105	memset(&act, 0, sizeof(act));
106	act.sa_handler = sig_int;
107	act.sa_flags = SA_RESTART;
108	sigaction(SIGTERM, &act, NULL);
109
110	memset(&act, 0, sizeof(act));
111	act.sa_handler = sig_show_status;
112	act.sa_flags = SA_RESTART;
113	sigaction(SIGUSR1, &act, NULL);
114
115	if (is_backend) {
116		memset(&act, 0, sizeof(act));
117		act.sa_handler = sig_int;
118		act.sa_flags = SA_RESTART;
119		sigaction(SIGPIPE, &act, NULL);
120	}
121}
122
123/*
124 * Check if we are above the minimum rate given.
125 */
126static int __check_min_rate(struct thread_data *td, struct timeval *now,
127			    enum fio_ddir ddir)
128{
129	unsigned long long bytes = 0;
130	unsigned long iops = 0;
131	unsigned long spent;
132	unsigned long rate;
133	unsigned int ratemin = 0;
134	unsigned int rate_iops = 0;
135	unsigned int rate_iops_min = 0;
136
137	assert(ddir_rw(ddir));
138
139	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
140		return 0;
141
142	/*
143	 * allow a 2 second settle period in the beginning
144	 */
145	if (mtime_since(&td->start, now) < 2000)
146		return 0;
147
148	iops += td->this_io_blocks[ddir];
149	bytes += td->this_io_bytes[ddir];
150	ratemin += td->o.ratemin[ddir];
151	rate_iops += td->o.rate_iops[ddir];
152	rate_iops_min += td->o.rate_iops_min[ddir];
153
154	/*
155	 * if rate blocks is set, sample is running
156	 */
157	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
158		spent = mtime_since(&td->lastrate[ddir], now);
159		if (spent < td->o.ratecycle)
160			return 0;
161
162		if (td->o.rate[ddir]) {
163			/*
164			 * check bandwidth specified rate
165			 */
166			if (bytes < td->rate_bytes[ddir]) {
167				log_err("%s: min rate %u not met\n", td->o.name,
168								ratemin);
169				return 1;
170			} else {
171				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
172				if (rate < ratemin ||
173				    bytes < td->rate_bytes[ddir]) {
174					log_err("%s: min rate %u not met, got"
175						" %luKB/sec\n", td->o.name,
176							ratemin, rate);
177					return 1;
178				}
179			}
180		} else {
181			/*
182			 * checks iops specified rate
183			 */
184			if (iops < rate_iops) {
185				log_err("%s: min iops rate %u not met\n",
186						td->o.name, rate_iops);
187				return 1;
188			} else {
189				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
190				if (rate < rate_iops_min ||
191				    iops < td->rate_blocks[ddir]) {
192					log_err("%s: min iops rate %u not met,"
193						" got %lu\n", td->o.name,
194							rate_iops_min, rate);
195				}
196			}
197		}
198	}
199
200	td->rate_bytes[ddir] = bytes;
201	td->rate_blocks[ddir] = iops;
202	memcpy(&td->lastrate[ddir], now, sizeof(*now));
203	return 0;
204}
205
206static int check_min_rate(struct thread_data *td, struct timeval *now,
207			  unsigned long *bytes_done)
208{
209	int ret = 0;
210
211	if (bytes_done[DDIR_READ])
212		ret |= __check_min_rate(td, now, DDIR_READ);
213	if (bytes_done[DDIR_WRITE])
214		ret |= __check_min_rate(td, now, DDIR_WRITE);
215	if (bytes_done[DDIR_TRIM])
216		ret |= __check_min_rate(td, now, DDIR_TRIM);
217
218	return ret;
219}
220
221/*
222 * When job exits, we can cancel the in-flight IO if we are using async
223 * io. Attempt to do so.
224 */
225static void cleanup_pending_aio(struct thread_data *td)
226{
227	struct flist_head *entry, *n;
228	struct io_u *io_u;
229	int r;
230
231	/*
232	 * get immediately available events, if any
233	 */
234	r = io_u_queued_complete(td, 0, NULL);
235	if (r < 0)
236		return;
237
238	/*
239	 * now cancel remaining active events
240	 */
241	if (td->io_ops->cancel) {
242		flist_for_each_safe(entry, n, &td->io_u_busylist) {
243			io_u = flist_entry(entry, struct io_u, list);
244
245			/*
246			 * if the io_u isn't in flight, then that generally
247			 * means someone leaked an io_u. complain but fix
248			 * it up, so we don't stall here.
249			 */
250			if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
251				log_err("fio: non-busy IO on busy list\n");
252				put_io_u(td, io_u);
253			} else {
254				r = td->io_ops->cancel(td, io_u);
255				if (!r)
256					put_io_u(td, io_u);
257			}
258		}
259	}
260
261	if (td->cur_depth)
262		r = io_u_queued_complete(td, td->cur_depth, NULL);
263}
264
265/*
266 * Helper to handle the final sync of a file. Works just like the normal
267 * io path, just does everything sync.
268 */
269static int fio_io_sync(struct thread_data *td, struct fio_file *f)
270{
271	struct io_u *io_u = __get_io_u(td);
272	int ret;
273
274	if (!io_u)
275		return 1;
276
277	io_u->ddir = DDIR_SYNC;
278	io_u->file = f;
279
280	if (td_io_prep(td, io_u)) {
281		put_io_u(td, io_u);
282		return 1;
283	}
284
285requeue:
286	ret = td_io_queue(td, io_u);
287	if (ret < 0) {
288		td_verror(td, io_u->error, "td_io_queue");
289		put_io_u(td, io_u);
290		return 1;
291	} else if (ret == FIO_Q_QUEUED) {
292		if (io_u_queued_complete(td, 1, NULL) < 0)
293			return 1;
294	} else if (ret == FIO_Q_COMPLETED) {
295		if (io_u->error) {
296			td_verror(td, io_u->error, "td_io_queue");
297			return 1;
298		}
299
300		if (io_u_sync_complete(td, io_u, NULL) < 0)
301			return 1;
302	} else if (ret == FIO_Q_BUSY) {
303		if (td_io_commit(td))
304			return 1;
305		goto requeue;
306	}
307
308	return 0;
309}
310
311static inline void __update_tv_cache(struct thread_data *td)
312{
313	fio_gettime(&td->tv_cache, NULL);
314}
315
316static inline void update_tv_cache(struct thread_data *td)
317{
318	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
319		__update_tv_cache(td);
320}
321
322static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
323{
324	if (in_ramp_time(td))
325		return 0;
326	if (!td->o.timeout)
327		return 0;
328	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
329		return 1;
330
331	return 0;
332}
333
334static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
335			       int *retptr)
336{
337	int ret = *retptr;
338
339	if (ret < 0 || td->error) {
340		int err;
341
342		if (ret < 0)
343			err = -ret;
344		else
345			err = td->error;
346
347		if (!(td->o.continue_on_error & td_error_type(ddir, err)))
348			return 1;
349
350		if (td_non_fatal_error(err)) {
351		        /*
352		         * Continue with the I/Os in case of
353			 * a non fatal error.
354			 */
355			update_error_count(td, err);
356			td_clear_error(td);
357			*retptr = 0;
358			return 0;
359		} else if (td->o.fill_device && err == ENOSPC) {
360			/*
361			 * We expect to hit this error if
362			 * fill_device option is set.
363			 */
364			td_clear_error(td);
365			td->terminate = 1;
366			return 1;
367		} else {
368			/*
369			 * Stop the I/O in case of a fatal
370			 * error.
371			 */
372			update_error_count(td, err);
373			return 1;
374		}
375	}
376
377	return 0;
378}
379
380/*
381 * The main verify engine. Runs over the writes we previously submitted,
382 * reads the blocks back in, and checks the crc/md5 of the data.
383 */
384static void do_verify(struct thread_data *td)
385{
386	struct fio_file *f;
387	struct io_u *io_u;
388	int ret, min_events;
389	unsigned int i;
390
391	dprint(FD_VERIFY, "starting loop\n");
392
393	/*
394	 * sync io first and invalidate cache, to make sure we really
395	 * read from disk.
396	 */
397	for_each_file(td, f, i) {
398		if (!fio_file_open(f))
399			continue;
400		if (fio_io_sync(td, f))
401			break;
402		if (file_invalidate_cache(td, f))
403			break;
404	}
405
406	if (td->error)
407		return;
408
409	td_set_runstate(td, TD_VERIFYING);
410
411	io_u = NULL;
412	while (!td->terminate) {
413		int ret2, full;
414
415		update_tv_cache(td);
416
417		if (runtime_exceeded(td, &td->tv_cache)) {
418			__update_tv_cache(td);
419			if (runtime_exceeded(td, &td->tv_cache)) {
420				td->terminate = 1;
421				break;
422			}
423		}
424
425		if (flow_threshold_exceeded(td))
426			continue;
427
428		io_u = __get_io_u(td);
429		if (!io_u)
430			break;
431
432		if (get_next_verify(td, io_u)) {
433			put_io_u(td, io_u);
434			break;
435		}
436
437		if (td_io_prep(td, io_u)) {
438			put_io_u(td, io_u);
439			break;
440		}
441
442		if (td->o.verify_async)
443			io_u->end_io = verify_io_u_async;
444		else
445			io_u->end_io = verify_io_u;
446
447		ret = td_io_queue(td, io_u);
448		switch (ret) {
449		case FIO_Q_COMPLETED:
450			if (io_u->error) {
451				ret = -io_u->error;
452				clear_io_u(td, io_u);
453			} else if (io_u->resid) {
454				int bytes = io_u->xfer_buflen - io_u->resid;
455
456				/*
457				 * zero read, fail
458				 */
459				if (!bytes) {
460					td_verror(td, EIO, "full resid");
461					put_io_u(td, io_u);
462					break;
463				}
464
465				io_u->xfer_buflen = io_u->resid;
466				io_u->xfer_buf += bytes;
467				io_u->offset += bytes;
468
469				if (ddir_rw(io_u->ddir))
470					td->ts.short_io_u[io_u->ddir]++;
471
472				f = io_u->file;
473				if (io_u->offset == f->real_file_size)
474					goto sync_done;
475
476				requeue_io_u(td, &io_u);
477			} else {
478sync_done:
479				ret = io_u_sync_complete(td, io_u, NULL);
480				if (ret < 0)
481					break;
482			}
483			continue;
484		case FIO_Q_QUEUED:
485			break;
486		case FIO_Q_BUSY:
487			requeue_io_u(td, &io_u);
488			ret2 = td_io_commit(td);
489			if (ret2 < 0)
490				ret = ret2;
491			break;
492		default:
493			assert(ret < 0);
494			td_verror(td, -ret, "td_io_queue");
495			break;
496		}
497
498		if (break_on_this_error(td, io_u->ddir, &ret))
499			break;
500
501		/*
502		 * if we can queue more, do so. but check if there are
503		 * completed io_u's first. Note that we can get BUSY even
504		 * without IO queued, if the system is resource starved.
505		 */
506		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
507		if (full || !td->o.iodepth_batch_complete) {
508			min_events = min(td->o.iodepth_batch_complete,
509					 td->cur_depth);
510			/*
511			 * if the queue is full, we MUST reap at least 1 event
512			 */
513			if (full && !min_events)
514				min_events = 1;
515
516			do {
517				/*
518				 * Reap required number of io units, if any,
519				 * and do the verification on them through
520				 * the callback handler
521				 */
522				if (io_u_queued_complete(td, min_events, NULL) < 0) {
523					ret = -1;
524					break;
525				}
526			} while (full && (td->cur_depth > td->o.iodepth_low));
527		}
528		if (ret < 0)
529			break;
530	}
531
532	if (!td->error) {
533		min_events = td->cur_depth;
534
535		if (min_events)
536			ret = io_u_queued_complete(td, min_events, NULL);
537	} else
538		cleanup_pending_aio(td);
539
540	td_set_runstate(td, TD_RUNNING);
541
542	dprint(FD_VERIFY, "exiting loop\n");
543}
544
545static int io_bytes_exceeded(struct thread_data *td)
546{
547	unsigned long long bytes;
548
549	if (td_rw(td))
550		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
551	else if (td_write(td))
552		bytes = td->this_io_bytes[DDIR_WRITE];
553	else if (td_read(td))
554		bytes = td->this_io_bytes[DDIR_READ];
555	else
556		bytes = td->this_io_bytes[DDIR_TRIM];
557
558	return bytes >= td->o.size;
559}
560
561/*
562 * Main IO worker function. It retrieves io_u's to process and queues
563 * and reaps them, checking for rate and errors along the way.
564 */
565static void do_io(struct thread_data *td)
566{
567	unsigned int i;
568	int ret = 0;
569
570	if (in_ramp_time(td))
571		td_set_runstate(td, TD_RAMP);
572	else
573		td_set_runstate(td, TD_RUNNING);
574
575	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
576		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
577		td->o.time_based) {
578		struct timeval comp_time;
579		unsigned long bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
580		int min_evts = 0;
581		struct io_u *io_u;
582		int ret2, full;
583		enum fio_ddir ddir;
584
585		if (td->terminate)
586			break;
587
588		update_tv_cache(td);
589
590		if (runtime_exceeded(td, &td->tv_cache)) {
591			__update_tv_cache(td);
592			if (runtime_exceeded(td, &td->tv_cache)) {
593				td->terminate = 1;
594				break;
595			}
596		}
597
598		if (flow_threshold_exceeded(td))
599			continue;
600
601		io_u = get_io_u(td);
602		if (!io_u)
603			break;
604
605		ddir = io_u->ddir;
606
607		/*
608		 * Add verification end_io handler if:
609		 *	- Asked to verify (!td_rw(td))
610		 *	- Or the io_u is from our verify list (mixed write/ver)
611		 */
612		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
613		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
614			if (td->o.verify_async)
615				io_u->end_io = verify_io_u_async;
616			else
617				io_u->end_io = verify_io_u;
618			td_set_runstate(td, TD_VERIFYING);
619		} else if (in_ramp_time(td))
620			td_set_runstate(td, TD_RAMP);
621		else
622			td_set_runstate(td, TD_RUNNING);
623
624		ret = td_io_queue(td, io_u);
625		switch (ret) {
626		case FIO_Q_COMPLETED:
627			if (io_u->error) {
628				ret = -io_u->error;
629				clear_io_u(td, io_u);
630			} else if (io_u->resid) {
631				int bytes = io_u->xfer_buflen - io_u->resid;
632				struct fio_file *f = io_u->file;
633
634				/*
635				 * zero read, fail
636				 */
637				if (!bytes) {
638					td_verror(td, EIO, "full resid");
639					put_io_u(td, io_u);
640					break;
641				}
642
643				io_u->xfer_buflen = io_u->resid;
644				io_u->xfer_buf += bytes;
645				io_u->offset += bytes;
646
647				if (ddir_rw(io_u->ddir))
648					td->ts.short_io_u[io_u->ddir]++;
649
650				if (io_u->offset == f->real_file_size)
651					goto sync_done;
652
653				requeue_io_u(td, &io_u);
654			} else {
655sync_done:
656				if (__should_check_rate(td, DDIR_READ) ||
657				    __should_check_rate(td, DDIR_WRITE) ||
658				    __should_check_rate(td, DDIR_TRIM))
659					fio_gettime(&comp_time, NULL);
660
661				ret = io_u_sync_complete(td, io_u, bytes_done);
662				if (ret < 0)
663					break;
664			}
665			break;
666		case FIO_Q_QUEUED:
667			/*
668			 * if the engine doesn't have a commit hook,
669			 * the io_u is really queued. if it does have such
670			 * a hook, it has to call io_u_queued() itself.
671			 */
672			if (td->io_ops->commit == NULL)
673				io_u_queued(td, io_u);
674			break;
675		case FIO_Q_BUSY:
676			requeue_io_u(td, &io_u);
677			ret2 = td_io_commit(td);
678			if (ret2 < 0)
679				ret = ret2;
680			break;
681		default:
682			assert(ret < 0);
683			put_io_u(td, io_u);
684			break;
685		}
686
687		if (break_on_this_error(td, ddir, &ret))
688			break;
689
690		/*
691		 * See if we need to complete some commands. Note that we
692		 * can get BUSY even without IO queued, if the system is
693		 * resource starved.
694		 */
695		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
696		if (full || !td->o.iodepth_batch_complete) {
697			min_evts = min(td->o.iodepth_batch_complete,
698					td->cur_depth);
699			/*
700			 * if the queue is full, we MUST reap at least 1 event
701			 */
702			if (full && !min_evts)
703				min_evts = 1;
704
705			if (__should_check_rate(td, DDIR_READ) ||
706			    __should_check_rate(td, DDIR_WRITE) ||
707			    __should_check_rate(td, DDIR_TRIM))
708				fio_gettime(&comp_time, NULL);
709
710			do {
711				ret = io_u_queued_complete(td, min_evts, bytes_done);
712				if (ret < 0)
713					break;
714
715			} while (full && (td->cur_depth > td->o.iodepth_low));
716		}
717
718		if (ret < 0)
719			break;
720		if (!(bytes_done[DDIR_READ] + bytes_done[DDIR_WRITE]
721				+ bytes_done[DDIR_TRIM]))
722			continue;
723
724		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
725			if (check_min_rate(td, &comp_time, bytes_done)) {
726				if (exitall_on_terminate)
727					fio_terminate_threads(td->groupid);
728				td_verror(td, EIO, "check_min_rate");
729				break;
730			}
731		}
732
733		if (td->o.thinktime) {
734			unsigned long long b;
735
736			b = td->io_blocks[DDIR_READ] + td->io_blocks[DDIR_WRITE] +
737				td->io_blocks[DDIR_TRIM];
738			if (!(b % td->o.thinktime_blocks)) {
739				int left;
740
741				if (td->o.thinktime_spin)
742					usec_spin(td->o.thinktime_spin);
743
744				left = td->o.thinktime - td->o.thinktime_spin;
745				if (left)
746					usec_sleep(td, left);
747			}
748		}
749	}
750
751	if (td->trim_entries)
752		log_err("fio: %d trim entries leaked?\n", td->trim_entries);
753
754	if (td->o.fill_device && td->error == ENOSPC) {
755		td->error = 0;
756		td->terminate = 1;
757	}
758	if (!td->error) {
759		struct fio_file *f;
760
761		i = td->cur_depth;
762		if (i) {
763			ret = io_u_queued_complete(td, i, NULL);
764			if (td->o.fill_device && td->error == ENOSPC)
765				td->error = 0;
766		}
767
768		if (should_fsync(td) && td->o.end_fsync) {
769			td_set_runstate(td, TD_FSYNCING);
770
771			for_each_file(td, f, i) {
772				if (!fio_file_open(f))
773					continue;
774				fio_io_sync(td, f);
775			}
776		}
777	} else
778		cleanup_pending_aio(td);
779
780	/*
781	 * stop job if we failed doing any IO
782	 */
783	if ((td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE] +
784			td->this_io_bytes[DDIR_TRIM]) == 0)
785		td->done = 1;
786}
787
788static void cleanup_io_u(struct thread_data *td)
789{
790	struct flist_head *entry, *n;
791	struct io_u *io_u;
792
793	flist_for_each_safe(entry, n, &td->io_u_freelist) {
794		io_u = flist_entry(entry, struct io_u, list);
795
796		flist_del(&io_u->list);
797		fio_memfree(io_u, sizeof(*io_u));
798	}
799
800	free_io_mem(td);
801}
802
803static int init_io_u(struct thread_data *td)
804{
805	struct io_u *io_u;
806	unsigned int max_bs, min_write;
807	int cl_align, i, max_units;
808	char *p;
809
810	max_units = td->o.iodepth;
811	max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
812	max_bs = max(td->o.max_bs[DDIR_TRIM], max_bs);
813	min_write = td->o.min_bs[DDIR_WRITE];
814	td->orig_buffer_size = (unsigned long long) max_bs
815					* (unsigned long long) max_units;
816
817	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
818		unsigned long bs;
819
820		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
821		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
822	}
823
824	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
825		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
826		return 1;
827	}
828
829	if (allocate_io_mem(td))
830		return 1;
831
832	if (td->o.odirect || td->o.mem_align ||
833	    (td->io_ops->flags & FIO_RAWIO))
834		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
835	else
836		p = td->orig_buffer;
837
838	cl_align = os_cache_line_size();
839
840	for (i = 0; i < max_units; i++) {
841		void *ptr;
842
843		if (td->terminate)
844			return 1;
845
846		ptr = fio_memalign(cl_align, sizeof(*io_u));
847		if (!ptr) {
848			log_err("fio: unable to allocate aligned memory\n");
849			break;
850		}
851
852		io_u = ptr;
853		memset(io_u, 0, sizeof(*io_u));
854		INIT_FLIST_HEAD(&io_u->list);
855		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
856
857		if (!(td->io_ops->flags & FIO_NOIO)) {
858			io_u->buf = p;
859			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
860
861			if (td_write(td))
862				io_u_fill_buffer(td, io_u, min_write, max_bs);
863			if (td_write(td) && td->o.verify_pattern_bytes) {
864				/*
865				 * Fill the buffer with the pattern if we are
866				 * going to be doing writes.
867				 */
868				fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
869			}
870		}
871
872		io_u->index = i;
873		io_u->flags = IO_U_F_FREE;
874		flist_add(&io_u->list, &td->io_u_freelist);
875		p += max_bs;
876	}
877
878	return 0;
879}
880
881static int switch_ioscheduler(struct thread_data *td)
882{
883	char tmp[256], tmp2[128];
884	FILE *f;
885	int ret;
886
887	if (td->io_ops->flags & FIO_DISKLESSIO)
888		return 0;
889
890	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
891
892	f = fopen(tmp, "r+");
893	if (!f) {
894		if (errno == ENOENT) {
895			log_err("fio: os or kernel doesn't support IO scheduler"
896				" switching\n");
897			return 0;
898		}
899		td_verror(td, errno, "fopen iosched");
900		return 1;
901	}
902
903	/*
904	 * Set io scheduler.
905	 */
906	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
907	if (ferror(f) || ret != 1) {
908		td_verror(td, errno, "fwrite");
909		fclose(f);
910		return 1;
911	}
912
913	rewind(f);
914
915	/*
916	 * Read back and check that the selected scheduler is now the default.
917	 */
918	ret = fread(tmp, 1, sizeof(tmp), f);
919	if (ferror(f) || ret < 0) {
920		td_verror(td, errno, "fread");
921		fclose(f);
922		return 1;
923	}
924
925	sprintf(tmp2, "[%s]", td->o.ioscheduler);
926	if (!strstr(tmp, tmp2)) {
927		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
928		td_verror(td, EINVAL, "iosched_switch");
929		fclose(f);
930		return 1;
931	}
932
933	fclose(f);
934	return 0;
935}
936
937static int keep_running(struct thread_data *td)
938{
939	unsigned long long io_done;
940
941	if (td->done)
942		return 0;
943	if (td->o.time_based)
944		return 1;
945	if (td->o.loops) {
946		td->o.loops--;
947		return 1;
948	}
949
950	io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE] +
951			td->io_bytes[DDIR_TRIM] + td->io_skip_bytes;
952	if (io_done < td->o.size)
953		return 1;
954
955	return 0;
956}
957
958static int exec_string(const char *string)
959{
960	int ret, newlen = strlen(string) + 1 + 8;
961	char *str;
962
963	str = malloc(newlen);
964	sprintf(str, "sh -c %s", string);
965
966	ret = system(str);
967	if (ret == -1)
968		log_err("fio: exec of cmd <%s> failed\n", str);
969
970	free(str);
971	return ret;
972}
973
974/*
975 * Entry point for the thread based jobs. The process based jobs end up
976 * here as well, after a little setup.
977 */
978static void *thread_main(void *data)
979{
980	unsigned long long elapsed;
981	struct thread_data *td = data;
982	pthread_condattr_t attr;
983	int clear_state;
984
985	if (!td->o.use_thread) {
986		setsid();
987		td->pid = getpid();
988	} else
989		td->pid = gettid();
990
991	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
992
993	INIT_FLIST_HEAD(&td->io_u_freelist);
994	INIT_FLIST_HEAD(&td->io_u_busylist);
995	INIT_FLIST_HEAD(&td->io_u_requeues);
996	INIT_FLIST_HEAD(&td->io_log_list);
997	INIT_FLIST_HEAD(&td->io_hist_list);
998	INIT_FLIST_HEAD(&td->verify_list);
999	INIT_FLIST_HEAD(&td->trim_list);
1000	pthread_mutex_init(&td->io_u_lock, NULL);
1001	td->io_hist_tree = RB_ROOT;
1002
1003	pthread_condattr_init(&attr);
1004	pthread_cond_init(&td->verify_cond, &attr);
1005	pthread_cond_init(&td->free_cond, &attr);
1006
1007	td_set_runstate(td, TD_INITIALIZED);
1008	dprint(FD_MUTEX, "up startup_mutex\n");
1009	fio_mutex_up(startup_mutex);
1010	dprint(FD_MUTEX, "wait on td->mutex\n");
1011	fio_mutex_down(td->mutex);
1012	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1013
1014	/*
1015	 * the ->mutex mutex is now no longer used, close it to avoid
1016	 * eating a file descriptor
1017	 */
1018	fio_mutex_remove(td->mutex);
1019
1020	/*
1021	 * A new gid requires privilege, so we need to do this before setting
1022	 * the uid.
1023	 */
1024	if (td->o.gid != -1U && setgid(td->o.gid)) {
1025		td_verror(td, errno, "setgid");
1026		goto err;
1027	}
1028	if (td->o.uid != -1U && setuid(td->o.uid)) {
1029		td_verror(td, errno, "setuid");
1030		goto err;
1031	}
1032
1033	/*
1034	 * If we have a gettimeofday() thread, make sure we exclude that
1035	 * thread from this job
1036	 */
1037	if (td->o.gtod_cpu)
1038		fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1039
1040	/*
1041	 * Set affinity first, in case it has an impact on the memory
1042	 * allocations.
1043	 */
1044	if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1045		td_verror(td, errno, "cpu_set_affinity");
1046		goto err;
1047	}
1048
1049	/*
1050	 * May alter parameters that init_io_u() will use, so we need to
1051	 * do this first.
1052	 */
1053	if (init_iolog(td))
1054		goto err;
1055
1056	if (init_io_u(td))
1057		goto err;
1058
1059	if (td->o.verify_async && verify_async_init(td))
1060		goto err;
1061
1062	if (td->ioprio_set) {
1063		if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1064			td_verror(td, errno, "ioprio_set");
1065			goto err;
1066		}
1067	}
1068
1069	if (td->o.cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1070		goto err;
1071
1072	errno = 0;
1073	if (nice(td->o.nice) == -1 && errno != 0) {
1074		td_verror(td, errno, "nice");
1075		goto err;
1076	}
1077
1078	if (td->o.ioscheduler && switch_ioscheduler(td))
1079		goto err;
1080
1081	if (!td->o.create_serialize && setup_files(td))
1082		goto err;
1083
1084	if (td_io_init(td))
1085		goto err;
1086
1087	if (init_random_map(td))
1088		goto err;
1089
1090	if (td->o.exec_prerun) {
1091		if (exec_string(td->o.exec_prerun))
1092			goto err;
1093	}
1094
1095	if (td->o.pre_read) {
1096		if (pre_read_files(td) < 0)
1097			goto err;
1098	}
1099
1100	fio_gettime(&td->epoch, NULL);
1101	getrusage(RUSAGE_SELF, &td->ru_start);
1102
1103	clear_state = 0;
1104	while (keep_running(td)) {
1105		fio_gettime(&td->start, NULL);
1106		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1107		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1108		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1109
1110		if (td->o.ratemin[DDIR_READ] || td->o.ratemin[DDIR_WRITE] ||
1111				td->o.ratemin[DDIR_TRIM]) {
1112		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1113						sizeof(td->bw_sample_time));
1114		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1115						sizeof(td->bw_sample_time));
1116		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1117						sizeof(td->bw_sample_time));
1118		}
1119
1120		if (clear_state)
1121			clear_io_state(td);
1122
1123		prune_io_piece_log(td);
1124
1125		do_io(td);
1126
1127		clear_state = 1;
1128
1129		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1130			elapsed = utime_since_now(&td->start);
1131			td->ts.runtime[DDIR_READ] += elapsed;
1132		}
1133		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1134			elapsed = utime_since_now(&td->start);
1135			td->ts.runtime[DDIR_WRITE] += elapsed;
1136		}
1137		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1138			elapsed = utime_since_now(&td->start);
1139			td->ts.runtime[DDIR_TRIM] += elapsed;
1140		}
1141
1142		if (td->error || td->terminate)
1143			break;
1144
1145		if (!td->o.do_verify ||
1146		    td->o.verify == VERIFY_NONE ||
1147		    (td->io_ops->flags & FIO_UNIDIR))
1148			continue;
1149
1150		clear_io_state(td);
1151
1152		fio_gettime(&td->start, NULL);
1153
1154		do_verify(td);
1155
1156		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1157
1158		if (td->error || td->terminate)
1159			break;
1160	}
1161
1162	update_rusage_stat(td);
1163	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1164	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1165	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1166	td->ts.total_run_time = mtime_since_now(&td->epoch);
1167	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1168	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1169	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1170
1171	fio_mutex_down(writeout_mutex);
1172	if (td->bw_log) {
1173		if (td->o.bw_log_file) {
1174			finish_log_named(td, td->bw_log,
1175						td->o.bw_log_file, "bw");
1176		} else
1177			finish_log(td, td->bw_log, "bw");
1178	}
1179	if (td->lat_log) {
1180		if (td->o.lat_log_file) {
1181			finish_log_named(td, td->lat_log,
1182						td->o.lat_log_file, "lat");
1183		} else
1184			finish_log(td, td->lat_log, "lat");
1185	}
1186	if (td->slat_log) {
1187		if (td->o.lat_log_file) {
1188			finish_log_named(td, td->slat_log,
1189						td->o.lat_log_file, "slat");
1190		} else
1191			finish_log(td, td->slat_log, "slat");
1192	}
1193	if (td->clat_log) {
1194		if (td->o.lat_log_file) {
1195			finish_log_named(td, td->clat_log,
1196						td->o.lat_log_file, "clat");
1197		} else
1198			finish_log(td, td->clat_log, "clat");
1199	}
1200	if (td->iops_log) {
1201		if (td->o.iops_log_file) {
1202			finish_log_named(td, td->iops_log,
1203						td->o.iops_log_file, "iops");
1204		} else
1205			finish_log(td, td->iops_log, "iops");
1206	}
1207
1208	fio_mutex_up(writeout_mutex);
1209	if (td->o.exec_postrun)
1210		exec_string(td->o.exec_postrun);
1211
1212	if (exitall_on_terminate)
1213		fio_terminate_threads(td->groupid);
1214
1215err:
1216	if (td->error)
1217		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1218							td->verror);
1219
1220	if (td->o.verify_async)
1221		verify_async_exit(td);
1222
1223	close_and_free_files(td);
1224	close_ioengine(td);
1225	cleanup_io_u(td);
1226	cgroup_shutdown(td, &cgroup_mnt);
1227
1228	if (td->o.cpumask_set) {
1229		int ret = fio_cpuset_exit(&td->o.cpumask);
1230
1231		td_verror(td, ret, "fio_cpuset_exit");
1232	}
1233
1234	/*
1235	 * do this very late, it will log file closing as well
1236	 */
1237	if (td->o.write_iolog_file)
1238		write_iolog_close(td);
1239
1240	td_set_runstate(td, TD_EXITED);
1241	return (void *) (uintptr_t) td->error;
1242}
1243
1244
1245/*
1246 * We cannot pass the td data into a forked process, so attach the td and
1247 * pass it to the thread worker.
1248 */
1249static int fork_main(int shmid, int offset)
1250{
1251	struct thread_data *td;
1252	void *data, *ret;
1253
1254#ifndef __hpux
1255	data = shmat(shmid, NULL, 0);
1256	if (data == (void *) -1) {
1257		int __err = errno;
1258
1259		perror("shmat");
1260		return __err;
1261	}
1262#else
1263	/*
1264	 * HP-UX inherits shm mappings?
1265	 */
1266	data = threads;
1267#endif
1268
1269	td = data + offset * sizeof(struct thread_data);
1270	ret = thread_main(td);
1271	shmdt(data);
1272	return (int) (uintptr_t) ret;
1273}
1274
1275/*
1276 * Run over the job map and reap the threads that have exited, if any.
1277 */
1278static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1279			 unsigned int *m_rate)
1280{
1281	struct thread_data *td;
1282	unsigned int cputhreads, realthreads, pending;
1283	int i, status, ret;
1284
1285	/*
1286	 * reap exited threads (TD_EXITED -> TD_REAPED)
1287	 */
1288	realthreads = pending = cputhreads = 0;
1289	for_each_td(td, i) {
1290		int flags = 0;
1291
1292		/*
1293		 * ->io_ops is NULL for a thread that has closed its
1294		 * io engine
1295		 */
1296		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1297			cputhreads++;
1298		else
1299			realthreads++;
1300
1301		if (!td->pid) {
1302			pending++;
1303			continue;
1304		}
1305		if (td->runstate == TD_REAPED)
1306			continue;
1307		if (td->o.use_thread) {
1308			if (td->runstate == TD_EXITED) {
1309				td_set_runstate(td, TD_REAPED);
1310				goto reaped;
1311			}
1312			continue;
1313		}
1314
1315		flags = WNOHANG;
1316		if (td->runstate == TD_EXITED)
1317			flags = 0;
1318
1319		/*
1320		 * check if someone quit or got killed in an unusual way
1321		 */
1322		ret = waitpid(td->pid, &status, flags);
1323		if (ret < 0) {
1324			if (errno == ECHILD) {
1325				log_err("fio: pid=%d disappeared %d\n",
1326						(int) td->pid, td->runstate);
1327				td->sig = ECHILD;
1328				td_set_runstate(td, TD_REAPED);
1329				goto reaped;
1330			}
1331			perror("waitpid");
1332		} else if (ret == td->pid) {
1333			if (WIFSIGNALED(status)) {
1334				int sig = WTERMSIG(status);
1335
1336				if (sig != SIGTERM)
1337					log_err("fio: pid=%d, got signal=%d\n",
1338							(int) td->pid, sig);
1339				td->sig = sig;
1340				td_set_runstate(td, TD_REAPED);
1341				goto reaped;
1342			}
1343			if (WIFEXITED(status)) {
1344				if (WEXITSTATUS(status) && !td->error)
1345					td->error = WEXITSTATUS(status);
1346
1347				td_set_runstate(td, TD_REAPED);
1348				goto reaped;
1349			}
1350		}
1351
1352		/*
1353		 * thread is not dead, continue
1354		 */
1355		pending++;
1356		continue;
1357reaped:
1358		(*nr_running)--;
1359		(*m_rate) -= (td->o.ratemin[DDIR_READ] + td->o.ratemin[DDIR_WRITE] +
1360			td->o.ratemin[DDIR_TRIM]);
1361		(*t_rate) -= (td->o.rate[DDIR_READ] + td->o.rate[DDIR_WRITE] +
1362			td->o.rate[DDIR_TRIM]);
1363		if (!td->pid)
1364			pending--;
1365
1366		if (td->error)
1367			exit_value++;
1368
1369		done_secs += mtime_since_now(&td->epoch) / 1000;
1370	}
1371
1372	if (*nr_running == cputhreads && !pending && realthreads)
1373		fio_terminate_threads(TERMINATE_ALL);
1374}
1375
1376/*
1377 * Main function for kicking off and reaping jobs, as needed.
1378 */
1379static void run_threads(void)
1380{
1381	struct thread_data *td;
1382	unsigned long spent;
1383	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1384
1385	if (fio_pin_memory())
1386		return;
1387
1388	if (fio_gtod_offload && fio_start_gtod_thread())
1389		return;
1390
1391	set_sig_handlers();
1392
1393	if (!terse_output) {
1394		log_info("Starting ");
1395		if (nr_thread)
1396			log_info("%d thread%s", nr_thread,
1397						nr_thread > 1 ? "s" : "");
1398		if (nr_process) {
1399			if (nr_thread)
1400				log_info(" and ");
1401			log_info("%d process%s", nr_process,
1402						nr_process > 1 ? "es" : "");
1403		}
1404		log_info("\n");
1405		fflush(stdout);
1406	}
1407
1408	todo = thread_number;
1409	nr_running = 0;
1410	nr_started = 0;
1411	m_rate = t_rate = 0;
1412
1413	for_each_td(td, i) {
1414		print_status_init(td->thread_number - 1);
1415
1416		if (!td->o.create_serialize)
1417			continue;
1418
1419		/*
1420		 * do file setup here so it happens sequentially,
1421		 * we don't want X number of threads getting their
1422		 * client data interspersed on disk
1423		 */
1424		if (setup_files(td)) {
1425			exit_value++;
1426			if (td->error)
1427				log_err("fio: pid=%d, err=%d/%s\n",
1428					(int) td->pid, td->error, td->verror);
1429			td_set_runstate(td, TD_REAPED);
1430			todo--;
1431		} else {
1432			struct fio_file *f;
1433			unsigned int j;
1434
1435			/*
1436			 * for sharing to work, each job must always open
1437			 * its own files. so close them, if we opened them
1438			 * for creation
1439			 */
1440			for_each_file(td, f, j) {
1441				if (fio_file_open(f))
1442					td_io_close_file(td, f);
1443			}
1444		}
1445	}
1446
1447	set_genesis_time();
1448
1449	while (todo) {
1450		struct thread_data *map[REAL_MAX_JOBS];
1451		struct timeval this_start;
1452		int this_jobs = 0, left;
1453
1454		/*
1455		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1456		 */
1457		for_each_td(td, i) {
1458			if (td->runstate != TD_NOT_CREATED)
1459				continue;
1460
1461			/*
1462			 * never got a chance to start, killed by other
1463			 * thread for some reason
1464			 */
1465			if (td->terminate) {
1466				todo--;
1467				continue;
1468			}
1469
1470			if (td->o.start_delay) {
1471				spent = mtime_since_genesis();
1472
1473				if (td->o.start_delay * 1000 > spent)
1474					continue;
1475			}
1476
1477			if (td->o.stonewall && (nr_started || nr_running)) {
1478				dprint(FD_PROCESS, "%s: stonewall wait\n",
1479							td->o.name);
1480				break;
1481			}
1482
1483			init_disk_util(td);
1484
1485			/*
1486			 * Set state to created. Thread will transition
1487			 * to TD_INITIALIZED when it's done setting up.
1488			 */
1489			td_set_runstate(td, TD_CREATED);
1490			map[this_jobs++] = td;
1491			nr_started++;
1492
1493			if (td->o.use_thread) {
1494				int ret;
1495
1496				dprint(FD_PROCESS, "will pthread_create\n");
1497				ret = pthread_create(&td->thread, NULL,
1498							thread_main, td);
1499				if (ret) {
1500					log_err("pthread_create: %s\n",
1501							strerror(ret));
1502					nr_started--;
1503					break;
1504				}
1505				ret = pthread_detach(td->thread);
1506				if (ret)
1507					log_err("pthread_detach: %s",
1508							strerror(ret));
1509			} else {
1510				pid_t pid;
1511				dprint(FD_PROCESS, "will fork\n");
1512				pid = fork();
1513				if (!pid) {
1514					int ret = fork_main(shm_id, i);
1515
1516					_exit(ret);
1517				} else if (i == fio_debug_jobno)
1518					*fio_debug_jobp = pid;
1519			}
1520			dprint(FD_MUTEX, "wait on startup_mutex\n");
1521			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1522				log_err("fio: job startup hung? exiting.\n");
1523				fio_terminate_threads(TERMINATE_ALL);
1524				fio_abort = 1;
1525				nr_started--;
1526				break;
1527			}
1528			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1529		}
1530
1531		/*
1532		 * Wait for the started threads to transition to
1533		 * TD_INITIALIZED.
1534		 */
1535		fio_gettime(&this_start, NULL);
1536		left = this_jobs;
1537		while (left && !fio_abort) {
1538			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1539				break;
1540
1541			usleep(100000);
1542
1543			for (i = 0; i < this_jobs; i++) {
1544				td = map[i];
1545				if (!td)
1546					continue;
1547				if (td->runstate == TD_INITIALIZED) {
1548					map[i] = NULL;
1549					left--;
1550				} else if (td->runstate >= TD_EXITED) {
1551					map[i] = NULL;
1552					left--;
1553					todo--;
1554					nr_running++; /* work-around... */
1555				}
1556			}
1557		}
1558
1559		if (left) {
1560			log_err("fio: %d job%s failed to start\n", left,
1561					left > 1 ? "s" : "");
1562			for (i = 0; i < this_jobs; i++) {
1563				td = map[i];
1564				if (!td)
1565					continue;
1566				kill(td->pid, SIGTERM);
1567			}
1568			break;
1569		}
1570
1571		/*
1572		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1573		 */
1574		for_each_td(td, i) {
1575			if (td->runstate != TD_INITIALIZED)
1576				continue;
1577
1578			if (in_ramp_time(td))
1579				td_set_runstate(td, TD_RAMP);
1580			else
1581				td_set_runstate(td, TD_RUNNING);
1582			nr_running++;
1583			nr_started--;
1584			m_rate += td->o.ratemin[DDIR_READ] +
1585				td->o.ratemin[DDIR_WRITE] + td->o.ratemin[DDIR_TRIM];
1586			t_rate += td->o.rate[DDIR_READ] +
1587				td->o.rate[DDIR_WRITE] + td->o.rate[DDIR_TRIM];
1588			todo--;
1589			fio_mutex_up(td->mutex);
1590		}
1591
1592		reap_threads(&nr_running, &t_rate, &m_rate);
1593
1594		if (todo) {
1595			if (is_backend)
1596				fio_server_idle_loop();
1597			else
1598				usleep(100000);
1599		}
1600	}
1601
1602	while (nr_running) {
1603		reap_threads(&nr_running, &t_rate, &m_rate);
1604
1605		if (is_backend)
1606			fio_server_idle_loop();
1607		else
1608			usleep(10000);
1609	}
1610
1611	update_io_ticks();
1612	fio_unpin_memory();
1613}
1614
1615void wait_for_disk_thread_exit(void)
1616{
1617	fio_mutex_down(disk_thread_mutex);
1618}
1619
1620static void *disk_thread_main(void *data)
1621{
1622	int ret = 0;
1623
1624	fio_mutex_up(startup_mutex);
1625
1626	while (threads && !ret) {
1627		usleep(DISK_UTIL_MSEC * 1000);
1628		if (!threads)
1629			break;
1630		ret = update_io_ticks();
1631
1632		if (!is_backend)
1633			print_thread_status();
1634	}
1635
1636	fio_mutex_up(disk_thread_mutex);
1637	return NULL;
1638}
1639
1640static int create_disk_util_thread(void)
1641{
1642	int ret;
1643
1644	setup_disk_util();
1645
1646	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1647
1648	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1649	if (ret) {
1650		fio_mutex_remove(disk_thread_mutex);
1651		log_err("Can't create disk util thread: %s\n", strerror(ret));
1652		return 1;
1653	}
1654
1655	ret = pthread_detach(disk_util_thread);
1656	if (ret) {
1657		fio_mutex_remove(disk_thread_mutex);
1658		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1659		return 1;
1660	}
1661
1662	dprint(FD_MUTEX, "wait on startup_mutex\n");
1663	fio_mutex_down(startup_mutex);
1664	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1665	return 0;
1666}
1667
1668int fio_backend(void)
1669{
1670	struct thread_data *td;
1671	int i;
1672
1673	if (exec_profile) {
1674		if (load_profile(exec_profile))
1675			return 1;
1676		free(exec_profile);
1677		exec_profile = NULL;
1678	}
1679	if (!thread_number)
1680		return 0;
1681
1682	if (write_bw_log) {
1683		setup_log(&agg_io_log[DDIR_READ], 0);
1684		setup_log(&agg_io_log[DDIR_WRITE], 0);
1685		setup_log(&agg_io_log[DDIR_TRIM], 0);
1686	}
1687
1688	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1689	if (startup_mutex == NULL)
1690		return 1;
1691	writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1692	if (writeout_mutex == NULL)
1693		return 1;
1694
1695	set_genesis_time();
1696	create_disk_util_thread();
1697
1698	cgroup_list = smalloc(sizeof(*cgroup_list));
1699	INIT_FLIST_HEAD(cgroup_list);
1700
1701	run_threads();
1702
1703	if (!fio_abort) {
1704		show_run_stats();
1705		if (write_bw_log) {
1706			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1707			__finish_log(agg_io_log[DDIR_WRITE],
1708					"agg-write_bw.log");
1709			__finish_log(agg_io_log[DDIR_TRIM],
1710					"agg-write_bw.log");
1711		}
1712	}
1713
1714	for_each_td(td, i)
1715		fio_options_free(td);
1716
1717	free_disk_util();
1718	cgroup_kill(cgroup_list);
1719	sfree(cgroup_list);
1720	sfree(cgroup_mnt);
1721
1722	fio_mutex_remove(startup_mutex);
1723	fio_mutex_remove(writeout_mutex);
1724	fio_mutex_remove(disk_thread_mutex);
1725	return exit_value;
1726}
1727