backend.c revision 78a6469cfc9094763320e61c60f9aaef0ece9689
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55
56static pthread_t disk_util_thread;
57static struct fio_mutex *disk_thread_mutex;
58static struct fio_mutex *startup_mutex;
59static struct fio_mutex *writeout_mutex;
60static struct flist_head *cgroup_list;
61static char *cgroup_mnt;
62static int exit_value;
63static volatile int fio_abort;
64static unsigned int nr_process = 0;
65static unsigned int nr_thread = 0;
66
67struct io_log *agg_io_log[DDIR_RWDIR_CNT];
68
69int groupid = 0;
70unsigned int thread_number = 0;
71unsigned int stat_number = 0;
72int shm_id = 0;
73int temp_stall_ts;
74unsigned long done_secs = 0;
75volatile int disk_util_exit = 0;
76
77#define PAGE_ALIGN(buf)	\
78	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
79
80#define JOB_START_TIMEOUT	(5 * 1000)
81
82static void sig_int(int sig)
83{
84	if (threads) {
85		if (is_backend)
86			fio_server_got_signal(sig);
87		else {
88			log_info("\nfio: terminating on signal %d\n", sig);
89			fflush(stdout);
90			exit_value = 128;
91		}
92
93		fio_terminate_threads(TERMINATE_ALL);
94	}
95}
96
97static void sig_show_status(int sig)
98{
99	show_running_run_stats();
100}
101
102static void set_sig_handlers(void)
103{
104	struct sigaction act;
105
106	memset(&act, 0, sizeof(act));
107	act.sa_handler = sig_int;
108	act.sa_flags = SA_RESTART;
109	sigaction(SIGINT, &act, NULL);
110
111	memset(&act, 0, sizeof(act));
112	act.sa_handler = sig_int;
113	act.sa_flags = SA_RESTART;
114	sigaction(SIGTERM, &act, NULL);
115
116/* Windows uses SIGBREAK as a quit signal from other applications */
117#ifdef WIN32
118	memset(&act, 0, sizeof(act));
119	act.sa_handler = sig_int;
120	act.sa_flags = SA_RESTART;
121	sigaction(SIGBREAK, &act, NULL);
122#endif
123
124	memset(&act, 0, sizeof(act));
125	act.sa_handler = sig_show_status;
126	act.sa_flags = SA_RESTART;
127	sigaction(SIGUSR1, &act, NULL);
128
129	if (is_backend) {
130		memset(&act, 0, sizeof(act));
131		act.sa_handler = sig_int;
132		act.sa_flags = SA_RESTART;
133		sigaction(SIGPIPE, &act, NULL);
134	}
135}
136
137/*
138 * Check if we are above the minimum rate given.
139 */
140static int __check_min_rate(struct thread_data *td, struct timeval *now,
141			    enum fio_ddir ddir)
142{
143	unsigned long long bytes = 0;
144	unsigned long iops = 0;
145	unsigned long spent;
146	unsigned long rate;
147	unsigned int ratemin = 0;
148	unsigned int rate_iops = 0;
149	unsigned int rate_iops_min = 0;
150
151	assert(ddir_rw(ddir));
152
153	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
154		return 0;
155
156	/*
157	 * allow a 2 second settle period in the beginning
158	 */
159	if (mtime_since(&td->start, now) < 2000)
160		return 0;
161
162	iops += td->this_io_blocks[ddir];
163	bytes += td->this_io_bytes[ddir];
164	ratemin += td->o.ratemin[ddir];
165	rate_iops += td->o.rate_iops[ddir];
166	rate_iops_min += td->o.rate_iops_min[ddir];
167
168	/*
169	 * if rate blocks is set, sample is running
170	 */
171	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
172		spent = mtime_since(&td->lastrate[ddir], now);
173		if (spent < td->o.ratecycle)
174			return 0;
175
176		if (td->o.rate[ddir]) {
177			/*
178			 * check bandwidth specified rate
179			 */
180			if (bytes < td->rate_bytes[ddir]) {
181				log_err("%s: min rate %u not met\n", td->o.name,
182								ratemin);
183				return 1;
184			} else {
185				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186				if (rate < ratemin ||
187				    bytes < td->rate_bytes[ddir]) {
188					log_err("%s: min rate %u not met, got"
189						" %luKB/sec\n", td->o.name,
190							ratemin, rate);
191					return 1;
192				}
193			}
194		} else {
195			/*
196			 * checks iops specified rate
197			 */
198			if (iops < rate_iops) {
199				log_err("%s: min iops rate %u not met\n",
200						td->o.name, rate_iops);
201				return 1;
202			} else {
203				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204				if (rate < rate_iops_min ||
205				    iops < td->rate_blocks[ddir]) {
206					log_err("%s: min iops rate %u not met,"
207						" got %lu\n", td->o.name,
208							rate_iops_min, rate);
209				}
210			}
211		}
212	}
213
214	td->rate_bytes[ddir] = bytes;
215	td->rate_blocks[ddir] = iops;
216	memcpy(&td->lastrate[ddir], now, sizeof(*now));
217	return 0;
218}
219
220static int check_min_rate(struct thread_data *td, struct timeval *now,
221			  uint64_t *bytes_done)
222{
223	int ret = 0;
224
225	if (bytes_done[DDIR_READ])
226		ret |= __check_min_rate(td, now, DDIR_READ);
227	if (bytes_done[DDIR_WRITE])
228		ret |= __check_min_rate(td, now, DDIR_WRITE);
229	if (bytes_done[DDIR_TRIM])
230		ret |= __check_min_rate(td, now, DDIR_TRIM);
231
232	return ret;
233}
234
235/*
236 * When job exits, we can cancel the in-flight IO if we are using async
237 * io. Attempt to do so.
238 */
239static void cleanup_pending_aio(struct thread_data *td)
240{
241	int r;
242
243	/*
244	 * get immediately available events, if any
245	 */
246	r = io_u_queued_complete(td, 0, NULL);
247	if (r < 0)
248		return;
249
250	/*
251	 * now cancel remaining active events
252	 */
253	if (td->io_ops->cancel) {
254		struct io_u *io_u;
255		int i;
256
257		io_u_qiter(&td->io_u_all, io_u, i) {
258			if (io_u->flags & IO_U_F_FLIGHT) {
259				r = td->io_ops->cancel(td, io_u);
260				if (!r)
261					put_io_u(td, io_u);
262			}
263		}
264	}
265
266	if (td->cur_depth)
267		r = io_u_queued_complete(td, td->cur_depth, NULL);
268}
269
270/*
271 * Helper to handle the final sync of a file. Works just like the normal
272 * io path, just does everything sync.
273 */
274static int fio_io_sync(struct thread_data *td, struct fio_file *f)
275{
276	struct io_u *io_u = __get_io_u(td);
277	int ret;
278
279	if (!io_u)
280		return 1;
281
282	io_u->ddir = DDIR_SYNC;
283	io_u->file = f;
284
285	if (td_io_prep(td, io_u)) {
286		put_io_u(td, io_u);
287		return 1;
288	}
289
290requeue:
291	ret = td_io_queue(td, io_u);
292	if (ret < 0) {
293		td_verror(td, io_u->error, "td_io_queue");
294		put_io_u(td, io_u);
295		return 1;
296	} else if (ret == FIO_Q_QUEUED) {
297		if (io_u_queued_complete(td, 1, NULL) < 0)
298			return 1;
299	} else if (ret == FIO_Q_COMPLETED) {
300		if (io_u->error) {
301			td_verror(td, io_u->error, "td_io_queue");
302			return 1;
303		}
304
305		if (io_u_sync_complete(td, io_u, NULL) < 0)
306			return 1;
307	} else if (ret == FIO_Q_BUSY) {
308		if (td_io_commit(td))
309			return 1;
310		goto requeue;
311	}
312
313	return 0;
314}
315
316static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
317{
318	int ret;
319
320	if (fio_file_open(f))
321		return fio_io_sync(td, f);
322
323	if (td_io_open_file(td, f))
324		return 1;
325
326	ret = fio_io_sync(td, f);
327	td_io_close_file(td, f);
328	return ret;
329}
330
331static inline void __update_tv_cache(struct thread_data *td)
332{
333	fio_gettime(&td->tv_cache, NULL);
334}
335
336static inline void update_tv_cache(struct thread_data *td)
337{
338	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
339		__update_tv_cache(td);
340}
341
342static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
343{
344	if (in_ramp_time(td))
345		return 0;
346	if (!td->o.timeout)
347		return 0;
348	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
349		return 1;
350
351	return 0;
352}
353
354static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
355			       int *retptr)
356{
357	int ret = *retptr;
358
359	if (ret < 0 || td->error) {
360		int err = td->error;
361		enum error_type_bit eb;
362
363		if (ret < 0)
364			err = -ret;
365
366		eb = td_error_type(ddir, err);
367		if (!(td->o.continue_on_error & (1 << eb)))
368			return 1;
369
370		if (td_non_fatal_error(td, eb, err)) {
371		        /*
372		         * Continue with the I/Os in case of
373			 * a non fatal error.
374			 */
375			update_error_count(td, err);
376			td_clear_error(td);
377			*retptr = 0;
378			return 0;
379		} else if (td->o.fill_device && err == ENOSPC) {
380			/*
381			 * We expect to hit this error if
382			 * fill_device option is set.
383			 */
384			td_clear_error(td);
385			td->terminate = 1;
386			return 1;
387		} else {
388			/*
389			 * Stop the I/O in case of a fatal
390			 * error.
391			 */
392			update_error_count(td, err);
393			return 1;
394		}
395	}
396
397	return 0;
398}
399
400static void check_update_rusage(struct thread_data *td)
401{
402	if (td->update_rusage) {
403		td->update_rusage = 0;
404		update_rusage_stat(td);
405		fio_mutex_up(td->rusage_sem);
406	}
407}
408
409/*
410 * The main verify engine. Runs over the writes we previously submitted,
411 * reads the blocks back in, and checks the crc/md5 of the data.
412 */
413static void do_verify(struct thread_data *td, uint64_t verify_bytes)
414{
415	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
416	struct fio_file *f;
417	struct io_u *io_u;
418	int ret, min_events;
419	unsigned int i;
420
421	dprint(FD_VERIFY, "starting loop\n");
422
423	/*
424	 * sync io first and invalidate cache, to make sure we really
425	 * read from disk.
426	 */
427	for_each_file(td, f, i) {
428		if (!fio_file_open(f))
429			continue;
430		if (fio_io_sync(td, f))
431			break;
432		if (file_invalidate_cache(td, f))
433			break;
434	}
435
436	check_update_rusage(td);
437
438	if (td->error)
439		return;
440
441	td_set_runstate(td, TD_VERIFYING);
442
443	io_u = NULL;
444	while (!td->terminate) {
445		enum fio_ddir ddir;
446		int ret2, full;
447
448		update_tv_cache(td);
449		check_update_rusage(td);
450
451		if (runtime_exceeded(td, &td->tv_cache)) {
452			__update_tv_cache(td);
453			if (runtime_exceeded(td, &td->tv_cache)) {
454				td->terminate = 1;
455				break;
456			}
457		}
458
459		if (flow_threshold_exceeded(td))
460			continue;
461
462		if (!td->o.experimental_verify) {
463			io_u = __get_io_u(td);
464			if (!io_u)
465				break;
466
467			if (get_next_verify(td, io_u)) {
468				put_io_u(td, io_u);
469				break;
470			}
471
472			if (td_io_prep(td, io_u)) {
473				put_io_u(td, io_u);
474				break;
475			}
476		} else {
477			if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
478				break;
479
480			while ((io_u = get_io_u(td)) != NULL) {
481				/*
482				 * We are only interested in the places where
483				 * we wrote or trimmed IOs. Turn those into
484				 * reads for verification purposes.
485				 */
486				if (io_u->ddir == DDIR_READ) {
487					/*
488					 * Pretend we issued it for rwmix
489					 * accounting
490					 */
491					td->io_issues[DDIR_READ]++;
492					put_io_u(td, io_u);
493					continue;
494				} else if (io_u->ddir == DDIR_TRIM) {
495					io_u->ddir = DDIR_READ;
496					io_u->flags |= IO_U_F_TRIMMED;
497					break;
498				} else if (io_u->ddir == DDIR_WRITE) {
499					io_u->ddir = DDIR_READ;
500					break;
501				} else {
502					put_io_u(td, io_u);
503					continue;
504				}
505			}
506
507			if (!io_u)
508				break;
509		}
510
511		if (td->o.verify_async)
512			io_u->end_io = verify_io_u_async;
513		else
514			io_u->end_io = verify_io_u;
515
516		ddir = io_u->ddir;
517
518		ret = td_io_queue(td, io_u);
519		switch (ret) {
520		case FIO_Q_COMPLETED:
521			if (io_u->error) {
522				ret = -io_u->error;
523				clear_io_u(td, io_u);
524			} else if (io_u->resid) {
525				int bytes = io_u->xfer_buflen - io_u->resid;
526
527				/*
528				 * zero read, fail
529				 */
530				if (!bytes) {
531					td_verror(td, EIO, "full resid");
532					put_io_u(td, io_u);
533					break;
534				}
535
536				io_u->xfer_buflen = io_u->resid;
537				io_u->xfer_buf += bytes;
538				io_u->offset += bytes;
539
540				if (ddir_rw(io_u->ddir))
541					td->ts.short_io_u[io_u->ddir]++;
542
543				f = io_u->file;
544				if (io_u->offset == f->real_file_size)
545					goto sync_done;
546
547				requeue_io_u(td, &io_u);
548			} else {
549sync_done:
550				ret = io_u_sync_complete(td, io_u, bytes_done);
551				if (ret < 0)
552					break;
553			}
554			continue;
555		case FIO_Q_QUEUED:
556			break;
557		case FIO_Q_BUSY:
558			requeue_io_u(td, &io_u);
559			ret2 = td_io_commit(td);
560			if (ret2 < 0)
561				ret = ret2;
562			break;
563		default:
564			assert(ret < 0);
565			td_verror(td, -ret, "td_io_queue");
566			break;
567		}
568
569		if (break_on_this_error(td, ddir, &ret))
570			break;
571
572		/*
573		 * if we can queue more, do so. but check if there are
574		 * completed io_u's first. Note that we can get BUSY even
575		 * without IO queued, if the system is resource starved.
576		 */
577		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
578		if (full || !td->o.iodepth_batch_complete) {
579			min_events = min(td->o.iodepth_batch_complete,
580					 td->cur_depth);
581			/*
582			 * if the queue is full, we MUST reap at least 1 event
583			 */
584			if (full && !min_events)
585				min_events = 1;
586
587			do {
588				/*
589				 * Reap required number of io units, if any,
590				 * and do the verification on them through
591				 * the callback handler
592				 */
593				if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
594					ret = -1;
595					break;
596				}
597			} while (full && (td->cur_depth > td->o.iodepth_low));
598		}
599		if (ret < 0)
600			break;
601	}
602
603	check_update_rusage(td);
604
605	if (!td->error) {
606		min_events = td->cur_depth;
607
608		if (min_events)
609			ret = io_u_queued_complete(td, min_events, NULL);
610	} else
611		cleanup_pending_aio(td);
612
613	td_set_runstate(td, TD_RUNNING);
614
615	dprint(FD_VERIFY, "exiting loop\n");
616}
617
618static int io_bytes_exceeded(struct thread_data *td)
619{
620	unsigned long long bytes;
621
622	if (td_rw(td))
623		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
624	else if (td_write(td))
625		bytes = td->this_io_bytes[DDIR_WRITE];
626	else if (td_read(td))
627		bytes = td->this_io_bytes[DDIR_READ];
628	else
629		bytes = td->this_io_bytes[DDIR_TRIM];
630
631	return bytes >= td->o.size;
632}
633
634/*
635 * Main IO worker function. It retrieves io_u's to process and queues
636 * and reaps them, checking for rate and errors along the way.
637 *
638 * Returns number of bytes written and trimmed.
639 */
640static uint64_t do_io(struct thread_data *td)
641{
642	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
643	unsigned int i;
644	int ret = 0;
645	uint64_t total_bytes, bytes_issued = 0;
646
647	if (in_ramp_time(td))
648		td_set_runstate(td, TD_RAMP);
649	else
650		td_set_runstate(td, TD_RUNNING);
651
652	lat_target_init(td);
653
654	/*
655	 * If verify_backlog is enabled, we'll run the verify in this
656	 * handler as well. For that case, we may need up to twice the
657	 * amount of bytes.
658	 */
659	total_bytes = td->o.size;
660	if (td->o.verify != VERIFY_NONE &&
661	   (td_write(td) && td->o.verify_backlog))
662		total_bytes += td->o.size;
663
664	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
665		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
666		td->o.time_based) {
667		struct timeval comp_time;
668		int min_evts = 0;
669		struct io_u *io_u;
670		int ret2, full;
671		enum fio_ddir ddir;
672
673		check_update_rusage(td);
674
675		if (td->terminate || td->done)
676			break;
677
678		update_tv_cache(td);
679
680		if (runtime_exceeded(td, &td->tv_cache)) {
681			__update_tv_cache(td);
682			if (runtime_exceeded(td, &td->tv_cache)) {
683				td->terminate = 1;
684				break;
685			}
686		}
687
688		if (flow_threshold_exceeded(td))
689			continue;
690
691		if (bytes_issued >= total_bytes)
692			break;
693
694		io_u = get_io_u(td);
695		if (!io_u) {
696			if (td->o.latency_target)
697				goto reap;
698			break;
699		}
700
701		ddir = io_u->ddir;
702
703		/*
704		 * Add verification end_io handler if:
705		 *	- Asked to verify (!td_rw(td))
706		 *	- Or the io_u is from our verify list (mixed write/ver)
707		 */
708		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
709		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
710
711			if (!td->o.verify_pattern_bytes) {
712				io_u->rand_seed = __rand(&td->__verify_state);
713				if (sizeof(int) != sizeof(long *))
714					io_u->rand_seed *= __rand(&td->__verify_state);
715			}
716
717			if (td->o.verify_async)
718				io_u->end_io = verify_io_u_async;
719			else
720				io_u->end_io = verify_io_u;
721			td_set_runstate(td, TD_VERIFYING);
722		} else if (in_ramp_time(td))
723			td_set_runstate(td, TD_RAMP);
724		else
725			td_set_runstate(td, TD_RUNNING);
726
727		/*
728		 * Verify_backlog disabled: We need to log rand seed before the
729		 * actual IO to be able to replay it correctly in the verify phase.
730		 */
731		if (td_write(td) && io_u->ddir == DDIR_WRITE &&
732		    td->o.do_verify &&
733		    td->o.verify != VERIFY_NONE &&
734		    !td->o.experimental_verify &&
735		    !(td->flags & TD_F_VER_BACKLOG))
736			log_io_piece(td, io_u);
737
738		ret = td_io_queue(td, io_u);
739		switch (ret) {
740		case FIO_Q_COMPLETED:
741			if (io_u->error) {
742				ret = -io_u->error;
743				clear_io_u(td, io_u);
744			} else if (io_u->resid) {
745				int bytes = io_u->xfer_buflen - io_u->resid;
746				struct fio_file *f = io_u->file;
747
748				bytes_issued += bytes;
749				/*
750				 * zero read, fail
751				 */
752				if (!bytes) {
753					td_verror(td, EIO, "full resid");
754					put_io_u(td, io_u);
755					break;
756				}
757
758				io_u->xfer_buflen = io_u->resid;
759				io_u->xfer_buf += bytes;
760				io_u->offset += bytes;
761
762				if (ddir_rw(io_u->ddir))
763					td->ts.short_io_u[io_u->ddir]++;
764
765				if (io_u->offset == f->real_file_size)
766					goto sync_done;
767
768				requeue_io_u(td, &io_u);
769			} else {
770sync_done:
771				if (__should_check_rate(td, DDIR_READ) ||
772				    __should_check_rate(td, DDIR_WRITE) ||
773				    __should_check_rate(td, DDIR_TRIM))
774					fio_gettime(&comp_time, NULL);
775
776				ret = io_u_sync_complete(td, io_u, bytes_done);
777				if (ret < 0)
778					break;
779				bytes_issued += io_u->xfer_buflen;
780			}
781			break;
782		case FIO_Q_QUEUED:
783			/*
784			 * if the engine doesn't have a commit hook,
785			 * the io_u is really queued. if it does have such
786			 * a hook, it has to call io_u_queued() itself.
787			 */
788			if (td->io_ops->commit == NULL)
789				io_u_queued(td, io_u);
790			bytes_issued += io_u->xfer_buflen;
791			break;
792		case FIO_Q_BUSY:
793			requeue_io_u(td, &io_u);
794			ret2 = td_io_commit(td);
795			if (ret2 < 0)
796				ret = ret2;
797			break;
798		default:
799			assert(ret < 0);
800			put_io_u(td, io_u);
801			break;
802		}
803
804		if (break_on_this_error(td, ddir, &ret))
805			break;
806
807		/*
808		 * See if we need to complete some commands. Note that we
809		 * can get BUSY even without IO queued, if the system is
810		 * resource starved.
811		 */
812reap:
813		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
814		if (full || !td->o.iodepth_batch_complete) {
815			min_evts = min(td->o.iodepth_batch_complete,
816					td->cur_depth);
817			/*
818			 * if the queue is full, we MUST reap at least 1 event
819			 */
820			if (full && !min_evts)
821				min_evts = 1;
822
823			if (__should_check_rate(td, DDIR_READ) ||
824			    __should_check_rate(td, DDIR_WRITE) ||
825			    __should_check_rate(td, DDIR_TRIM))
826				fio_gettime(&comp_time, NULL);
827
828			do {
829				ret = io_u_queued_complete(td, min_evts, bytes_done);
830				if (ret < 0)
831					break;
832
833			} while (full && (td->cur_depth > td->o.iodepth_low));
834		}
835
836		if (ret < 0)
837			break;
838		if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
839			continue;
840
841		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
842			if (check_min_rate(td, &comp_time, bytes_done)) {
843				if (exitall_on_terminate)
844					fio_terminate_threads(td->groupid);
845				td_verror(td, EIO, "check_min_rate");
846				break;
847			}
848		}
849		if (!in_ramp_time(td) && td->o.latency_target)
850			lat_target_check(td);
851
852		if (td->o.thinktime) {
853			unsigned long long b;
854
855			b = ddir_rw_sum(td->io_blocks);
856			if (!(b % td->o.thinktime_blocks)) {
857				int left;
858
859				io_u_quiesce(td);
860
861				if (td->o.thinktime_spin)
862					usec_spin(td->o.thinktime_spin);
863
864				left = td->o.thinktime - td->o.thinktime_spin;
865				if (left)
866					usec_sleep(td, left);
867			}
868		}
869	}
870
871	check_update_rusage(td);
872
873	if (td->trim_entries)
874		log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
875
876	if (td->o.fill_device && td->error == ENOSPC) {
877		td->error = 0;
878		td->terminate = 1;
879	}
880	if (!td->error) {
881		struct fio_file *f;
882
883		i = td->cur_depth;
884		if (i) {
885			ret = io_u_queued_complete(td, i, bytes_done);
886			if (td->o.fill_device && td->error == ENOSPC)
887				td->error = 0;
888		}
889
890		if (should_fsync(td) && td->o.end_fsync) {
891			td_set_runstate(td, TD_FSYNCING);
892
893			for_each_file(td, f, i) {
894				if (!fio_file_fsync(td, f))
895					continue;
896
897				log_err("fio: end_fsync failed for file %s\n",
898								f->file_name);
899			}
900		}
901	} else
902		cleanup_pending_aio(td);
903
904	/*
905	 * stop job if we failed doing any IO
906	 */
907	if (!ddir_rw_sum(td->this_io_bytes))
908		td->done = 1;
909
910	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
911}
912
913static void cleanup_io_u(struct thread_data *td)
914{
915	struct io_u *io_u;
916
917	while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
918
919		if (td->io_ops->io_u_free)
920			td->io_ops->io_u_free(td, io_u);
921
922		fio_memfree(io_u, sizeof(*io_u));
923	}
924
925	free_io_mem(td);
926
927	io_u_rexit(&td->io_u_requeues);
928	io_u_qexit(&td->io_u_freelist);
929	io_u_qexit(&td->io_u_all);
930}
931
932static int init_io_u(struct thread_data *td)
933{
934	struct io_u *io_u;
935	unsigned int max_bs, min_write;
936	int cl_align, i, max_units;
937	int data_xfer = 1, err;
938	char *p;
939
940	max_units = td->o.iodepth;
941	max_bs = td_max_bs(td);
942	min_write = td->o.min_bs[DDIR_WRITE];
943	td->orig_buffer_size = (unsigned long long) max_bs
944					* (unsigned long long) max_units;
945
946	if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
947		data_xfer = 0;
948
949	err = 0;
950	err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
951	err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
952	err += io_u_qinit(&td->io_u_all, td->o.iodepth);
953
954	if (err) {
955		log_err("fio: failed setting up IO queues\n");
956		return 1;
957	}
958
959	/*
960	 * if we may later need to do address alignment, then add any
961	 * possible adjustment here so that we don't cause a buffer
962	 * overflow later. this adjustment may be too much if we get
963	 * lucky and the allocator gives us an aligned address.
964	 */
965	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
966	    (td->io_ops->flags & FIO_RAWIO))
967		td->orig_buffer_size += page_mask + td->o.mem_align;
968
969	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
970		unsigned long bs;
971
972		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
973		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
974	}
975
976	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
977		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
978		return 1;
979	}
980
981	if (data_xfer && allocate_io_mem(td))
982		return 1;
983
984	if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
985	    (td->io_ops->flags & FIO_RAWIO))
986		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
987	else
988		p = td->orig_buffer;
989
990	cl_align = os_cache_line_size();
991
992	for (i = 0; i < max_units; i++) {
993		void *ptr;
994
995		if (td->terminate)
996			return 1;
997
998		ptr = fio_memalign(cl_align, sizeof(*io_u));
999		if (!ptr) {
1000			log_err("fio: unable to allocate aligned memory\n");
1001			break;
1002		}
1003
1004		io_u = ptr;
1005		memset(io_u, 0, sizeof(*io_u));
1006		INIT_FLIST_HEAD(&io_u->verify_list);
1007		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1008
1009		if (data_xfer) {
1010			io_u->buf = p;
1011			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1012
1013			if (td_write(td))
1014				io_u_fill_buffer(td, io_u, min_write, max_bs);
1015			if (td_write(td) && td->o.verify_pattern_bytes) {
1016				/*
1017				 * Fill the buffer with the pattern if we are
1018				 * going to be doing writes.
1019				 */
1020				fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1021			}
1022		}
1023
1024		io_u->index = i;
1025		io_u->flags = IO_U_F_FREE;
1026		io_u_qpush(&td->io_u_freelist, io_u);
1027
1028		/*
1029		 * io_u never leaves this stack, used for iteration of all
1030		 * io_u buffers.
1031		 */
1032		io_u_qpush(&td->io_u_all, io_u);
1033
1034		if (td->io_ops->io_u_init) {
1035			int ret = td->io_ops->io_u_init(td, io_u);
1036
1037			if (ret) {
1038				log_err("fio: failed to init engine data: %d\n", ret);
1039				return 1;
1040			}
1041		}
1042
1043		p += max_bs;
1044	}
1045
1046	return 0;
1047}
1048
1049static int switch_ioscheduler(struct thread_data *td)
1050{
1051	char tmp[256], tmp2[128];
1052	FILE *f;
1053	int ret;
1054
1055	if (td->io_ops->flags & FIO_DISKLESSIO)
1056		return 0;
1057
1058	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1059
1060	f = fopen(tmp, "r+");
1061	if (!f) {
1062		if (errno == ENOENT) {
1063			log_err("fio: os or kernel doesn't support IO scheduler"
1064				" switching\n");
1065			return 0;
1066		}
1067		td_verror(td, errno, "fopen iosched");
1068		return 1;
1069	}
1070
1071	/*
1072	 * Set io scheduler.
1073	 */
1074	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1075	if (ferror(f) || ret != 1) {
1076		td_verror(td, errno, "fwrite");
1077		fclose(f);
1078		return 1;
1079	}
1080
1081	rewind(f);
1082
1083	/*
1084	 * Read back and check that the selected scheduler is now the default.
1085	 */
1086	ret = fread(tmp, 1, sizeof(tmp), f);
1087	if (ferror(f) || ret < 0) {
1088		td_verror(td, errno, "fread");
1089		fclose(f);
1090		return 1;
1091	}
1092
1093	sprintf(tmp2, "[%s]", td->o.ioscheduler);
1094	if (!strstr(tmp, tmp2)) {
1095		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1096		td_verror(td, EINVAL, "iosched_switch");
1097		fclose(f);
1098		return 1;
1099	}
1100
1101	fclose(f);
1102	return 0;
1103}
1104
1105static int keep_running(struct thread_data *td)
1106{
1107	if (td->done)
1108		return 0;
1109	if (td->o.time_based)
1110		return 1;
1111	if (td->o.loops) {
1112		td->o.loops--;
1113		return 1;
1114	}
1115
1116	if (td->o.size != -1ULL && ddir_rw_sum(td->io_bytes) < td->o.size) {
1117		uint64_t diff;
1118
1119		/*
1120		 * If the difference is less than the minimum IO size, we
1121		 * are done.
1122		 */
1123		diff = td->o.size - ddir_rw_sum(td->io_bytes);
1124		if (diff < td_max_bs(td))
1125			return 0;
1126
1127		return 1;
1128	}
1129
1130	return 0;
1131}
1132
1133static int exec_string(struct thread_options *o, const char *string, const char *mode)
1134{
1135	int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1136	char *str;
1137
1138	str = malloc(newlen);
1139	sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1140
1141	log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1142	ret = system(str);
1143	if (ret == -1)
1144		log_err("fio: exec of cmd <%s> failed\n", str);
1145
1146	free(str);
1147	return ret;
1148}
1149
1150/*
1151 * Dry run to compute correct state of numberio for verification.
1152 */
1153static uint64_t do_dry_run(struct thread_data *td)
1154{
1155	uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
1156
1157	td_set_runstate(td, TD_RUNNING);
1158
1159	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1160		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) {
1161		struct io_u *io_u;
1162		int ret;
1163
1164		if (td->terminate || td->done)
1165			break;
1166
1167		io_u = get_io_u(td);
1168		if (!io_u)
1169			break;
1170
1171		io_u->flags |= IO_U_F_FLIGHT;
1172		io_u->error = 0;
1173		io_u->resid = 0;
1174		if (ddir_rw(acct_ddir(io_u)))
1175			td->io_issues[acct_ddir(io_u)]++;
1176		if (ddir_rw(io_u->ddir)) {
1177			io_u_mark_depth(td, 1);
1178			td->ts.total_io_u[io_u->ddir]++;
1179		}
1180
1181		ret = io_u_sync_complete(td, io_u, bytes_done);
1182		(void) ret;
1183	}
1184
1185	return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
1186}
1187
1188/*
1189 * Entry point for the thread based jobs. The process based jobs end up
1190 * here as well, after a little setup.
1191 */
1192static void *thread_main(void *data)
1193{
1194	unsigned long long elapsed;
1195	struct thread_data *td = data;
1196	struct thread_options *o = &td->o;
1197	pthread_condattr_t attr;
1198	int clear_state;
1199	int ret;
1200
1201	if (!o->use_thread) {
1202		setsid();
1203		td->pid = getpid();
1204	} else
1205		td->pid = gettid();
1206
1207	/*
1208	 * fio_time_init() may not have been called yet if running as a server
1209	 */
1210	fio_time_init();
1211
1212	fio_local_clock_init(o->use_thread);
1213
1214	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1215
1216	if (is_backend)
1217		fio_server_send_start(td);
1218
1219	INIT_FLIST_HEAD(&td->io_log_list);
1220	INIT_FLIST_HEAD(&td->io_hist_list);
1221	INIT_FLIST_HEAD(&td->verify_list);
1222	INIT_FLIST_HEAD(&td->trim_list);
1223	INIT_FLIST_HEAD(&td->next_rand_list);
1224	pthread_mutex_init(&td->io_u_lock, NULL);
1225	td->io_hist_tree = RB_ROOT;
1226
1227	pthread_condattr_init(&attr);
1228	pthread_cond_init(&td->verify_cond, &attr);
1229	pthread_cond_init(&td->free_cond, &attr);
1230
1231	td_set_runstate(td, TD_INITIALIZED);
1232	dprint(FD_MUTEX, "up startup_mutex\n");
1233	fio_mutex_up(startup_mutex);
1234	dprint(FD_MUTEX, "wait on td->mutex\n");
1235	fio_mutex_down(td->mutex);
1236	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1237
1238	/*
1239	 * the ->mutex mutex is now no longer used, close it to avoid
1240	 * eating a file descriptor
1241	 */
1242	fio_mutex_remove(td->mutex);
1243	td->mutex = NULL;
1244
1245	/*
1246	 * A new gid requires privilege, so we need to do this before setting
1247	 * the uid.
1248	 */
1249	if (o->gid != -1U && setgid(o->gid)) {
1250		td_verror(td, errno, "setgid");
1251		goto err;
1252	}
1253	if (o->uid != -1U && setuid(o->uid)) {
1254		td_verror(td, errno, "setuid");
1255		goto err;
1256	}
1257
1258	/*
1259	 * If we have a gettimeofday() thread, make sure we exclude that
1260	 * thread from this job
1261	 */
1262	if (o->gtod_cpu)
1263		fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1264
1265	/*
1266	 * Set affinity first, in case it has an impact on the memory
1267	 * allocations.
1268	 */
1269	if (o->cpumask_set) {
1270		ret = fio_setaffinity(td->pid, o->cpumask);
1271		if (ret == -1) {
1272			td_verror(td, errno, "cpu_set_affinity");
1273			goto err;
1274		}
1275	}
1276
1277#ifdef CONFIG_LIBNUMA
1278	/* numa node setup */
1279	if (o->numa_cpumask_set || o->numa_memmask_set) {
1280		int ret;
1281
1282		if (numa_available() < 0) {
1283			td_verror(td, errno, "Does not support NUMA API\n");
1284			goto err;
1285		}
1286
1287		if (o->numa_cpumask_set) {
1288			ret = numa_run_on_node_mask(o->numa_cpunodesmask);
1289			if (ret == -1) {
1290				td_verror(td, errno, \
1291					"numa_run_on_node_mask failed\n");
1292				goto err;
1293			}
1294		}
1295
1296		if (o->numa_memmask_set) {
1297
1298			switch (o->numa_mem_mode) {
1299			case MPOL_INTERLEAVE:
1300				numa_set_interleave_mask(o->numa_memnodesmask);
1301				break;
1302			case MPOL_BIND:
1303				numa_set_membind(o->numa_memnodesmask);
1304				break;
1305			case MPOL_LOCAL:
1306				numa_set_localalloc();
1307				break;
1308			case MPOL_PREFERRED:
1309				numa_set_preferred(o->numa_mem_prefer_node);
1310				break;
1311			case MPOL_DEFAULT:
1312			default:
1313				break;
1314			}
1315
1316		}
1317	}
1318#endif
1319
1320	if (fio_pin_memory(td))
1321		goto err;
1322
1323	/*
1324	 * May alter parameters that init_io_u() will use, so we need to
1325	 * do this first.
1326	 */
1327	if (init_iolog(td))
1328		goto err;
1329
1330	if (init_io_u(td))
1331		goto err;
1332
1333	if (o->verify_async && verify_async_init(td))
1334		goto err;
1335
1336	if (o->ioprio) {
1337		ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1338		if (ret == -1) {
1339			td_verror(td, errno, "ioprio_set");
1340			goto err;
1341		}
1342	}
1343
1344	if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1345		goto err;
1346
1347	errno = 0;
1348	if (nice(o->nice) == -1 && errno != 0) {
1349		td_verror(td, errno, "nice");
1350		goto err;
1351	}
1352
1353	if (o->ioscheduler && switch_ioscheduler(td))
1354		goto err;
1355
1356	if (!o->create_serialize && setup_files(td))
1357		goto err;
1358
1359	if (td_io_init(td))
1360		goto err;
1361
1362	if (init_random_map(td))
1363		goto err;
1364
1365	if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1366		goto err;
1367
1368	if (o->pre_read) {
1369		if (pre_read_files(td) < 0)
1370			goto err;
1371	}
1372
1373	fio_verify_init(td);
1374
1375	fio_gettime(&td->epoch, NULL);
1376	fio_getrusage(&td->ru_start);
1377	clear_state = 0;
1378	while (keep_running(td)) {
1379		uint64_t verify_bytes;
1380
1381		fio_gettime(&td->start, NULL);
1382		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1383		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1384		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1385
1386		if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1387				o->ratemin[DDIR_TRIM]) {
1388		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1389						sizeof(td->bw_sample_time));
1390		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1391						sizeof(td->bw_sample_time));
1392		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1393						sizeof(td->bw_sample_time));
1394		}
1395
1396		if (clear_state)
1397			clear_io_state(td);
1398
1399		prune_io_piece_log(td);
1400
1401		if (td->o.verify_only && (td_write(td) || td_rw(td)))
1402			verify_bytes = do_dry_run(td);
1403		else
1404			verify_bytes = do_io(td);
1405
1406		clear_state = 1;
1407
1408		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1409			elapsed = utime_since_now(&td->start);
1410			td->ts.runtime[DDIR_READ] += elapsed;
1411		}
1412		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1413			elapsed = utime_since_now(&td->start);
1414			td->ts.runtime[DDIR_WRITE] += elapsed;
1415		}
1416		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1417			elapsed = utime_since_now(&td->start);
1418			td->ts.runtime[DDIR_TRIM] += elapsed;
1419		}
1420
1421		if (td->error || td->terminate)
1422			break;
1423
1424		if (!o->do_verify ||
1425		    o->verify == VERIFY_NONE ||
1426		    (td->io_ops->flags & FIO_UNIDIR))
1427			continue;
1428
1429		clear_io_state(td);
1430
1431		fio_gettime(&td->start, NULL);
1432
1433		do_verify(td, verify_bytes);
1434
1435		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1436
1437		if (td->error || td->terminate)
1438			break;
1439	}
1440
1441	update_rusage_stat(td);
1442	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1443	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1444	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1445	td->ts.total_run_time = mtime_since_now(&td->epoch);
1446	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1447	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1448	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1449
1450	fio_unpin_memory(td);
1451
1452	fio_mutex_down(writeout_mutex);
1453	if (td->bw_log) {
1454		if (o->bw_log_file) {
1455			finish_log_named(td, td->bw_log,
1456						o->bw_log_file, "bw");
1457		} else
1458			finish_log(td, td->bw_log, "bw");
1459	}
1460	if (td->lat_log) {
1461		if (o->lat_log_file) {
1462			finish_log_named(td, td->lat_log,
1463						o->lat_log_file, "lat");
1464		} else
1465			finish_log(td, td->lat_log, "lat");
1466	}
1467	if (td->slat_log) {
1468		if (o->lat_log_file) {
1469			finish_log_named(td, td->slat_log,
1470						o->lat_log_file, "slat");
1471		} else
1472			finish_log(td, td->slat_log, "slat");
1473	}
1474	if (td->clat_log) {
1475		if (o->lat_log_file) {
1476			finish_log_named(td, td->clat_log,
1477						o->lat_log_file, "clat");
1478		} else
1479			finish_log(td, td->clat_log, "clat");
1480	}
1481	if (td->iops_log) {
1482		if (o->iops_log_file) {
1483			finish_log_named(td, td->iops_log,
1484						o->iops_log_file, "iops");
1485		} else
1486			finish_log(td, td->iops_log, "iops");
1487	}
1488
1489	fio_mutex_up(writeout_mutex);
1490	if (o->exec_postrun)
1491		exec_string(o, o->exec_postrun, (const char *)"postrun");
1492
1493	if (exitall_on_terminate)
1494		fio_terminate_threads(td->groupid);
1495
1496err:
1497	if (td->error)
1498		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1499							td->verror);
1500
1501	if (o->verify_async)
1502		verify_async_exit(td);
1503
1504	close_and_free_files(td);
1505	cleanup_io_u(td);
1506	close_ioengine(td);
1507	cgroup_shutdown(td, &cgroup_mnt);
1508
1509	if (o->cpumask_set) {
1510		int ret = fio_cpuset_exit(&o->cpumask);
1511
1512		td_verror(td, ret, "fio_cpuset_exit");
1513	}
1514
1515	/*
1516	 * do this very late, it will log file closing as well
1517	 */
1518	if (o->write_iolog_file)
1519		write_iolog_close(td);
1520
1521	fio_mutex_remove(td->rusage_sem);
1522	td->rusage_sem = NULL;
1523
1524	td_set_runstate(td, TD_EXITED);
1525	return (void *) (uintptr_t) td->error;
1526}
1527
1528
1529/*
1530 * We cannot pass the td data into a forked process, so attach the td and
1531 * pass it to the thread worker.
1532 */
1533static int fork_main(int shmid, int offset)
1534{
1535	struct thread_data *td;
1536	void *data, *ret;
1537
1538#ifndef __hpux
1539	data = shmat(shmid, NULL, 0);
1540	if (data == (void *) -1) {
1541		int __err = errno;
1542
1543		perror("shmat");
1544		return __err;
1545	}
1546#else
1547	/*
1548	 * HP-UX inherits shm mappings?
1549	 */
1550	data = threads;
1551#endif
1552
1553	td = data + offset * sizeof(struct thread_data);
1554	ret = thread_main(td);
1555	shmdt(data);
1556	return (int) (uintptr_t) ret;
1557}
1558
1559/*
1560 * Run over the job map and reap the threads that have exited, if any.
1561 */
1562static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1563			 unsigned int *m_rate)
1564{
1565	struct thread_data *td;
1566	unsigned int cputhreads, realthreads, pending;
1567	int i, status, ret;
1568
1569	/*
1570	 * reap exited threads (TD_EXITED -> TD_REAPED)
1571	 */
1572	realthreads = pending = cputhreads = 0;
1573	for_each_td(td, i) {
1574		int flags = 0;
1575
1576		/*
1577		 * ->io_ops is NULL for a thread that has closed its
1578		 * io engine
1579		 */
1580		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1581			cputhreads++;
1582		else
1583			realthreads++;
1584
1585		if (!td->pid) {
1586			pending++;
1587			continue;
1588		}
1589		if (td->runstate == TD_REAPED)
1590			continue;
1591		if (td->o.use_thread) {
1592			if (td->runstate == TD_EXITED) {
1593				td_set_runstate(td, TD_REAPED);
1594				goto reaped;
1595			}
1596			continue;
1597		}
1598
1599		flags = WNOHANG;
1600		if (td->runstate == TD_EXITED)
1601			flags = 0;
1602
1603		/*
1604		 * check if someone quit or got killed in an unusual way
1605		 */
1606		ret = waitpid(td->pid, &status, flags);
1607		if (ret < 0) {
1608			if (errno == ECHILD) {
1609				log_err("fio: pid=%d disappeared %d\n",
1610						(int) td->pid, td->runstate);
1611				td->sig = ECHILD;
1612				td_set_runstate(td, TD_REAPED);
1613				goto reaped;
1614			}
1615			perror("waitpid");
1616		} else if (ret == td->pid) {
1617			if (WIFSIGNALED(status)) {
1618				int sig = WTERMSIG(status);
1619
1620				if (sig != SIGTERM && sig != SIGUSR2)
1621					log_err("fio: pid=%d, got signal=%d\n",
1622							(int) td->pid, sig);
1623				td->sig = sig;
1624				td_set_runstate(td, TD_REAPED);
1625				goto reaped;
1626			}
1627			if (WIFEXITED(status)) {
1628				if (WEXITSTATUS(status) && !td->error)
1629					td->error = WEXITSTATUS(status);
1630
1631				td_set_runstate(td, TD_REAPED);
1632				goto reaped;
1633			}
1634		}
1635
1636		/*
1637		 * thread is not dead, continue
1638		 */
1639		pending++;
1640		continue;
1641reaped:
1642		(*nr_running)--;
1643		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1644		(*t_rate) -= ddir_rw_sum(td->o.rate);
1645		if (!td->pid)
1646			pending--;
1647
1648		if (td->error)
1649			exit_value++;
1650
1651		done_secs += mtime_since_now(&td->epoch) / 1000;
1652		profile_td_exit(td);
1653	}
1654
1655	if (*nr_running == cputhreads && !pending && realthreads)
1656		fio_terminate_threads(TERMINATE_ALL);
1657}
1658
1659static void do_usleep(unsigned int usecs)
1660{
1661	check_for_running_stats();
1662	usleep(usecs);
1663}
1664
1665/*
1666 * Main function for kicking off and reaping jobs, as needed.
1667 */
1668static void run_threads(void)
1669{
1670	struct thread_data *td;
1671	unsigned long spent;
1672	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1673
1674	if (fio_gtod_offload && fio_start_gtod_thread())
1675		return;
1676
1677	fio_idle_prof_init();
1678
1679	set_sig_handlers();
1680
1681	nr_thread = nr_process = 0;
1682	for_each_td(td, i) {
1683		if (td->o.use_thread)
1684			nr_thread++;
1685		else
1686			nr_process++;
1687	}
1688
1689	if (output_format == FIO_OUTPUT_NORMAL) {
1690		log_info("Starting ");
1691		if (nr_thread)
1692			log_info("%d thread%s", nr_thread,
1693						nr_thread > 1 ? "s" : "");
1694		if (nr_process) {
1695			if (nr_thread)
1696				log_info(" and ");
1697			log_info("%d process%s", nr_process,
1698						nr_process > 1 ? "es" : "");
1699		}
1700		log_info("\n");
1701		fflush(stdout);
1702	}
1703
1704	todo = thread_number;
1705	nr_running = 0;
1706	nr_started = 0;
1707	m_rate = t_rate = 0;
1708
1709	for_each_td(td, i) {
1710		print_status_init(td->thread_number - 1);
1711
1712		if (!td->o.create_serialize)
1713			continue;
1714
1715		/*
1716		 * do file setup here so it happens sequentially,
1717		 * we don't want X number of threads getting their
1718		 * client data interspersed on disk
1719		 */
1720		if (setup_files(td)) {
1721			exit_value++;
1722			if (td->error)
1723				log_err("fio: pid=%d, err=%d/%s\n",
1724					(int) td->pid, td->error, td->verror);
1725			td_set_runstate(td, TD_REAPED);
1726			todo--;
1727		} else {
1728			struct fio_file *f;
1729			unsigned int j;
1730
1731			/*
1732			 * for sharing to work, each job must always open
1733			 * its own files. so close them, if we opened them
1734			 * for creation
1735			 */
1736			for_each_file(td, f, j) {
1737				if (fio_file_open(f))
1738					td_io_close_file(td, f);
1739			}
1740		}
1741	}
1742
1743	/* start idle threads before io threads start to run */
1744	fio_idle_prof_start();
1745
1746	set_genesis_time();
1747
1748	while (todo) {
1749		struct thread_data *map[REAL_MAX_JOBS];
1750		struct timeval this_start;
1751		int this_jobs = 0, left;
1752
1753		/*
1754		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1755		 */
1756		for_each_td(td, i) {
1757			if (td->runstate != TD_NOT_CREATED)
1758				continue;
1759
1760			/*
1761			 * never got a chance to start, killed by other
1762			 * thread for some reason
1763			 */
1764			if (td->terminate) {
1765				todo--;
1766				continue;
1767			}
1768
1769			if (td->o.start_delay) {
1770				spent = mtime_since_genesis();
1771
1772				if (td->o.start_delay * 1000 > spent)
1773					continue;
1774			}
1775
1776			if (td->o.stonewall && (nr_started || nr_running)) {
1777				dprint(FD_PROCESS, "%s: stonewall wait\n",
1778							td->o.name);
1779				break;
1780			}
1781
1782			init_disk_util(td);
1783
1784			td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1785			td->update_rusage = 0;
1786
1787			/*
1788			 * Set state to created. Thread will transition
1789			 * to TD_INITIALIZED when it's done setting up.
1790			 */
1791			td_set_runstate(td, TD_CREATED);
1792			map[this_jobs++] = td;
1793			nr_started++;
1794
1795			if (td->o.use_thread) {
1796				int ret;
1797
1798				dprint(FD_PROCESS, "will pthread_create\n");
1799				ret = pthread_create(&td->thread, NULL,
1800							thread_main, td);
1801				if (ret) {
1802					log_err("pthread_create: %s\n",
1803							strerror(ret));
1804					nr_started--;
1805					break;
1806				}
1807				ret = pthread_detach(td->thread);
1808				if (ret)
1809					log_err("pthread_detach: %s",
1810							strerror(ret));
1811			} else {
1812				pid_t pid;
1813				dprint(FD_PROCESS, "will fork\n");
1814				pid = fork();
1815				if (!pid) {
1816					int ret = fork_main(shm_id, i);
1817
1818					_exit(ret);
1819				} else if (i == fio_debug_jobno)
1820					*fio_debug_jobp = pid;
1821			}
1822			dprint(FD_MUTEX, "wait on startup_mutex\n");
1823			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1824				log_err("fio: job startup hung? exiting.\n");
1825				fio_terminate_threads(TERMINATE_ALL);
1826				fio_abort = 1;
1827				nr_started--;
1828				break;
1829			}
1830			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1831		}
1832
1833		/*
1834		 * Wait for the started threads to transition to
1835		 * TD_INITIALIZED.
1836		 */
1837		fio_gettime(&this_start, NULL);
1838		left = this_jobs;
1839		while (left && !fio_abort) {
1840			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1841				break;
1842
1843			do_usleep(100000);
1844
1845			for (i = 0; i < this_jobs; i++) {
1846				td = map[i];
1847				if (!td)
1848					continue;
1849				if (td->runstate == TD_INITIALIZED) {
1850					map[i] = NULL;
1851					left--;
1852				} else if (td->runstate >= TD_EXITED) {
1853					map[i] = NULL;
1854					left--;
1855					todo--;
1856					nr_running++; /* work-around... */
1857				}
1858			}
1859		}
1860
1861		if (left) {
1862			log_err("fio: %d job%s failed to start\n", left,
1863					left > 1 ? "s" : "");
1864			for (i = 0; i < this_jobs; i++) {
1865				td = map[i];
1866				if (!td)
1867					continue;
1868				kill(td->pid, SIGTERM);
1869			}
1870			break;
1871		}
1872
1873		/*
1874		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1875		 */
1876		for_each_td(td, i) {
1877			if (td->runstate != TD_INITIALIZED)
1878				continue;
1879
1880			if (in_ramp_time(td))
1881				td_set_runstate(td, TD_RAMP);
1882			else
1883				td_set_runstate(td, TD_RUNNING);
1884			nr_running++;
1885			nr_started--;
1886			m_rate += ddir_rw_sum(td->o.ratemin);
1887			t_rate += ddir_rw_sum(td->o.rate);
1888			todo--;
1889			fio_mutex_up(td->mutex);
1890		}
1891
1892		reap_threads(&nr_running, &t_rate, &m_rate);
1893
1894		if (todo)
1895			do_usleep(100000);
1896	}
1897
1898	while (nr_running) {
1899		reap_threads(&nr_running, &t_rate, &m_rate);
1900		do_usleep(10000);
1901	}
1902
1903	fio_idle_prof_stop();
1904
1905	update_io_ticks();
1906}
1907
1908void wait_for_disk_thread_exit(void)
1909{
1910	fio_mutex_down(disk_thread_mutex);
1911}
1912
1913static void free_disk_util(void)
1914{
1915	disk_util_start_exit();
1916	wait_for_disk_thread_exit();
1917	disk_util_prune_entries();
1918}
1919
1920static void *disk_thread_main(void *data)
1921{
1922	int ret = 0;
1923
1924	fio_mutex_up(startup_mutex);
1925
1926	while (threads && !ret) {
1927		usleep(DISK_UTIL_MSEC * 1000);
1928		if (!threads)
1929			break;
1930		ret = update_io_ticks();
1931
1932		if (!is_backend)
1933			print_thread_status();
1934	}
1935
1936	fio_mutex_up(disk_thread_mutex);
1937	return NULL;
1938}
1939
1940static int create_disk_util_thread(void)
1941{
1942	int ret;
1943
1944	setup_disk_util();
1945
1946	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1947
1948	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1949	if (ret) {
1950		fio_mutex_remove(disk_thread_mutex);
1951		log_err("Can't create disk util thread: %s\n", strerror(ret));
1952		return 1;
1953	}
1954
1955	ret = pthread_detach(disk_util_thread);
1956	if (ret) {
1957		fio_mutex_remove(disk_thread_mutex);
1958		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1959		return 1;
1960	}
1961
1962	dprint(FD_MUTEX, "wait on startup_mutex\n");
1963	fio_mutex_down(startup_mutex);
1964	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1965	return 0;
1966}
1967
1968int fio_backend(void)
1969{
1970	struct thread_data *td;
1971	int i;
1972
1973	if (exec_profile) {
1974		if (load_profile(exec_profile))
1975			return 1;
1976		free(exec_profile);
1977		exec_profile = NULL;
1978	}
1979	if (!thread_number)
1980		return 0;
1981
1982	if (write_bw_log) {
1983		setup_log(&agg_io_log[DDIR_READ], 0, IO_LOG_TYPE_BW);
1984		setup_log(&agg_io_log[DDIR_WRITE], 0, IO_LOG_TYPE_BW);
1985		setup_log(&agg_io_log[DDIR_TRIM], 0, IO_LOG_TYPE_BW);
1986	}
1987
1988	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1989	if (startup_mutex == NULL)
1990		return 1;
1991	writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1992	if (writeout_mutex == NULL)
1993		return 1;
1994
1995	set_genesis_time();
1996	stat_init();
1997	create_disk_util_thread();
1998
1999	cgroup_list = smalloc(sizeof(*cgroup_list));
2000	INIT_FLIST_HEAD(cgroup_list);
2001
2002	run_threads();
2003
2004	if (!fio_abort) {
2005		show_run_stats();
2006		if (write_bw_log) {
2007			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
2008			__finish_log(agg_io_log[DDIR_WRITE],
2009					"agg-write_bw.log");
2010			__finish_log(agg_io_log[DDIR_TRIM],
2011					"agg-write_bw.log");
2012		}
2013	}
2014
2015	for_each_td(td, i)
2016		fio_options_free(td);
2017
2018	free_disk_util();
2019	cgroup_kill(cgroup_list);
2020	sfree(cgroup_list);
2021	sfree(cgroup_mnt);
2022
2023	fio_mutex_remove(startup_mutex);
2024	fio_mutex_remove(writeout_mutex);
2025	fio_mutex_remove(disk_thread_mutex);
2026	stat_exit();
2027	return exit_value;
2028}
2029