backend.c revision f3afa57e36550288340f1b6c694f354ae72654b9
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License version 2 as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/shm.h>
38#include <sys/mman.h>
39
40#include "fio.h"
41#include "hash.h"
42#include "smalloc.h"
43#include "verify.h"
44#include "trim.h"
45#include "diskutil.h"
46#include "cgroup.h"
47#include "profile.h"
48#include "lib/rand.h"
49#include "memalign.h"
50#include "server.h"
51
52static pthread_t disk_util_thread;
53static struct fio_mutex *disk_thread_mutex;
54static struct fio_mutex *startup_mutex;
55static struct fio_mutex *writeout_mutex;
56static struct flist_head *cgroup_list;
57static char *cgroup_mnt;
58static int exit_value;
59static volatile int fio_abort;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_process = 0;
66unsigned int nr_thread = 0;
67int shm_id = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70
71#define PAGE_ALIGN(buf)	\
72	(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
73
74#define JOB_START_TIMEOUT	(5 * 1000)
75
76static void sig_int(int sig)
77{
78	if (threads) {
79		if (is_backend)
80			fio_server_got_signal(sig);
81		else {
82			log_info("\nfio: terminating on signal %d\n", sig);
83			fflush(stdout);
84			exit_value = 128;
85		}
86
87		fio_terminate_threads(TERMINATE_ALL);
88	}
89}
90
91static void sig_show_status(int sig)
92{
93	show_running_run_stats();
94}
95
96static void set_sig_handlers(void)
97{
98	struct sigaction act;
99
100	memset(&act, 0, sizeof(act));
101	act.sa_handler = sig_int;
102	act.sa_flags = SA_RESTART;
103	sigaction(SIGINT, &act, NULL);
104
105	memset(&act, 0, sizeof(act));
106	act.sa_handler = sig_int;
107	act.sa_flags = SA_RESTART;
108	sigaction(SIGTERM, &act, NULL);
109
110	memset(&act, 0, sizeof(act));
111	act.sa_handler = sig_show_status;
112	act.sa_flags = SA_RESTART;
113	sigaction(SIGUSR1, &act, NULL);
114
115	if (is_backend) {
116		memset(&act, 0, sizeof(act));
117		act.sa_handler = sig_int;
118		act.sa_flags = SA_RESTART;
119		sigaction(SIGPIPE, &act, NULL);
120	}
121}
122
123/*
124 * Check if we are above the minimum rate given.
125 */
126static int __check_min_rate(struct thread_data *td, struct timeval *now,
127			    enum fio_ddir ddir)
128{
129	unsigned long long bytes = 0;
130	unsigned long iops = 0;
131	unsigned long spent;
132	unsigned long rate;
133	unsigned int ratemin = 0;
134	unsigned int rate_iops = 0;
135	unsigned int rate_iops_min = 0;
136
137	assert(ddir_rw(ddir));
138
139	if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
140		return 0;
141
142	/*
143	 * allow a 2 second settle period in the beginning
144	 */
145	if (mtime_since(&td->start, now) < 2000)
146		return 0;
147
148	iops += td->this_io_blocks[ddir];
149	bytes += td->this_io_bytes[ddir];
150	ratemin += td->o.ratemin[ddir];
151	rate_iops += td->o.rate_iops[ddir];
152	rate_iops_min += td->o.rate_iops_min[ddir];
153
154	/*
155	 * if rate blocks is set, sample is running
156	 */
157	if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
158		spent = mtime_since(&td->lastrate[ddir], now);
159		if (spent < td->o.ratecycle)
160			return 0;
161
162		if (td->o.rate[ddir]) {
163			/*
164			 * check bandwidth specified rate
165			 */
166			if (bytes < td->rate_bytes[ddir]) {
167				log_err("%s: min rate %u not met\n", td->o.name,
168								ratemin);
169				return 1;
170			} else {
171				rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
172				if (rate < ratemin ||
173				    bytes < td->rate_bytes[ddir]) {
174					log_err("%s: min rate %u not met, got"
175						" %luKB/sec\n", td->o.name,
176							ratemin, rate);
177					return 1;
178				}
179			}
180		} else {
181			/*
182			 * checks iops specified rate
183			 */
184			if (iops < rate_iops) {
185				log_err("%s: min iops rate %u not met\n",
186						td->o.name, rate_iops);
187				return 1;
188			} else {
189				rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
190				if (rate < rate_iops_min ||
191				    iops < td->rate_blocks[ddir]) {
192					log_err("%s: min iops rate %u not met,"
193						" got %lu\n", td->o.name,
194							rate_iops_min, rate);
195				}
196			}
197		}
198	}
199
200	td->rate_bytes[ddir] = bytes;
201	td->rate_blocks[ddir] = iops;
202	memcpy(&td->lastrate[ddir], now, sizeof(*now));
203	return 0;
204}
205
206static int check_min_rate(struct thread_data *td, struct timeval *now,
207			  unsigned long *bytes_done)
208{
209	int ret = 0;
210
211	if (bytes_done[DDIR_READ])
212		ret |= __check_min_rate(td, now, DDIR_READ);
213	if (bytes_done[DDIR_WRITE])
214		ret |= __check_min_rate(td, now, DDIR_WRITE);
215	if (bytes_done[DDIR_TRIM])
216		ret |= __check_min_rate(td, now, DDIR_TRIM);
217
218	return ret;
219}
220
221/*
222 * When job exits, we can cancel the in-flight IO if we are using async
223 * io. Attempt to do so.
224 */
225static void cleanup_pending_aio(struct thread_data *td)
226{
227	struct flist_head *entry, *n;
228	struct io_u *io_u;
229	int r;
230
231	/*
232	 * get immediately available events, if any
233	 */
234	r = io_u_queued_complete(td, 0, NULL);
235	if (r < 0)
236		return;
237
238	/*
239	 * now cancel remaining active events
240	 */
241	if (td->io_ops->cancel) {
242		flist_for_each_safe(entry, n, &td->io_u_busylist) {
243			io_u = flist_entry(entry, struct io_u, list);
244
245			/*
246			 * if the io_u isn't in flight, then that generally
247			 * means someone leaked an io_u. complain but fix
248			 * it up, so we don't stall here.
249			 */
250			if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
251				log_err("fio: non-busy IO on busy list\n");
252				put_io_u(td, io_u);
253			} else {
254				r = td->io_ops->cancel(td, io_u);
255				if (!r)
256					put_io_u(td, io_u);
257			}
258		}
259	}
260
261	if (td->cur_depth)
262		r = io_u_queued_complete(td, td->cur_depth, NULL);
263}
264
265/*
266 * Helper to handle the final sync of a file. Works just like the normal
267 * io path, just does everything sync.
268 */
269static int fio_io_sync(struct thread_data *td, struct fio_file *f)
270{
271	struct io_u *io_u = __get_io_u(td);
272	int ret;
273
274	if (!io_u)
275		return 1;
276
277	io_u->ddir = DDIR_SYNC;
278	io_u->file = f;
279
280	if (td_io_prep(td, io_u)) {
281		put_io_u(td, io_u);
282		return 1;
283	}
284
285requeue:
286	ret = td_io_queue(td, io_u);
287	if (ret < 0) {
288		td_verror(td, io_u->error, "td_io_queue");
289		put_io_u(td, io_u);
290		return 1;
291	} else if (ret == FIO_Q_QUEUED) {
292		if (io_u_queued_complete(td, 1, NULL) < 0)
293			return 1;
294	} else if (ret == FIO_Q_COMPLETED) {
295		if (io_u->error) {
296			td_verror(td, io_u->error, "td_io_queue");
297			return 1;
298		}
299
300		if (io_u_sync_complete(td, io_u, NULL) < 0)
301			return 1;
302	} else if (ret == FIO_Q_BUSY) {
303		if (td_io_commit(td))
304			return 1;
305		goto requeue;
306	}
307
308	return 0;
309}
310
311static inline void __update_tv_cache(struct thread_data *td)
312{
313	fio_gettime(&td->tv_cache, NULL);
314}
315
316static inline void update_tv_cache(struct thread_data *td)
317{
318	if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
319		__update_tv_cache(td);
320}
321
322static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
323{
324	if (in_ramp_time(td))
325		return 0;
326	if (!td->o.timeout)
327		return 0;
328	if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
329		return 1;
330
331	return 0;
332}
333
334static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
335			       int *retptr)
336{
337	int ret = *retptr;
338
339	if (ret < 0 || td->error) {
340		int err;
341
342		if (ret < 0)
343			err = -ret;
344		else
345			err = td->error;
346
347		if (!(td->o.continue_on_error & td_error_type(ddir, err)))
348			return 1;
349
350		if (td_non_fatal_error(err)) {
351		        /*
352		         * Continue with the I/Os in case of
353			 * a non fatal error.
354			 */
355			update_error_count(td, err);
356			td_clear_error(td);
357			*retptr = 0;
358			return 0;
359		} else if (td->o.fill_device && err == ENOSPC) {
360			/*
361			 * We expect to hit this error if
362			 * fill_device option is set.
363			 */
364			td_clear_error(td);
365			td->terminate = 1;
366			return 1;
367		} else {
368			/*
369			 * Stop the I/O in case of a fatal
370			 * error.
371			 */
372			update_error_count(td, err);
373			return 1;
374		}
375	}
376
377	return 0;
378}
379
380/*
381 * The main verify engine. Runs over the writes we previously submitted,
382 * reads the blocks back in, and checks the crc/md5 of the data.
383 */
384static void do_verify(struct thread_data *td)
385{
386	struct fio_file *f;
387	struct io_u *io_u;
388	int ret, min_events;
389	unsigned int i;
390
391	dprint(FD_VERIFY, "starting loop\n");
392
393	/*
394	 * sync io first and invalidate cache, to make sure we really
395	 * read from disk.
396	 */
397	for_each_file(td, f, i) {
398		if (!fio_file_open(f))
399			continue;
400		if (fio_io_sync(td, f))
401			break;
402		if (file_invalidate_cache(td, f))
403			break;
404	}
405
406	if (td->error)
407		return;
408
409	td_set_runstate(td, TD_VERIFYING);
410
411	io_u = NULL;
412	while (!td->terminate) {
413		int ret2, full;
414
415		update_tv_cache(td);
416
417		if (runtime_exceeded(td, &td->tv_cache)) {
418			__update_tv_cache(td);
419			if (runtime_exceeded(td, &td->tv_cache)) {
420				td->terminate = 1;
421				break;
422			}
423		}
424
425		if (flow_threshold_exceeded(td))
426			continue;
427
428		io_u = __get_io_u(td);
429		if (!io_u)
430			break;
431
432		if (get_next_verify(td, io_u)) {
433			put_io_u(td, io_u);
434			break;
435		}
436
437		if (td_io_prep(td, io_u)) {
438			put_io_u(td, io_u);
439			break;
440		}
441
442		if (td->o.verify_async)
443			io_u->end_io = verify_io_u_async;
444		else
445			io_u->end_io = verify_io_u;
446
447		ret = td_io_queue(td, io_u);
448		switch (ret) {
449		case FIO_Q_COMPLETED:
450			if (io_u->error) {
451				ret = -io_u->error;
452				clear_io_u(td, io_u);
453			} else if (io_u->resid) {
454				int bytes = io_u->xfer_buflen - io_u->resid;
455
456				/*
457				 * zero read, fail
458				 */
459				if (!bytes) {
460					td_verror(td, EIO, "full resid");
461					put_io_u(td, io_u);
462					break;
463				}
464
465				io_u->xfer_buflen = io_u->resid;
466				io_u->xfer_buf += bytes;
467				io_u->offset += bytes;
468
469				if (ddir_rw(io_u->ddir))
470					td->ts.short_io_u[io_u->ddir]++;
471
472				f = io_u->file;
473				if (io_u->offset == f->real_file_size)
474					goto sync_done;
475
476				requeue_io_u(td, &io_u);
477			} else {
478sync_done:
479				ret = io_u_sync_complete(td, io_u, NULL);
480				if (ret < 0)
481					break;
482			}
483			continue;
484		case FIO_Q_QUEUED:
485			break;
486		case FIO_Q_BUSY:
487			requeue_io_u(td, &io_u);
488			ret2 = td_io_commit(td);
489			if (ret2 < 0)
490				ret = ret2;
491			break;
492		default:
493			assert(ret < 0);
494			td_verror(td, -ret, "td_io_queue");
495			break;
496		}
497
498		if (break_on_this_error(td, io_u->ddir, &ret))
499			break;
500
501		/*
502		 * if we can queue more, do so. but check if there are
503		 * completed io_u's first. Note that we can get BUSY even
504		 * without IO queued, if the system is resource starved.
505		 */
506		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
507		if (full || !td->o.iodepth_batch_complete) {
508			min_events = min(td->o.iodepth_batch_complete,
509					 td->cur_depth);
510			/*
511			 * if the queue is full, we MUST reap at least 1 event
512			 */
513			if (full && !min_events)
514				min_events = 1;
515
516			do {
517				/*
518				 * Reap required number of io units, if any,
519				 * and do the verification on them through
520				 * the callback handler
521				 */
522				if (io_u_queued_complete(td, min_events, NULL) < 0) {
523					ret = -1;
524					break;
525				}
526			} while (full && (td->cur_depth > td->o.iodepth_low));
527		}
528		if (ret < 0)
529			break;
530	}
531
532	if (!td->error) {
533		min_events = td->cur_depth;
534
535		if (min_events)
536			ret = io_u_queued_complete(td, min_events, NULL);
537	} else
538		cleanup_pending_aio(td);
539
540	td_set_runstate(td, TD_RUNNING);
541
542	dprint(FD_VERIFY, "exiting loop\n");
543}
544
545static int io_bytes_exceeded(struct thread_data *td)
546{
547	unsigned long long bytes;
548
549	if (td_rw(td))
550		bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
551	else if (td_write(td))
552		bytes = td->this_io_bytes[DDIR_WRITE];
553	else if (td_read(td))
554		bytes = td->this_io_bytes[DDIR_READ];
555	else
556		bytes = td->this_io_bytes[DDIR_TRIM];
557
558	return bytes >= td->o.size;
559}
560
561/*
562 * Main IO worker function. It retrieves io_u's to process and queues
563 * and reaps them, checking for rate and errors along the way.
564 */
565static void do_io(struct thread_data *td)
566{
567	unsigned int i;
568	int ret = 0;
569
570	if (in_ramp_time(td))
571		td_set_runstate(td, TD_RAMP);
572	else
573		td_set_runstate(td, TD_RUNNING);
574
575	while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
576		(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
577		td->o.time_based) {
578		struct timeval comp_time;
579		unsigned long bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
580		int min_evts = 0;
581		struct io_u *io_u;
582		int ret2, full;
583		enum fio_ddir ddir;
584
585		if (td->terminate)
586			break;
587
588		update_tv_cache(td);
589
590		if (runtime_exceeded(td, &td->tv_cache)) {
591			__update_tv_cache(td);
592			if (runtime_exceeded(td, &td->tv_cache)) {
593				td->terminate = 1;
594				break;
595			}
596		}
597
598		if (flow_threshold_exceeded(td))
599			continue;
600
601		io_u = get_io_u(td);
602		if (!io_u)
603			break;
604
605		ddir = io_u->ddir;
606
607		/*
608		 * Add verification end_io handler if:
609		 *	- Asked to verify (!td_rw(td))
610		 *	- Or the io_u is from our verify list (mixed write/ver)
611		 */
612		if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
613		    ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
614			if (td->o.verify_async)
615				io_u->end_io = verify_io_u_async;
616			else
617				io_u->end_io = verify_io_u;
618			td_set_runstate(td, TD_VERIFYING);
619		} else if (in_ramp_time(td))
620			td_set_runstate(td, TD_RAMP);
621		else
622			td_set_runstate(td, TD_RUNNING);
623
624		ret = td_io_queue(td, io_u);
625		switch (ret) {
626		case FIO_Q_COMPLETED:
627			if (io_u->error) {
628				ret = -io_u->error;
629				clear_io_u(td, io_u);
630			} else if (io_u->resid) {
631				int bytes = io_u->xfer_buflen - io_u->resid;
632				struct fio_file *f = io_u->file;
633
634				/*
635				 * zero read, fail
636				 */
637				if (!bytes) {
638					td_verror(td, EIO, "full resid");
639					put_io_u(td, io_u);
640					break;
641				}
642
643				io_u->xfer_buflen = io_u->resid;
644				io_u->xfer_buf += bytes;
645				io_u->offset += bytes;
646
647				if (ddir_rw(io_u->ddir))
648					td->ts.short_io_u[io_u->ddir]++;
649
650				if (io_u->offset == f->real_file_size)
651					goto sync_done;
652
653				requeue_io_u(td, &io_u);
654			} else {
655sync_done:
656				if (__should_check_rate(td, DDIR_READ) ||
657				    __should_check_rate(td, DDIR_WRITE) ||
658				    __should_check_rate(td, DDIR_TRIM))
659					fio_gettime(&comp_time, NULL);
660
661				ret = io_u_sync_complete(td, io_u, bytes_done);
662				if (ret < 0)
663					break;
664			}
665			break;
666		case FIO_Q_QUEUED:
667			/*
668			 * if the engine doesn't have a commit hook,
669			 * the io_u is really queued. if it does have such
670			 * a hook, it has to call io_u_queued() itself.
671			 */
672			if (td->io_ops->commit == NULL)
673				io_u_queued(td, io_u);
674			break;
675		case FIO_Q_BUSY:
676			requeue_io_u(td, &io_u);
677			ret2 = td_io_commit(td);
678			if (ret2 < 0)
679				ret = ret2;
680			break;
681		default:
682			assert(ret < 0);
683			put_io_u(td, io_u);
684			break;
685		}
686
687		if (break_on_this_error(td, ddir, &ret))
688			break;
689
690		/*
691		 * See if we need to complete some commands. Note that we
692		 * can get BUSY even without IO queued, if the system is
693		 * resource starved.
694		 */
695		full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
696		if (full || !td->o.iodepth_batch_complete) {
697			min_evts = min(td->o.iodepth_batch_complete,
698					td->cur_depth);
699			/*
700			 * if the queue is full, we MUST reap at least 1 event
701			 */
702			if (full && !min_evts)
703				min_evts = 1;
704
705			if (__should_check_rate(td, DDIR_READ) ||
706			    __should_check_rate(td, DDIR_WRITE) ||
707			    __should_check_rate(td, DDIR_TRIM))
708				fio_gettime(&comp_time, NULL);
709
710			do {
711				ret = io_u_queued_complete(td, min_evts, bytes_done);
712				if (ret < 0)
713					break;
714
715			} while (full && (td->cur_depth > td->o.iodepth_low));
716		}
717
718		if (ret < 0)
719			break;
720		if (!ddir_rw_sum(bytes_done))
721			continue;
722
723		if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
724			if (check_min_rate(td, &comp_time, bytes_done)) {
725				if (exitall_on_terminate)
726					fio_terminate_threads(td->groupid);
727				td_verror(td, EIO, "check_min_rate");
728				break;
729			}
730		}
731
732		if (td->o.thinktime) {
733			unsigned long long b;
734
735			b = ddir_rw_sum(td->io_blocks);
736			if (!(b % td->o.thinktime_blocks)) {
737				int left;
738
739				if (td->o.thinktime_spin)
740					usec_spin(td->o.thinktime_spin);
741
742				left = td->o.thinktime - td->o.thinktime_spin;
743				if (left)
744					usec_sleep(td, left);
745			}
746		}
747	}
748
749	if (td->trim_entries)
750		log_err("fio: %d trim entries leaked?\n", td->trim_entries);
751
752	if (td->o.fill_device && td->error == ENOSPC) {
753		td->error = 0;
754		td->terminate = 1;
755	}
756	if (!td->error) {
757		struct fio_file *f;
758
759		i = td->cur_depth;
760		if (i) {
761			ret = io_u_queued_complete(td, i, NULL);
762			if (td->o.fill_device && td->error == ENOSPC)
763				td->error = 0;
764		}
765
766		if (should_fsync(td) && td->o.end_fsync) {
767			td_set_runstate(td, TD_FSYNCING);
768
769			for_each_file(td, f, i) {
770				if (!fio_file_open(f))
771					continue;
772				fio_io_sync(td, f);
773			}
774		}
775	} else
776		cleanup_pending_aio(td);
777
778	/*
779	 * stop job if we failed doing any IO
780	 */
781	if (!ddir_rw_sum(td->this_io_bytes))
782		td->done = 1;
783}
784
785static void cleanup_io_u(struct thread_data *td)
786{
787	struct flist_head *entry, *n;
788	struct io_u *io_u;
789
790	flist_for_each_safe(entry, n, &td->io_u_freelist) {
791		io_u = flist_entry(entry, struct io_u, list);
792
793		flist_del(&io_u->list);
794		fio_memfree(io_u, sizeof(*io_u));
795	}
796
797	free_io_mem(td);
798}
799
800static int init_io_u(struct thread_data *td)
801{
802	struct io_u *io_u;
803	unsigned int max_bs, min_write;
804	int cl_align, i, max_units;
805	char *p;
806
807	max_units = td->o.iodepth;
808	max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
809	max_bs = max(td->o.max_bs[DDIR_TRIM], max_bs);
810	min_write = td->o.min_bs[DDIR_WRITE];
811	td->orig_buffer_size = (unsigned long long) max_bs
812					* (unsigned long long) max_units;
813
814	if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
815		unsigned long bs;
816
817		bs = td->orig_buffer_size + td->o.hugepage_size - 1;
818		td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
819	}
820
821	if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
822		log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
823		return 1;
824	}
825
826	if (allocate_io_mem(td))
827		return 1;
828
829	if (td->o.odirect || td->o.mem_align ||
830	    (td->io_ops->flags & FIO_RAWIO))
831		p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
832	else
833		p = td->orig_buffer;
834
835	cl_align = os_cache_line_size();
836
837	for (i = 0; i < max_units; i++) {
838		void *ptr;
839
840		if (td->terminate)
841			return 1;
842
843		ptr = fio_memalign(cl_align, sizeof(*io_u));
844		if (!ptr) {
845			log_err("fio: unable to allocate aligned memory\n");
846			break;
847		}
848
849		io_u = ptr;
850		memset(io_u, 0, sizeof(*io_u));
851		INIT_FLIST_HEAD(&io_u->list);
852		dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
853
854		if (!(td->io_ops->flags & FIO_NOIO)) {
855			io_u->buf = p;
856			dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
857
858			if (td_write(td))
859				io_u_fill_buffer(td, io_u, min_write, max_bs);
860			if (td_write(td) && td->o.verify_pattern_bytes) {
861				/*
862				 * Fill the buffer with the pattern if we are
863				 * going to be doing writes.
864				 */
865				fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
866			}
867		}
868
869		io_u->index = i;
870		io_u->flags = IO_U_F_FREE;
871		flist_add(&io_u->list, &td->io_u_freelist);
872		p += max_bs;
873	}
874
875	return 0;
876}
877
878static int switch_ioscheduler(struct thread_data *td)
879{
880	char tmp[256], tmp2[128];
881	FILE *f;
882	int ret;
883
884	if (td->io_ops->flags & FIO_DISKLESSIO)
885		return 0;
886
887	sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
888
889	f = fopen(tmp, "r+");
890	if (!f) {
891		if (errno == ENOENT) {
892			log_err("fio: os or kernel doesn't support IO scheduler"
893				" switching\n");
894			return 0;
895		}
896		td_verror(td, errno, "fopen iosched");
897		return 1;
898	}
899
900	/*
901	 * Set io scheduler.
902	 */
903	ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
904	if (ferror(f) || ret != 1) {
905		td_verror(td, errno, "fwrite");
906		fclose(f);
907		return 1;
908	}
909
910	rewind(f);
911
912	/*
913	 * Read back and check that the selected scheduler is now the default.
914	 */
915	ret = fread(tmp, 1, sizeof(tmp), f);
916	if (ferror(f) || ret < 0) {
917		td_verror(td, errno, "fread");
918		fclose(f);
919		return 1;
920	}
921
922	sprintf(tmp2, "[%s]", td->o.ioscheduler);
923	if (!strstr(tmp, tmp2)) {
924		log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
925		td_verror(td, EINVAL, "iosched_switch");
926		fclose(f);
927		return 1;
928	}
929
930	fclose(f);
931	return 0;
932}
933
934static int keep_running(struct thread_data *td)
935{
936	if (td->done)
937		return 0;
938	if (td->o.time_based)
939		return 1;
940	if (td->o.loops) {
941		td->o.loops--;
942		return 1;
943	}
944
945	if (ddir_rw_sum(td->io_bytes) < td->o.size)
946		return 1;
947
948	return 0;
949}
950
951static int exec_string(const char *string)
952{
953	int ret, newlen = strlen(string) + 1 + 8;
954	char *str;
955
956	str = malloc(newlen);
957	sprintf(str, "sh -c %s", string);
958
959	ret = system(str);
960	if (ret == -1)
961		log_err("fio: exec of cmd <%s> failed\n", str);
962
963	free(str);
964	return ret;
965}
966
967/*
968 * Entry point for the thread based jobs. The process based jobs end up
969 * here as well, after a little setup.
970 */
971static void *thread_main(void *data)
972{
973	unsigned long long elapsed;
974	struct thread_data *td = data;
975	pthread_condattr_t attr;
976	int clear_state;
977
978	if (!td->o.use_thread) {
979		setsid();
980		td->pid = getpid();
981	} else
982		td->pid = gettid();
983
984	dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
985
986	INIT_FLIST_HEAD(&td->io_u_freelist);
987	INIT_FLIST_HEAD(&td->io_u_busylist);
988	INIT_FLIST_HEAD(&td->io_u_requeues);
989	INIT_FLIST_HEAD(&td->io_log_list);
990	INIT_FLIST_HEAD(&td->io_hist_list);
991	INIT_FLIST_HEAD(&td->verify_list);
992	INIT_FLIST_HEAD(&td->trim_list);
993	pthread_mutex_init(&td->io_u_lock, NULL);
994	td->io_hist_tree = RB_ROOT;
995
996	pthread_condattr_init(&attr);
997	pthread_cond_init(&td->verify_cond, &attr);
998	pthread_cond_init(&td->free_cond, &attr);
999
1000	td_set_runstate(td, TD_INITIALIZED);
1001	dprint(FD_MUTEX, "up startup_mutex\n");
1002	fio_mutex_up(startup_mutex);
1003	dprint(FD_MUTEX, "wait on td->mutex\n");
1004	fio_mutex_down(td->mutex);
1005	dprint(FD_MUTEX, "done waiting on td->mutex\n");
1006
1007	/*
1008	 * the ->mutex mutex is now no longer used, close it to avoid
1009	 * eating a file descriptor
1010	 */
1011	fio_mutex_remove(td->mutex);
1012
1013	/*
1014	 * A new gid requires privilege, so we need to do this before setting
1015	 * the uid.
1016	 */
1017	if (td->o.gid != -1U && setgid(td->o.gid)) {
1018		td_verror(td, errno, "setgid");
1019		goto err;
1020	}
1021	if (td->o.uid != -1U && setuid(td->o.uid)) {
1022		td_verror(td, errno, "setuid");
1023		goto err;
1024	}
1025
1026	/*
1027	 * If we have a gettimeofday() thread, make sure we exclude that
1028	 * thread from this job
1029	 */
1030	if (td->o.gtod_cpu)
1031		fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1032
1033	/*
1034	 * Set affinity first, in case it has an impact on the memory
1035	 * allocations.
1036	 */
1037	if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1038		td_verror(td, errno, "cpu_set_affinity");
1039		goto err;
1040	}
1041
1042	/*
1043	 * May alter parameters that init_io_u() will use, so we need to
1044	 * do this first.
1045	 */
1046	if (init_iolog(td))
1047		goto err;
1048
1049	if (init_io_u(td))
1050		goto err;
1051
1052	if (td->o.verify_async && verify_async_init(td))
1053		goto err;
1054
1055	if (td->ioprio_set) {
1056		if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1057			td_verror(td, errno, "ioprio_set");
1058			goto err;
1059		}
1060	}
1061
1062	if (td->o.cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1063		goto err;
1064
1065	errno = 0;
1066	if (nice(td->o.nice) == -1 && errno != 0) {
1067		td_verror(td, errno, "nice");
1068		goto err;
1069	}
1070
1071	if (td->o.ioscheduler && switch_ioscheduler(td))
1072		goto err;
1073
1074	if (!td->o.create_serialize && setup_files(td))
1075		goto err;
1076
1077	if (td_io_init(td))
1078		goto err;
1079
1080	if (init_random_map(td))
1081		goto err;
1082
1083	if (td->o.exec_prerun) {
1084		if (exec_string(td->o.exec_prerun))
1085			goto err;
1086	}
1087
1088	if (td->o.pre_read) {
1089		if (pre_read_files(td) < 0)
1090			goto err;
1091	}
1092
1093	fio_gettime(&td->epoch, NULL);
1094	getrusage(RUSAGE_SELF, &td->ru_start);
1095
1096	clear_state = 0;
1097	while (keep_running(td)) {
1098		fio_gettime(&td->start, NULL);
1099		memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1100		memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1101		memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1102
1103		if (td->o.ratemin[DDIR_READ] || td->o.ratemin[DDIR_WRITE] ||
1104				td->o.ratemin[DDIR_TRIM]) {
1105		        memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1106						sizeof(td->bw_sample_time));
1107		        memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1108						sizeof(td->bw_sample_time));
1109		        memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1110						sizeof(td->bw_sample_time));
1111		}
1112
1113		if (clear_state)
1114			clear_io_state(td);
1115
1116		prune_io_piece_log(td);
1117
1118		do_io(td);
1119
1120		clear_state = 1;
1121
1122		if (td_read(td) && td->io_bytes[DDIR_READ]) {
1123			elapsed = utime_since_now(&td->start);
1124			td->ts.runtime[DDIR_READ] += elapsed;
1125		}
1126		if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1127			elapsed = utime_since_now(&td->start);
1128			td->ts.runtime[DDIR_WRITE] += elapsed;
1129		}
1130		if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1131			elapsed = utime_since_now(&td->start);
1132			td->ts.runtime[DDIR_TRIM] += elapsed;
1133		}
1134
1135		if (td->error || td->terminate)
1136			break;
1137
1138		if (!td->o.do_verify ||
1139		    td->o.verify == VERIFY_NONE ||
1140		    (td->io_ops->flags & FIO_UNIDIR))
1141			continue;
1142
1143		clear_io_state(td);
1144
1145		fio_gettime(&td->start, NULL);
1146
1147		do_verify(td);
1148
1149		td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1150
1151		if (td->error || td->terminate)
1152			break;
1153	}
1154
1155	update_rusage_stat(td);
1156	td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
1157	td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
1158	td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
1159	td->ts.total_run_time = mtime_since_now(&td->epoch);
1160	td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1161	td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1162	td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1163
1164	fio_mutex_down(writeout_mutex);
1165	if (td->bw_log) {
1166		if (td->o.bw_log_file) {
1167			finish_log_named(td, td->bw_log,
1168						td->o.bw_log_file, "bw");
1169		} else
1170			finish_log(td, td->bw_log, "bw");
1171	}
1172	if (td->lat_log) {
1173		if (td->o.lat_log_file) {
1174			finish_log_named(td, td->lat_log,
1175						td->o.lat_log_file, "lat");
1176		} else
1177			finish_log(td, td->lat_log, "lat");
1178	}
1179	if (td->slat_log) {
1180		if (td->o.lat_log_file) {
1181			finish_log_named(td, td->slat_log,
1182						td->o.lat_log_file, "slat");
1183		} else
1184			finish_log(td, td->slat_log, "slat");
1185	}
1186	if (td->clat_log) {
1187		if (td->o.lat_log_file) {
1188			finish_log_named(td, td->clat_log,
1189						td->o.lat_log_file, "clat");
1190		} else
1191			finish_log(td, td->clat_log, "clat");
1192	}
1193	if (td->iops_log) {
1194		if (td->o.iops_log_file) {
1195			finish_log_named(td, td->iops_log,
1196						td->o.iops_log_file, "iops");
1197		} else
1198			finish_log(td, td->iops_log, "iops");
1199	}
1200
1201	fio_mutex_up(writeout_mutex);
1202	if (td->o.exec_postrun)
1203		exec_string(td->o.exec_postrun);
1204
1205	if (exitall_on_terminate)
1206		fio_terminate_threads(td->groupid);
1207
1208err:
1209	if (td->error)
1210		log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1211							td->verror);
1212
1213	if (td->o.verify_async)
1214		verify_async_exit(td);
1215
1216	close_and_free_files(td);
1217	close_ioengine(td);
1218	cleanup_io_u(td);
1219	cgroup_shutdown(td, &cgroup_mnt);
1220
1221	if (td->o.cpumask_set) {
1222		int ret = fio_cpuset_exit(&td->o.cpumask);
1223
1224		td_verror(td, ret, "fio_cpuset_exit");
1225	}
1226
1227	/*
1228	 * do this very late, it will log file closing as well
1229	 */
1230	if (td->o.write_iolog_file)
1231		write_iolog_close(td);
1232
1233	td_set_runstate(td, TD_EXITED);
1234	return (void *) (uintptr_t) td->error;
1235}
1236
1237
1238/*
1239 * We cannot pass the td data into a forked process, so attach the td and
1240 * pass it to the thread worker.
1241 */
1242static int fork_main(int shmid, int offset)
1243{
1244	struct thread_data *td;
1245	void *data, *ret;
1246
1247#ifndef __hpux
1248	data = shmat(shmid, NULL, 0);
1249	if (data == (void *) -1) {
1250		int __err = errno;
1251
1252		perror("shmat");
1253		return __err;
1254	}
1255#else
1256	/*
1257	 * HP-UX inherits shm mappings?
1258	 */
1259	data = threads;
1260#endif
1261
1262	td = data + offset * sizeof(struct thread_data);
1263	ret = thread_main(td);
1264	shmdt(data);
1265	return (int) (uintptr_t) ret;
1266}
1267
1268/*
1269 * Run over the job map and reap the threads that have exited, if any.
1270 */
1271static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1272			 unsigned int *m_rate)
1273{
1274	struct thread_data *td;
1275	unsigned int cputhreads, realthreads, pending;
1276	int i, status, ret;
1277
1278	/*
1279	 * reap exited threads (TD_EXITED -> TD_REAPED)
1280	 */
1281	realthreads = pending = cputhreads = 0;
1282	for_each_td(td, i) {
1283		int flags = 0;
1284
1285		/*
1286		 * ->io_ops is NULL for a thread that has closed its
1287		 * io engine
1288		 */
1289		if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1290			cputhreads++;
1291		else
1292			realthreads++;
1293
1294		if (!td->pid) {
1295			pending++;
1296			continue;
1297		}
1298		if (td->runstate == TD_REAPED)
1299			continue;
1300		if (td->o.use_thread) {
1301			if (td->runstate == TD_EXITED) {
1302				td_set_runstate(td, TD_REAPED);
1303				goto reaped;
1304			}
1305			continue;
1306		}
1307
1308		flags = WNOHANG;
1309		if (td->runstate == TD_EXITED)
1310			flags = 0;
1311
1312		/*
1313		 * check if someone quit or got killed in an unusual way
1314		 */
1315		ret = waitpid(td->pid, &status, flags);
1316		if (ret < 0) {
1317			if (errno == ECHILD) {
1318				log_err("fio: pid=%d disappeared %d\n",
1319						(int) td->pid, td->runstate);
1320				td->sig = ECHILD;
1321				td_set_runstate(td, TD_REAPED);
1322				goto reaped;
1323			}
1324			perror("waitpid");
1325		} else if (ret == td->pid) {
1326			if (WIFSIGNALED(status)) {
1327				int sig = WTERMSIG(status);
1328
1329				if (sig != SIGTERM)
1330					log_err("fio: pid=%d, got signal=%d\n",
1331							(int) td->pid, sig);
1332				td->sig = sig;
1333				td_set_runstate(td, TD_REAPED);
1334				goto reaped;
1335			}
1336			if (WIFEXITED(status)) {
1337				if (WEXITSTATUS(status) && !td->error)
1338					td->error = WEXITSTATUS(status);
1339
1340				td_set_runstate(td, TD_REAPED);
1341				goto reaped;
1342			}
1343		}
1344
1345		/*
1346		 * thread is not dead, continue
1347		 */
1348		pending++;
1349		continue;
1350reaped:
1351		(*nr_running)--;
1352		(*m_rate) -= ddir_rw_sum(td->o.ratemin);
1353		(*t_rate) -= ddir_rw_sum(td->o.rate);
1354		if (!td->pid)
1355			pending--;
1356
1357		if (td->error)
1358			exit_value++;
1359
1360		done_secs += mtime_since_now(&td->epoch) / 1000;
1361	}
1362
1363	if (*nr_running == cputhreads && !pending && realthreads)
1364		fio_terminate_threads(TERMINATE_ALL);
1365}
1366
1367/*
1368 * Main function for kicking off and reaping jobs, as needed.
1369 */
1370static void run_threads(void)
1371{
1372	struct thread_data *td;
1373	unsigned long spent;
1374	unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1375
1376	if (fio_pin_memory())
1377		return;
1378
1379	if (fio_gtod_offload && fio_start_gtod_thread())
1380		return;
1381
1382	set_sig_handlers();
1383
1384	if (output_format == FIO_OUTPUT_NORMAL) {
1385		log_info("Starting ");
1386		if (nr_thread)
1387			log_info("%d thread%s", nr_thread,
1388						nr_thread > 1 ? "s" : "");
1389		if (nr_process) {
1390			if (nr_thread)
1391				log_info(" and ");
1392			log_info("%d process%s", nr_process,
1393						nr_process > 1 ? "es" : "");
1394		}
1395		log_info("\n");
1396		fflush(stdout);
1397	}
1398
1399	todo = thread_number;
1400	nr_running = 0;
1401	nr_started = 0;
1402	m_rate = t_rate = 0;
1403
1404	for_each_td(td, i) {
1405		print_status_init(td->thread_number - 1);
1406
1407		if (!td->o.create_serialize)
1408			continue;
1409
1410		/*
1411		 * do file setup here so it happens sequentially,
1412		 * we don't want X number of threads getting their
1413		 * client data interspersed on disk
1414		 */
1415		if (setup_files(td)) {
1416			exit_value++;
1417			if (td->error)
1418				log_err("fio: pid=%d, err=%d/%s\n",
1419					(int) td->pid, td->error, td->verror);
1420			td_set_runstate(td, TD_REAPED);
1421			todo--;
1422		} else {
1423			struct fio_file *f;
1424			unsigned int j;
1425
1426			/*
1427			 * for sharing to work, each job must always open
1428			 * its own files. so close them, if we opened them
1429			 * for creation
1430			 */
1431			for_each_file(td, f, j) {
1432				if (fio_file_open(f))
1433					td_io_close_file(td, f);
1434			}
1435		}
1436	}
1437
1438	set_genesis_time();
1439
1440	while (todo) {
1441		struct thread_data *map[REAL_MAX_JOBS];
1442		struct timeval this_start;
1443		int this_jobs = 0, left;
1444
1445		/*
1446		 * create threads (TD_NOT_CREATED -> TD_CREATED)
1447		 */
1448		for_each_td(td, i) {
1449			if (td->runstate != TD_NOT_CREATED)
1450				continue;
1451
1452			/*
1453			 * never got a chance to start, killed by other
1454			 * thread for some reason
1455			 */
1456			if (td->terminate) {
1457				todo--;
1458				continue;
1459			}
1460
1461			if (td->o.start_delay) {
1462				spent = mtime_since_genesis();
1463
1464				if (td->o.start_delay * 1000 > spent)
1465					continue;
1466			}
1467
1468			if (td->o.stonewall && (nr_started || nr_running)) {
1469				dprint(FD_PROCESS, "%s: stonewall wait\n",
1470							td->o.name);
1471				break;
1472			}
1473
1474			init_disk_util(td);
1475
1476			/*
1477			 * Set state to created. Thread will transition
1478			 * to TD_INITIALIZED when it's done setting up.
1479			 */
1480			td_set_runstate(td, TD_CREATED);
1481			map[this_jobs++] = td;
1482			nr_started++;
1483
1484			if (td->o.use_thread) {
1485				int ret;
1486
1487				dprint(FD_PROCESS, "will pthread_create\n");
1488				ret = pthread_create(&td->thread, NULL,
1489							thread_main, td);
1490				if (ret) {
1491					log_err("pthread_create: %s\n",
1492							strerror(ret));
1493					nr_started--;
1494					break;
1495				}
1496				ret = pthread_detach(td->thread);
1497				if (ret)
1498					log_err("pthread_detach: %s",
1499							strerror(ret));
1500			} else {
1501				pid_t pid;
1502				dprint(FD_PROCESS, "will fork\n");
1503				pid = fork();
1504				if (!pid) {
1505					int ret = fork_main(shm_id, i);
1506
1507					_exit(ret);
1508				} else if (i == fio_debug_jobno)
1509					*fio_debug_jobp = pid;
1510			}
1511			dprint(FD_MUTEX, "wait on startup_mutex\n");
1512			if (fio_mutex_down_timeout(startup_mutex, 10)) {
1513				log_err("fio: job startup hung? exiting.\n");
1514				fio_terminate_threads(TERMINATE_ALL);
1515				fio_abort = 1;
1516				nr_started--;
1517				break;
1518			}
1519			dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1520		}
1521
1522		/*
1523		 * Wait for the started threads to transition to
1524		 * TD_INITIALIZED.
1525		 */
1526		fio_gettime(&this_start, NULL);
1527		left = this_jobs;
1528		while (left && !fio_abort) {
1529			if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1530				break;
1531
1532			usleep(100000);
1533
1534			for (i = 0; i < this_jobs; i++) {
1535				td = map[i];
1536				if (!td)
1537					continue;
1538				if (td->runstate == TD_INITIALIZED) {
1539					map[i] = NULL;
1540					left--;
1541				} else if (td->runstate >= TD_EXITED) {
1542					map[i] = NULL;
1543					left--;
1544					todo--;
1545					nr_running++; /* work-around... */
1546				}
1547			}
1548		}
1549
1550		if (left) {
1551			log_err("fio: %d job%s failed to start\n", left,
1552					left > 1 ? "s" : "");
1553			for (i = 0; i < this_jobs; i++) {
1554				td = map[i];
1555				if (!td)
1556					continue;
1557				kill(td->pid, SIGTERM);
1558			}
1559			break;
1560		}
1561
1562		/*
1563		 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1564		 */
1565		for_each_td(td, i) {
1566			if (td->runstate != TD_INITIALIZED)
1567				continue;
1568
1569			if (in_ramp_time(td))
1570				td_set_runstate(td, TD_RAMP);
1571			else
1572				td_set_runstate(td, TD_RUNNING);
1573			nr_running++;
1574			nr_started--;
1575			m_rate += ddir_rw_sum(td->o.ratemin);
1576			t_rate += ddir_rw_sum(td->o.rate);
1577			todo--;
1578			fio_mutex_up(td->mutex);
1579		}
1580
1581		reap_threads(&nr_running, &t_rate, &m_rate);
1582
1583		if (todo) {
1584			if (is_backend)
1585				fio_server_idle_loop();
1586			else
1587				usleep(100000);
1588		}
1589	}
1590
1591	while (nr_running) {
1592		reap_threads(&nr_running, &t_rate, &m_rate);
1593
1594		if (is_backend)
1595			fio_server_idle_loop();
1596		else
1597			usleep(10000);
1598	}
1599
1600	update_io_ticks();
1601	fio_unpin_memory();
1602}
1603
1604void wait_for_disk_thread_exit(void)
1605{
1606	fio_mutex_down(disk_thread_mutex);
1607}
1608
1609static void *disk_thread_main(void *data)
1610{
1611	int ret = 0;
1612
1613	fio_mutex_up(startup_mutex);
1614
1615	while (threads && !ret) {
1616		usleep(DISK_UTIL_MSEC * 1000);
1617		if (!threads)
1618			break;
1619		ret = update_io_ticks();
1620
1621		if (!is_backend)
1622			print_thread_status();
1623	}
1624
1625	fio_mutex_up(disk_thread_mutex);
1626	return NULL;
1627}
1628
1629static int create_disk_util_thread(void)
1630{
1631	int ret;
1632
1633	setup_disk_util();
1634
1635	disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1636
1637	ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
1638	if (ret) {
1639		fio_mutex_remove(disk_thread_mutex);
1640		log_err("Can't create disk util thread: %s\n", strerror(ret));
1641		return 1;
1642	}
1643
1644	ret = pthread_detach(disk_util_thread);
1645	if (ret) {
1646		fio_mutex_remove(disk_thread_mutex);
1647		log_err("Can't detatch disk util thread: %s\n", strerror(ret));
1648		return 1;
1649	}
1650
1651	dprint(FD_MUTEX, "wait on startup_mutex\n");
1652	fio_mutex_down(startup_mutex);
1653	dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1654	return 0;
1655}
1656
1657int fio_backend(void)
1658{
1659	struct thread_data *td;
1660	int i;
1661
1662	if (exec_profile) {
1663		if (load_profile(exec_profile))
1664			return 1;
1665		free(exec_profile);
1666		exec_profile = NULL;
1667	}
1668	if (!thread_number)
1669		return 0;
1670
1671	if (write_bw_log) {
1672		setup_log(&agg_io_log[DDIR_READ], 0);
1673		setup_log(&agg_io_log[DDIR_WRITE], 0);
1674		setup_log(&agg_io_log[DDIR_TRIM], 0);
1675	}
1676
1677	startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
1678	if (startup_mutex == NULL)
1679		return 1;
1680	writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
1681	if (writeout_mutex == NULL)
1682		return 1;
1683
1684	set_genesis_time();
1685	create_disk_util_thread();
1686
1687	cgroup_list = smalloc(sizeof(*cgroup_list));
1688	INIT_FLIST_HEAD(cgroup_list);
1689
1690	run_threads();
1691
1692	if (!fio_abort) {
1693		show_run_stats();
1694		if (write_bw_log) {
1695			__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1696			__finish_log(agg_io_log[DDIR_WRITE],
1697					"agg-write_bw.log");
1698			__finish_log(agg_io_log[DDIR_TRIM],
1699					"agg-write_bw.log");
1700		}
1701	}
1702
1703	for_each_td(td, i)
1704		fio_options_free(td);
1705
1706	free_disk_util();
1707	cgroup_kill(cgroup_list);
1708	sfree(cgroup_list);
1709	sfree(cgroup_mnt);
1710
1711	fio_mutex_remove(startup_mutex);
1712	fio_mutex_remove(writeout_mutex);
1713	fio_mutex_remove(disk_thread_mutex);
1714	return exit_value;
1715}
1716