1// Copyright 2013 Google Inc. All Rights Reserved.
2//
3// Redistribution and use in source and binary forms, with or without
4// modification, are permitted provided that the following conditions are
5// met:
6//
7//     * Redistributions of source code must retain the above copyright
8// notice, this list of conditions and the following disclaimer.
9//     * Redistributions in binary form must reproduce the above
10// copyright notice, this list of conditions and the following disclaimer
11// in the documentation and/or other materials provided with the
12// distribution.
13//     * Neither the name of Google Inc. nor the names of its
14// contributors may be used to endorse or promote products derived from
15// this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29// Scopers help you manage ownership of a pointer, helping you easily manage the
30// a pointer within a scope, and automatically destroying the pointer at the
31// end of a scope.  There are two main classes you will use, which correspond
32// to the operators new/delete and new[]/delete[].
33//
34// Example usage (scoped_ptr):
35//   {
36//     scoped_ptr<Foo> foo(new Foo("wee"));
37//   }  // foo goes out of scope, releasing the pointer with it.
38//
39//   {
40//     scoped_ptr<Foo> foo;          // No pointer managed.
41//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
42//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
43//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
44//     foo->Method();                // Foo::Method() called.
45//     foo.get()->Method();          // Foo::Method() called.
46//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
47//                                   // manages a pointer.
48//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
49//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
50//                                   // manages a pointer.
51//   }  // foo wasn't managing a pointer, so nothing was destroyed.
52//
53// Example usage (scoped_array):
54//   {
55//     scoped_array<Foo> foo(new Foo[100]);
56//     foo.get()->Method();  // Foo::Method on the 0th element.
57//     foo[10].Method();     // Foo::Method on the 10th element.
58//   }
59
60#ifndef COMMON_SCOPED_PTR_H_
61#define COMMON_SCOPED_PTR_H_
62
63// This is an implementation designed to match the anticipated future TR2
64// implementation of the scoped_ptr class, and its closely-related brethren,
65// scoped_array, scoped_ptr_malloc.
66
67#include <assert.h>
68#include <stddef.h>
69#include <stdlib.h>
70
71namespace google_breakpad {
72
73// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
74// automatically deletes the pointer it holds (if any).
75// That is, scoped_ptr<T> owns the T object that it points to.
76// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
77// Also like T*, scoped_ptr<T> is thread-compatible, and once you
78// dereference it, you get the threadsafety guarantees of T.
79//
80// The size of a scoped_ptr is small:
81// sizeof(scoped_ptr<C>) == sizeof(C*)
82template <class C>
83class scoped_ptr {
84 public:
85
86  // The element type
87  typedef C element_type;
88
89  // Constructor.  Defaults to initializing with NULL.
90  // There is no way to create an uninitialized scoped_ptr.
91  // The input parameter must be allocated with new.
92  explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
93
94  // Destructor.  If there is a C object, delete it.
95  // We don't need to test ptr_ == NULL because C++ does that for us.
96  ~scoped_ptr() {
97    enum { type_must_be_complete = sizeof(C) };
98    delete ptr_;
99  }
100
101  // Reset.  Deletes the current owned object, if any.
102  // Then takes ownership of a new object, if given.
103  // this->reset(this->get()) works.
104  void reset(C* p = NULL) {
105    if (p != ptr_) {
106      enum { type_must_be_complete = sizeof(C) };
107      delete ptr_;
108      ptr_ = p;
109    }
110  }
111
112  // Accessors to get the owned object.
113  // operator* and operator-> will assert() if there is no current object.
114  C& operator*() const {
115    assert(ptr_ != NULL);
116    return *ptr_;
117  }
118  C* operator->() const  {
119    assert(ptr_ != NULL);
120    return ptr_;
121  }
122  C* get() const { return ptr_; }
123
124  // Comparison operators.
125  // These return whether two scoped_ptr refer to the same object, not just to
126  // two different but equal objects.
127  bool operator==(C* p) const { return ptr_ == p; }
128  bool operator!=(C* p) const { return ptr_ != p; }
129
130  // Swap two scoped pointers.
131  void swap(scoped_ptr& p2) {
132    C* tmp = ptr_;
133    ptr_ = p2.ptr_;
134    p2.ptr_ = tmp;
135  }
136
137  // Release a pointer.
138  // The return value is the current pointer held by this object.
139  // If this object holds a NULL pointer, the return value is NULL.
140  // After this operation, this object will hold a NULL pointer,
141  // and will not own the object any more.
142  C* release() {
143    C* retVal = ptr_;
144    ptr_ = NULL;
145    return retVal;
146  }
147
148 private:
149  C* ptr_;
150
151  // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
152  // make sense, and if C2 == C, it still doesn't make sense because you should
153  // never have the same object owned by two different scoped_ptrs.
154  template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
155  template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
156
157  // Disallow evil constructors
158  scoped_ptr(const scoped_ptr&);
159  void operator=(const scoped_ptr&);
160};
161
162// Free functions
163template <class C>
164void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
165  p1.swap(p2);
166}
167
168template <class C>
169bool operator==(C* p1, const scoped_ptr<C>& p2) {
170  return p1 == p2.get();
171}
172
173template <class C>
174bool operator!=(C* p1, const scoped_ptr<C>& p2) {
175  return p1 != p2.get();
176}
177
178// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
179// with new [] and the destructor deletes objects with delete [].
180//
181// As with scoped_ptr<C>, a scoped_array<C> either points to an object
182// or is NULL.  A scoped_array<C> owns the object that it points to.
183// scoped_array<T> is thread-compatible, and once you index into it,
184// the returned objects have only the threadsafety guarantees of T.
185//
186// Size: sizeof(scoped_array<C>) == sizeof(C*)
187template <class C>
188class scoped_array {
189 public:
190
191  // The element type
192  typedef C element_type;
193
194  // Constructor.  Defaults to intializing with NULL.
195  // There is no way to create an uninitialized scoped_array.
196  // The input parameter must be allocated with new [].
197  explicit scoped_array(C* p = NULL) : array_(p) { }
198
199  // Destructor.  If there is a C object, delete it.
200  // We don't need to test ptr_ == NULL because C++ does that for us.
201  ~scoped_array() {
202    enum { type_must_be_complete = sizeof(C) };
203    delete[] array_;
204  }
205
206  // Reset.  Deletes the current owned object, if any.
207  // Then takes ownership of a new object, if given.
208  // this->reset(this->get()) works.
209  void reset(C* p = NULL) {
210    if (p != array_) {
211      enum { type_must_be_complete = sizeof(C) };
212      delete[] array_;
213      array_ = p;
214    }
215  }
216
217  // Get one element of the current object.
218  // Will assert() if there is no current object, or index i is negative.
219  C& operator[](ptrdiff_t i) const {
220    assert(i >= 0);
221    assert(array_ != NULL);
222    return array_[i];
223  }
224
225  // Get a pointer to the zeroth element of the current object.
226  // If there is no current object, return NULL.
227  C* get() const {
228    return array_;
229  }
230
231  // Comparison operators.
232  // These return whether two scoped_array refer to the same object, not just to
233  // two different but equal objects.
234  bool operator==(C* p) const { return array_ == p; }
235  bool operator!=(C* p) const { return array_ != p; }
236
237  // Swap two scoped arrays.
238  void swap(scoped_array& p2) {
239    C* tmp = array_;
240    array_ = p2.array_;
241    p2.array_ = tmp;
242  }
243
244  // Release an array.
245  // The return value is the current pointer held by this object.
246  // If this object holds a NULL pointer, the return value is NULL.
247  // After this operation, this object will hold a NULL pointer,
248  // and will not own the object any more.
249  C* release() {
250    C* retVal = array_;
251    array_ = NULL;
252    return retVal;
253  }
254
255 private:
256  C* array_;
257
258  // Forbid comparison of different scoped_array types.
259  template <class C2> bool operator==(scoped_array<C2> const& p2) const;
260  template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
261
262  // Disallow evil constructors
263  scoped_array(const scoped_array&);
264  void operator=(const scoped_array&);
265};
266
267// Free functions
268template <class C>
269void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
270  p1.swap(p2);
271}
272
273template <class C>
274bool operator==(C* p1, const scoped_array<C>& p2) {
275  return p1 == p2.get();
276}
277
278template <class C>
279bool operator!=(C* p1, const scoped_array<C>& p2) {
280  return p1 != p2.get();
281}
282
283// This class wraps the c library function free() in a class that can be
284// passed as a template argument to scoped_ptr_malloc below.
285class ScopedPtrMallocFree {
286 public:
287  inline void operator()(void* x) const {
288    free(x);
289  }
290};
291
292// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
293// second template argument, the functor used to free the object.
294
295template<class C, class FreeProc = ScopedPtrMallocFree>
296class scoped_ptr_malloc {
297 public:
298
299  // The element type
300  typedef C element_type;
301
302  // Constructor.  Defaults to initializing with NULL.
303  // There is no way to create an uninitialized scoped_ptr.
304  // The input parameter must be allocated with an allocator that matches the
305  // Free functor.  For the default Free functor, this is malloc, calloc, or
306  // realloc.
307  explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
308
309  // Destructor.  If there is a C object, call the Free functor.
310  ~scoped_ptr_malloc() {
311    reset();
312  }
313
314  // Reset.  Calls the Free functor on the current owned object, if any.
315  // Then takes ownership of a new object, if given.
316  // this->reset(this->get()) works.
317  void reset(C* p = NULL) {
318    if (ptr_ != p) {
319      FreeProc free_proc;
320      free_proc(ptr_);
321      ptr_ = p;
322    }
323  }
324
325  // Get the current object.
326  // operator* and operator-> will cause an assert() failure if there is
327  // no current object.
328  C& operator*() const {
329    assert(ptr_ != NULL);
330    return *ptr_;
331  }
332
333  C* operator->() const {
334    assert(ptr_ != NULL);
335    return ptr_;
336  }
337
338  C* get() const {
339    return ptr_;
340  }
341
342  // Comparison operators.
343  // These return whether a scoped_ptr_malloc and a plain pointer refer
344  // to the same object, not just to two different but equal objects.
345  // For compatibility with the boost-derived implementation, these
346  // take non-const arguments.
347  bool operator==(C* p) const {
348    return ptr_ == p;
349  }
350
351  bool operator!=(C* p) const {
352    return ptr_ != p;
353  }
354
355  // Swap two scoped pointers.
356  void swap(scoped_ptr_malloc & b) {
357    C* tmp = b.ptr_;
358    b.ptr_ = ptr_;
359    ptr_ = tmp;
360  }
361
362  // Release a pointer.
363  // The return value is the current pointer held by this object.
364  // If this object holds a NULL pointer, the return value is NULL.
365  // After this operation, this object will hold a NULL pointer,
366  // and will not own the object any more.
367  C* release() {
368    C* tmp = ptr_;
369    ptr_ = NULL;
370    return tmp;
371  }
372
373 private:
374  C* ptr_;
375
376  // no reason to use these: each scoped_ptr_malloc should have its own object
377  template <class C2, class GP>
378  bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
379  template <class C2, class GP>
380  bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
381
382  // Disallow evil constructors
383  scoped_ptr_malloc(const scoped_ptr_malloc&);
384  void operator=(const scoped_ptr_malloc&);
385};
386
387template<class C, class FP> inline
388void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
389  a.swap(b);
390}
391
392template<class C, class FP> inline
393bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
394  return p == b.get();
395}
396
397template<class C, class FP> inline
398bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
399  return p != b.get();
400}
401
402}  // namespace google_breakpad
403
404#endif  // COMMON_SCOPED_PTR_H_
405