1/*
2 * jcarith.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Developed 1997-2009 by Guido Vollbeding.
6 * It was modified by The libjpeg-turbo Project to include only code relevant
7 * to libjpeg-turbo.
8 * For conditions of distribution and use, see the accompanying README file.
9 *
10 * This file contains portable arithmetic entropy encoding routines for JPEG
11 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
12 *
13 * Both sequential and progressive modes are supported in this single module.
14 *
15 * Suspension is not currently supported in this module.
16 */
17
18#define JPEG_INTERNALS
19#include "jinclude.h"
20#include "jpeglib.h"
21
22
23/* Expanded entropy encoder object for arithmetic encoding. */
24
25typedef struct {
26  struct jpeg_entropy_encoder pub; /* public fields */
27
28  INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
29  INT32 a;               /* A register, normalized size of coding interval */
30  INT32 sc;        /* counter for stacked 0xFF values which might overflow */
31  INT32 zc;          /* counter for pending 0x00 output values which might *
32                          * be discarded at the end ("Pacman" termination) */
33  int ct;  /* bit shift counter, determines when next byte will be written */
34  int buffer;                /* buffer for most recent output byte != 0xFF */
35
36  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
37  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
38
39  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
40  int next_restart_num;         /* next restart number to write (0-7) */
41
42  /* Pointers to statistics areas (these workspaces have image lifespan) */
43  unsigned char * dc_stats[NUM_ARITH_TBLS];
44  unsigned char * ac_stats[NUM_ARITH_TBLS];
45
46  /* Statistics bin for coding with fixed probability 0.5 */
47  unsigned char fixed_bin[4];
48} arith_entropy_encoder;
49
50typedef arith_entropy_encoder * arith_entropy_ptr;
51
52/* The following two definitions specify the allocation chunk size
53 * for the statistics area.
54 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
55 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
56 *
57 * We use a compact representation with 1 byte per statistics bin,
58 * thus the numbers directly represent byte sizes.
59 * This 1 byte per statistics bin contains the meaning of the MPS
60 * (more probable symbol) in the highest bit (mask 0x80), and the
61 * index into the probability estimation state machine table
62 * in the lower bits (mask 0x7F).
63 */
64
65#define DC_STAT_BINS 64
66#define AC_STAT_BINS 256
67
68/* NOTE: Uncomment the following #define if you want to use the
69 * given formula for calculating the AC conditioning parameter Kx
70 * for spectral selection progressive coding in section G.1.3.2
71 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
72 * Although the spec and P&M authors claim that this "has proven
73 * to give good results for 8 bit precision samples", I'm not
74 * convinced yet that this is really beneficial.
75 * Early tests gave only very marginal compression enhancements
76 * (a few - around 5 or so - bytes even for very large files),
77 * which would turn out rather negative if we'd suppress the
78 * DAC (Define Arithmetic Conditioning) marker segments for
79 * the default parameters in the future.
80 * Note that currently the marker writing module emits 12-byte
81 * DAC segments for a full-component scan in a color image.
82 * This is not worth worrying about IMHO. However, since the
83 * spec defines the default values to be used if the tables
84 * are omitted (unlike Huffman tables, which are required
85 * anyway), one might optimize this behaviour in the future,
86 * and then it would be disadvantageous to use custom tables if
87 * they don't provide sufficient gain to exceed the DAC size.
88 *
89 * On the other hand, I'd consider it as a reasonable result
90 * that the conditioning has no significant influence on the
91 * compression performance. This means that the basic
92 * statistical model is already rather stable.
93 *
94 * Thus, at the moment, we use the default conditioning values
95 * anyway, and do not use the custom formula.
96 *
97#define CALCULATE_SPECTRAL_CONDITIONING
98 */
99
100/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
101 * We assume that int right shift is unsigned if INT32 right shift is,
102 * which should be safe.
103 */
104
105#ifdef RIGHT_SHIFT_IS_UNSIGNED
106#define ISHIFT_TEMPS    int ishift_temp;
107#define IRIGHT_SHIFT(x,shft)  \
108        ((ishift_temp = (x)) < 0 ? \
109         (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
110         (ishift_temp >> (shft)))
111#else
112#define ISHIFT_TEMPS
113#define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
114#endif
115
116
117LOCAL(void)
118emit_byte (int val, j_compress_ptr cinfo)
119/* Write next output byte; we do not support suspension in this module. */
120{
121  struct jpeg_destination_mgr * dest = cinfo->dest;
122
123  *dest->next_output_byte++ = (JOCTET) val;
124  if (--dest->free_in_buffer == 0)
125    if (! (*dest->empty_output_buffer) (cinfo))
126      ERREXIT(cinfo, JERR_CANT_SUSPEND);
127}
128
129
130/*
131 * Finish up at the end of an arithmetic-compressed scan.
132 */
133
134METHODDEF(void)
135finish_pass (j_compress_ptr cinfo)
136{
137  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
138  INT32 temp;
139
140  /* Section D.1.8: Termination of encoding */
141
142  /* Find the e->c in the coding interval with the largest
143   * number of trailing zero bits */
144  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
145    e->c = temp + 0x8000L;
146  else
147    e->c = temp;
148  /* Send remaining bytes to output */
149  e->c <<= e->ct;
150  if (e->c & 0xF8000000L) {
151    /* One final overflow has to be handled */
152    if (e->buffer >= 0) {
153      if (e->zc)
154        do emit_byte(0x00, cinfo);
155        while (--e->zc);
156      emit_byte(e->buffer + 1, cinfo);
157      if (e->buffer + 1 == 0xFF)
158        emit_byte(0x00, cinfo);
159    }
160    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
161    e->sc = 0;
162  } else {
163    if (e->buffer == 0)
164      ++e->zc;
165    else if (e->buffer >= 0) {
166      if (e->zc)
167        do emit_byte(0x00, cinfo);
168        while (--e->zc);
169      emit_byte(e->buffer, cinfo);
170    }
171    if (e->sc) {
172      if (e->zc)
173        do emit_byte(0x00, cinfo);
174        while (--e->zc);
175      do {
176        emit_byte(0xFF, cinfo);
177        emit_byte(0x00, cinfo);
178      } while (--e->sc);
179    }
180  }
181  /* Output final bytes only if they are not 0x00 */
182  if (e->c & 0x7FFF800L) {
183    if (e->zc)  /* output final pending zero bytes */
184      do emit_byte(0x00, cinfo);
185      while (--e->zc);
186    emit_byte((e->c >> 19) & 0xFF, cinfo);
187    if (((e->c >> 19) & 0xFF) == 0xFF)
188      emit_byte(0x00, cinfo);
189    if (e->c & 0x7F800L) {
190      emit_byte((e->c >> 11) & 0xFF, cinfo);
191      if (((e->c >> 11) & 0xFF) == 0xFF)
192        emit_byte(0x00, cinfo);
193    }
194  }
195}
196
197
198/*
199 * The core arithmetic encoding routine (common in JPEG and JBIG).
200 * This needs to go as fast as possible.
201 * Machine-dependent optimization facilities
202 * are not utilized in this portable implementation.
203 * However, this code should be fairly efficient and
204 * may be a good base for further optimizations anyway.
205 *
206 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
207 *
208 * Note: I've added full "Pacman" termination support to the
209 * byte output routines, which is equivalent to the optional
210 * Discard_final_zeros procedure (Figure D.15) in the spec.
211 * Thus, we always produce the shortest possible output
212 * stream compliant to the spec (no trailing zero bytes,
213 * except for FF stuffing).
214 *
215 * I've also introduced a new scheme for accessing
216 * the probability estimation state machine table,
217 * derived from Markus Kuhn's JBIG implementation.
218 */
219
220LOCAL(void)
221arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
222{
223  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
224  register unsigned char nl, nm;
225  register INT32 qe, temp;
226  register int sv;
227
228  /* Fetch values from our compact representation of Table D.2:
229   * Qe values and probability estimation state machine
230   */
231  sv = *st;
232  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
233  nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
234  nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
235
236  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
237  e->a -= qe;
238  if (val != (sv >> 7)) {
239    /* Encode the less probable symbol */
240    if (e->a >= qe) {
241      /* If the interval size (qe) for the less probable symbol (LPS)
242       * is larger than the interval size for the MPS, then exchange
243       * the two symbols for coding efficiency, otherwise code the LPS
244       * as usual: */
245      e->c += e->a;
246      e->a = qe;
247    }
248    *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
249  } else {
250    /* Encode the more probable symbol */
251    if (e->a >= 0x8000L)
252      return;  /* A >= 0x8000 -> ready, no renormalization required */
253    if (e->a < qe) {
254      /* If the interval size (qe) for the less probable symbol (LPS)
255       * is larger than the interval size for the MPS, then exchange
256       * the two symbols for coding efficiency: */
257      e->c += e->a;
258      e->a = qe;
259    }
260    *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
261  }
262
263  /* Renormalization & data output per section D.1.6 */
264  do {
265    e->a <<= 1;
266    e->c <<= 1;
267    if (--e->ct == 0) {
268      /* Another byte is ready for output */
269      temp = e->c >> 19;
270      if (temp > 0xFF) {
271        /* Handle overflow over all stacked 0xFF bytes */
272        if (e->buffer >= 0) {
273          if (e->zc)
274            do emit_byte(0x00, cinfo);
275            while (--e->zc);
276          emit_byte(e->buffer + 1, cinfo);
277          if (e->buffer + 1 == 0xFF)
278            emit_byte(0x00, cinfo);
279        }
280        e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
281        e->sc = 0;
282        /* Note: The 3 spacer bits in the C register guarantee
283         * that the new buffer byte can't be 0xFF here
284         * (see page 160 in the P&M JPEG book). */
285        e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
286      } else if (temp == 0xFF) {
287        ++e->sc;  /* stack 0xFF byte (which might overflow later) */
288      } else {
289        /* Output all stacked 0xFF bytes, they will not overflow any more */
290        if (e->buffer == 0)
291          ++e->zc;
292        else if (e->buffer >= 0) {
293          if (e->zc)
294            do emit_byte(0x00, cinfo);
295            while (--e->zc);
296          emit_byte(e->buffer, cinfo);
297        }
298        if (e->sc) {
299          if (e->zc)
300            do emit_byte(0x00, cinfo);
301            while (--e->zc);
302          do {
303            emit_byte(0xFF, cinfo);
304            emit_byte(0x00, cinfo);
305          } while (--e->sc);
306        }
307        e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
308      }
309      e->c &= 0x7FFFFL;
310      e->ct += 8;
311    }
312  } while (e->a < 0x8000L);
313}
314
315
316/*
317 * Emit a restart marker & resynchronize predictions.
318 */
319
320LOCAL(void)
321emit_restart (j_compress_ptr cinfo, int restart_num)
322{
323  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324  int ci;
325  jpeg_component_info * compptr;
326
327  finish_pass(cinfo);
328
329  emit_byte(0xFF, cinfo);
330  emit_byte(JPEG_RST0 + restart_num, cinfo);
331
332  /* Re-initialize statistics areas */
333  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
334    compptr = cinfo->cur_comp_info[ci];
335    /* DC needs no table for refinement scan */
336    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
337      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
338      /* Reset DC predictions to 0 */
339      entropy->last_dc_val[ci] = 0;
340      entropy->dc_context[ci] = 0;
341    }
342    /* AC needs no table when not present */
343    if (cinfo->progressive_mode == 0 || cinfo->Se) {
344      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
345    }
346  }
347
348  /* Reset arithmetic encoding variables */
349  entropy->c = 0;
350  entropy->a = 0x10000L;
351  entropy->sc = 0;
352  entropy->zc = 0;
353  entropy->ct = 11;
354  entropy->buffer = -1;  /* empty */
355}
356
357
358/*
359 * MCU encoding for DC initial scan (either spectral selection,
360 * or first pass of successive approximation).
361 */
362
363METHODDEF(boolean)
364encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
365{
366  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
367  JBLOCKROW block;
368  unsigned char *st;
369  int blkn, ci, tbl;
370  int v, v2, m;
371  ISHIFT_TEMPS
372
373  /* Emit restart marker if needed */
374  if (cinfo->restart_interval) {
375    if (entropy->restarts_to_go == 0) {
376      emit_restart(cinfo, entropy->next_restart_num);
377      entropy->restarts_to_go = cinfo->restart_interval;
378      entropy->next_restart_num++;
379      entropy->next_restart_num &= 7;
380    }
381    entropy->restarts_to_go--;
382  }
383
384  /* Encode the MCU data blocks */
385  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
386    block = MCU_data[blkn];
387    ci = cinfo->MCU_membership[blkn];
388    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
389
390    /* Compute the DC value after the required point transform by Al.
391     * This is simply an arithmetic right shift.
392     */
393    m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
394
395    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
396
397    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
398    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
399
400    /* Figure F.4: Encode_DC_DIFF */
401    if ((v = m - entropy->last_dc_val[ci]) == 0) {
402      arith_encode(cinfo, st, 0);
403      entropy->dc_context[ci] = 0;      /* zero diff category */
404    } else {
405      entropy->last_dc_val[ci] = m;
406      arith_encode(cinfo, st, 1);
407      /* Figure F.6: Encoding nonzero value v */
408      /* Figure F.7: Encoding the sign of v */
409      if (v > 0) {
410        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
411        st += 2;                        /* Table F.4: SP = S0 + 2 */
412        entropy->dc_context[ci] = 4;    /* small positive diff category */
413      } else {
414        v = -v;
415        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
416        st += 3;                        /* Table F.4: SN = S0 + 3 */
417        entropy->dc_context[ci] = 8;    /* small negative diff category */
418      }
419      /* Figure F.8: Encoding the magnitude category of v */
420      m = 0;
421      if (v -= 1) {
422        arith_encode(cinfo, st, 1);
423        m = 1;
424        v2 = v;
425        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
426        while (v2 >>= 1) {
427          arith_encode(cinfo, st, 1);
428          m <<= 1;
429          st += 1;
430        }
431      }
432      arith_encode(cinfo, st, 0);
433      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
434      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
435        entropy->dc_context[ci] = 0;    /* zero diff category */
436      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
437        entropy->dc_context[ci] += 8;   /* large diff category */
438      /* Figure F.9: Encoding the magnitude bit pattern of v */
439      st += 14;
440      while (m >>= 1)
441        arith_encode(cinfo, st, (m & v) ? 1 : 0);
442    }
443  }
444
445  return TRUE;
446}
447
448
449/*
450 * MCU encoding for AC initial scan (either spectral selection,
451 * or first pass of successive approximation).
452 */
453
454METHODDEF(boolean)
455encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
456{
457  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
458  JBLOCKROW block;
459  unsigned char *st;
460  int tbl, k, ke;
461  int v, v2, m;
462
463  /* Emit restart marker if needed */
464  if (cinfo->restart_interval) {
465    if (entropy->restarts_to_go == 0) {
466      emit_restart(cinfo, entropy->next_restart_num);
467      entropy->restarts_to_go = cinfo->restart_interval;
468      entropy->next_restart_num++;
469      entropy->next_restart_num &= 7;
470    }
471    entropy->restarts_to_go--;
472  }
473
474  /* Encode the MCU data block */
475  block = MCU_data[0];
476  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
477
478  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
479
480  /* Establish EOB (end-of-block) index */
481  for (ke = cinfo->Se; ke > 0; ke--)
482    /* We must apply the point transform by Al.  For AC coefficients this
483     * is an integer division with rounding towards 0.  To do this portably
484     * in C, we shift after obtaining the absolute value.
485     */
486    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
487      if (v >>= cinfo->Al) break;
488    } else {
489      v = -v;
490      if (v >>= cinfo->Al) break;
491    }
492
493  /* Figure F.5: Encode_AC_Coefficients */
494  for (k = cinfo->Ss; k <= ke; k++) {
495    st = entropy->ac_stats[tbl] + 3 * (k - 1);
496    arith_encode(cinfo, st, 0);         /* EOB decision */
497    for (;;) {
498      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
499        if (v >>= cinfo->Al) {
500          arith_encode(cinfo, st + 1, 1);
501          arith_encode(cinfo, entropy->fixed_bin, 0);
502          break;
503        }
504      } else {
505        v = -v;
506        if (v >>= cinfo->Al) {
507          arith_encode(cinfo, st + 1, 1);
508          arith_encode(cinfo, entropy->fixed_bin, 1);
509          break;
510        }
511      }
512      arith_encode(cinfo, st + 1, 0); st += 3; k++;
513    }
514    st += 2;
515    /* Figure F.8: Encoding the magnitude category of v */
516    m = 0;
517    if (v -= 1) {
518      arith_encode(cinfo, st, 1);
519      m = 1;
520      v2 = v;
521      if (v2 >>= 1) {
522        arith_encode(cinfo, st, 1);
523        m <<= 1;
524        st = entropy->ac_stats[tbl] +
525             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
526        while (v2 >>= 1) {
527          arith_encode(cinfo, st, 1);
528          m <<= 1;
529          st += 1;
530        }
531      }
532    }
533    arith_encode(cinfo, st, 0);
534    /* Figure F.9: Encoding the magnitude bit pattern of v */
535    st += 14;
536    while (m >>= 1)
537      arith_encode(cinfo, st, (m & v) ? 1 : 0);
538  }
539  /* Encode EOB decision only if k <= cinfo->Se */
540  if (k <= cinfo->Se) {
541    st = entropy->ac_stats[tbl] + 3 * (k - 1);
542    arith_encode(cinfo, st, 1);
543  }
544
545  return TRUE;
546}
547
548
549/*
550 * MCU encoding for DC successive approximation refinement scan.
551 */
552
553METHODDEF(boolean)
554encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
555{
556  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
557  unsigned char *st;
558  int Al, blkn;
559
560  /* Emit restart marker if needed */
561  if (cinfo->restart_interval) {
562    if (entropy->restarts_to_go == 0) {
563      emit_restart(cinfo, entropy->next_restart_num);
564      entropy->restarts_to_go = cinfo->restart_interval;
565      entropy->next_restart_num++;
566      entropy->next_restart_num &= 7;
567    }
568    entropy->restarts_to_go--;
569  }
570
571  st = entropy->fixed_bin;      /* use fixed probability estimation */
572  Al = cinfo->Al;
573
574  /* Encode the MCU data blocks */
575  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
576    /* We simply emit the Al'th bit of the DC coefficient value. */
577    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
578  }
579
580  return TRUE;
581}
582
583
584/*
585 * MCU encoding for AC successive approximation refinement scan.
586 */
587
588METHODDEF(boolean)
589encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
590{
591  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
592  JBLOCKROW block;
593  unsigned char *st;
594  int tbl, k, ke, kex;
595  int v;
596
597  /* Emit restart marker if needed */
598  if (cinfo->restart_interval) {
599    if (entropy->restarts_to_go == 0) {
600      emit_restart(cinfo, entropy->next_restart_num);
601      entropy->restarts_to_go = cinfo->restart_interval;
602      entropy->next_restart_num++;
603      entropy->next_restart_num &= 7;
604    }
605    entropy->restarts_to_go--;
606  }
607
608  /* Encode the MCU data block */
609  block = MCU_data[0];
610  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
611
612  /* Section G.1.3.3: Encoding of AC coefficients */
613
614  /* Establish EOB (end-of-block) index */
615  for (ke = cinfo->Se; ke > 0; ke--)
616    /* We must apply the point transform by Al.  For AC coefficients this
617     * is an integer division with rounding towards 0.  To do this portably
618     * in C, we shift after obtaining the absolute value.
619     */
620    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
621      if (v >>= cinfo->Al) break;
622    } else {
623      v = -v;
624      if (v >>= cinfo->Al) break;
625    }
626
627  /* Establish EOBx (previous stage end-of-block) index */
628  for (kex = ke; kex > 0; kex--)
629    if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
630      if (v >>= cinfo->Ah) break;
631    } else {
632      v = -v;
633      if (v >>= cinfo->Ah) break;
634    }
635
636  /* Figure G.10: Encode_AC_Coefficients_SA */
637  for (k = cinfo->Ss; k <= ke; k++) {
638    st = entropy->ac_stats[tbl] + 3 * (k - 1);
639    if (k > kex)
640      arith_encode(cinfo, st, 0);       /* EOB decision */
641    for (;;) {
642      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
643        if (v >>= cinfo->Al) {
644          if (v >> 1)                   /* previously nonzero coef */
645            arith_encode(cinfo, st + 2, (v & 1));
646          else {                        /* newly nonzero coef */
647            arith_encode(cinfo, st + 1, 1);
648            arith_encode(cinfo, entropy->fixed_bin, 0);
649          }
650          break;
651        }
652      } else {
653        v = -v;
654        if (v >>= cinfo->Al) {
655          if (v >> 1)                   /* previously nonzero coef */
656            arith_encode(cinfo, st + 2, (v & 1));
657          else {                        /* newly nonzero coef */
658            arith_encode(cinfo, st + 1, 1);
659            arith_encode(cinfo, entropy->fixed_bin, 1);
660          }
661          break;
662        }
663      }
664      arith_encode(cinfo, st + 1, 0); st += 3; k++;
665    }
666  }
667  /* Encode EOB decision only if k <= cinfo->Se */
668  if (k <= cinfo->Se) {
669    st = entropy->ac_stats[tbl] + 3 * (k - 1);
670    arith_encode(cinfo, st, 1);
671  }
672
673  return TRUE;
674}
675
676
677/*
678 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
679 */
680
681METHODDEF(boolean)
682encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
683{
684  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
685  jpeg_component_info * compptr;
686  JBLOCKROW block;
687  unsigned char *st;
688  int blkn, ci, tbl, k, ke;
689  int v, v2, m;
690
691  /* Emit restart marker if needed */
692  if (cinfo->restart_interval) {
693    if (entropy->restarts_to_go == 0) {
694      emit_restart(cinfo, entropy->next_restart_num);
695      entropy->restarts_to_go = cinfo->restart_interval;
696      entropy->next_restart_num++;
697      entropy->next_restart_num &= 7;
698    }
699    entropy->restarts_to_go--;
700  }
701
702  /* Encode the MCU data blocks */
703  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
704    block = MCU_data[blkn];
705    ci = cinfo->MCU_membership[blkn];
706    compptr = cinfo->cur_comp_info[ci];
707
708    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
709
710    tbl = compptr->dc_tbl_no;
711
712    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
713    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
714
715    /* Figure F.4: Encode_DC_DIFF */
716    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
717      arith_encode(cinfo, st, 0);
718      entropy->dc_context[ci] = 0;      /* zero diff category */
719    } else {
720      entropy->last_dc_val[ci] = (*block)[0];
721      arith_encode(cinfo, st, 1);
722      /* Figure F.6: Encoding nonzero value v */
723      /* Figure F.7: Encoding the sign of v */
724      if (v > 0) {
725        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
726        st += 2;                        /* Table F.4: SP = S0 + 2 */
727        entropy->dc_context[ci] = 4;    /* small positive diff category */
728      } else {
729        v = -v;
730        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
731        st += 3;                        /* Table F.4: SN = S0 + 3 */
732        entropy->dc_context[ci] = 8;    /* small negative diff category */
733      }
734      /* Figure F.8: Encoding the magnitude category of v */
735      m = 0;
736      if (v -= 1) {
737        arith_encode(cinfo, st, 1);
738        m = 1;
739        v2 = v;
740        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
741        while (v2 >>= 1) {
742          arith_encode(cinfo, st, 1);
743          m <<= 1;
744          st += 1;
745        }
746      }
747      arith_encode(cinfo, st, 0);
748      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
749      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
750        entropy->dc_context[ci] = 0;    /* zero diff category */
751      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
752        entropy->dc_context[ci] += 8;   /* large diff category */
753      /* Figure F.9: Encoding the magnitude bit pattern of v */
754      st += 14;
755      while (m >>= 1)
756        arith_encode(cinfo, st, (m & v) ? 1 : 0);
757    }
758
759    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
760
761    tbl = compptr->ac_tbl_no;
762
763    /* Establish EOB (end-of-block) index */
764    for (ke = DCTSIZE2 - 1; ke > 0; ke--)
765      if ((*block)[jpeg_natural_order[ke]]) break;
766
767    /* Figure F.5: Encode_AC_Coefficients */
768    for (k = 1; k <= ke; k++) {
769      st = entropy->ac_stats[tbl] + 3 * (k - 1);
770      arith_encode(cinfo, st, 0);       /* EOB decision */
771      while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
772        arith_encode(cinfo, st + 1, 0); st += 3; k++;
773      }
774      arith_encode(cinfo, st + 1, 1);
775      /* Figure F.6: Encoding nonzero value v */
776      /* Figure F.7: Encoding the sign of v */
777      if (v > 0) {
778        arith_encode(cinfo, entropy->fixed_bin, 0);
779      } else {
780        v = -v;
781        arith_encode(cinfo, entropy->fixed_bin, 1);
782      }
783      st += 2;
784      /* Figure F.8: Encoding the magnitude category of v */
785      m = 0;
786      if (v -= 1) {
787        arith_encode(cinfo, st, 1);
788        m = 1;
789        v2 = v;
790        if (v2 >>= 1) {
791          arith_encode(cinfo, st, 1);
792          m <<= 1;
793          st = entropy->ac_stats[tbl] +
794               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
795          while (v2 >>= 1) {
796            arith_encode(cinfo, st, 1);
797            m <<= 1;
798            st += 1;
799          }
800        }
801      }
802      arith_encode(cinfo, st, 0);
803      /* Figure F.9: Encoding the magnitude bit pattern of v */
804      st += 14;
805      while (m >>= 1)
806        arith_encode(cinfo, st, (m & v) ? 1 : 0);
807    }
808    /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
809    if (k <= DCTSIZE2 - 1) {
810      st = entropy->ac_stats[tbl] + 3 * (k - 1);
811      arith_encode(cinfo, st, 1);
812    }
813  }
814
815  return TRUE;
816}
817
818
819/*
820 * Initialize for an arithmetic-compressed scan.
821 */
822
823METHODDEF(void)
824start_pass (j_compress_ptr cinfo, boolean gather_statistics)
825{
826  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
827  int ci, tbl;
828  jpeg_component_info * compptr;
829
830  if (gather_statistics)
831    /* Make sure to avoid that in the master control logic!
832     * We are fully adaptive here and need no extra
833     * statistics gathering pass!
834     */
835    ERREXIT(cinfo, JERR_NOT_COMPILED);
836
837  /* We assume jcmaster.c already validated the progressive scan parameters. */
838
839  /* Select execution routines */
840  if (cinfo->progressive_mode) {
841    if (cinfo->Ah == 0) {
842      if (cinfo->Ss == 0)
843        entropy->pub.encode_mcu = encode_mcu_DC_first;
844      else
845        entropy->pub.encode_mcu = encode_mcu_AC_first;
846    } else {
847      if (cinfo->Ss == 0)
848        entropy->pub.encode_mcu = encode_mcu_DC_refine;
849      else
850        entropy->pub.encode_mcu = encode_mcu_AC_refine;
851    }
852  } else
853    entropy->pub.encode_mcu = encode_mcu;
854
855  /* Allocate & initialize requested statistics areas */
856  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
857    compptr = cinfo->cur_comp_info[ci];
858    /* DC needs no table for refinement scan */
859    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
860      tbl = compptr->dc_tbl_no;
861      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
862        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
863      if (entropy->dc_stats[tbl] == NULL)
864        entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
865          ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
866      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
867      /* Initialize DC predictions to 0 */
868      entropy->last_dc_val[ci] = 0;
869      entropy->dc_context[ci] = 0;
870    }
871    /* AC needs no table when not present */
872    if (cinfo->progressive_mode == 0 || cinfo->Se) {
873      tbl = compptr->ac_tbl_no;
874      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
875        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
876      if (entropy->ac_stats[tbl] == NULL)
877        entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
878          ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
879      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
880#ifdef CALCULATE_SPECTRAL_CONDITIONING
881      if (cinfo->progressive_mode)
882        /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
883        cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
884#endif
885    }
886  }
887
888  /* Initialize arithmetic encoding variables */
889  entropy->c = 0;
890  entropy->a = 0x10000L;
891  entropy->sc = 0;
892  entropy->zc = 0;
893  entropy->ct = 11;
894  entropy->buffer = -1;  /* empty */
895
896  /* Initialize restart stuff */
897  entropy->restarts_to_go = cinfo->restart_interval;
898  entropy->next_restart_num = 0;
899}
900
901
902/*
903 * Module initialization routine for arithmetic entropy encoding.
904 */
905
906GLOBAL(void)
907jinit_arith_encoder (j_compress_ptr cinfo)
908{
909  arith_entropy_ptr entropy;
910  int i;
911
912  entropy = (arith_entropy_ptr)
913    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
914                                sizeof(arith_entropy_encoder));
915  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
916  entropy->pub.start_pass = start_pass;
917  entropy->pub.finish_pass = finish_pass;
918
919  /* Mark tables unallocated */
920  for (i = 0; i < NUM_ARITH_TBLS; i++) {
921    entropy->dc_stats[i] = NULL;
922    entropy->ac_stats[i] = NULL;
923  }
924
925  /* Initialize index for fixed probability estimation */
926  entropy->fixed_bin[0] = 113;
927}
928