1; 2; jfdctflt.asm - floating-point FDCT (64-bit SSE) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright 2009 D. R. Commander 6; 7; Based on 8; x86 SIMD extension for IJG JPEG library 9; Copyright (C) 1999-2006, MIYASAKA Masaru. 10; For conditions of distribution and use, see copyright notice in jsimdext.inc 11; 12; This file should be assembled with NASM (Netwide Assembler), 13; can *not* be assembled with Microsoft's MASM or any compatible 14; assembler (including Borland's Turbo Assembler). 15; NASM is available from http://nasm.sourceforge.net/ or 16; http://sourceforge.net/project/showfiles.php?group_id=6208 17; 18; This file contains a floating-point implementation of the forward DCT 19; (Discrete Cosine Transform). The following code is based directly on 20; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. 21; 22; [TAB8] 23 24%include "jsimdext.inc" 25%include "jdct.inc" 26 27; -------------------------------------------------------------------------- 28 29%macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) 30 shufps %1,%2,0x44 31%endmacro 32 33%macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) 34 shufps %1,%2,0xEE 35%endmacro 36 37; -------------------------------------------------------------------------- 38 SECTION SEG_CONST 39 40 alignz 16 41 global EXTN(jconst_fdct_float_sse) 42 43EXTN(jconst_fdct_float_sse): 44 45PD_0_382 times 4 dd 0.382683432365089771728460 46PD_0_707 times 4 dd 0.707106781186547524400844 47PD_0_541 times 4 dd 0.541196100146196984399723 48PD_1_306 times 4 dd 1.306562964876376527856643 49 50 alignz 16 51 52; -------------------------------------------------------------------------- 53 SECTION SEG_TEXT 54 BITS 64 55; 56; Perform the forward DCT on one block of samples. 57; 58; GLOBAL(void) 59; jsimd_fdct_float_sse (FAST_FLOAT * data) 60; 61 62; r10 = FAST_FLOAT * data 63 64%define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] 65%define WK_NUM 2 66 67 align 16 68 global EXTN(jsimd_fdct_float_sse) 69 70EXTN(jsimd_fdct_float_sse): 71 push rbp 72 mov rax,rsp ; rax = original rbp 73 sub rsp, byte 4 74 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 75 mov [rsp],rax 76 mov rbp,rsp ; rbp = aligned rbp 77 lea rsp, [wk(0)] 78 collect_args 79 80 ; ---- Pass 1: process rows. 81 82 mov rdx, r10 ; (FAST_FLOAT *) 83 mov rcx, DCTSIZE/4 84.rowloop: 85 86 movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)] 87 movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)] 88 movaps xmm2, XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)] 89 movaps xmm3, XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)] 90 91 ; xmm0=(20 21 22 23), xmm2=(24 25 26 27) 92 ; xmm1=(30 31 32 33), xmm3=(34 35 36 37) 93 94 movaps xmm4,xmm0 ; transpose coefficients(phase 1) 95 unpcklps xmm0,xmm1 ; xmm0=(20 30 21 31) 96 unpckhps xmm4,xmm1 ; xmm4=(22 32 23 33) 97 movaps xmm5,xmm2 ; transpose coefficients(phase 1) 98 unpcklps xmm2,xmm3 ; xmm2=(24 34 25 35) 99 unpckhps xmm5,xmm3 ; xmm5=(26 36 27 37) 100 101 movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] 102 movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] 103 movaps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)] 104 movaps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)] 105 106 ; xmm6=(00 01 02 03), xmm1=(04 05 06 07) 107 ; xmm7=(10 11 12 13), xmm3=(14 15 16 17) 108 109 movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33) 110 movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35) 111 112 movaps xmm4,xmm6 ; transpose coefficients(phase 1) 113 unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11) 114 unpckhps xmm4,xmm7 ; xmm4=(02 12 03 13) 115 movaps xmm2,xmm1 ; transpose coefficients(phase 1) 116 unpcklps xmm1,xmm3 ; xmm1=(04 14 05 15) 117 unpckhps xmm2,xmm3 ; xmm2=(06 16 07 17) 118 119 movaps xmm7,xmm6 ; transpose coefficients(phase 2) 120 unpcklps2 xmm6,xmm0 ; xmm6=(00 10 20 30)=data0 121 unpckhps2 xmm7,xmm0 ; xmm7=(01 11 21 31)=data1 122 movaps xmm3,xmm2 ; transpose coefficients(phase 2) 123 unpcklps2 xmm2,xmm5 ; xmm2=(06 16 26 36)=data6 124 unpckhps2 xmm3,xmm5 ; xmm3=(07 17 27 37)=data7 125 126 movaps xmm0,xmm7 127 movaps xmm5,xmm6 128 subps xmm7,xmm2 ; xmm7=data1-data6=tmp6 129 subps xmm6,xmm3 ; xmm6=data0-data7=tmp7 130 addps xmm0,xmm2 ; xmm0=data1+data6=tmp1 131 addps xmm5,xmm3 ; xmm5=data0+data7=tmp0 132 133 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33) 134 movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35) 135 movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 136 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 137 138 movaps xmm7,xmm4 ; transpose coefficients(phase 2) 139 unpcklps2 xmm4,xmm2 ; xmm4=(02 12 22 32)=data2 140 unpckhps2 xmm7,xmm2 ; xmm7=(03 13 23 33)=data3 141 movaps xmm6,xmm1 ; transpose coefficients(phase 2) 142 unpcklps2 xmm1,xmm3 ; xmm1=(04 14 24 34)=data4 143 unpckhps2 xmm6,xmm3 ; xmm6=(05 15 25 35)=data5 144 145 movaps xmm2,xmm7 146 movaps xmm3,xmm4 147 addps xmm7,xmm1 ; xmm7=data3+data4=tmp3 148 addps xmm4,xmm6 ; xmm4=data2+data5=tmp2 149 subps xmm2,xmm1 ; xmm2=data3-data4=tmp4 150 subps xmm3,xmm6 ; xmm3=data2-data5=tmp5 151 152 ; -- Even part 153 154 movaps xmm1,xmm5 155 movaps xmm6,xmm0 156 subps xmm5,xmm7 ; xmm5=tmp13 157 subps xmm0,xmm4 ; xmm0=tmp12 158 addps xmm1,xmm7 ; xmm1=tmp10 159 addps xmm6,xmm4 ; xmm6=tmp11 160 161 addps xmm0,xmm5 162 mulps xmm0,[rel PD_0_707] ; xmm0=z1 163 164 movaps xmm7,xmm1 165 movaps xmm4,xmm5 166 subps xmm1,xmm6 ; xmm1=data4 167 subps xmm5,xmm0 ; xmm5=data6 168 addps xmm7,xmm6 ; xmm7=data0 169 addps xmm4,xmm0 ; xmm4=data2 170 171 movaps XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)], xmm1 172 movaps XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)], xmm5 173 movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 174 movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 175 176 ; -- Odd part 177 178 movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 179 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 180 181 addps xmm2,xmm3 ; xmm2=tmp10 182 addps xmm3,xmm6 ; xmm3=tmp11 183 addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7 184 185 mulps xmm3,[rel PD_0_707] ; xmm3=z3 186 187 movaps xmm1,xmm2 ; xmm1=tmp10 188 subps xmm2,xmm6 189 mulps xmm2,[rel PD_0_382] ; xmm2=z5 190 mulps xmm1,[rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) 191 mulps xmm6,[rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) 192 addps xmm1,xmm2 ; xmm1=z2 193 addps xmm6,xmm2 ; xmm6=z4 194 195 movaps xmm5,xmm0 196 subps xmm0,xmm3 ; xmm0=z13 197 addps xmm5,xmm3 ; xmm5=z11 198 199 movaps xmm7,xmm0 200 movaps xmm4,xmm5 201 subps xmm0,xmm1 ; xmm0=data3 202 subps xmm5,xmm6 ; xmm5=data7 203 addps xmm7,xmm1 ; xmm7=data5 204 addps xmm4,xmm6 ; xmm4=data1 205 206 movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0 207 movaps XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)], xmm5 208 movaps XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)], xmm7 209 movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 210 211 add rdx, 4*DCTSIZE*SIZEOF_FAST_FLOAT 212 dec rcx 213 jnz near .rowloop 214 215 ; ---- Pass 2: process columns. 216 217 mov rdx, r10 ; (FAST_FLOAT *) 218 mov rcx, DCTSIZE/4 219.columnloop: 220 221 movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)] 222 movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)] 223 movaps xmm2, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)] 224 movaps xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)] 225 226 ; xmm0=(02 12 22 32), xmm2=(42 52 62 72) 227 ; xmm1=(03 13 23 33), xmm3=(43 53 63 73) 228 229 movaps xmm4,xmm0 ; transpose coefficients(phase 1) 230 unpcklps xmm0,xmm1 ; xmm0=(02 03 12 13) 231 unpckhps xmm4,xmm1 ; xmm4=(22 23 32 33) 232 movaps xmm5,xmm2 ; transpose coefficients(phase 1) 233 unpcklps xmm2,xmm3 ; xmm2=(42 43 52 53) 234 unpckhps xmm5,xmm3 ; xmm5=(62 63 72 73) 235 236 movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] 237 movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] 238 movaps xmm1, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)] 239 movaps xmm3, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)] 240 241 ; xmm6=(00 10 20 30), xmm1=(40 50 60 70) 242 ; xmm7=(01 11 21 31), xmm3=(41 51 61 71) 243 244 movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33) 245 movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53) 246 247 movaps xmm4,xmm6 ; transpose coefficients(phase 1) 248 unpcklps xmm6,xmm7 ; xmm6=(00 01 10 11) 249 unpckhps xmm4,xmm7 ; xmm4=(20 21 30 31) 250 movaps xmm2,xmm1 ; transpose coefficients(phase 1) 251 unpcklps xmm1,xmm3 ; xmm1=(40 41 50 51) 252 unpckhps xmm2,xmm3 ; xmm2=(60 61 70 71) 253 254 movaps xmm7,xmm6 ; transpose coefficients(phase 2) 255 unpcklps2 xmm6,xmm0 ; xmm6=(00 01 02 03)=data0 256 unpckhps2 xmm7,xmm0 ; xmm7=(10 11 12 13)=data1 257 movaps xmm3,xmm2 ; transpose coefficients(phase 2) 258 unpcklps2 xmm2,xmm5 ; xmm2=(60 61 62 63)=data6 259 unpckhps2 xmm3,xmm5 ; xmm3=(70 71 72 73)=data7 260 261 movaps xmm0,xmm7 262 movaps xmm5,xmm6 263 subps xmm7,xmm2 ; xmm7=data1-data6=tmp6 264 subps xmm6,xmm3 ; xmm6=data0-data7=tmp7 265 addps xmm0,xmm2 ; xmm0=data1+data6=tmp1 266 addps xmm5,xmm3 ; xmm5=data0+data7=tmp0 267 268 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33) 269 movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53) 270 movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 271 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 272 273 movaps xmm7,xmm4 ; transpose coefficients(phase 2) 274 unpcklps2 xmm4,xmm2 ; xmm4=(20 21 22 23)=data2 275 unpckhps2 xmm7,xmm2 ; xmm7=(30 31 32 33)=data3 276 movaps xmm6,xmm1 ; transpose coefficients(phase 2) 277 unpcklps2 xmm1,xmm3 ; xmm1=(40 41 42 43)=data4 278 unpckhps2 xmm6,xmm3 ; xmm6=(50 51 52 53)=data5 279 280 movaps xmm2,xmm7 281 movaps xmm3,xmm4 282 addps xmm7,xmm1 ; xmm7=data3+data4=tmp3 283 addps xmm4,xmm6 ; xmm4=data2+data5=tmp2 284 subps xmm2,xmm1 ; xmm2=data3-data4=tmp4 285 subps xmm3,xmm6 ; xmm3=data2-data5=tmp5 286 287 ; -- Even part 288 289 movaps xmm1,xmm5 290 movaps xmm6,xmm0 291 subps xmm5,xmm7 ; xmm5=tmp13 292 subps xmm0,xmm4 ; xmm0=tmp12 293 addps xmm1,xmm7 ; xmm1=tmp10 294 addps xmm6,xmm4 ; xmm6=tmp11 295 296 addps xmm0,xmm5 297 mulps xmm0,[rel PD_0_707] ; xmm0=z1 298 299 movaps xmm7,xmm1 300 movaps xmm4,xmm5 301 subps xmm1,xmm6 ; xmm1=data4 302 subps xmm5,xmm0 ; xmm5=data6 303 addps xmm7,xmm6 ; xmm7=data0 304 addps xmm4,xmm0 ; xmm4=data2 305 306 movaps XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)], xmm1 307 movaps XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)], xmm5 308 movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 309 movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 310 311 ; -- Odd part 312 313 movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 314 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 315 316 addps xmm2,xmm3 ; xmm2=tmp10 317 addps xmm3,xmm6 ; xmm3=tmp11 318 addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7 319 320 mulps xmm3,[rel PD_0_707] ; xmm3=z3 321 322 movaps xmm1,xmm2 ; xmm1=tmp10 323 subps xmm2,xmm6 324 mulps xmm2,[rel PD_0_382] ; xmm2=z5 325 mulps xmm1,[rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) 326 mulps xmm6,[rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) 327 addps xmm1,xmm2 ; xmm1=z2 328 addps xmm6,xmm2 ; xmm6=z4 329 330 movaps xmm5,xmm0 331 subps xmm0,xmm3 ; xmm0=z13 332 addps xmm5,xmm3 ; xmm5=z11 333 334 movaps xmm7,xmm0 335 movaps xmm4,xmm5 336 subps xmm0,xmm1 ; xmm0=data3 337 subps xmm5,xmm6 ; xmm5=data7 338 addps xmm7,xmm1 ; xmm7=data5 339 addps xmm4,xmm6 ; xmm4=data1 340 341 movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0 342 movaps XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)], xmm5 343 movaps XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 344 movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 345 346 add rdx, byte 4*SIZEOF_FAST_FLOAT 347 dec rcx 348 jnz near .columnloop 349 350 uncollect_args 351 mov rsp,rbp ; rsp <- aligned rbp 352 pop rsp ; rsp <- original rbp 353 pop rbp 354 ret 355 356; For some reason, the OS X linker does not honor the request to align the 357; segment unless we do this. 358 align 16 359