1#include "llvm/Analysis/Passes.h"
2#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
3#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
4#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
5#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
6#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
7#include "llvm/ExecutionEngine/Orc/OrcTargetSupport.h"
8#include "llvm/IR/DataLayout.h"
9#include "llvm/IR/DerivedTypes.h"
10#include "llvm/IR/IRBuilder.h"
11#include "llvm/IR/LegacyPassManager.h"
12#include "llvm/IR/LLVMContext.h"
13#include "llvm/IR/Module.h"
14#include "llvm/IR/Verifier.h"
15#include "llvm/Support/TargetSelect.h"
16#include "llvm/Transforms/Scalar.h"
17#include <cctype>
18#include <iomanip>
19#include <iostream>
20#include <map>
21#include <sstream>
22#include <string>
23#include <vector>
24
25using namespace llvm;
26using namespace llvm::orc;
27
28//===----------------------------------------------------------------------===//
29// Lexer
30//===----------------------------------------------------------------------===//
31
32// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
33// of these for known things.
34enum Token {
35  tok_eof = -1,
36
37  // commands
38  tok_def = -2, tok_extern = -3,
39
40  // primary
41  tok_identifier = -4, tok_number = -5,
42
43  // control
44  tok_if = -6, tok_then = -7, tok_else = -8,
45  tok_for = -9, tok_in = -10,
46
47  // operators
48  tok_binary = -11, tok_unary = -12,
49
50  // var definition
51  tok_var = -13
52};
53
54static std::string IdentifierStr;  // Filled in if tok_identifier
55static double NumVal;              // Filled in if tok_number
56
57/// gettok - Return the next token from standard input.
58static int gettok() {
59  static int LastChar = ' ';
60
61  // Skip any whitespace.
62  while (isspace(LastChar))
63    LastChar = getchar();
64
65  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
66    IdentifierStr = LastChar;
67    while (isalnum((LastChar = getchar())))
68      IdentifierStr += LastChar;
69
70    if (IdentifierStr == "def") return tok_def;
71    if (IdentifierStr == "extern") return tok_extern;
72    if (IdentifierStr == "if") return tok_if;
73    if (IdentifierStr == "then") return tok_then;
74    if (IdentifierStr == "else") return tok_else;
75    if (IdentifierStr == "for") return tok_for;
76    if (IdentifierStr == "in") return tok_in;
77    if (IdentifierStr == "binary") return tok_binary;
78    if (IdentifierStr == "unary") return tok_unary;
79    if (IdentifierStr == "var") return tok_var;
80    return tok_identifier;
81  }
82
83  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
84    std::string NumStr;
85    do {
86      NumStr += LastChar;
87      LastChar = getchar();
88    } while (isdigit(LastChar) || LastChar == '.');
89
90    NumVal = strtod(NumStr.c_str(), nullptr);
91    return tok_number;
92  }
93
94  if (LastChar == '#') {
95    // Comment until end of line.
96    do LastChar = getchar();
97    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
98
99    if (LastChar != EOF)
100      return gettok();
101  }
102
103  // Check for end of file.  Don't eat the EOF.
104  if (LastChar == EOF)
105    return tok_eof;
106
107  // Otherwise, just return the character as its ascii value.
108  int ThisChar = LastChar;
109  LastChar = getchar();
110  return ThisChar;
111}
112
113//===----------------------------------------------------------------------===//
114// Abstract Syntax Tree (aka Parse Tree)
115//===----------------------------------------------------------------------===//
116
117class IRGenContext;
118
119/// ExprAST - Base class for all expression nodes.
120struct ExprAST {
121  virtual ~ExprAST() {}
122  virtual Value *IRGen(IRGenContext &C) const = 0;
123};
124
125/// NumberExprAST - Expression class for numeric literals like "1.0".
126struct NumberExprAST : public ExprAST {
127  NumberExprAST(double Val) : Val(Val) {}
128  Value *IRGen(IRGenContext &C) const override;
129
130  double Val;
131};
132
133/// VariableExprAST - Expression class for referencing a variable, like "a".
134struct VariableExprAST : public ExprAST {
135  VariableExprAST(std::string Name) : Name(std::move(Name)) {}
136  Value *IRGen(IRGenContext &C) const override;
137
138  std::string Name;
139};
140
141/// UnaryExprAST - Expression class for a unary operator.
142struct UnaryExprAST : public ExprAST {
143  UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
144    : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
145
146  Value *IRGen(IRGenContext &C) const override;
147
148  char Opcode;
149  std::unique_ptr<ExprAST> Operand;
150};
151
152/// BinaryExprAST - Expression class for a binary operator.
153struct BinaryExprAST : public ExprAST {
154  BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
155                std::unique_ptr<ExprAST> RHS)
156    : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
157
158  Value *IRGen(IRGenContext &C) const override;
159
160  char Op;
161  std::unique_ptr<ExprAST> LHS, RHS;
162};
163
164/// CallExprAST - Expression class for function calls.
165struct CallExprAST : public ExprAST {
166  CallExprAST(std::string CalleeName,
167              std::vector<std::unique_ptr<ExprAST>> Args)
168    : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
169
170  Value *IRGen(IRGenContext &C) const override;
171
172  std::string CalleeName;
173  std::vector<std::unique_ptr<ExprAST>> Args;
174};
175
176/// IfExprAST - Expression class for if/then/else.
177struct IfExprAST : public ExprAST {
178  IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
179            std::unique_ptr<ExprAST> Else)
180    : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
181  Value *IRGen(IRGenContext &C) const override;
182
183  std::unique_ptr<ExprAST> Cond, Then, Else;
184};
185
186/// ForExprAST - Expression class for for/in.
187struct ForExprAST : public ExprAST {
188  ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
189             std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
190             std::unique_ptr<ExprAST> Body)
191    : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
192      Step(std::move(Step)), Body(std::move(Body)) {}
193
194  Value *IRGen(IRGenContext &C) const override;
195
196  std::string VarName;
197  std::unique_ptr<ExprAST> Start, End, Step, Body;
198};
199
200/// VarExprAST - Expression class for var/in
201struct VarExprAST : public ExprAST {
202  typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
203  typedef std::vector<Binding> BindingList;
204
205  VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
206    : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
207
208  Value *IRGen(IRGenContext &C) const override;
209
210  BindingList VarBindings;
211  std::unique_ptr<ExprAST> Body;
212};
213
214/// PrototypeAST - This class represents the "prototype" for a function,
215/// which captures its argument names as well as if it is an operator.
216struct PrototypeAST {
217  PrototypeAST(std::string Name, std::vector<std::string> Args,
218               bool IsOperator = false, unsigned Precedence = 0)
219    : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
220      Precedence(Precedence) {}
221
222  Function *IRGen(IRGenContext &C) const;
223  void CreateArgumentAllocas(Function *F, IRGenContext &C);
224
225  bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
226  bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
227
228  char getOperatorName() const {
229    assert(isUnaryOp() || isBinaryOp());
230    return Name[Name.size()-1];
231  }
232
233  std::string Name;
234  std::vector<std::string> Args;
235  bool IsOperator;
236  unsigned Precedence;  // Precedence if a binary op.
237};
238
239/// FunctionAST - This class represents a function definition itself.
240struct FunctionAST {
241  FunctionAST(std::unique_ptr<PrototypeAST> Proto,
242              std::unique_ptr<ExprAST> Body)
243    : Proto(std::move(Proto)), Body(std::move(Body)) {}
244
245  Function *IRGen(IRGenContext &C) const;
246
247  std::unique_ptr<PrototypeAST> Proto;
248  std::unique_ptr<ExprAST> Body;
249};
250
251//===----------------------------------------------------------------------===//
252// Parser
253//===----------------------------------------------------------------------===//
254
255/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
256/// token the parser is looking at.  getNextToken reads another token from the
257/// lexer and updates CurTok with its results.
258static int CurTok;
259static int getNextToken() {
260  return CurTok = gettok();
261}
262
263/// BinopPrecedence - This holds the precedence for each binary operator that is
264/// defined.
265static std::map<char, int> BinopPrecedence;
266
267/// GetTokPrecedence - Get the precedence of the pending binary operator token.
268static int GetTokPrecedence() {
269  if (!isascii(CurTok))
270    return -1;
271
272  // Make sure it's a declared binop.
273  int TokPrec = BinopPrecedence[CurTok];
274  if (TokPrec <= 0) return -1;
275  return TokPrec;
276}
277
278template <typename T>
279std::unique_ptr<T> ErrorU(const std::string &Str) {
280  std::cerr << "Error: " << Str << "\n";
281  return nullptr;
282}
283
284template <typename T>
285T* ErrorP(const std::string &Str) {
286  std::cerr << "Error: " << Str << "\n";
287  return nullptr;
288}
289
290static std::unique_ptr<ExprAST> ParseExpression();
291
292/// identifierexpr
293///   ::= identifier
294///   ::= identifier '(' expression* ')'
295static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
296  std::string IdName = IdentifierStr;
297
298  getNextToken();  // eat identifier.
299
300  if (CurTok != '(') // Simple variable ref.
301    return llvm::make_unique<VariableExprAST>(IdName);
302
303  // Call.
304  getNextToken();  // eat (
305  std::vector<std::unique_ptr<ExprAST>> Args;
306  if (CurTok != ')') {
307    while (1) {
308      auto Arg = ParseExpression();
309      if (!Arg) return nullptr;
310      Args.push_back(std::move(Arg));
311
312      if (CurTok == ')') break;
313
314      if (CurTok != ',')
315        return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
316      getNextToken();
317    }
318  }
319
320  // Eat the ')'.
321  getNextToken();
322
323  return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
324}
325
326/// numberexpr ::= number
327static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
328  auto Result = llvm::make_unique<NumberExprAST>(NumVal);
329  getNextToken(); // consume the number
330  return Result;
331}
332
333/// parenexpr ::= '(' expression ')'
334static std::unique_ptr<ExprAST> ParseParenExpr() {
335  getNextToken();  // eat (.
336  auto V = ParseExpression();
337  if (!V)
338    return nullptr;
339
340  if (CurTok != ')')
341    return ErrorU<ExprAST>("expected ')'");
342  getNextToken();  // eat ).
343  return V;
344}
345
346/// ifexpr ::= 'if' expression 'then' expression 'else' expression
347static std::unique_ptr<ExprAST> ParseIfExpr() {
348  getNextToken();  // eat the if.
349
350  // condition.
351  auto Cond = ParseExpression();
352  if (!Cond)
353    return nullptr;
354
355  if (CurTok != tok_then)
356    return ErrorU<ExprAST>("expected then");
357  getNextToken();  // eat the then
358
359  auto Then = ParseExpression();
360  if (!Then)
361    return nullptr;
362
363  if (CurTok != tok_else)
364    return ErrorU<ExprAST>("expected else");
365
366  getNextToken();
367
368  auto Else = ParseExpression();
369  if (!Else)
370    return nullptr;
371
372  return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
373                                      std::move(Else));
374}
375
376/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
377static std::unique_ptr<ForExprAST> ParseForExpr() {
378  getNextToken();  // eat the for.
379
380  if (CurTok != tok_identifier)
381    return ErrorU<ForExprAST>("expected identifier after for");
382
383  std::string IdName = IdentifierStr;
384  getNextToken();  // eat identifier.
385
386  if (CurTok != '=')
387    return ErrorU<ForExprAST>("expected '=' after for");
388  getNextToken();  // eat '='.
389
390  auto Start = ParseExpression();
391  if (!Start)
392    return nullptr;
393  if (CurTok != ',')
394    return ErrorU<ForExprAST>("expected ',' after for start value");
395  getNextToken();
396
397  auto End = ParseExpression();
398  if (!End)
399    return nullptr;
400
401  // The step value is optional.
402  std::unique_ptr<ExprAST> Step;
403  if (CurTok == ',') {
404    getNextToken();
405    Step = ParseExpression();
406    if (!Step)
407      return nullptr;
408  }
409
410  if (CurTok != tok_in)
411    return ErrorU<ForExprAST>("expected 'in' after for");
412  getNextToken();  // eat 'in'.
413
414  auto Body = ParseExpression();
415  if (Body)
416    return nullptr;
417
418  return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
419                                       std::move(Step), std::move(Body));
420}
421
422/// varexpr ::= 'var' identifier ('=' expression)?
423//                    (',' identifier ('=' expression)?)* 'in' expression
424static std::unique_ptr<VarExprAST> ParseVarExpr() {
425  getNextToken();  // eat the var.
426
427  VarExprAST::BindingList VarBindings;
428
429  // At least one variable name is required.
430  if (CurTok != tok_identifier)
431    return ErrorU<VarExprAST>("expected identifier after var");
432
433  while (1) {
434    std::string Name = IdentifierStr;
435    getNextToken();  // eat identifier.
436
437    // Read the optional initializer.
438    std::unique_ptr<ExprAST> Init;
439    if (CurTok == '=') {
440      getNextToken(); // eat the '='.
441
442      Init = ParseExpression();
443      if (!Init)
444        return nullptr;
445    }
446
447    VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
448
449    // End of var list, exit loop.
450    if (CurTok != ',') break;
451    getNextToken(); // eat the ','.
452
453    if (CurTok != tok_identifier)
454      return ErrorU<VarExprAST>("expected identifier list after var");
455  }
456
457  // At this point, we have to have 'in'.
458  if (CurTok != tok_in)
459    return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
460  getNextToken();  // eat 'in'.
461
462  auto Body = ParseExpression();
463  if (!Body)
464    return nullptr;
465
466  return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
467}
468
469/// primary
470///   ::= identifierexpr
471///   ::= numberexpr
472///   ::= parenexpr
473///   ::= ifexpr
474///   ::= forexpr
475///   ::= varexpr
476static std::unique_ptr<ExprAST> ParsePrimary() {
477  switch (CurTok) {
478  default: return ErrorU<ExprAST>("unknown token when expecting an expression");
479  case tok_identifier: return ParseIdentifierExpr();
480  case tok_number:     return ParseNumberExpr();
481  case '(':            return ParseParenExpr();
482  case tok_if:         return ParseIfExpr();
483  case tok_for:        return ParseForExpr();
484  case tok_var:        return ParseVarExpr();
485  }
486}
487
488/// unary
489///   ::= primary
490///   ::= '!' unary
491static std::unique_ptr<ExprAST> ParseUnary() {
492  // If the current token is not an operator, it must be a primary expr.
493  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
494    return ParsePrimary();
495
496  // If this is a unary operator, read it.
497  int Opc = CurTok;
498  getNextToken();
499  if (auto Operand = ParseUnary())
500    return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
501  return nullptr;
502}
503
504/// binoprhs
505///   ::= ('+' unary)*
506static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
507                                              std::unique_ptr<ExprAST> LHS) {
508  // If this is a binop, find its precedence.
509  while (1) {
510    int TokPrec = GetTokPrecedence();
511
512    // If this is a binop that binds at least as tightly as the current binop,
513    // consume it, otherwise we are done.
514    if (TokPrec < ExprPrec)
515      return LHS;
516
517    // Okay, we know this is a binop.
518    int BinOp = CurTok;
519    getNextToken();  // eat binop
520
521    // Parse the unary expression after the binary operator.
522    auto RHS = ParseUnary();
523    if (!RHS)
524      return nullptr;
525
526    // If BinOp binds less tightly with RHS than the operator after RHS, let
527    // the pending operator take RHS as its LHS.
528    int NextPrec = GetTokPrecedence();
529    if (TokPrec < NextPrec) {
530      RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
531      if (!RHS)
532        return nullptr;
533    }
534
535    // Merge LHS/RHS.
536    LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
537  }
538}
539
540/// expression
541///   ::= unary binoprhs
542///
543static std::unique_ptr<ExprAST> ParseExpression() {
544  auto LHS = ParseUnary();
545  if (!LHS)
546    return nullptr;
547
548  return ParseBinOpRHS(0, std::move(LHS));
549}
550
551/// prototype
552///   ::= id '(' id* ')'
553///   ::= binary LETTER number? (id, id)
554///   ::= unary LETTER (id)
555static std::unique_ptr<PrototypeAST> ParsePrototype() {
556  std::string FnName;
557
558  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
559  unsigned BinaryPrecedence = 30;
560
561  switch (CurTok) {
562  default:
563    return ErrorU<PrototypeAST>("Expected function name in prototype");
564  case tok_identifier:
565    FnName = IdentifierStr;
566    Kind = 0;
567    getNextToken();
568    break;
569  case tok_unary:
570    getNextToken();
571    if (!isascii(CurTok))
572      return ErrorU<PrototypeAST>("Expected unary operator");
573    FnName = "unary";
574    FnName += (char)CurTok;
575    Kind = 1;
576    getNextToken();
577    break;
578  case tok_binary:
579    getNextToken();
580    if (!isascii(CurTok))
581      return ErrorU<PrototypeAST>("Expected binary operator");
582    FnName = "binary";
583    FnName += (char)CurTok;
584    Kind = 2;
585    getNextToken();
586
587    // Read the precedence if present.
588    if (CurTok == tok_number) {
589      if (NumVal < 1 || NumVal > 100)
590        return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
591      BinaryPrecedence = (unsigned)NumVal;
592      getNextToken();
593    }
594    break;
595  }
596
597  if (CurTok != '(')
598    return ErrorU<PrototypeAST>("Expected '(' in prototype");
599
600  std::vector<std::string> ArgNames;
601  while (getNextToken() == tok_identifier)
602    ArgNames.push_back(IdentifierStr);
603  if (CurTok != ')')
604    return ErrorU<PrototypeAST>("Expected ')' in prototype");
605
606  // success.
607  getNextToken();  // eat ')'.
608
609  // Verify right number of names for operator.
610  if (Kind && ArgNames.size() != Kind)
611    return ErrorU<PrototypeAST>("Invalid number of operands for operator");
612
613  return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
614                                         BinaryPrecedence);
615}
616
617/// definition ::= 'def' prototype expression
618static std::unique_ptr<FunctionAST> ParseDefinition() {
619  getNextToken();  // eat def.
620  auto Proto = ParsePrototype();
621  if (!Proto)
622    return nullptr;
623
624  if (auto Body = ParseExpression())
625    return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
626  return nullptr;
627}
628
629/// toplevelexpr ::= expression
630static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
631  if (auto E = ParseExpression()) {
632    // Make an anonymous proto.
633    auto Proto =
634      llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
635    return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
636  }
637  return nullptr;
638}
639
640/// external ::= 'extern' prototype
641static std::unique_ptr<PrototypeAST> ParseExtern() {
642  getNextToken();  // eat extern.
643  return ParsePrototype();
644}
645
646//===----------------------------------------------------------------------===//
647// Code Generation
648//===----------------------------------------------------------------------===//
649
650// FIXME: Obviously we can do better than this
651std::string GenerateUniqueName(const std::string &Root) {
652  static int i = 0;
653  std::ostringstream NameStream;
654  NameStream << Root << ++i;
655  return NameStream.str();
656}
657
658std::string MakeLegalFunctionName(std::string Name)
659{
660  std::string NewName;
661  assert(!Name.empty() && "Base name must not be empty");
662
663  // Start with what we have
664  NewName = Name;
665
666  // Look for a numberic first character
667  if (NewName.find_first_of("0123456789") == 0) {
668    NewName.insert(0, 1, 'n');
669  }
670
671  // Replace illegal characters with their ASCII equivalent
672  std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
673  size_t pos;
674  while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
675    std::ostringstream NumStream;
676    NumStream << (int)NewName.at(pos);
677    NewName = NewName.replace(pos, 1, NumStream.str());
678  }
679
680  return NewName;
681}
682
683class SessionContext {
684public:
685  SessionContext(LLVMContext &C)
686    : Context(C), TM(EngineBuilder().selectTarget()) {}
687  LLVMContext& getLLVMContext() const { return Context; }
688  TargetMachine& getTarget() { return *TM; }
689  void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
690  PrototypeAST* getPrototypeAST(const std::string &Name);
691private:
692  typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
693
694  LLVMContext &Context;
695  std::unique_ptr<TargetMachine> TM;
696
697  PrototypeMap Prototypes;
698};
699
700void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
701  Prototypes[P->Name] = std::move(P);
702}
703
704PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
705  PrototypeMap::iterator I = Prototypes.find(Name);
706  if (I != Prototypes.end())
707    return I->second.get();
708  return nullptr;
709}
710
711class IRGenContext {
712public:
713
714  IRGenContext(SessionContext &S)
715    : Session(S),
716      M(new Module(GenerateUniqueName("jit_module_"),
717                   Session.getLLVMContext())),
718      Builder(Session.getLLVMContext()) {
719    M->setDataLayout(Session.getTarget().createDataLayout());
720  }
721
722  SessionContext& getSession() { return Session; }
723  Module& getM() const { return *M; }
724  std::unique_ptr<Module> takeM() { return std::move(M); }
725  IRBuilder<>& getBuilder() { return Builder; }
726  LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
727  Function* getPrototype(const std::string &Name);
728
729  std::map<std::string, AllocaInst*> NamedValues;
730private:
731  SessionContext &Session;
732  std::unique_ptr<Module> M;
733  IRBuilder<> Builder;
734};
735
736Function* IRGenContext::getPrototype(const std::string &Name) {
737  if (Function *ExistingProto = M->getFunction(Name))
738    return ExistingProto;
739  if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
740    return ProtoAST->IRGen(*this);
741  return nullptr;
742}
743
744/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
745/// the function.  This is used for mutable variables etc.
746static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
747                                          const std::string &VarName) {
748  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
749                 TheFunction->getEntryBlock().begin());
750  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), nullptr,
751                           VarName.c_str());
752}
753
754Value *NumberExprAST::IRGen(IRGenContext &C) const {
755  return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
756}
757
758Value *VariableExprAST::IRGen(IRGenContext &C) const {
759  // Look this variable up in the function.
760  Value *V = C.NamedValues[Name];
761
762  if (!V)
763    return ErrorP<Value>("Unknown variable name '" + Name + "'");
764
765  // Load the value.
766  return C.getBuilder().CreateLoad(V, Name.c_str());
767}
768
769Value *UnaryExprAST::IRGen(IRGenContext &C) const {
770  if (Value *OperandV = Operand->IRGen(C)) {
771    std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
772    if (Function *F = C.getPrototype(FnName))
773      return C.getBuilder().CreateCall(F, OperandV, "unop");
774    return ErrorP<Value>("Unknown unary operator");
775  }
776
777  // Could not codegen operand - return null.
778  return nullptr;
779}
780
781Value *BinaryExprAST::IRGen(IRGenContext &C) const {
782  // Special case '=' because we don't want to emit the LHS as an expression.
783  if (Op == '=') {
784    // Assignment requires the LHS to be an identifier.
785    auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
786    // Codegen the RHS.
787    Value *Val = RHS->IRGen(C);
788    if (!Val) return nullptr;
789
790    // Look up the name.
791    if (auto Variable = C.NamedValues[LHSVar.Name]) {
792      C.getBuilder().CreateStore(Val, Variable);
793      return Val;
794    }
795    return ErrorP<Value>("Unknown variable name");
796  }
797
798  Value *L = LHS->IRGen(C);
799  Value *R = RHS->IRGen(C);
800  if (!L || !R) return nullptr;
801
802  switch (Op) {
803  case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
804  case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
805  case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
806  case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
807  case '<':
808    L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
809    // Convert bool 0/1 to double 0.0 or 1.0
810    return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
811                                "booltmp");
812  default: break;
813  }
814
815  // If it wasn't a builtin binary operator, it must be a user defined one. Emit
816  // a call to it.
817  std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
818  if (Function *F = C.getPrototype(FnName)) {
819    Value *Ops[] = { L, R };
820    return C.getBuilder().CreateCall(F, Ops, "binop");
821  }
822
823  return ErrorP<Value>("Unknown binary operator");
824}
825
826Value *CallExprAST::IRGen(IRGenContext &C) const {
827  // Look up the name in the global module table.
828  if (auto CalleeF = C.getPrototype(CalleeName)) {
829    // If argument mismatch error.
830    if (CalleeF->arg_size() != Args.size())
831      return ErrorP<Value>("Incorrect # arguments passed");
832
833    std::vector<Value*> ArgsV;
834    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
835      ArgsV.push_back(Args[i]->IRGen(C));
836      if (!ArgsV.back()) return nullptr;
837    }
838
839    return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
840  }
841
842  return ErrorP<Value>("Unknown function referenced");
843}
844
845Value *IfExprAST::IRGen(IRGenContext &C) const {
846  Value *CondV = Cond->IRGen(C);
847  if (!CondV) return nullptr;
848
849  // Convert condition to a bool by comparing equal to 0.0.
850  ConstantFP *FPZero =
851    ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
852  CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
853
854  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
855
856  // Create blocks for the then and else cases.  Insert the 'then' block at the
857  // end of the function.
858  BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
859  BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
860  BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
861
862  C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
863
864  // Emit then value.
865  C.getBuilder().SetInsertPoint(ThenBB);
866
867  Value *ThenV = Then->IRGen(C);
868  if (!ThenV) return nullptr;
869
870  C.getBuilder().CreateBr(MergeBB);
871  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
872  ThenBB = C.getBuilder().GetInsertBlock();
873
874  // Emit else block.
875  TheFunction->getBasicBlockList().push_back(ElseBB);
876  C.getBuilder().SetInsertPoint(ElseBB);
877
878  Value *ElseV = Else->IRGen(C);
879  if (!ElseV) return nullptr;
880
881  C.getBuilder().CreateBr(MergeBB);
882  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
883  ElseBB = C.getBuilder().GetInsertBlock();
884
885  // Emit merge block.
886  TheFunction->getBasicBlockList().push_back(MergeBB);
887  C.getBuilder().SetInsertPoint(MergeBB);
888  PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
889                                  "iftmp");
890
891  PN->addIncoming(ThenV, ThenBB);
892  PN->addIncoming(ElseV, ElseBB);
893  return PN;
894}
895
896Value *ForExprAST::IRGen(IRGenContext &C) const {
897  // Output this as:
898  //   var = alloca double
899  //   ...
900  //   start = startexpr
901  //   store start -> var
902  //   goto loop
903  // loop:
904  //   ...
905  //   bodyexpr
906  //   ...
907  // loopend:
908  //   step = stepexpr
909  //   endcond = endexpr
910  //
911  //   curvar = load var
912  //   nextvar = curvar + step
913  //   store nextvar -> var
914  //   br endcond, loop, endloop
915  // outloop:
916
917  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
918
919  // Create an alloca for the variable in the entry block.
920  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
921
922  // Emit the start code first, without 'variable' in scope.
923  Value *StartVal = Start->IRGen(C);
924  if (!StartVal) return nullptr;
925
926  // Store the value into the alloca.
927  C.getBuilder().CreateStore(StartVal, Alloca);
928
929  // Make the new basic block for the loop header, inserting after current
930  // block.
931  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
932
933  // Insert an explicit fall through from the current block to the LoopBB.
934  C.getBuilder().CreateBr(LoopBB);
935
936  // Start insertion in LoopBB.
937  C.getBuilder().SetInsertPoint(LoopBB);
938
939  // Within the loop, the variable is defined equal to the PHI node.  If it
940  // shadows an existing variable, we have to restore it, so save it now.
941  AllocaInst *OldVal = C.NamedValues[VarName];
942  C.NamedValues[VarName] = Alloca;
943
944  // Emit the body of the loop.  This, like any other expr, can change the
945  // current BB.  Note that we ignore the value computed by the body, but don't
946  // allow an error.
947  if (!Body->IRGen(C))
948    return nullptr;
949
950  // Emit the step value.
951  Value *StepVal;
952  if (Step) {
953    StepVal = Step->IRGen(C);
954    if (!StepVal) return nullptr;
955  } else {
956    // If not specified, use 1.0.
957    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
958  }
959
960  // Compute the end condition.
961  Value *EndCond = End->IRGen(C);
962  if (!EndCond) return nullptr;
963
964  // Reload, increment, and restore the alloca.  This handles the case where
965  // the body of the loop mutates the variable.
966  Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
967  Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
968  C.getBuilder().CreateStore(NextVar, Alloca);
969
970  // Convert condition to a bool by comparing equal to 0.0.
971  EndCond = C.getBuilder().CreateFCmpONE(EndCond,
972                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
973                                  "loopcond");
974
975  // Create the "after loop" block and insert it.
976  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
977
978  // Insert the conditional branch into the end of LoopEndBB.
979  C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
980
981  // Any new code will be inserted in AfterBB.
982  C.getBuilder().SetInsertPoint(AfterBB);
983
984  // Restore the unshadowed variable.
985  if (OldVal)
986    C.NamedValues[VarName] = OldVal;
987  else
988    C.NamedValues.erase(VarName);
989
990  // for expr always returns 0.0.
991  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
992}
993
994Value *VarExprAST::IRGen(IRGenContext &C) const {
995  std::vector<AllocaInst *> OldBindings;
996
997  Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
998
999  // Register all variables and emit their initializer.
1000  for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
1001    auto &VarName = VarBindings[i].first;
1002    auto &Init = VarBindings[i].second;
1003
1004    // Emit the initializer before adding the variable to scope, this prevents
1005    // the initializer from referencing the variable itself, and permits stuff
1006    // like this:
1007    //  var a = 1 in
1008    //    var a = a in ...   # refers to outer 'a'.
1009    Value *InitVal;
1010    if (Init) {
1011      InitVal = Init->IRGen(C);
1012      if (!InitVal) return nullptr;
1013    } else // If not specified, use 0.0.
1014      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1015
1016    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1017    C.getBuilder().CreateStore(InitVal, Alloca);
1018
1019    // Remember the old variable binding so that we can restore the binding when
1020    // we unrecurse.
1021    OldBindings.push_back(C.NamedValues[VarName]);
1022
1023    // Remember this binding.
1024    C.NamedValues[VarName] = Alloca;
1025  }
1026
1027  // Codegen the body, now that all vars are in scope.
1028  Value *BodyVal = Body->IRGen(C);
1029  if (!BodyVal) return nullptr;
1030
1031  // Pop all our variables from scope.
1032  for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
1033    C.NamedValues[VarBindings[i].first] = OldBindings[i];
1034
1035  // Return the body computation.
1036  return BodyVal;
1037}
1038
1039Function *PrototypeAST::IRGen(IRGenContext &C) const {
1040  std::string FnName = MakeLegalFunctionName(Name);
1041
1042  // Make the function type:  double(double,double) etc.
1043  std::vector<Type*> Doubles(Args.size(),
1044                             Type::getDoubleTy(getGlobalContext()));
1045  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1046                                       Doubles, false);
1047  Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
1048                                 &C.getM());
1049
1050  // If F conflicted, there was already something named 'FnName'.  If it has a
1051  // body, don't allow redefinition or reextern.
1052  if (F->getName() != FnName) {
1053    // Delete the one we just made and get the existing one.
1054    F->eraseFromParent();
1055    F = C.getM().getFunction(Name);
1056
1057    // If F already has a body, reject this.
1058    if (!F->empty()) {
1059      ErrorP<Function>("redefinition of function");
1060      return nullptr;
1061    }
1062
1063    // If F took a different number of args, reject.
1064    if (F->arg_size() != Args.size()) {
1065      ErrorP<Function>("redefinition of function with different # args");
1066      return nullptr;
1067    }
1068  }
1069
1070  // Set names for all arguments.
1071  unsigned Idx = 0;
1072  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1073       ++AI, ++Idx)
1074    AI->setName(Args[Idx]);
1075
1076  return F;
1077}
1078
1079/// CreateArgumentAllocas - Create an alloca for each argument and register the
1080/// argument in the symbol table so that references to it will succeed.
1081void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
1082  Function::arg_iterator AI = F->arg_begin();
1083  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1084    // Create an alloca for this variable.
1085    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1086
1087    // Store the initial value into the alloca.
1088    C.getBuilder().CreateStore(&*AI, Alloca);
1089
1090    // Add arguments to variable symbol table.
1091    C.NamedValues[Args[Idx]] = Alloca;
1092  }
1093}
1094
1095Function *FunctionAST::IRGen(IRGenContext &C) const {
1096  C.NamedValues.clear();
1097
1098  Function *TheFunction = Proto->IRGen(C);
1099  if (!TheFunction)
1100    return nullptr;
1101
1102  // If this is an operator, install it.
1103  if (Proto->isBinaryOp())
1104    BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
1105
1106  // Create a new basic block to start insertion into.
1107  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1108  C.getBuilder().SetInsertPoint(BB);
1109
1110  // Add all arguments to the symbol table and create their allocas.
1111  Proto->CreateArgumentAllocas(TheFunction, C);
1112
1113  if (Value *RetVal = Body->IRGen(C)) {
1114    // Finish off the function.
1115    C.getBuilder().CreateRet(RetVal);
1116
1117    // Validate the generated code, checking for consistency.
1118    verifyFunction(*TheFunction);
1119
1120    return TheFunction;
1121  }
1122
1123  // Error reading body, remove function.
1124  TheFunction->eraseFromParent();
1125
1126  if (Proto->isBinaryOp())
1127    BinopPrecedence.erase(Proto->getOperatorName());
1128  return nullptr;
1129}
1130
1131//===----------------------------------------------------------------------===//
1132// Top-Level parsing and JIT Driver
1133//===----------------------------------------------------------------------===//
1134
1135static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
1136                                           const FunctionAST &F) {
1137  IRGenContext C(S);
1138  auto LF = F.IRGen(C);
1139  if (!LF)
1140    return nullptr;
1141#ifndef MINIMAL_STDERR_OUTPUT
1142  fprintf(stderr, "Read function definition:");
1143  LF->dump();
1144#endif
1145  return C.takeM();
1146}
1147
1148template <typename T>
1149static std::vector<T> singletonSet(T t) {
1150  std::vector<T> Vec;
1151  Vec.push_back(std::move(t));
1152  return Vec;
1153}
1154
1155static void EarthShatteringKaboom() {
1156  fprintf(stderr, "Earth shattering kaboom.");
1157  exit(1);
1158}
1159
1160class KaleidoscopeJIT {
1161public:
1162  typedef ObjectLinkingLayer<> ObjLayerT;
1163  typedef IRCompileLayer<ObjLayerT> CompileLayerT;
1164  typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
1165  typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
1166
1167  KaleidoscopeJIT(SessionContext &Session)
1168    : Session(Session),
1169      CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
1170      LazyEmitLayer(CompileLayer),
1171      CompileCallbacks(reinterpret_cast<uintptr_t>(EarthShatteringKaboom)) {}
1172
1173  std::string mangle(const std::string &Name) {
1174    std::string MangledName;
1175    {
1176      raw_string_ostream MangledNameStream(MangledName);
1177      Mangler::getNameWithPrefix(MangledNameStream, Name,
1178                                 Session.getTarget().createDataLayout());
1179    }
1180    return MangledName;
1181  }
1182
1183  void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
1184    std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
1185    FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
1186  }
1187
1188  ModuleHandleT addModule(std::unique_ptr<Module> M) {
1189    // We need a memory manager to allocate memory and resolve symbols for this
1190    // new module. Create one that resolves symbols by looking back into the
1191    // JIT.
1192    auto Resolver = createLambdaResolver(
1193                      [&](const std::string &Name) {
1194                        // First try to find 'Name' within the JIT.
1195                        if (auto Symbol = findSymbol(Name))
1196                          return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
1197                                                         Symbol.getFlags());
1198
1199                        // If we don't already have a definition of 'Name' then search
1200                        // the ASTs.
1201                        return searchFunctionASTs(Name);
1202                      },
1203                      [](const std::string &S) { return nullptr; } );
1204
1205    return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
1206                                      make_unique<SectionMemoryManager>(),
1207                                      std::move(Resolver));
1208  }
1209
1210  void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
1211
1212  JITSymbol findSymbol(const std::string &Name) {
1213    return LazyEmitLayer.findSymbol(Name, false);
1214  }
1215
1216  JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
1217    return LazyEmitLayer.findSymbolIn(H, Name, false);
1218  }
1219
1220  JITSymbol findUnmangledSymbol(const std::string &Name) {
1221    return findSymbol(mangle(Name));
1222  }
1223
1224  JITSymbol findUnmangledSymbolIn(ModuleHandleT H, const std::string &Name) {
1225    return findSymbolIn(H, mangle(Name));
1226  }
1227
1228private:
1229
1230  // This method searches the FunctionDefs map for a definition of 'Name'. If it
1231  // finds one it generates a stub for it and returns the address of the stub.
1232  RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
1233    auto DefI = FunctionDefs.find(Name);
1234    if (DefI == FunctionDefs.end())
1235      return nullptr;
1236
1237    // Return the address of the stub.
1238    // Take the FunctionAST out of the map.
1239    auto FnAST = std::move(DefI->second);
1240    FunctionDefs.erase(DefI);
1241
1242    // IRGen the AST, add it to the JIT, and return the address for it.
1243    auto H = irGenStub(std::move(FnAST));
1244    auto Sym = findSymbolIn(H, Name);
1245    return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
1246  }
1247
1248  // This method will take the AST for a function definition and IR-gen a stub
1249  // for that function that will, on first call, IR-gen the actual body of the
1250  // function.
1251  ModuleHandleT irGenStub(std::unique_ptr<FunctionAST> FnAST) {
1252    // Step 1) IRGen a prototype for the stub. This will have the same type as
1253    //         the function.
1254    IRGenContext C(Session);
1255    Function *F = FnAST->Proto->IRGen(C);
1256
1257    // Step 2) Get a compile callback that can be used to compile the body of
1258    //         the function. The resulting CallbackInfo type will let us set the
1259    //         compile and update actions for the callback, and get a pointer to
1260    //         the jit trampoline that we need to call to trigger those actions.
1261    auto CallbackInfo = CompileCallbacks.getCompileCallback();
1262
1263    // Step 3) Create a stub that will indirectly call the body of this
1264    //         function once it is compiled. Initially, set the function
1265    //         pointer for the indirection to point at the trampoline.
1266    std::string BodyPtrName = (F->getName() + "$address").str();
1267    GlobalVariable *FunctionBodyPointer =
1268      createImplPointer(*F->getType(), *F->getParent(), BodyPtrName,
1269                        createIRTypedAddress(*F->getFunctionType(),
1270                                             CallbackInfo.getAddress()));
1271    makeStub(*F, *FunctionBodyPointer);
1272
1273    // Step 4) Add the module containing the stub to the JIT.
1274    auto StubH = addModule(C.takeM());
1275
1276    // Step 5) Set the compile and update actions.
1277    //
1278    //   The compile action will IRGen the function and add it to the JIT, then
1279    // request its address, which will trigger codegen. Since we don't need the
1280    // AST after this, we pass ownership of the AST into the compile action:
1281    // compile actions (and update actions) are deleted after they're run, so
1282    // this will free the AST for us.
1283    //
1284    //   The update action will update FunctionBodyPointer to point at the newly
1285    // compiled function.
1286    std::shared_ptr<FunctionAST> Fn = std::move(FnAST);
1287    CallbackInfo.setCompileAction([this, Fn, BodyPtrName, StubH]() {
1288      auto H = addModule(IRGen(Session, *Fn));
1289      auto BodySym = findUnmangledSymbolIn(H, Fn->Proto->Name);
1290      auto BodyPtrSym = findUnmangledSymbolIn(StubH, BodyPtrName);
1291      assert(BodySym && "Missing function body.");
1292      assert(BodyPtrSym && "Missing function pointer.");
1293      auto BodyAddr = BodySym.getAddress();
1294      auto BodyPtr = reinterpret_cast<void*>(
1295                       static_cast<uintptr_t>(BodyPtrSym.getAddress()));
1296      memcpy(BodyPtr, &BodyAddr, sizeof(uintptr_t));
1297      return BodyAddr;
1298    });
1299
1300    return StubH;
1301  }
1302
1303  SessionContext &Session;
1304  SectionMemoryManager CCMgrMemMgr;
1305  ObjLayerT ObjectLayer;
1306  CompileLayerT CompileLayer;
1307  LazyEmitLayerT LazyEmitLayer;
1308
1309  std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
1310
1311  LocalJITCompileCallbackManager<OrcX86_64> CompileCallbacks;
1312};
1313
1314static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
1315  if (auto F = ParseDefinition()) {
1316    S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
1317    J.addFunctionAST(std::move(F));
1318  } else {
1319    // Skip token for error recovery.
1320    getNextToken();
1321  }
1322}
1323
1324static void HandleExtern(SessionContext &S) {
1325  if (auto P = ParseExtern())
1326    S.addPrototypeAST(std::move(P));
1327  else {
1328    // Skip token for error recovery.
1329    getNextToken();
1330  }
1331}
1332
1333static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
1334  // Evaluate a top-level expression into an anonymous function.
1335  if (auto F = ParseTopLevelExpr()) {
1336    IRGenContext C(S);
1337    if (auto ExprFunc = F->IRGen(C)) {
1338#ifndef MINIMAL_STDERR_OUTPUT
1339      std::cerr << "Expression function:\n";
1340      ExprFunc->dump();
1341#endif
1342      // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
1343      // this module as soon as we've executed Function ExprFunc.
1344      auto H = J.addModule(C.takeM());
1345
1346      // Get the address of the JIT'd function in memory.
1347      auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
1348
1349      // Cast it to the right type (takes no arguments, returns a double) so we
1350      // can call it as a native function.
1351      double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1352#ifdef MINIMAL_STDERR_OUTPUT
1353      FP();
1354#else
1355      std::cerr << "Evaluated to " << FP() << "\n";
1356#endif
1357
1358      // Remove the function.
1359      J.removeModule(H);
1360    }
1361  } else {
1362    // Skip token for error recovery.
1363    getNextToken();
1364  }
1365}
1366
1367/// top ::= definition | external | expression | ';'
1368static void MainLoop() {
1369  SessionContext S(getGlobalContext());
1370  KaleidoscopeJIT J(S);
1371
1372  while (1) {
1373    switch (CurTok) {
1374    case tok_eof:    return;
1375    case ';':        getNextToken(); continue;  // ignore top-level semicolons.
1376    case tok_def:    HandleDefinition(S, J); break;
1377    case tok_extern: HandleExtern(S); break;
1378    default:         HandleTopLevelExpression(S, J); break;
1379    }
1380#ifndef MINIMAL_STDERR_OUTPUT
1381    std::cerr << "ready> ";
1382#endif
1383  }
1384}
1385
1386//===----------------------------------------------------------------------===//
1387// "Library" functions that can be "extern'd" from user code.
1388//===----------------------------------------------------------------------===//
1389
1390/// putchard - putchar that takes a double and returns 0.
1391extern "C"
1392double putchard(double X) {
1393  putchar((char)X);
1394  return 0;
1395}
1396
1397/// printd - printf that takes a double prints it as "%f\n", returning 0.
1398extern "C"
1399double printd(double X) {
1400  printf("%f", X);
1401  return 0;
1402}
1403
1404extern "C"
1405double printlf() {
1406  printf("\n");
1407  return 0;
1408}
1409
1410//===----------------------------------------------------------------------===//
1411// Main driver code.
1412//===----------------------------------------------------------------------===//
1413
1414int main() {
1415  InitializeNativeTarget();
1416  InitializeNativeTargetAsmPrinter();
1417  InitializeNativeTargetAsmParser();
1418
1419  // Install standard binary operators.
1420  // 1 is lowest precedence.
1421  BinopPrecedence['='] = 2;
1422  BinopPrecedence['<'] = 10;
1423  BinopPrecedence['+'] = 20;
1424  BinopPrecedence['-'] = 20;
1425  BinopPrecedence['/'] = 40;
1426  BinopPrecedence['*'] = 40;  // highest.
1427
1428  // Prime the first token.
1429#ifndef MINIMAL_STDERR_OUTPUT
1430  std::cerr << "ready> ";
1431#endif
1432  getNextToken();
1433
1434  std::cerr << std::fixed;
1435
1436  // Run the main "interpreter loop" now.
1437  MainLoop();
1438
1439  return 0;
1440}
1441