1//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the MachineInstr class, which is the
11// basic representation for all target dependent machine instructions used by
12// the back end.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_MACHINEINSTR_H
17#define LLVM_CODEGEN_MACHINEINSTR_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/ilist.h"
24#include "llvm/ADT/ilist_node.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/CodeGen/MachineOperand.h"
28#include "llvm/IR/DebugInfo.h"
29#include "llvm/IR/DebugLoc.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/Support/ArrayRecycler.h"
33#include "llvm/Target/TargetOpcodes.h"
34
35namespace llvm {
36
37template <typename T> class SmallVectorImpl;
38class TargetInstrInfo;
39class TargetRegisterClass;
40class TargetRegisterInfo;
41class MachineFunction;
42class MachineMemOperand;
43
44//===----------------------------------------------------------------------===//
45/// Representation of each machine instruction.
46///
47/// This class isn't a POD type, but it must have a trivial destructor. When a
48/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
49/// without having their destructor called.
50///
51class MachineInstr
52    : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> {
53public:
54  typedef MachineMemOperand **mmo_iterator;
55
56  /// Flags to specify different kinds of comments to output in
57  /// assembly code.  These flags carry semantic information not
58  /// otherwise easily derivable from the IR text.
59  ///
60  enum CommentFlag {
61    ReloadReuse = 0x1
62  };
63
64  enum MIFlag {
65    NoFlags      = 0,
66    FrameSetup   = 1 << 0,              // Instruction is used as a part of
67                                        // function frame setup code.
68    FrameDestroy = 1 << 1,              // Instruction is used as a part of
69                                        // function frame destruction code.
70    BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
71    BundledSucc  = 1 << 3               // Instruction has bundled successors.
72  };
73private:
74  const MCInstrDesc *MCID;              // Instruction descriptor.
75  MachineBasicBlock *Parent;            // Pointer to the owning basic block.
76
77  // Operands are allocated by an ArrayRecycler.
78  MachineOperand *Operands;             // Pointer to the first operand.
79  unsigned NumOperands;                 // Number of operands on instruction.
80  typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
81  OperandCapacity CapOperands;          // Capacity of the Operands array.
82
83  uint8_t Flags;                        // Various bits of additional
84                                        // information about machine
85                                        // instruction.
86
87  uint8_t AsmPrinterFlags;              // Various bits of information used by
88                                        // the AsmPrinter to emit helpful
89                                        // comments.  This is *not* semantic
90                                        // information.  Do not use this for
91                                        // anything other than to convey comment
92                                        // information to AsmPrinter.
93
94  uint8_t NumMemRefs;                   // Information on memory references.
95  mmo_iterator MemRefs;
96
97  DebugLoc debugLoc;                    // Source line information.
98
99  MachineInstr(const MachineInstr&) = delete;
100  void operator=(const MachineInstr&) = delete;
101  // Use MachineFunction::DeleteMachineInstr() instead.
102  ~MachineInstr() = delete;
103
104  // Intrusive list support
105  friend struct ilist_traits<MachineInstr>;
106  friend struct ilist_traits<MachineBasicBlock>;
107  void setParent(MachineBasicBlock *P) { Parent = P; }
108
109  /// This constructor creates a copy of the given
110  /// MachineInstr in the given MachineFunction.
111  MachineInstr(MachineFunction &, const MachineInstr &);
112
113  /// This constructor create a MachineInstr and add the implicit operands.
114  /// It reserves space for number of operands specified by
115  /// MCInstrDesc.  An explicit DebugLoc is supplied.
116  MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
117               bool NoImp = false);
118
119  // MachineInstrs are pool-allocated and owned by MachineFunction.
120  friend class MachineFunction;
121
122public:
123  const MachineBasicBlock* getParent() const { return Parent; }
124  MachineBasicBlock* getParent() { return Parent; }
125
126  /// Return the asm printer flags bitvector.
127  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
128
129  /// Clear the AsmPrinter bitvector.
130  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
131
132  /// Return whether an AsmPrinter flag is set.
133  bool getAsmPrinterFlag(CommentFlag Flag) const {
134    return AsmPrinterFlags & Flag;
135  }
136
137  /// Set a flag for the AsmPrinter.
138  void setAsmPrinterFlag(CommentFlag Flag) {
139    AsmPrinterFlags |= (uint8_t)Flag;
140  }
141
142  /// Clear specific AsmPrinter flags.
143  void clearAsmPrinterFlag(CommentFlag Flag) {
144    AsmPrinterFlags &= ~Flag;
145  }
146
147  /// Return the MI flags bitvector.
148  uint8_t getFlags() const {
149    return Flags;
150  }
151
152  /// Return whether an MI flag is set.
153  bool getFlag(MIFlag Flag) const {
154    return Flags & Flag;
155  }
156
157  /// Set a MI flag.
158  void setFlag(MIFlag Flag) {
159    Flags |= (uint8_t)Flag;
160  }
161
162  void setFlags(unsigned flags) {
163    // Filter out the automatically maintained flags.
164    unsigned Mask = BundledPred | BundledSucc;
165    Flags = (Flags & Mask) | (flags & ~Mask);
166  }
167
168  /// clearFlag - Clear a MI flag.
169  void clearFlag(MIFlag Flag) {
170    Flags &= ~((uint8_t)Flag);
171  }
172
173  /// Return true if MI is in a bundle (but not the first MI in a bundle).
174  ///
175  /// A bundle looks like this before it's finalized:
176  ///   ----------------
177  ///   |      MI      |
178  ///   ----------------
179  ///          |
180  ///   ----------------
181  ///   |      MI    * |
182  ///   ----------------
183  ///          |
184  ///   ----------------
185  ///   |      MI    * |
186  ///   ----------------
187  /// In this case, the first MI starts a bundle but is not inside a bundle, the
188  /// next 2 MIs are considered "inside" the bundle.
189  ///
190  /// After a bundle is finalized, it looks like this:
191  ///   ----------------
192  ///   |    Bundle    |
193  ///   ----------------
194  ///          |
195  ///   ----------------
196  ///   |      MI    * |
197  ///   ----------------
198  ///          |
199  ///   ----------------
200  ///   |      MI    * |
201  ///   ----------------
202  ///          |
203  ///   ----------------
204  ///   |      MI    * |
205  ///   ----------------
206  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
207  /// a bundle, but the next three MIs are.
208  bool isInsideBundle() const {
209    return getFlag(BundledPred);
210  }
211
212  /// Return true if this instruction part of a bundle. This is true
213  /// if either itself or its following instruction is marked "InsideBundle".
214  bool isBundled() const {
215    return isBundledWithPred() || isBundledWithSucc();
216  }
217
218  /// Return true if this instruction is part of a bundle, and it is not the
219  /// first instruction in the bundle.
220  bool isBundledWithPred() const { return getFlag(BundledPred); }
221
222  /// Return true if this instruction is part of a bundle, and it is not the
223  /// last instruction in the bundle.
224  bool isBundledWithSucc() const { return getFlag(BundledSucc); }
225
226  /// Bundle this instruction with its predecessor. This can be an unbundled
227  /// instruction, or it can be the first instruction in a bundle.
228  void bundleWithPred();
229
230  /// Bundle this instruction with its successor. This can be an unbundled
231  /// instruction, or it can be the last instruction in a bundle.
232  void bundleWithSucc();
233
234  /// Break bundle above this instruction.
235  void unbundleFromPred();
236
237  /// Break bundle below this instruction.
238  void unbundleFromSucc();
239
240  /// Returns the debug location id of this MachineInstr.
241  const DebugLoc &getDebugLoc() const { return debugLoc; }
242
243  /// Return the debug variable referenced by
244  /// this DBG_VALUE instruction.
245  const DILocalVariable *getDebugVariable() const {
246    assert(isDebugValue() && "not a DBG_VALUE");
247    return cast<DILocalVariable>(getOperand(2).getMetadata());
248  }
249
250  /// Return the complex address expression referenced by
251  /// this DBG_VALUE instruction.
252  const DIExpression *getDebugExpression() const {
253    assert(isDebugValue() && "not a DBG_VALUE");
254    return cast<DIExpression>(getOperand(3).getMetadata());
255  }
256
257  /// Emit an error referring to the source location of this instruction.
258  /// This should only be used for inline assembly that is somehow
259  /// impossible to compile. Other errors should have been handled much
260  /// earlier.
261  ///
262  /// If this method returns, the caller should try to recover from the error.
263  ///
264  void emitError(StringRef Msg) const;
265
266  /// Returns the target instruction descriptor of this MachineInstr.
267  const MCInstrDesc &getDesc() const { return *MCID; }
268
269  /// Returns the opcode of this MachineInstr.
270  unsigned getOpcode() const { return MCID->Opcode; }
271
272  /// Access to explicit operands of the instruction.
273  ///
274  unsigned getNumOperands() const { return NumOperands; }
275
276  const MachineOperand& getOperand(unsigned i) const {
277    assert(i < getNumOperands() && "getOperand() out of range!");
278    return Operands[i];
279  }
280  MachineOperand& getOperand(unsigned i) {
281    assert(i < getNumOperands() && "getOperand() out of range!");
282    return Operands[i];
283  }
284
285  /// Returns the number of non-implicit operands.
286  unsigned getNumExplicitOperands() const;
287
288  /// iterator/begin/end - Iterate over all operands of a machine instruction.
289  typedef MachineOperand *mop_iterator;
290  typedef const MachineOperand *const_mop_iterator;
291
292  mop_iterator operands_begin() { return Operands; }
293  mop_iterator operands_end() { return Operands + NumOperands; }
294
295  const_mop_iterator operands_begin() const { return Operands; }
296  const_mop_iterator operands_end() const { return Operands + NumOperands; }
297
298  iterator_range<mop_iterator> operands() {
299    return make_range(operands_begin(), operands_end());
300  }
301  iterator_range<const_mop_iterator> operands() const {
302    return make_range(operands_begin(), operands_end());
303  }
304  iterator_range<mop_iterator> explicit_operands() {
305    return make_range(operands_begin(),
306                      operands_begin() + getNumExplicitOperands());
307  }
308  iterator_range<const_mop_iterator> explicit_operands() const {
309    return make_range(operands_begin(),
310                      operands_begin() + getNumExplicitOperands());
311  }
312  iterator_range<mop_iterator> implicit_operands() {
313    return make_range(explicit_operands().end(), operands_end());
314  }
315  iterator_range<const_mop_iterator> implicit_operands() const {
316    return make_range(explicit_operands().end(), operands_end());
317  }
318  /// Returns a range over all explicit operands that are register definitions.
319  /// Implicit definition are not included!
320  iterator_range<mop_iterator> defs() {
321    return make_range(operands_begin(),
322                      operands_begin() + getDesc().getNumDefs());
323  }
324  /// \copydoc defs()
325  iterator_range<const_mop_iterator> defs() const {
326    return make_range(operands_begin(),
327                      operands_begin() + getDesc().getNumDefs());
328  }
329  /// Returns a range that includes all operands that are register uses.
330  /// This may include unrelated operands which are not register uses.
331  iterator_range<mop_iterator> uses() {
332    return make_range(operands_begin() + getDesc().getNumDefs(),
333                      operands_end());
334  }
335  /// \copydoc uses()
336  iterator_range<const_mop_iterator> uses() const {
337    return make_range(operands_begin() + getDesc().getNumDefs(),
338                      operands_end());
339  }
340
341  /// Returns the number of the operand iterator \p I points to.
342  unsigned getOperandNo(const_mop_iterator I) const {
343    return I - operands_begin();
344  }
345
346  /// Access to memory operands of the instruction
347  mmo_iterator memoperands_begin() const { return MemRefs; }
348  mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
349  bool memoperands_empty() const { return NumMemRefs == 0; }
350
351  iterator_range<mmo_iterator>  memoperands() {
352    return make_range(memoperands_begin(), memoperands_end());
353  }
354  iterator_range<mmo_iterator> memoperands() const {
355    return make_range(memoperands_begin(), memoperands_end());
356  }
357
358  /// Return true if this instruction has exactly one MachineMemOperand.
359  bool hasOneMemOperand() const {
360    return NumMemRefs == 1;
361  }
362
363  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
364  /// queries but they are bundle aware.
365
366  enum QueryType {
367    IgnoreBundle,    // Ignore bundles
368    AnyInBundle,     // Return true if any instruction in bundle has property
369    AllInBundle      // Return true if all instructions in bundle have property
370  };
371
372  /// Return true if the instruction (or in the case of a bundle,
373  /// the instructions inside the bundle) has the specified property.
374  /// The first argument is the property being queried.
375  /// The second argument indicates whether the query should look inside
376  /// instruction bundles.
377  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
378    // Inline the fast path for unbundled or bundle-internal instructions.
379    if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
380      return getDesc().getFlags() & (1 << MCFlag);
381
382    // If this is the first instruction in a bundle, take the slow path.
383    return hasPropertyInBundle(1 << MCFlag, Type);
384  }
385
386  /// Return true if this instruction can have a variable number of operands.
387  /// In this case, the variable operands will be after the normal
388  /// operands but before the implicit definitions and uses (if any are
389  /// present).
390  bool isVariadic(QueryType Type = IgnoreBundle) const {
391    return hasProperty(MCID::Variadic, Type);
392  }
393
394  /// Set if this instruction has an optional definition, e.g.
395  /// ARM instructions which can set condition code if 's' bit is set.
396  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
397    return hasProperty(MCID::HasOptionalDef, Type);
398  }
399
400  /// Return true if this is a pseudo instruction that doesn't
401  /// correspond to a real machine instruction.
402  bool isPseudo(QueryType Type = IgnoreBundle) const {
403    return hasProperty(MCID::Pseudo, Type);
404  }
405
406  bool isReturn(QueryType Type = AnyInBundle) const {
407    return hasProperty(MCID::Return, Type);
408  }
409
410  bool isCall(QueryType Type = AnyInBundle) const {
411    return hasProperty(MCID::Call, Type);
412  }
413
414  /// Returns true if the specified instruction stops control flow
415  /// from executing the instruction immediately following it.  Examples include
416  /// unconditional branches and return instructions.
417  bool isBarrier(QueryType Type = AnyInBundle) const {
418    return hasProperty(MCID::Barrier, Type);
419  }
420
421  /// Returns true if this instruction part of the terminator for a basic block.
422  /// Typically this is things like return and branch instructions.
423  ///
424  /// Various passes use this to insert code into the bottom of a basic block,
425  /// but before control flow occurs.
426  bool isTerminator(QueryType Type = AnyInBundle) const {
427    return hasProperty(MCID::Terminator, Type);
428  }
429
430  /// Returns true if this is a conditional, unconditional, or indirect branch.
431  /// Predicates below can be used to discriminate between
432  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
433  /// get more information.
434  bool isBranch(QueryType Type = AnyInBundle) const {
435    return hasProperty(MCID::Branch, Type);
436  }
437
438  /// Return true if this is an indirect branch, such as a
439  /// branch through a register.
440  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
441    return hasProperty(MCID::IndirectBranch, Type);
442  }
443
444  /// Return true if this is a branch which may fall
445  /// through to the next instruction or may transfer control flow to some other
446  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
447  /// information about this branch.
448  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
449    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
450  }
451
452  /// Return true if this is a branch which always
453  /// transfers control flow to some other block.  The
454  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
455  /// about this branch.
456  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
457    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
458  }
459
460  /// Return true if this instruction has a predicate operand that
461  /// controls execution.  It may be set to 'always', or may be set to other
462  /// values.   There are various methods in TargetInstrInfo that can be used to
463  /// control and modify the predicate in this instruction.
464  bool isPredicable(QueryType Type = AllInBundle) const {
465    // If it's a bundle than all bundled instructions must be predicable for this
466    // to return true.
467    return hasProperty(MCID::Predicable, Type);
468  }
469
470  /// Return true if this instruction is a comparison.
471  bool isCompare(QueryType Type = IgnoreBundle) const {
472    return hasProperty(MCID::Compare, Type);
473  }
474
475  /// Return true if this instruction is a move immediate
476  /// (including conditional moves) instruction.
477  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
478    return hasProperty(MCID::MoveImm, Type);
479  }
480
481  /// Return true if this instruction is a bitcast instruction.
482  bool isBitcast(QueryType Type = IgnoreBundle) const {
483    return hasProperty(MCID::Bitcast, Type);
484  }
485
486  /// Return true if this instruction is a select instruction.
487  bool isSelect(QueryType Type = IgnoreBundle) const {
488    return hasProperty(MCID::Select, Type);
489  }
490
491  /// Return true if this instruction cannot be safely duplicated.
492  /// For example, if the instruction has a unique labels attached
493  /// to it, duplicating it would cause multiple definition errors.
494  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
495    return hasProperty(MCID::NotDuplicable, Type);
496  }
497
498  /// Return true if this instruction is convergent.
499  /// Convergent instructions can not be made control-dependent on any
500  /// additional values.
501  bool isConvergent(QueryType Type = AnyInBundle) const {
502    return hasProperty(MCID::Convergent, Type);
503  }
504
505  /// Returns true if the specified instruction has a delay slot
506  /// which must be filled by the code generator.
507  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
508    return hasProperty(MCID::DelaySlot, Type);
509  }
510
511  /// Return true for instructions that can be folded as
512  /// memory operands in other instructions. The most common use for this
513  /// is instructions that are simple loads from memory that don't modify
514  /// the loaded value in any way, but it can also be used for instructions
515  /// that can be expressed as constant-pool loads, such as V_SETALLONES
516  /// on x86, to allow them to be folded when it is beneficial.
517  /// This should only be set on instructions that return a value in their
518  /// only virtual register definition.
519  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
520    return hasProperty(MCID::FoldableAsLoad, Type);
521  }
522
523  /// \brief Return true if this instruction behaves
524  /// the same way as the generic REG_SEQUENCE instructions.
525  /// E.g., on ARM,
526  /// dX VMOVDRR rY, rZ
527  /// is equivalent to
528  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
529  ///
530  /// Note that for the optimizers to be able to take advantage of
531  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
532  /// override accordingly.
533  bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
534    return hasProperty(MCID::RegSequence, Type);
535  }
536
537  /// \brief Return true if this instruction behaves
538  /// the same way as the generic EXTRACT_SUBREG instructions.
539  /// E.g., on ARM,
540  /// rX, rY VMOVRRD dZ
541  /// is equivalent to two EXTRACT_SUBREG:
542  /// rX = EXTRACT_SUBREG dZ, ssub_0
543  /// rY = EXTRACT_SUBREG dZ, ssub_1
544  ///
545  /// Note that for the optimizers to be able to take advantage of
546  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
547  /// override accordingly.
548  bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
549    return hasProperty(MCID::ExtractSubreg, Type);
550  }
551
552  /// \brief Return true if this instruction behaves
553  /// the same way as the generic INSERT_SUBREG instructions.
554  /// E.g., on ARM,
555  /// dX = VSETLNi32 dY, rZ, Imm
556  /// is equivalent to a INSERT_SUBREG:
557  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
558  ///
559  /// Note that for the optimizers to be able to take advantage of
560  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
561  /// override accordingly.
562  bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
563    return hasProperty(MCID::InsertSubreg, Type);
564  }
565
566  //===--------------------------------------------------------------------===//
567  // Side Effect Analysis
568  //===--------------------------------------------------------------------===//
569
570  /// Return true if this instruction could possibly read memory.
571  /// Instructions with this flag set are not necessarily simple load
572  /// instructions, they may load a value and modify it, for example.
573  bool mayLoad(QueryType Type = AnyInBundle) const {
574    if (isInlineAsm()) {
575      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
576      if (ExtraInfo & InlineAsm::Extra_MayLoad)
577        return true;
578    }
579    return hasProperty(MCID::MayLoad, Type);
580  }
581
582  /// Return true if this instruction could possibly modify memory.
583  /// Instructions with this flag set are not necessarily simple store
584  /// instructions, they may store a modified value based on their operands, or
585  /// may not actually modify anything, for example.
586  bool mayStore(QueryType Type = AnyInBundle) const {
587    if (isInlineAsm()) {
588      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
589      if (ExtraInfo & InlineAsm::Extra_MayStore)
590        return true;
591    }
592    return hasProperty(MCID::MayStore, Type);
593  }
594
595  /// Return true if this instruction could possibly read or modify memory.
596  bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
597    return mayLoad(Type) || mayStore(Type);
598  }
599
600  //===--------------------------------------------------------------------===//
601  // Flags that indicate whether an instruction can be modified by a method.
602  //===--------------------------------------------------------------------===//
603
604  /// Return true if this may be a 2- or 3-address
605  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
606  /// result if Y and Z are exchanged.  If this flag is set, then the
607  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
608  /// instruction.
609  ///
610  /// Note that this flag may be set on instructions that are only commutable
611  /// sometimes.  In these cases, the call to commuteInstruction will fail.
612  /// Also note that some instructions require non-trivial modification to
613  /// commute them.
614  bool isCommutable(QueryType Type = IgnoreBundle) const {
615    return hasProperty(MCID::Commutable, Type);
616  }
617
618  /// Return true if this is a 2-address instruction
619  /// which can be changed into a 3-address instruction if needed.  Doing this
620  /// transformation can be profitable in the register allocator, because it
621  /// means that the instruction can use a 2-address form if possible, but
622  /// degrade into a less efficient form if the source and dest register cannot
623  /// be assigned to the same register.  For example, this allows the x86
624  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
625  /// is the same speed as the shift but has bigger code size.
626  ///
627  /// If this returns true, then the target must implement the
628  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
629  /// is allowed to fail if the transformation isn't valid for this specific
630  /// instruction (e.g. shl reg, 4 on x86).
631  ///
632  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
633    return hasProperty(MCID::ConvertibleTo3Addr, Type);
634  }
635
636  /// Return true if this instruction requires
637  /// custom insertion support when the DAG scheduler is inserting it into a
638  /// machine basic block.  If this is true for the instruction, it basically
639  /// means that it is a pseudo instruction used at SelectionDAG time that is
640  /// expanded out into magic code by the target when MachineInstrs are formed.
641  ///
642  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
643  /// is used to insert this into the MachineBasicBlock.
644  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
645    return hasProperty(MCID::UsesCustomInserter, Type);
646  }
647
648  /// Return true if this instruction requires *adjustment*
649  /// after instruction selection by calling a target hook. For example, this
650  /// can be used to fill in ARM 's' optional operand depending on whether
651  /// the conditional flag register is used.
652  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
653    return hasProperty(MCID::HasPostISelHook, Type);
654  }
655
656  /// Returns true if this instruction is a candidate for remat.
657  /// This flag is deprecated, please don't use it anymore.  If this
658  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
659  /// verify the instruction is really rematable.
660  bool isRematerializable(QueryType Type = AllInBundle) const {
661    // It's only possible to re-mat a bundle if all bundled instructions are
662    // re-materializable.
663    return hasProperty(MCID::Rematerializable, Type);
664  }
665
666  /// Returns true if this instruction has the same cost (or less) than a move
667  /// instruction. This is useful during certain types of optimizations
668  /// (e.g., remat during two-address conversion or machine licm)
669  /// where we would like to remat or hoist the instruction, but not if it costs
670  /// more than moving the instruction into the appropriate register. Note, we
671  /// are not marking copies from and to the same register class with this flag.
672  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
673    // Only returns true for a bundle if all bundled instructions are cheap.
674    return hasProperty(MCID::CheapAsAMove, Type);
675  }
676
677  /// Returns true if this instruction source operands
678  /// have special register allocation requirements that are not captured by the
679  /// operand register classes. e.g. ARM::STRD's two source registers must be an
680  /// even / odd pair, ARM::STM registers have to be in ascending order.
681  /// Post-register allocation passes should not attempt to change allocations
682  /// for sources of instructions with this flag.
683  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
684    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
685  }
686
687  /// Returns true if this instruction def operands
688  /// have special register allocation requirements that are not captured by the
689  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
690  /// even / odd pair, ARM::LDM registers have to be in ascending order.
691  /// Post-register allocation passes should not attempt to change allocations
692  /// for definitions of instructions with this flag.
693  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
694    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
695  }
696
697
698  enum MICheckType {
699    CheckDefs,      // Check all operands for equality
700    CheckKillDead,  // Check all operands including kill / dead markers
701    IgnoreDefs,     // Ignore all definitions
702    IgnoreVRegDefs  // Ignore virtual register definitions
703  };
704
705  /// Return true if this instruction is identical to (same
706  /// opcode and same operands as) the specified instruction.
707  bool isIdenticalTo(const MachineInstr *Other,
708                     MICheckType Check = CheckDefs) const;
709
710  /// Unlink 'this' from the containing basic block, and return it without
711  /// deleting it.
712  ///
713  /// This function can not be used on bundled instructions, use
714  /// removeFromBundle() to remove individual instructions from a bundle.
715  MachineInstr *removeFromParent();
716
717  /// Unlink this instruction from its basic block and return it without
718  /// deleting it.
719  ///
720  /// If the instruction is part of a bundle, the other instructions in the
721  /// bundle remain bundled.
722  MachineInstr *removeFromBundle();
723
724  /// Unlink 'this' from the containing basic block and delete it.
725  ///
726  /// If this instruction is the header of a bundle, the whole bundle is erased.
727  /// This function can not be used for instructions inside a bundle, use
728  /// eraseFromBundle() to erase individual bundled instructions.
729  void eraseFromParent();
730
731  /// Unlink 'this' from the containing basic block and delete it.
732  ///
733  /// For all definitions mark their uses in DBG_VALUE nodes
734  /// as undefined. Otherwise like eraseFromParent().
735  void eraseFromParentAndMarkDBGValuesForRemoval();
736
737  /// Unlink 'this' form its basic block and delete it.
738  ///
739  /// If the instruction is part of a bundle, the other instructions in the
740  /// bundle remain bundled.
741  void eraseFromBundle();
742
743  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
744  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
745
746  /// Returns true if the MachineInstr represents a label.
747  bool isLabel() const { return isEHLabel() || isGCLabel(); }
748  bool isCFIInstruction() const {
749    return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
750  }
751
752  // True if the instruction represents a position in the function.
753  bool isPosition() const { return isLabel() || isCFIInstruction(); }
754
755  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
756  /// A DBG_VALUE is indirect iff the first operand is a register and
757  /// the second operand is an immediate.
758  bool isIndirectDebugValue() const {
759    return isDebugValue()
760      && getOperand(0).isReg()
761      && getOperand(1).isImm();
762  }
763
764  bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
765  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
766  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
767  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
768  bool isMSInlineAsm() const {
769    return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
770  }
771  bool isStackAligningInlineAsm() const;
772  InlineAsm::AsmDialect getInlineAsmDialect() const;
773  bool isInsertSubreg() const {
774    return getOpcode() == TargetOpcode::INSERT_SUBREG;
775  }
776  bool isSubregToReg() const {
777    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
778  }
779  bool isRegSequence() const {
780    return getOpcode() == TargetOpcode::REG_SEQUENCE;
781  }
782  bool isBundle() const {
783    return getOpcode() == TargetOpcode::BUNDLE;
784  }
785  bool isCopy() const {
786    return getOpcode() == TargetOpcode::COPY;
787  }
788  bool isFullCopy() const {
789    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
790  }
791  bool isExtractSubreg() const {
792    return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
793  }
794
795  /// Return true if the instruction behaves like a copy.
796  /// This does not include native copy instructions.
797  bool isCopyLike() const {
798    return isCopy() || isSubregToReg();
799  }
800
801  /// Return true is the instruction is an identity copy.
802  bool isIdentityCopy() const {
803    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
804      getOperand(0).getSubReg() == getOperand(1).getSubReg();
805  }
806
807  /// Return true if this is a transient instruction that is
808  /// either very likely to be eliminated during register allocation (such as
809  /// copy-like instructions), or if this instruction doesn't have an
810  /// execution-time cost.
811  bool isTransient() const {
812    switch(getOpcode()) {
813    default: return false;
814    // Copy-like instructions are usually eliminated during register allocation.
815    case TargetOpcode::PHI:
816    case TargetOpcode::COPY:
817    case TargetOpcode::INSERT_SUBREG:
818    case TargetOpcode::SUBREG_TO_REG:
819    case TargetOpcode::REG_SEQUENCE:
820    // Pseudo-instructions that don't produce any real output.
821    case TargetOpcode::IMPLICIT_DEF:
822    case TargetOpcode::KILL:
823    case TargetOpcode::CFI_INSTRUCTION:
824    case TargetOpcode::EH_LABEL:
825    case TargetOpcode::GC_LABEL:
826    case TargetOpcode::DBG_VALUE:
827      return true;
828    }
829  }
830
831  /// Return the number of instructions inside the MI bundle, excluding the
832  /// bundle header.
833  ///
834  /// This is the number of instructions that MachineBasicBlock::iterator
835  /// skips, 0 for unbundled instructions.
836  unsigned getBundleSize() const;
837
838  /// Return true if the MachineInstr reads the specified register.
839  /// If TargetRegisterInfo is passed, then it also checks if there
840  /// is a read of a super-register.
841  /// This does not count partial redefines of virtual registers as reads:
842  ///   %reg1024:6 = OP.
843  bool readsRegister(unsigned Reg,
844                     const TargetRegisterInfo *TRI = nullptr) const {
845    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
846  }
847
848  /// Return true if the MachineInstr reads the specified virtual register.
849  /// Take into account that a partial define is a
850  /// read-modify-write operation.
851  bool readsVirtualRegister(unsigned Reg) const {
852    return readsWritesVirtualRegister(Reg).first;
853  }
854
855  /// Return a pair of bools (reads, writes) indicating if this instruction
856  /// reads or writes Reg. This also considers partial defines.
857  /// If Ops is not null, all operand indices for Reg are added.
858  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
859                                SmallVectorImpl<unsigned> *Ops = nullptr) const;
860
861  /// Return true if the MachineInstr kills the specified register.
862  /// If TargetRegisterInfo is passed, then it also checks if there is
863  /// a kill of a super-register.
864  bool killsRegister(unsigned Reg,
865                     const TargetRegisterInfo *TRI = nullptr) const {
866    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
867  }
868
869  /// Return true if the MachineInstr fully defines the specified register.
870  /// If TargetRegisterInfo is passed, then it also checks
871  /// if there is a def of a super-register.
872  /// NOTE: It's ignoring subreg indices on virtual registers.
873  bool definesRegister(unsigned Reg,
874                       const TargetRegisterInfo *TRI = nullptr) const {
875    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
876  }
877
878  /// Return true if the MachineInstr modifies (fully define or partially
879  /// define) the specified register.
880  /// NOTE: It's ignoring subreg indices on virtual registers.
881  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
882    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
883  }
884
885  /// Returns true if the register is dead in this machine instruction.
886  /// If TargetRegisterInfo is passed, then it also checks
887  /// if there is a dead def of a super-register.
888  bool registerDefIsDead(unsigned Reg,
889                         const TargetRegisterInfo *TRI = nullptr) const {
890    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
891  }
892
893  /// Returns the operand index that is a use of the specific register or -1
894  /// if it is not found. It further tightens the search criteria to a use
895  /// that kills the register if isKill is true.
896  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
897                                const TargetRegisterInfo *TRI = nullptr) const;
898
899  /// Wrapper for findRegisterUseOperandIdx, it returns
900  /// a pointer to the MachineOperand rather than an index.
901  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
902                                      const TargetRegisterInfo *TRI = nullptr) {
903    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
904    return (Idx == -1) ? nullptr : &getOperand(Idx);
905  }
906
907  const MachineOperand *findRegisterUseOperand(
908    unsigned Reg, bool isKill = false,
909    const TargetRegisterInfo *TRI = nullptr) const {
910    return const_cast<MachineInstr *>(this)->
911      findRegisterUseOperand(Reg, isKill, TRI);
912  }
913
914  /// Returns the operand index that is a def of the specified register or
915  /// -1 if it is not found. If isDead is true, defs that are not dead are
916  /// skipped. If Overlap is true, then it also looks for defs that merely
917  /// overlap the specified register. If TargetRegisterInfo is non-null,
918  /// then it also checks if there is a def of a super-register.
919  /// This may also return a register mask operand when Overlap is true.
920  int findRegisterDefOperandIdx(unsigned Reg,
921                                bool isDead = false, bool Overlap = false,
922                                const TargetRegisterInfo *TRI = nullptr) const;
923
924  /// Wrapper for findRegisterDefOperandIdx, it returns
925  /// a pointer to the MachineOperand rather than an index.
926  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
927                                      const TargetRegisterInfo *TRI = nullptr) {
928    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
929    return (Idx == -1) ? nullptr : &getOperand(Idx);
930  }
931
932  /// Find the index of the first operand in the
933  /// operand list that is used to represent the predicate. It returns -1 if
934  /// none is found.
935  int findFirstPredOperandIdx() const;
936
937  /// Find the index of the flag word operand that
938  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
939  /// getOperand(OpIdx) does not belong to an inline asm operand group.
940  ///
941  /// If GroupNo is not NULL, it will receive the number of the operand group
942  /// containing OpIdx.
943  ///
944  /// The flag operand is an immediate that can be decoded with methods like
945  /// InlineAsm::hasRegClassConstraint().
946  ///
947  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
948
949  /// Compute the static register class constraint for operand OpIdx.
950  /// For normal instructions, this is derived from the MCInstrDesc.
951  /// For inline assembly it is derived from the flag words.
952  ///
953  /// Returns NULL if the static register class constraint cannot be
954  /// determined.
955  ///
956  const TargetRegisterClass*
957  getRegClassConstraint(unsigned OpIdx,
958                        const TargetInstrInfo *TII,
959                        const TargetRegisterInfo *TRI) const;
960
961  /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
962  /// the given \p CurRC.
963  /// If \p ExploreBundle is set and MI is part of a bundle, all the
964  /// instructions inside the bundle will be taken into account. In other words,
965  /// this method accumulates all the constraints of the operand of this MI and
966  /// the related bundle if MI is a bundle or inside a bundle.
967  ///
968  /// Returns the register class that satisfies both \p CurRC and the
969  /// constraints set by MI. Returns NULL if such a register class does not
970  /// exist.
971  ///
972  /// \pre CurRC must not be NULL.
973  const TargetRegisterClass *getRegClassConstraintEffectForVReg(
974      unsigned Reg, const TargetRegisterClass *CurRC,
975      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
976      bool ExploreBundle = false) const;
977
978  /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
979  /// to the given \p CurRC.
980  ///
981  /// Returns the register class that satisfies both \p CurRC and the
982  /// constraints set by \p OpIdx MI. Returns NULL if such a register class
983  /// does not exist.
984  ///
985  /// \pre CurRC must not be NULL.
986  /// \pre The operand at \p OpIdx must be a register.
987  const TargetRegisterClass *
988  getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
989                              const TargetInstrInfo *TII,
990                              const TargetRegisterInfo *TRI) const;
991
992  /// Add a tie between the register operands at DefIdx and UseIdx.
993  /// The tie will cause the register allocator to ensure that the two
994  /// operands are assigned the same physical register.
995  ///
996  /// Tied operands are managed automatically for explicit operands in the
997  /// MCInstrDesc. This method is for exceptional cases like inline asm.
998  void tieOperands(unsigned DefIdx, unsigned UseIdx);
999
1000  /// Given the index of a tied register operand, find the
1001  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1002  /// index of the tied operand which must exist.
1003  unsigned findTiedOperandIdx(unsigned OpIdx) const;
1004
1005  /// Given the index of a register def operand,
1006  /// check if the register def is tied to a source operand, due to either
1007  /// two-address elimination or inline assembly constraints. Returns the
1008  /// first tied use operand index by reference if UseOpIdx is not null.
1009  bool isRegTiedToUseOperand(unsigned DefOpIdx,
1010                             unsigned *UseOpIdx = nullptr) const {
1011    const MachineOperand &MO = getOperand(DefOpIdx);
1012    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1013      return false;
1014    if (UseOpIdx)
1015      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1016    return true;
1017  }
1018
1019  /// Return true if the use operand of the specified index is tied to a def
1020  /// operand. It also returns the def operand index by reference if DefOpIdx
1021  /// is not null.
1022  bool isRegTiedToDefOperand(unsigned UseOpIdx,
1023                             unsigned *DefOpIdx = nullptr) const {
1024    const MachineOperand &MO = getOperand(UseOpIdx);
1025    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1026      return false;
1027    if (DefOpIdx)
1028      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1029    return true;
1030  }
1031
1032  /// Clears kill flags on all operands.
1033  void clearKillInfo();
1034
1035  /// Replace all occurrences of FromReg with ToReg:SubIdx,
1036  /// properly composing subreg indices where necessary.
1037  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1038                          const TargetRegisterInfo &RegInfo);
1039
1040  /// We have determined MI kills a register. Look for the
1041  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1042  /// add a implicit operand if it's not found. Returns true if the operand
1043  /// exists / is added.
1044  bool addRegisterKilled(unsigned IncomingReg,
1045                         const TargetRegisterInfo *RegInfo,
1046                         bool AddIfNotFound = false);
1047
1048  /// Clear all kill flags affecting Reg.  If RegInfo is
1049  /// provided, this includes super-register kills.
1050  void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1051
1052  /// We have determined MI defined a register without a use.
1053  /// Look for the operand that defines it and mark it as IsDead. If
1054  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1055  /// true if the operand exists / is added.
1056  bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1057                       bool AddIfNotFound = false);
1058
1059  /// Clear all dead flags on operands defining register @p Reg.
1060  void clearRegisterDeads(unsigned Reg);
1061
1062  /// Mark all subregister defs of register @p Reg with the undef flag.
1063  /// This function is used when we determined to have a subregister def in an
1064  /// otherwise undefined super register.
1065  void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1066
1067  /// We have determined MI defines a register. Make sure there is an operand
1068  /// defining Reg.
1069  void addRegisterDefined(unsigned Reg,
1070                          const TargetRegisterInfo *RegInfo = nullptr);
1071
1072  /// Mark every physreg used by this instruction as
1073  /// dead except those in the UsedRegs list.
1074  ///
1075  /// On instructions with register mask operands, also add implicit-def
1076  /// operands for all registers in UsedRegs.
1077  void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1078                             const TargetRegisterInfo &TRI);
1079
1080  /// Return true if it is safe to move this instruction. If
1081  /// SawStore is set to true, it means that there is a store (or call) between
1082  /// the instruction's location and its intended destination.
1083  bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1084
1085  /// Return true if this instruction may have an ordered
1086  /// or volatile memory reference, or if the information describing the memory
1087  /// reference is not available. Return false if it is known to have no
1088  /// ordered or volatile memory references.
1089  bool hasOrderedMemoryRef() const;
1090
1091  /// Return true if this instruction is loading from a
1092  /// location whose value is invariant across the function.  For example,
1093  /// loading a value from the constant pool or from the argument area of
1094  /// a function if it does not change.  This should only return true of *all*
1095  /// loads the instruction does are invariant (if it does multiple loads).
1096  bool isInvariantLoad(AliasAnalysis *AA) const;
1097
1098  /// If the specified instruction is a PHI that always merges together the
1099  /// same virtual register, return the register, otherwise return 0.
1100  unsigned isConstantValuePHI() const;
1101
1102  /// Return true if this instruction has side effects that are not modeled
1103  /// by mayLoad / mayStore, etc.
1104  /// For all instructions, the property is encoded in MCInstrDesc::Flags
1105  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1106  /// INLINEASM instruction, in which case the side effect property is encoded
1107  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1108  ///
1109  bool hasUnmodeledSideEffects() const;
1110
1111  /// Returns true if it is illegal to fold a load across this instruction.
1112  bool isLoadFoldBarrier() const;
1113
1114  /// Return true if all the defs of this instruction are dead.
1115  bool allDefsAreDead() const;
1116
1117  /// Copy implicit register operands from specified
1118  /// instruction to this instruction.
1119  void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
1120
1121  //
1122  // Debugging support
1123  //
1124  void print(raw_ostream &OS, bool SkipOpers = false) const;
1125  void print(raw_ostream &OS, ModuleSlotTracker &MST,
1126             bool SkipOpers = false) const;
1127  void dump() const;
1128
1129  //===--------------------------------------------------------------------===//
1130  // Accessors used to build up machine instructions.
1131
1132  /// Add the specified operand to the instruction.  If it is an implicit
1133  /// operand, it is added to the end of the operand list.  If it is an
1134  /// explicit operand it is added at the end of the explicit operand list
1135  /// (before the first implicit operand).
1136  ///
1137  /// MF must be the machine function that was used to allocate this
1138  /// instruction.
1139  ///
1140  /// MachineInstrBuilder provides a more convenient interface for creating
1141  /// instructions and adding operands.
1142  void addOperand(MachineFunction &MF, const MachineOperand &Op);
1143
1144  /// Add an operand without providing an MF reference. This only works for
1145  /// instructions that are inserted in a basic block.
1146  ///
1147  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1148  /// preferred.
1149  void addOperand(const MachineOperand &Op);
1150
1151  /// Replace the instruction descriptor (thus opcode) of
1152  /// the current instruction with a new one.
1153  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1154
1155  /// Replace current source information with new such.
1156  /// Avoid using this, the constructor argument is preferable.
1157  void setDebugLoc(DebugLoc dl) {
1158    debugLoc = std::move(dl);
1159    assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1160  }
1161
1162  /// Erase an operand  from an instruction, leaving it with one
1163  /// fewer operand than it started with.
1164  void RemoveOperand(unsigned i);
1165
1166  /// Add a MachineMemOperand to the machine instruction.
1167  /// This function should be used only occasionally. The setMemRefs function
1168  /// is the primary method for setting up a MachineInstr's MemRefs list.
1169  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1170
1171  /// Assign this MachineInstr's memory reference descriptor list.
1172  /// This does not transfer ownership.
1173  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1174    MemRefs = NewMemRefs;
1175    NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
1176    assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
1177  }
1178
1179  /// Clear this MachineInstr's memory reference descriptor list.
1180  void clearMemRefs() {
1181    MemRefs = nullptr;
1182    NumMemRefs = 0;
1183  }
1184
1185  /// Break any tie involving OpIdx.
1186  void untieRegOperand(unsigned OpIdx) {
1187    MachineOperand &MO = getOperand(OpIdx);
1188    if (MO.isReg() && MO.isTied()) {
1189      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1190      MO.TiedTo = 0;
1191    }
1192  }
1193
1194  /// Add all implicit def and use operands to this instruction.
1195  void addImplicitDefUseOperands(MachineFunction &MF);
1196
1197private:
1198  /// If this instruction is embedded into a MachineFunction, return the
1199  /// MachineRegisterInfo object for the current function, otherwise
1200  /// return null.
1201  MachineRegisterInfo *getRegInfo();
1202
1203  /// Unlink all of the register operands in this instruction from their
1204  /// respective use lists.  This requires that the operands already be on their
1205  /// use lists.
1206  void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1207
1208  /// Add all of the register operands in this instruction from their
1209  /// respective use lists.  This requires that the operands not be on their
1210  /// use lists yet.
1211  void AddRegOperandsToUseLists(MachineRegisterInfo&);
1212
1213  /// Slow path for hasProperty when we're dealing with a bundle.
1214  bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1215
1216  /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1217  /// this MI and the given operand index \p OpIdx.
1218  /// If the related operand does not constrained Reg, this returns CurRC.
1219  const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1220      unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1221      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1222};
1223
1224/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1225/// instruction rather than by pointer value.
1226/// The hashing and equality testing functions ignore definitions so this is
1227/// useful for CSE, etc.
1228struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1229  static inline MachineInstr *getEmptyKey() {
1230    return nullptr;
1231  }
1232
1233  static inline MachineInstr *getTombstoneKey() {
1234    return reinterpret_cast<MachineInstr*>(-1);
1235  }
1236
1237  static unsigned getHashValue(const MachineInstr* const &MI);
1238
1239  static bool isEqual(const MachineInstr* const &LHS,
1240                      const MachineInstr* const &RHS) {
1241    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1242        LHS == getEmptyKey() || LHS == getTombstoneKey())
1243      return LHS == RHS;
1244    return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
1245  }
1246};
1247
1248//===----------------------------------------------------------------------===//
1249// Debugging Support
1250
1251inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1252  MI.print(OS);
1253  return OS;
1254}
1255
1256} // End llvm namespace
1257
1258#endif
1259