MachineInstr.h revision 699ac049517285d978ed607b2735976c5ae97ac0
1//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the MachineInstr class, which is the
11// basic representation for all target dependent machine instructions used by
12// the back end.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_MACHINEINSTR_H
17#define LLVM_CODEGEN_MACHINEINSTR_H
18
19#include "llvm/CodeGen/MachineOperand.h"
20#include "llvm/MC/MCInstrDesc.h"
21#include "llvm/Target/TargetOpcodes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/ilist.h"
24#include "llvm/ADT/ilist_node.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/DenseMapInfo.h"
28#include "llvm/Support/DebugLoc.h"
29#include <vector>
30
31namespace llvm {
32
33template <typename T> class SmallVectorImpl;
34class AliasAnalysis;
35class TargetInstrInfo;
36class TargetRegisterClass;
37class TargetRegisterInfo;
38class MachineFunction;
39class MachineMemOperand;
40
41//===----------------------------------------------------------------------===//
42/// MachineInstr - Representation of each machine instruction.
43///
44class MachineInstr : public ilist_node<MachineInstr> {
45public:
46  typedef MachineMemOperand **mmo_iterator;
47
48  /// Flags to specify different kinds of comments to output in
49  /// assembly code.  These flags carry semantic information not
50  /// otherwise easily derivable from the IR text.
51  ///
52  enum CommentFlag {
53    ReloadReuse = 0x1
54  };
55
56  enum MIFlag {
57    NoFlags      = 0,
58    FrameSetup   = 1 << 0,              // Instruction is used as a part of
59                                        // function frame setup code.
60    InsideBundle = 1 << 1               // Instruction is inside a bundle (not
61                                        // the first MI in a bundle)
62  };
63private:
64  const MCInstrDesc *MCID;              // Instruction descriptor.
65
66  uint8_t Flags;                        // Various bits of additional
67                                        // information about machine
68                                        // instruction.
69
70  uint8_t AsmPrinterFlags;              // Various bits of information used by
71                                        // the AsmPrinter to emit helpful
72                                        // comments.  This is *not* semantic
73                                        // information.  Do not use this for
74                                        // anything other than to convey comment
75                                        // information to AsmPrinter.
76
77  uint16_t NumMemRefs;                  // information on memory references
78  mmo_iterator MemRefs;
79
80  std::vector<MachineOperand> Operands; // the operands
81  MachineBasicBlock *Parent;            // Pointer to the owning basic block.
82  DebugLoc debugLoc;                    // Source line information.
83
84  MachineInstr(const MachineInstr&);   // DO NOT IMPLEMENT
85  void operator=(const MachineInstr&); // DO NOT IMPLEMENT
86
87  // Intrusive list support
88  friend struct ilist_traits<MachineInstr>;
89  friend struct ilist_traits<MachineBasicBlock>;
90  void setParent(MachineBasicBlock *P) { Parent = P; }
91
92  /// MachineInstr ctor - This constructor creates a copy of the given
93  /// MachineInstr in the given MachineFunction.
94  MachineInstr(MachineFunction &, const MachineInstr &);
95
96  /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
97  /// MCID NULL and no operands.
98  MachineInstr();
99
100  // The next two constructors have DebugLoc and non-DebugLoc versions;
101  // over time, the non-DebugLoc versions should be phased out and eventually
102  // removed.
103
104  /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
105  /// implicit operands.  It reserves space for the number of operands specified
106  /// by the MCInstrDesc.  The version with a DebugLoc should be preferred.
107  explicit MachineInstr(const MCInstrDesc &MCID, bool NoImp = false);
108
109  /// MachineInstr ctor - Work exactly the same as the ctor above, except that
110  /// the MachineInstr is created and added to the end of the specified basic
111  /// block.  The version with a DebugLoc should be preferred.
112  MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &MCID);
113
114  /// MachineInstr ctor - This constructor create a MachineInstr and add the
115  /// implicit operands.  It reserves space for number of operands specified by
116  /// MCInstrDesc.  An explicit DebugLoc is supplied.
117  explicit MachineInstr(const MCInstrDesc &MCID, const DebugLoc dl,
118                        bool NoImp = false);
119
120  /// MachineInstr ctor - Work exactly the same as the ctor above, except that
121  /// the MachineInstr is created and added to the end of the specified basic
122  /// block.
123  MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
124               const MCInstrDesc &MCID);
125
126  ~MachineInstr();
127
128  // MachineInstrs are pool-allocated and owned by MachineFunction.
129  friend class MachineFunction;
130
131public:
132  const MachineBasicBlock* getParent() const { return Parent; }
133  MachineBasicBlock* getParent() { return Parent; }
134
135  /// getAsmPrinterFlags - Return the asm printer flags bitvector.
136  ///
137  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
138
139  /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
140  ///
141  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
142
143  /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
144  ///
145  bool getAsmPrinterFlag(CommentFlag Flag) const {
146    return AsmPrinterFlags & Flag;
147  }
148
149  /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
150  ///
151  void setAsmPrinterFlag(CommentFlag Flag) {
152    AsmPrinterFlags |= (uint8_t)Flag;
153  }
154
155  /// clearAsmPrinterFlag - clear specific AsmPrinter flags
156  ///
157  void clearAsmPrinterFlag(CommentFlag Flag) {
158    AsmPrinterFlags &= ~Flag;
159  }
160
161  /// getFlags - Return the MI flags bitvector.
162  uint8_t getFlags() const {
163    return Flags;
164  }
165
166  /// getFlag - Return whether an MI flag is set.
167  bool getFlag(MIFlag Flag) const {
168    return Flags & Flag;
169  }
170
171  /// setFlag - Set a MI flag.
172  void setFlag(MIFlag Flag) {
173    Flags |= (uint8_t)Flag;
174  }
175
176  void setFlags(unsigned flags) {
177    Flags = flags;
178  }
179
180  /// clearFlag - Clear a MI flag.
181  void clearFlag(MIFlag Flag) {
182    Flags &= ~((uint8_t)Flag);
183  }
184
185  /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
186  /// in a bundle).
187  ///
188  /// A bundle looks like this before it's finalized:
189  ///   ----------------
190  ///   |      MI      |
191  ///   ----------------
192  ///          |
193  ///   ----------------
194  ///   |      MI    * |
195  ///   ----------------
196  ///          |
197  ///   ----------------
198  ///   |      MI    * |
199  ///   ----------------
200  /// In this case, the first MI starts a bundle but is not inside a bundle, the
201  /// next 2 MIs are considered "inside" the bundle.
202  ///
203  /// After a bundle is finalized, it looks like this:
204  ///   ----------------
205  ///   |    Bundle    |
206  ///   ----------------
207  ///          |
208  ///   ----------------
209  ///   |      MI    * |
210  ///   ----------------
211  ///          |
212  ///   ----------------
213  ///   |      MI    * |
214  ///   ----------------
215  ///          |
216  ///   ----------------
217  ///   |      MI    * |
218  ///   ----------------
219  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
220  /// a bundle, but the next three MIs are.
221  bool isInsideBundle() const {
222    return getFlag(InsideBundle);
223  }
224
225  /// setIsInsideBundle - Set InsideBundle bit.
226  ///
227  void setIsInsideBundle(bool Val = true) {
228    if (Val)
229      setFlag(InsideBundle);
230    else
231      clearFlag(InsideBundle);
232  }
233
234  /// isBundled - Return true if this instruction part of a bundle. This is true
235  /// if either itself or its following instruction is marked "InsideBundle".
236  bool isBundled() const;
237
238  /// getDebugLoc - Returns the debug location id of this MachineInstr.
239  ///
240  DebugLoc getDebugLoc() const { return debugLoc; }
241
242  /// emitError - Emit an error referring to the source location of this
243  /// instruction. This should only be used for inline assembly that is somehow
244  /// impossible to compile. Other errors should have been handled much
245  /// earlier.
246  ///
247  /// If this method returns, the caller should try to recover from the error.
248  ///
249  void emitError(StringRef Msg) const;
250
251  /// getDesc - Returns the target instruction descriptor of this
252  /// MachineInstr.
253  const MCInstrDesc &getDesc() const { return *MCID; }
254
255  /// getOpcode - Returns the opcode of this MachineInstr.
256  ///
257  int getOpcode() const { return MCID->Opcode; }
258
259  /// Access to explicit operands of the instruction.
260  ///
261  unsigned getNumOperands() const { return (unsigned)Operands.size(); }
262
263  const MachineOperand& getOperand(unsigned i) const {
264    assert(i < getNumOperands() && "getOperand() out of range!");
265    return Operands[i];
266  }
267  MachineOperand& getOperand(unsigned i) {
268    assert(i < getNumOperands() && "getOperand() out of range!");
269    return Operands[i];
270  }
271
272  /// getNumExplicitOperands - Returns the number of non-implicit operands.
273  ///
274  unsigned getNumExplicitOperands() const;
275
276  /// iterator/begin/end - Iterate over all operands of a machine instruction.
277  typedef std::vector<MachineOperand>::iterator mop_iterator;
278  typedef std::vector<MachineOperand>::const_iterator const_mop_iterator;
279
280  mop_iterator operands_begin() { return Operands.begin(); }
281  mop_iterator operands_end() { return Operands.end(); }
282
283  const_mop_iterator operands_begin() const { return Operands.begin(); }
284  const_mop_iterator operands_end() const { return Operands.end(); }
285
286  /// Access to memory operands of the instruction
287  mmo_iterator memoperands_begin() const { return MemRefs; }
288  mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
289  bool memoperands_empty() const { return NumMemRefs == 0; }
290
291  /// hasOneMemOperand - Return true if this instruction has exactly one
292  /// MachineMemOperand.
293  bool hasOneMemOperand() const {
294    return NumMemRefs == 1;
295  }
296
297  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
298  /// queries but they are bundle aware.
299
300  enum QueryType {
301    IgnoreBundle,    // Ignore bundles
302    AnyInBundle,     // Return true if any instruction in bundle has property
303    AllInBundle      // Return true if all instructions in bundle have property
304  };
305
306  /// hasProperty - Return true if the instruction (or in the case of a bundle,
307  /// the instructions inside the bundle) has the specified property.
308  /// The first argument is the property being queried.
309  /// The second argument indicates whether the query should look inside
310  /// instruction bundles.
311  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
312    // Inline the fast path.
313    if (Type == IgnoreBundle || !isBundle())
314      return getDesc().getFlags() & (1 << MCFlag);
315
316    // If we have a bundle, take the slow path.
317    return hasPropertyInBundle(1 << MCFlag, Type);
318  }
319
320  /// isVariadic - Return true if this instruction can have a variable number of
321  /// operands.  In this case, the variable operands will be after the normal
322  /// operands but before the implicit definitions and uses (if any are
323  /// present).
324  bool isVariadic(QueryType Type = IgnoreBundle) const {
325    return hasProperty(MCID::Variadic, Type);
326  }
327
328  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
329  /// ARM instructions which can set condition code if 's' bit is set.
330  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
331    return hasProperty(MCID::HasOptionalDef, Type);
332  }
333
334  /// isPseudo - Return true if this is a pseudo instruction that doesn't
335  /// correspond to a real machine instruction.
336  ///
337  bool isPseudo(QueryType Type = IgnoreBundle) const {
338    return hasProperty(MCID::Pseudo, Type);
339  }
340
341  bool isReturn(QueryType Type = AnyInBundle) const {
342    return hasProperty(MCID::Return, Type);
343  }
344
345  bool isCall(QueryType Type = AnyInBundle) const {
346    return hasProperty(MCID::Call, Type);
347  }
348
349  /// isBarrier - Returns true if the specified instruction stops control flow
350  /// from executing the instruction immediately following it.  Examples include
351  /// unconditional branches and return instructions.
352  bool isBarrier(QueryType Type = AnyInBundle) const {
353    return hasProperty(MCID::Barrier, Type);
354  }
355
356  /// isTerminator - Returns true if this instruction part of the terminator for
357  /// a basic block.  Typically this is things like return and branch
358  /// instructions.
359  ///
360  /// Various passes use this to insert code into the bottom of a basic block,
361  /// but before control flow occurs.
362  bool isTerminator(QueryType Type = AnyInBundle) const {
363    return hasProperty(MCID::Terminator, Type);
364  }
365
366  /// isBranch - Returns true if this is a conditional, unconditional, or
367  /// indirect branch.  Predicates below can be used to discriminate between
368  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
369  /// get more information.
370  bool isBranch(QueryType Type = AnyInBundle) const {
371    return hasProperty(MCID::Branch, Type);
372  }
373
374  /// isIndirectBranch - Return true if this is an indirect branch, such as a
375  /// branch through a register.
376  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
377    return hasProperty(MCID::IndirectBranch, Type);
378  }
379
380  /// isConditionalBranch - Return true if this is a branch which may fall
381  /// through to the next instruction or may transfer control flow to some other
382  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
383  /// information about this branch.
384  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
385    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
386  }
387
388  /// isUnconditionalBranch - Return true if this is a branch which always
389  /// transfers control flow to some other block.  The
390  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
391  /// about this branch.
392  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
393    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
394  }
395
396  // isPredicable - Return true if this instruction has a predicate operand that
397  // controls execution.  It may be set to 'always', or may be set to other
398  /// values.   There are various methods in TargetInstrInfo that can be used to
399  /// control and modify the predicate in this instruction.
400  bool isPredicable(QueryType Type = AllInBundle) const {
401    // If it's a bundle than all bundled instructions must be predicable for this
402    // to return true.
403    return hasProperty(MCID::Predicable, Type);
404  }
405
406  /// isCompare - Return true if this instruction is a comparison.
407  bool isCompare(QueryType Type = IgnoreBundle) const {
408    return hasProperty(MCID::Compare, Type);
409  }
410
411  /// isMoveImmediate - Return true if this instruction is a move immediate
412  /// (including conditional moves) instruction.
413  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
414    return hasProperty(MCID::MoveImm, Type);
415  }
416
417  /// isBitcast - Return true if this instruction is a bitcast instruction.
418  ///
419  bool isBitcast(QueryType Type = IgnoreBundle) const {
420    return hasProperty(MCID::Bitcast, Type);
421  }
422
423  /// isSelect - Return true if this instruction is a select instruction.
424  ///
425  bool isSelect(QueryType Type = IgnoreBundle) const {
426    return hasProperty(MCID::Select, Type);
427  }
428
429  /// isNotDuplicable - Return true if this instruction cannot be safely
430  /// duplicated.  For example, if the instruction has a unique labels attached
431  /// to it, duplicating it would cause multiple definition errors.
432  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
433    return hasProperty(MCID::NotDuplicable, Type);
434  }
435
436  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
437  /// which must be filled by the code generator.
438  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
439    return hasProperty(MCID::DelaySlot, Type);
440  }
441
442  /// canFoldAsLoad - Return true for instructions that can be folded as
443  /// memory operands in other instructions. The most common use for this
444  /// is instructions that are simple loads from memory that don't modify
445  /// the loaded value in any way, but it can also be used for instructions
446  /// that can be expressed as constant-pool loads, such as V_SETALLONES
447  /// on x86, to allow them to be folded when it is beneficial.
448  /// This should only be set on instructions that return a value in their
449  /// only virtual register definition.
450  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
451    return hasProperty(MCID::FoldableAsLoad, Type);
452  }
453
454  //===--------------------------------------------------------------------===//
455  // Side Effect Analysis
456  //===--------------------------------------------------------------------===//
457
458  /// mayLoad - Return true if this instruction could possibly read memory.
459  /// Instructions with this flag set are not necessarily simple load
460  /// instructions, they may load a value and modify it, for example.
461  bool mayLoad(QueryType Type = AnyInBundle) const {
462    return hasProperty(MCID::MayLoad, Type);
463  }
464
465
466  /// mayStore - Return true if this instruction could possibly modify memory.
467  /// Instructions with this flag set are not necessarily simple store
468  /// instructions, they may store a modified value based on their operands, or
469  /// may not actually modify anything, for example.
470  bool mayStore(QueryType Type = AnyInBundle) const {
471    return hasProperty(MCID::MayStore, Type);
472  }
473
474  //===--------------------------------------------------------------------===//
475  // Flags that indicate whether an instruction can be modified by a method.
476  //===--------------------------------------------------------------------===//
477
478  /// isCommutable - Return true if this may be a 2- or 3-address
479  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
480  /// result if Y and Z are exchanged.  If this flag is set, then the
481  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
482  /// instruction.
483  ///
484  /// Note that this flag may be set on instructions that are only commutable
485  /// sometimes.  In these cases, the call to commuteInstruction will fail.
486  /// Also note that some instructions require non-trivial modification to
487  /// commute them.
488  bool isCommutable(QueryType Type = IgnoreBundle) const {
489    return hasProperty(MCID::Commutable, Type);
490  }
491
492  /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
493  /// which can be changed into a 3-address instruction if needed.  Doing this
494  /// transformation can be profitable in the register allocator, because it
495  /// means that the instruction can use a 2-address form if possible, but
496  /// degrade into a less efficient form if the source and dest register cannot
497  /// be assigned to the same register.  For example, this allows the x86
498  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
499  /// is the same speed as the shift but has bigger code size.
500  ///
501  /// If this returns true, then the target must implement the
502  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
503  /// is allowed to fail if the transformation isn't valid for this specific
504  /// instruction (e.g. shl reg, 4 on x86).
505  ///
506  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
507    return hasProperty(MCID::ConvertibleTo3Addr, Type);
508  }
509
510  /// usesCustomInsertionHook - Return true if this instruction requires
511  /// custom insertion support when the DAG scheduler is inserting it into a
512  /// machine basic block.  If this is true for the instruction, it basically
513  /// means that it is a pseudo instruction used at SelectionDAG time that is
514  /// expanded out into magic code by the target when MachineInstrs are formed.
515  ///
516  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
517  /// is used to insert this into the MachineBasicBlock.
518  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
519    return hasProperty(MCID::UsesCustomInserter, Type);
520  }
521
522  /// hasPostISelHook - Return true if this instruction requires *adjustment*
523  /// after instruction selection by calling a target hook. For example, this
524  /// can be used to fill in ARM 's' optional operand depending on whether
525  /// the conditional flag register is used.
526  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
527    return hasProperty(MCID::HasPostISelHook, Type);
528  }
529
530  /// isRematerializable - Returns true if this instruction is a candidate for
531  /// remat.  This flag is deprecated, please don't use it anymore.  If this
532  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
533  /// verify the instruction is really rematable.
534  bool isRematerializable(QueryType Type = AllInBundle) const {
535    // It's only possible to re-mat a bundle if all bundled instructions are
536    // re-materializable.
537    return hasProperty(MCID::Rematerializable, Type);
538  }
539
540  /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
541  /// less) than a move instruction. This is useful during certain types of
542  /// optimizations (e.g., remat during two-address conversion or machine licm)
543  /// where we would like to remat or hoist the instruction, but not if it costs
544  /// more than moving the instruction into the appropriate register. Note, we
545  /// are not marking copies from and to the same register class with this flag.
546  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
547    // Only returns true for a bundle if all bundled instructions are cheap.
548    // FIXME: This probably requires a target hook.
549    return hasProperty(MCID::CheapAsAMove, Type);
550  }
551
552  /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
553  /// have special register allocation requirements that are not captured by the
554  /// operand register classes. e.g. ARM::STRD's two source registers must be an
555  /// even / odd pair, ARM::STM registers have to be in ascending order.
556  /// Post-register allocation passes should not attempt to change allocations
557  /// for sources of instructions with this flag.
558  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
559    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
560  }
561
562  /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
563  /// have special register allocation requirements that are not captured by the
564  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
565  /// even / odd pair, ARM::LDM registers have to be in ascending order.
566  /// Post-register allocation passes should not attempt to change allocations
567  /// for definitions of instructions with this flag.
568  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
569    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
570  }
571
572
573  enum MICheckType {
574    CheckDefs,      // Check all operands for equality
575    CheckKillDead,  // Check all operands including kill / dead markers
576    IgnoreDefs,     // Ignore all definitions
577    IgnoreVRegDefs  // Ignore virtual register definitions
578  };
579
580  /// isIdenticalTo - Return true if this instruction is identical to (same
581  /// opcode and same operands as) the specified instruction.
582  bool isIdenticalTo(const MachineInstr *Other,
583                     MICheckType Check = CheckDefs) const;
584
585  /// removeFromParent - This method unlinks 'this' from the containing basic
586  /// block, and returns it, but does not delete it.
587  MachineInstr *removeFromParent();
588
589  /// eraseFromParent - This method unlinks 'this' from the containing basic
590  /// block and deletes it.
591  void eraseFromParent();
592
593  /// isLabel - Returns true if the MachineInstr represents a label.
594  ///
595  bool isLabel() const {
596    return getOpcode() == TargetOpcode::PROLOG_LABEL ||
597           getOpcode() == TargetOpcode::EH_LABEL ||
598           getOpcode() == TargetOpcode::GC_LABEL;
599  }
600
601  bool isPrologLabel() const {
602    return getOpcode() == TargetOpcode::PROLOG_LABEL;
603  }
604  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
605  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
606  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
607
608  bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
609  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
610  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
611  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
612  bool isStackAligningInlineAsm() const;
613  bool isInsertSubreg() const {
614    return getOpcode() == TargetOpcode::INSERT_SUBREG;
615  }
616  bool isSubregToReg() const {
617    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
618  }
619  bool isRegSequence() const {
620    return getOpcode() == TargetOpcode::REG_SEQUENCE;
621  }
622  bool isBundle() const {
623    return getOpcode() == TargetOpcode::BUNDLE;
624  }
625  bool isCopy() const {
626    return getOpcode() == TargetOpcode::COPY;
627  }
628  bool isFullCopy() const {
629    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
630  }
631
632  /// isCopyLike - Return true if the instruction behaves like a copy.
633  /// This does not include native copy instructions.
634  bool isCopyLike() const {
635    return isCopy() || isSubregToReg();
636  }
637
638  /// isIdentityCopy - Return true is the instruction is an identity copy.
639  bool isIdentityCopy() const {
640    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
641      getOperand(0).getSubReg() == getOperand(1).getSubReg();
642  }
643
644  /// isTransient - Return true if this is a transient instruction that is
645  /// either very likely to be eliminated during register allocation (such as
646  /// copy-like instructions), or if this instruction doesn't have an
647  /// execution-time cost.
648  bool isTransient() const {
649    switch(getOpcode()) {
650    default: return false;
651    // Copy-like instructions are usually eliminated during register allocation.
652    case TargetOpcode::PHI:
653    case TargetOpcode::COPY:
654    case TargetOpcode::INSERT_SUBREG:
655    case TargetOpcode::SUBREG_TO_REG:
656    case TargetOpcode::REG_SEQUENCE:
657    // Pseudo-instructions that don't produce any real output.
658    case TargetOpcode::IMPLICIT_DEF:
659    case TargetOpcode::KILL:
660    case TargetOpcode::PROLOG_LABEL:
661    case TargetOpcode::EH_LABEL:
662    case TargetOpcode::GC_LABEL:
663    case TargetOpcode::DBG_VALUE:
664      return true;
665    }
666  }
667
668  /// getBundleSize - Return the number of instructions inside the MI bundle.
669  unsigned getBundleSize() const;
670
671  /// readsRegister - Return true if the MachineInstr reads the specified
672  /// register. If TargetRegisterInfo is passed, then it also checks if there
673  /// is a read of a super-register.
674  /// This does not count partial redefines of virtual registers as reads:
675  ///   %reg1024:6 = OP.
676  bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
677    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
678  }
679
680  /// readsVirtualRegister - Return true if the MachineInstr reads the specified
681  /// virtual register. Take into account that a partial define is a
682  /// read-modify-write operation.
683  bool readsVirtualRegister(unsigned Reg) const {
684    return readsWritesVirtualRegister(Reg).first;
685  }
686
687  /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
688  /// indicating if this instruction reads or writes Reg. This also considers
689  /// partial defines.
690  /// If Ops is not null, all operand indices for Reg are added.
691  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
692                                      SmallVectorImpl<unsigned> *Ops = 0) const;
693
694  /// killsRegister - Return true if the MachineInstr kills the specified
695  /// register. If TargetRegisterInfo is passed, then it also checks if there is
696  /// a kill of a super-register.
697  bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
698    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
699  }
700
701  /// definesRegister - Return true if the MachineInstr fully defines the
702  /// specified register. If TargetRegisterInfo is passed, then it also checks
703  /// if there is a def of a super-register.
704  /// NOTE: It's ignoring subreg indices on virtual registers.
705  bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
706    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
707  }
708
709  /// modifiesRegister - Return true if the MachineInstr modifies (fully define
710  /// or partially define) the specified register.
711  /// NOTE: It's ignoring subreg indices on virtual registers.
712  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
713    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
714  }
715
716  /// registerDefIsDead - Returns true if the register is dead in this machine
717  /// instruction. If TargetRegisterInfo is passed, then it also checks
718  /// if there is a dead def of a super-register.
719  bool registerDefIsDead(unsigned Reg,
720                         const TargetRegisterInfo *TRI = NULL) const {
721    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
722  }
723
724  /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
725  /// the specific register or -1 if it is not found. It further tightens
726  /// the search criteria to a use that kills the register if isKill is true.
727  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
728                                const TargetRegisterInfo *TRI = NULL) const;
729
730  /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
731  /// a pointer to the MachineOperand rather than an index.
732  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
733                                         const TargetRegisterInfo *TRI = NULL) {
734    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
735    return (Idx == -1) ? NULL : &getOperand(Idx);
736  }
737
738  /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
739  /// the specified register or -1 if it is not found. If isDead is true, defs
740  /// that are not dead are skipped. If Overlap is true, then it also looks for
741  /// defs that merely overlap the specified register. If TargetRegisterInfo is
742  /// non-null, then it also checks if there is a def of a super-register.
743  /// This may also return a register mask operand when Overlap is true.
744  int findRegisterDefOperandIdx(unsigned Reg,
745                                bool isDead = false, bool Overlap = false,
746                                const TargetRegisterInfo *TRI = NULL) const;
747
748  /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
749  /// a pointer to the MachineOperand rather than an index.
750  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
751                                         const TargetRegisterInfo *TRI = NULL) {
752    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
753    return (Idx == -1) ? NULL : &getOperand(Idx);
754  }
755
756  /// findFirstPredOperandIdx() - Find the index of the first operand in the
757  /// operand list that is used to represent the predicate. It returns -1 if
758  /// none is found.
759  int findFirstPredOperandIdx() const;
760
761  /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
762  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
763  /// getOperand(OpIdx) does not belong to an inline asm operand group.
764  ///
765  /// If GroupNo is not NULL, it will receive the number of the operand group
766  /// containing OpIdx.
767  ///
768  /// The flag operand is an immediate that can be decoded with methods like
769  /// InlineAsm::hasRegClassConstraint().
770  ///
771  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
772
773  /// getRegClassConstraint - Compute the static register class constraint for
774  /// operand OpIdx.  For normal instructions, this is derived from the
775  /// MCInstrDesc.  For inline assembly it is derived from the flag words.
776  ///
777  /// Returns NULL if the static register classs constraint cannot be
778  /// determined.
779  ///
780  const TargetRegisterClass*
781  getRegClassConstraint(unsigned OpIdx,
782                        const TargetInstrInfo *TII,
783                        const TargetRegisterInfo *TRI) const;
784
785  /// findTiedOperandIdx - Given the index of a tied register operand, find the
786  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
787  /// index of the tied operand which must exist.
788  unsigned findTiedOperandIdx(unsigned OpIdx) const;
789
790  /// isRegTiedToUseOperand - Given the index of a register def operand,
791  /// check if the register def is tied to a source operand, due to either
792  /// two-address elimination or inline assembly constraints. Returns the
793  /// first tied use operand index by reference if UseOpIdx is not null.
794  bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const;
795
796  /// isRegTiedToDefOperand - Return true if the use operand of the specified
797  /// index is tied to an def operand. It also returns the def operand index by
798  /// reference if DefOpIdx is not null.
799  bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const;
800
801  /// clearKillInfo - Clears kill flags on all operands.
802  ///
803  void clearKillInfo();
804
805  /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
806  ///
807  void copyKillDeadInfo(const MachineInstr *MI);
808
809  /// copyPredicates - Copies predicate operand(s) from MI.
810  void copyPredicates(const MachineInstr *MI);
811
812  /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
813  /// properly composing subreg indices where necessary.
814  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
815                          const TargetRegisterInfo &RegInfo);
816
817  /// addRegisterKilled - We have determined MI kills a register. Look for the
818  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
819  /// add a implicit operand if it's not found. Returns true if the operand
820  /// exists / is added.
821  bool addRegisterKilled(unsigned IncomingReg,
822                         const TargetRegisterInfo *RegInfo,
823                         bool AddIfNotFound = false);
824
825  /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
826  /// provided, this includes super-register kills.
827  void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
828
829  /// addRegisterDead - We have determined MI defined a register without a use.
830  /// Look for the operand that defines it and mark it as IsDead. If
831  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
832  /// true if the operand exists / is added.
833  bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
834                       bool AddIfNotFound = false);
835
836  /// addRegisterDefined - We have determined MI defines a register. Make sure
837  /// there is an operand defining Reg.
838  void addRegisterDefined(unsigned IncomingReg,
839                          const TargetRegisterInfo *RegInfo = 0);
840
841  /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
842  /// dead except those in the UsedRegs list.
843  ///
844  /// On instructions with register mask operands, also add implicit-def
845  /// operands for all registers in UsedRegs.
846  void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
847                             const TargetRegisterInfo &TRI);
848
849  /// isSafeToMove - Return true if it is safe to move this instruction. If
850  /// SawStore is set to true, it means that there is a store (or call) between
851  /// the instruction's location and its intended destination.
852  bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
853                    bool &SawStore) const;
854
855  /// isSafeToReMat - Return true if it's safe to rematerialize the specified
856  /// instruction which defined the specified register instead of copying it.
857  bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
858                     unsigned DstReg) const;
859
860  /// hasVolatileMemoryRef - Return true if this instruction may have a
861  /// volatile memory reference, or if the information describing the
862  /// memory reference is not available. Return false if it is known to
863  /// have no volatile memory references.
864  bool hasVolatileMemoryRef() const;
865
866  /// isInvariantLoad - Return true if this instruction is loading from a
867  /// location whose value is invariant across the function.  For example,
868  /// loading a value from the constant pool or from the argument area of
869  /// a function if it does not change.  This should only return true of *all*
870  /// loads the instruction does are invariant (if it does multiple loads).
871  bool isInvariantLoad(AliasAnalysis *AA) const;
872
873  /// isConstantValuePHI - If the specified instruction is a PHI that always
874  /// merges together the same virtual register, return the register, otherwise
875  /// return 0.
876  unsigned isConstantValuePHI() const;
877
878  /// hasUnmodeledSideEffects - Return true if this instruction has side
879  /// effects that are not modeled by mayLoad / mayStore, etc.
880  /// For all instructions, the property is encoded in MCInstrDesc::Flags
881  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
882  /// INLINEASM instruction, in which case the side effect property is encoded
883  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
884  ///
885  bool hasUnmodeledSideEffects() const;
886
887  /// allDefsAreDead - Return true if all the defs of this instruction are dead.
888  ///
889  bool allDefsAreDead() const;
890
891  /// copyImplicitOps - Copy implicit register operands from specified
892  /// instruction to this instruction.
893  void copyImplicitOps(const MachineInstr *MI);
894
895  //
896  // Debugging support
897  //
898  void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
899  void dump() const;
900
901  //===--------------------------------------------------------------------===//
902  // Accessors used to build up machine instructions.
903
904  /// addOperand - Add the specified operand to the instruction.  If it is an
905  /// implicit operand, it is added to the end of the operand list.  If it is
906  /// an explicit operand it is added at the end of the explicit operand list
907  /// (before the first implicit operand).
908  void addOperand(const MachineOperand &Op);
909
910  /// setDesc - Replace the instruction descriptor (thus opcode) of
911  /// the current instruction with a new one.
912  ///
913  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
914
915  /// setDebugLoc - Replace current source information with new such.
916  /// Avoid using this, the constructor argument is preferable.
917  ///
918  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
919
920  /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
921  /// fewer operand than it started with.
922  ///
923  void RemoveOperand(unsigned i);
924
925  /// addMemOperand - Add a MachineMemOperand to the machine instruction.
926  /// This function should be used only occasionally. The setMemRefs function
927  /// is the primary method for setting up a MachineInstr's MemRefs list.
928  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
929
930  /// setMemRefs - Assign this MachineInstr's memory reference descriptor
931  /// list. This does not transfer ownership.
932  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
933    MemRefs = NewMemRefs;
934    NumMemRefs = NewMemRefsEnd - NewMemRefs;
935  }
936
937private:
938  /// getRegInfo - If this instruction is embedded into a MachineFunction,
939  /// return the MachineRegisterInfo object for the current function, otherwise
940  /// return null.
941  MachineRegisterInfo *getRegInfo();
942
943  /// untieRegOperand - Break any tie involving OpIdx.
944  void untieRegOperand(unsigned OpIdx) {
945    const MachineOperand &MO = getOperand(OpIdx);
946    if (MO.isReg() && MO.isTied())
947      getOperand(findTiedOperandIdx(OpIdx)).setIsTied(false);
948  }
949
950  /// addImplicitDefUseOperands - Add all implicit def and use operands to
951  /// this instruction.
952  void addImplicitDefUseOperands();
953
954  /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
955  /// this instruction from their respective use lists.  This requires that the
956  /// operands already be on their use lists.
957  void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
958
959  /// AddRegOperandsToUseLists - Add all of the register operands in
960  /// this instruction from their respective use lists.  This requires that the
961  /// operands not be on their use lists yet.
962  void AddRegOperandsToUseLists(MachineRegisterInfo&);
963
964  /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
965  /// bundle.
966  bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
967};
968
969/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
970/// MachineInstr* by *value* of the instruction rather than by pointer value.
971/// The hashing and equality testing functions ignore definitions so this is
972/// useful for CSE, etc.
973struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
974  static inline MachineInstr *getEmptyKey() {
975    return 0;
976  }
977
978  static inline MachineInstr *getTombstoneKey() {
979    return reinterpret_cast<MachineInstr*>(-1);
980  }
981
982  static unsigned getHashValue(const MachineInstr* const &MI);
983
984  static bool isEqual(const MachineInstr* const &LHS,
985                      const MachineInstr* const &RHS) {
986    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
987        LHS == getEmptyKey() || LHS == getTombstoneKey())
988      return LHS == RHS;
989    return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
990  }
991};
992
993//===----------------------------------------------------------------------===//
994// Debugging Support
995
996inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
997  MI.print(OS);
998  return OS;
999}
1000
1001} // End llvm namespace
1002
1003#endif
1004