1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code.  This has two
12/// main components:
13///
14///  1. Which ValueTypes are natively supported by the target.
15///  2. Which operations are supported for supported ValueTypes.
16///  3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TARGET_TARGETLOWERING_H
24#define LLVM_TARGET_TARGETLOWERING_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/CodeGen/DAGCombine.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/InlineAsm.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/MC/MCRegisterInfo.h"
37#include "llvm/Target/TargetCallingConv.h"
38#include "llvm/Target/TargetMachine.h"
39#include <climits>
40#include <map>
41#include <vector>
42
43namespace llvm {
44  class CallInst;
45  class CCState;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class ImmutableCallSite;
49  class IntrinsicInst;
50  class MachineBasicBlock;
51  class MachineFunction;
52  class MachineInstr;
53  class MachineJumpTableInfo;
54  class MachineLoop;
55  class Mangler;
56  class MCContext;
57  class MCExpr;
58  class MCSymbol;
59  template<typename T> class SmallVectorImpl;
60  class DataLayout;
61  class TargetRegisterClass;
62  class TargetLibraryInfo;
63  class TargetLoweringObjectFile;
64  class Value;
65
66  namespace Sched {
67    enum Preference {
68      None,             // No preference
69      Source,           // Follow source order.
70      RegPressure,      // Scheduling for lowest register pressure.
71      Hybrid,           // Scheduling for both latency and register pressure.
72      ILP,              // Scheduling for ILP in low register pressure mode.
73      VLIW              // Scheduling for VLIW targets.
74    };
75  }
76
77/// This base class for TargetLowering contains the SelectionDAG-independent
78/// parts that can be used from the rest of CodeGen.
79class TargetLoweringBase {
80  TargetLoweringBase(const TargetLoweringBase&) = delete;
81  void operator=(const TargetLoweringBase&) = delete;
82
83public:
84  /// This enum indicates whether operations are valid for a target, and if not,
85  /// what action should be used to make them valid.
86  enum LegalizeAction : uint8_t {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    LibCall,    // Don't try to expand this to other ops, always use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  /// This enum indicates whether a types are legal for a target, and if not,
95  /// what action should be used to make them valid.
96  enum LegalizeTypeAction : uint8_t {
97    TypeLegal,           // The target natively supports this type.
98    TypePromoteInteger,  // Replace this integer with a larger one.
99    TypeExpandInteger,   // Split this integer into two of half the size.
100    TypeSoftenFloat,     // Convert this float to a same size integer type,
101                         // if an operation is not supported in target HW.
102    TypeExpandFloat,     // Split this float into two of half the size.
103    TypeScalarizeVector, // Replace this one-element vector with its element.
104    TypeSplitVector,     // Split this vector into two of half the size.
105    TypeWidenVector,     // This vector should be widened into a larger vector.
106    TypePromoteFloat     // Replace this float with a larger one.
107  };
108
109  /// LegalizeKind holds the legalization kind that needs to happen to EVT
110  /// in order to type-legalize it.
111  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
112
113  /// Enum that describes how the target represents true/false values.
114  enum BooleanContent {
115    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
116    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
117    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
118  };
119
120  /// Enum that describes what type of support for selects the target has.
121  enum SelectSupportKind {
122    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
123    ScalarCondVectorVal,  // The target supports selects with a scalar condition
124                          // and vector values (ex: cmov).
125    VectorMaskSelect      // The target supports vector selects with a vector
126                          // mask (ex: x86 blends).
127  };
128
129  /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
130  /// to, if at all. Exists because different targets have different levels of
131  /// support for these atomic instructions, and also have different options
132  /// w.r.t. what they should expand to.
133  enum class AtomicExpansionKind {
134    None,    // Don't expand the instruction.
135    LLSC,    // Expand the instruction into loadlinked/storeconditional; used
136             // by ARM/AArch64.
137    LLOnly,  // Expand the (load) instruction into just a load-linked, which has
138             // greater atomic guarantees than a normal load.
139    CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
140  };
141
142  static ISD::NodeType getExtendForContent(BooleanContent Content) {
143    switch (Content) {
144    case UndefinedBooleanContent:
145      // Extend by adding rubbish bits.
146      return ISD::ANY_EXTEND;
147    case ZeroOrOneBooleanContent:
148      // Extend by adding zero bits.
149      return ISD::ZERO_EXTEND;
150    case ZeroOrNegativeOneBooleanContent:
151      // Extend by copying the sign bit.
152      return ISD::SIGN_EXTEND;
153    }
154    llvm_unreachable("Invalid content kind");
155  }
156
157  /// NOTE: The TargetMachine owns TLOF.
158  explicit TargetLoweringBase(const TargetMachine &TM);
159  virtual ~TargetLoweringBase() {}
160
161protected:
162  /// \brief Initialize all of the actions to default values.
163  void initActions();
164
165public:
166  const TargetMachine &getTargetMachine() const { return TM; }
167
168  virtual bool useSoftFloat() const { return false; }
169
170  /// Return the pointer type for the given address space, defaults to
171  /// the pointer type from the data layout.
172  /// FIXME: The default needs to be removed once all the code is updated.
173  MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
174    return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
175  }
176
177  /// EVT is not used in-tree, but is used by out-of-tree target.
178  /// A documentation for this function would be nice...
179  virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
180
181  EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
182
183  /// Returns the type to be used for the index operand of:
184  /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
185  /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
186  virtual MVT getVectorIdxTy(const DataLayout &DL) const {
187    return getPointerTy(DL);
188  }
189
190  /// Return true if the select operation is expensive for this target.
191  bool isSelectExpensive() const { return SelectIsExpensive; }
192
193  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
194    return true;
195  }
196
197  /// Return true if multiple condition registers are available.
198  bool hasMultipleConditionRegisters() const {
199    return HasMultipleConditionRegisters;
200  }
201
202  /// Return true if the target has BitExtract instructions.
203  bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
204
205  /// Return the preferred vector type legalization action.
206  virtual TargetLoweringBase::LegalizeTypeAction
207  getPreferredVectorAction(EVT VT) const {
208    // The default action for one element vectors is to scalarize
209    if (VT.getVectorNumElements() == 1)
210      return TypeScalarizeVector;
211    // The default action for other vectors is to promote
212    return TypePromoteInteger;
213  }
214
215  // There are two general methods for expanding a BUILD_VECTOR node:
216  //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
217  //     them together.
218  //  2. Build the vector on the stack and then load it.
219  // If this function returns true, then method (1) will be used, subject to
220  // the constraint that all of the necessary shuffles are legal (as determined
221  // by isShuffleMaskLegal). If this function returns false, then method (2) is
222  // always used. The vector type, and the number of defined values, are
223  // provided.
224  virtual bool
225  shouldExpandBuildVectorWithShuffles(EVT /* VT */,
226                                      unsigned DefinedValues) const {
227    return DefinedValues < 3;
228  }
229
230  /// Return true if integer divide is usually cheaper than a sequence of
231  /// several shifts, adds, and multiplies for this target.
232  /// The definition of "cheaper" may depend on whether we're optimizing
233  /// for speed or for size.
234  virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const {
235    return false;
236  }
237
238  /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
239  bool isFsqrtCheap() const {
240    return FsqrtIsCheap;
241  }
242
243  /// Returns true if target has indicated at least one type should be bypassed.
244  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
245
246  /// Returns map of slow types for division or remainder with corresponding
247  /// fast types
248  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
249    return BypassSlowDivWidths;
250  }
251
252  /// Return true if Flow Control is an expensive operation that should be
253  /// avoided.
254  bool isJumpExpensive() const { return JumpIsExpensive; }
255
256  /// Return true if selects are only cheaper than branches if the branch is
257  /// unlikely to be predicted right.
258  bool isPredictableSelectExpensive() const {
259    return PredictableSelectIsExpensive;
260  }
261
262  /// isLoadBitCastBeneficial() - Return true if the following transform
263  /// is beneficial.
264  /// fold (conv (load x)) -> (load (conv*)x)
265  /// On architectures that don't natively support some vector loads
266  /// efficiently, casting the load to a smaller vector of larger types and
267  /// loading is more efficient, however, this can be undone by optimizations in
268  /// dag combiner.
269  virtual bool isLoadBitCastBeneficial(EVT /* Load */,
270                                       EVT /* Bitcast */) const {
271    return true;
272  }
273
274  /// Return true if it is expected to be cheaper to do a store of a non-zero
275  /// vector constant with the given size and type for the address space than to
276  /// store the individual scalar element constants.
277  virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
278                                            unsigned NumElem,
279                                            unsigned AddrSpace) const {
280    return false;
281  }
282
283  /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
284  virtual bool isCheapToSpeculateCttz() const {
285    return false;
286  }
287
288  /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
289  virtual bool isCheapToSpeculateCtlz() const {
290    return false;
291  }
292
293  /// \brief Return if the target supports combining a
294  /// chain like:
295  /// \code
296  ///   %andResult = and %val1, #imm-with-one-bit-set;
297  ///   %icmpResult = icmp %andResult, 0
298  ///   br i1 %icmpResult, label %dest1, label %dest2
299  /// \endcode
300  /// into a single machine instruction of a form like:
301  /// \code
302  ///   brOnBitSet %register, #bitNumber, dest
303  /// \endcode
304  bool isMaskAndBranchFoldingLegal() const {
305    return MaskAndBranchFoldingIsLegal;
306  }
307
308  /// \brief Return true if the target wants to use the optimization that
309  /// turns ext(promotableInst1(...(promotableInstN(load)))) into
310  /// promotedInst1(...(promotedInstN(ext(load)))).
311  bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
312
313  /// Return true if the target can combine store(extractelement VectorTy,
314  /// Idx).
315  /// \p Cost[out] gives the cost of that transformation when this is true.
316  virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
317                                         unsigned &Cost) const {
318    return false;
319  }
320
321  /// Return true if target supports floating point exceptions.
322  bool hasFloatingPointExceptions() const {
323    return HasFloatingPointExceptions;
324  }
325
326  /// Return true if target always beneficiates from combining into FMA for a
327  /// given value type. This must typically return false on targets where FMA
328  /// takes more cycles to execute than FADD.
329  virtual bool enableAggressiveFMAFusion(EVT VT) const {
330    return false;
331  }
332
333  /// Return the ValueType of the result of SETCC operations.
334  virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
335                                 EVT VT) const;
336
337  /// Return the ValueType for comparison libcalls. Comparions libcalls include
338  /// floating point comparion calls, and Ordered/Unordered check calls on
339  /// floating point numbers.
340  virtual
341  MVT::SimpleValueType getCmpLibcallReturnType() const;
342
343  /// For targets without i1 registers, this gives the nature of the high-bits
344  /// of boolean values held in types wider than i1.
345  ///
346  /// "Boolean values" are special true/false values produced by nodes like
347  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
348  /// Not to be confused with general values promoted from i1.  Some cpus
349  /// distinguish between vectors of boolean and scalars; the isVec parameter
350  /// selects between the two kinds.  For example on X86 a scalar boolean should
351  /// be zero extended from i1, while the elements of a vector of booleans
352  /// should be sign extended from i1.
353  ///
354  /// Some cpus also treat floating point types the same way as they treat
355  /// vectors instead of the way they treat scalars.
356  BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
357    if (isVec)
358      return BooleanVectorContents;
359    return isFloat ? BooleanFloatContents : BooleanContents;
360  }
361
362  BooleanContent getBooleanContents(EVT Type) const {
363    return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
364  }
365
366  /// Return target scheduling preference.
367  Sched::Preference getSchedulingPreference() const {
368    return SchedPreferenceInfo;
369  }
370
371  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
372  /// for different nodes. This function returns the preference (or none) for
373  /// the given node.
374  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
375    return Sched::None;
376  }
377
378  /// Return the register class that should be used for the specified value
379  /// type.
380  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
381    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
382    assert(RC && "This value type is not natively supported!");
383    return RC;
384  }
385
386  /// Return the 'representative' register class for the specified value
387  /// type.
388  ///
389  /// The 'representative' register class is the largest legal super-reg
390  /// register class for the register class of the value type.  For example, on
391  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
392  /// register class is GR64 on x86_64.
393  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
394    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
395    return RC;
396  }
397
398  /// Return the cost of the 'representative' register class for the specified
399  /// value type.
400  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
401    return RepRegClassCostForVT[VT.SimpleTy];
402  }
403
404  /// Return true if the target has native support for the specified value type.
405  /// This means that it has a register that directly holds it without
406  /// promotions or expansions.
407  bool isTypeLegal(EVT VT) const {
408    assert(!VT.isSimple() ||
409           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
410    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
411  }
412
413  class ValueTypeActionImpl {
414    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
415    /// that indicates how instruction selection should deal with the type.
416    LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
417
418  public:
419    ValueTypeActionImpl() {
420      std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
421                TypeLegal);
422    }
423
424    LegalizeTypeAction getTypeAction(MVT VT) const {
425      return ValueTypeActions[VT.SimpleTy];
426    }
427
428    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
429      ValueTypeActions[VT.SimpleTy] = Action;
430    }
431  };
432
433  const ValueTypeActionImpl &getValueTypeActions() const {
434    return ValueTypeActions;
435  }
436
437  /// Return how we should legalize values of this type, either it is already
438  /// legal (return 'Legal') or we need to promote it to a larger type (return
439  /// 'Promote'), or we need to expand it into multiple registers of smaller
440  /// integer type (return 'Expand').  'Custom' is not an option.
441  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
442    return getTypeConversion(Context, VT).first;
443  }
444  LegalizeTypeAction getTypeAction(MVT VT) const {
445    return ValueTypeActions.getTypeAction(VT);
446  }
447
448  /// For types supported by the target, this is an identity function.  For
449  /// types that must be promoted to larger types, this returns the larger type
450  /// to promote to.  For integer types that are larger than the largest integer
451  /// register, this contains one step in the expansion to get to the smaller
452  /// register. For illegal floating point types, this returns the integer type
453  /// to transform to.
454  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
455    return getTypeConversion(Context, VT).second;
456  }
457
458  /// For types supported by the target, this is an identity function.  For
459  /// types that must be expanded (i.e. integer types that are larger than the
460  /// largest integer register or illegal floating point types), this returns
461  /// the largest legal type it will be expanded to.
462  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
463    assert(!VT.isVector());
464    while (true) {
465      switch (getTypeAction(Context, VT)) {
466      case TypeLegal:
467        return VT;
468      case TypeExpandInteger:
469        VT = getTypeToTransformTo(Context, VT);
470        break;
471      default:
472        llvm_unreachable("Type is not legal nor is it to be expanded!");
473      }
474    }
475  }
476
477  /// Vector types are broken down into some number of legal first class types.
478  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
479  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
480  /// turns into 4 EVT::i32 values with both PPC and X86.
481  ///
482  /// This method returns the number of registers needed, and the VT for each
483  /// register.  It also returns the VT and quantity of the intermediate values
484  /// before they are promoted/expanded.
485  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
486                                  EVT &IntermediateVT,
487                                  unsigned &NumIntermediates,
488                                  MVT &RegisterVT) const;
489
490  struct IntrinsicInfo {
491    unsigned     opc;         // target opcode
492    EVT          memVT;       // memory VT
493    const Value* ptrVal;      // value representing memory location
494    int          offset;      // offset off of ptrVal
495    unsigned     size;        // the size of the memory location
496                              // (taken from memVT if zero)
497    unsigned     align;       // alignment
498    bool         vol;         // is volatile?
499    bool         readMem;     // reads memory?
500    bool         writeMem;    // writes memory?
501
502    IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
503                      vol(false), readMem(false), writeMem(false) {}
504  };
505
506  /// Given an intrinsic, checks if on the target the intrinsic will need to map
507  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
508  /// true and store the intrinsic information into the IntrinsicInfo that was
509  /// passed to the function.
510  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
511                                  unsigned /*Intrinsic*/) const {
512    return false;
513  }
514
515  /// Returns true if the target can instruction select the specified FP
516  /// immediate natively. If false, the legalizer will materialize the FP
517  /// immediate as a load from a constant pool.
518  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
519    return false;
520  }
521
522  /// Targets can use this to indicate that they only support *some*
523  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
524  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
525  /// legal.
526  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
527                                  EVT /*VT*/) const {
528    return true;
529  }
530
531  /// Returns true if the operation can trap for the value type.
532  ///
533  /// VT must be a legal type. By default, we optimistically assume most
534  /// operations don't trap except for divide and remainder.
535  virtual bool canOpTrap(unsigned Op, EVT VT) const;
536
537  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
538  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
539  /// a VAND with a constant pool entry.
540  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
541                                      EVT /*VT*/) const {
542    return false;
543  }
544
545  /// Return how this operation should be treated: either it is legal, needs to
546  /// be promoted to a larger size, needs to be expanded to some other code
547  /// sequence, or the target has a custom expander for it.
548  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
549    if (VT.isExtended()) return Expand;
550    // If a target-specific SDNode requires legalization, require the target
551    // to provide custom legalization for it.
552    if (Op > array_lengthof(OpActions[0])) return Custom;
553    return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
554  }
555
556  /// Return true if the specified operation is legal on this target or can be
557  /// made legal with custom lowering. This is used to help guide high-level
558  /// lowering decisions.
559  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
560    return (VT == MVT::Other || isTypeLegal(VT)) &&
561      (getOperationAction(Op, VT) == Legal ||
562       getOperationAction(Op, VT) == Custom);
563  }
564
565  /// Return true if the specified operation is legal on this target or can be
566  /// made legal using promotion. This is used to help guide high-level lowering
567  /// decisions.
568  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
569    return (VT == MVT::Other || isTypeLegal(VT)) &&
570      (getOperationAction(Op, VT) == Legal ||
571       getOperationAction(Op, VT) == Promote);
572  }
573
574  /// Return true if the specified operation is illegal on this target or
575  /// unlikely to be made legal with custom lowering. This is used to help guide
576  /// high-level lowering decisions.
577  bool isOperationExpand(unsigned Op, EVT VT) const {
578    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
579  }
580
581  /// Return true if the specified operation is legal on this target.
582  bool isOperationLegal(unsigned Op, EVT VT) const {
583    return (VT == MVT::Other || isTypeLegal(VT)) &&
584           getOperationAction(Op, VT) == Legal;
585  }
586
587  /// Return how this load with extension should be treated: either it is legal,
588  /// needs to be promoted to a larger size, needs to be expanded to some other
589  /// code sequence, or the target has a custom expander for it.
590  LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
591                                  EVT MemVT) const {
592    if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
593    unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
594    unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
595    assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
596           MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
597    return LoadExtActions[ValI][MemI][ExtType];
598  }
599
600  /// Return true if the specified load with extension is legal on this target.
601  bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
602    return ValVT.isSimple() && MemVT.isSimple() &&
603      getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
604  }
605
606  /// Return true if the specified load with extension is legal or custom
607  /// on this target.
608  bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
609    return ValVT.isSimple() && MemVT.isSimple() &&
610      (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
611       getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
612  }
613
614  /// Return how this store with truncation should be treated: either it is
615  /// legal, needs to be promoted to a larger size, needs to be expanded to some
616  /// other code sequence, or the target has a custom expander for it.
617  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
618    if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
619    unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
620    unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
621    assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
622           "Table isn't big enough!");
623    return TruncStoreActions[ValI][MemI];
624  }
625
626  /// Return true if the specified store with truncation is legal on this
627  /// target.
628  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
629    return isTypeLegal(ValVT) && MemVT.isSimple() &&
630      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
631  }
632
633  /// Return how the indexed load should be treated: either it is legal, needs
634  /// to be promoted to a larger size, needs to be expanded to some other code
635  /// sequence, or the target has a custom expander for it.
636  LegalizeAction
637  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
638    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
639           "Table isn't big enough!");
640    unsigned Ty = (unsigned)VT.SimpleTy;
641    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
642  }
643
644  /// Return true if the specified indexed load is legal on this target.
645  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
646    return VT.isSimple() &&
647      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
648       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
649  }
650
651  /// Return how the indexed store should be treated: either it is legal, needs
652  /// to be promoted to a larger size, needs to be expanded to some other code
653  /// sequence, or the target has a custom expander for it.
654  LegalizeAction
655  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
656    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
657           "Table isn't big enough!");
658    unsigned Ty = (unsigned)VT.SimpleTy;
659    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
660  }
661
662  /// Return true if the specified indexed load is legal on this target.
663  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
664    return VT.isSimple() &&
665      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
666       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
667  }
668
669  /// Return how the condition code should be treated: either it is legal, needs
670  /// to be expanded to some other code sequence, or the target has a custom
671  /// expander for it.
672  LegalizeAction
673  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
674    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
675           ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
676           "Table isn't big enough!");
677    // See setCondCodeAction for how this is encoded.
678    uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
679    uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
680    LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
681    assert(Action != Promote && "Can't promote condition code!");
682    return Action;
683  }
684
685  /// Return true if the specified condition code is legal on this target.
686  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
687    return
688      getCondCodeAction(CC, VT) == Legal ||
689      getCondCodeAction(CC, VT) == Custom;
690  }
691
692
693  /// If the action for this operation is to promote, this method returns the
694  /// ValueType to promote to.
695  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
696    assert(getOperationAction(Op, VT) == Promote &&
697           "This operation isn't promoted!");
698
699    // See if this has an explicit type specified.
700    std::map<std::pair<unsigned, MVT::SimpleValueType>,
701             MVT::SimpleValueType>::const_iterator PTTI =
702      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
703    if (PTTI != PromoteToType.end()) return PTTI->second;
704
705    assert((VT.isInteger() || VT.isFloatingPoint()) &&
706           "Cannot autopromote this type, add it with AddPromotedToType.");
707
708    MVT NVT = VT;
709    do {
710      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
711      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
712             "Didn't find type to promote to!");
713    } while (!isTypeLegal(NVT) ||
714              getOperationAction(Op, NVT) == Promote);
715    return NVT;
716  }
717
718  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
719  /// operations except for the pointer size.  If AllowUnknown is true, this
720  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
721  /// otherwise it will assert.
722  EVT getValueType(const DataLayout &DL, Type *Ty,
723                   bool AllowUnknown = false) const {
724    // Lower scalar pointers to native pointer types.
725    if (PointerType *PTy = dyn_cast<PointerType>(Ty))
726      return getPointerTy(DL, PTy->getAddressSpace());
727
728    if (Ty->isVectorTy()) {
729      VectorType *VTy = cast<VectorType>(Ty);
730      Type *Elm = VTy->getElementType();
731      // Lower vectors of pointers to native pointer types.
732      if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
733        EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
734        Elm = PointerTy.getTypeForEVT(Ty->getContext());
735      }
736
737      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
738                       VTy->getNumElements());
739    }
740    return EVT::getEVT(Ty, AllowUnknown);
741  }
742
743  /// Return the MVT corresponding to this LLVM type. See getValueType.
744  MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
745                         bool AllowUnknown = false) const {
746    return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
747  }
748
749  /// Return the desired alignment for ByVal or InAlloca aggregate function
750  /// arguments in the caller parameter area.  This is the actual alignment, not
751  /// its logarithm.
752  virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
753
754  /// Return the type of registers that this ValueType will eventually require.
755  MVT getRegisterType(MVT VT) const {
756    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
757    return RegisterTypeForVT[VT.SimpleTy];
758  }
759
760  /// Return the type of registers that this ValueType will eventually require.
761  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
762    if (VT.isSimple()) {
763      assert((unsigned)VT.getSimpleVT().SimpleTy <
764                array_lengthof(RegisterTypeForVT));
765      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
766    }
767    if (VT.isVector()) {
768      EVT VT1;
769      MVT RegisterVT;
770      unsigned NumIntermediates;
771      (void)getVectorTypeBreakdown(Context, VT, VT1,
772                                   NumIntermediates, RegisterVT);
773      return RegisterVT;
774    }
775    if (VT.isInteger()) {
776      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
777    }
778    llvm_unreachable("Unsupported extended type!");
779  }
780
781  /// Return the number of registers that this ValueType will eventually
782  /// require.
783  ///
784  /// This is one for any types promoted to live in larger registers, but may be
785  /// more than one for types (like i64) that are split into pieces.  For types
786  /// like i140, which are first promoted then expanded, it is the number of
787  /// registers needed to hold all the bits of the original type.  For an i140
788  /// on a 32 bit machine this means 5 registers.
789  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
790    if (VT.isSimple()) {
791      assert((unsigned)VT.getSimpleVT().SimpleTy <
792                array_lengthof(NumRegistersForVT));
793      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
794    }
795    if (VT.isVector()) {
796      EVT VT1;
797      MVT VT2;
798      unsigned NumIntermediates;
799      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
800    }
801    if (VT.isInteger()) {
802      unsigned BitWidth = VT.getSizeInBits();
803      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
804      return (BitWidth + RegWidth - 1) / RegWidth;
805    }
806    llvm_unreachable("Unsupported extended type!");
807  }
808
809  /// If true, then instruction selection should seek to shrink the FP constant
810  /// of the specified type to a smaller type in order to save space and / or
811  /// reduce runtime.
812  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
813
814  // Return true if it is profitable to reduce the given load node to a smaller
815  // type.
816  //
817  // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
818  virtual bool shouldReduceLoadWidth(SDNode *Load,
819                                     ISD::LoadExtType ExtTy,
820                                     EVT NewVT) const {
821    return true;
822  }
823
824  /// When splitting a value of the specified type into parts, does the Lo
825  /// or Hi part come first?  This usually follows the endianness, except
826  /// for ppcf128, where the Hi part always comes first.
827  bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
828    return DL.isBigEndian() || VT == MVT::ppcf128;
829  }
830
831  /// If true, the target has custom DAG combine transformations that it can
832  /// perform for the specified node.
833  bool hasTargetDAGCombine(ISD::NodeType NT) const {
834    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
835    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
836  }
837
838  unsigned getGatherAllAliasesMaxDepth() const {
839    return GatherAllAliasesMaxDepth;
840  }
841
842  /// \brief Get maximum # of store operations permitted for llvm.memset
843  ///
844  /// This function returns the maximum number of store operations permitted
845  /// to replace a call to llvm.memset. The value is set by the target at the
846  /// performance threshold for such a replacement. If OptSize is true,
847  /// return the limit for functions that have OptSize attribute.
848  unsigned getMaxStoresPerMemset(bool OptSize) const {
849    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
850  }
851
852  /// \brief Get maximum # of store operations permitted for llvm.memcpy
853  ///
854  /// This function returns the maximum number of store operations permitted
855  /// to replace a call to llvm.memcpy. The value is set by the target at the
856  /// performance threshold for such a replacement. If OptSize is true,
857  /// return the limit for functions that have OptSize attribute.
858  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
859    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
860  }
861
862  /// \brief Get maximum # of store operations permitted for llvm.memmove
863  ///
864  /// This function returns the maximum number of store operations permitted
865  /// to replace a call to llvm.memmove. The value is set by the target at the
866  /// performance threshold for such a replacement. If OptSize is true,
867  /// return the limit for functions that have OptSize attribute.
868  unsigned getMaxStoresPerMemmove(bool OptSize) const {
869    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
870  }
871
872  /// \brief Determine if the target supports unaligned memory accesses.
873  ///
874  /// This function returns true if the target allows unaligned memory accesses
875  /// of the specified type in the given address space. If true, it also returns
876  /// whether the unaligned memory access is "fast" in the last argument by
877  /// reference. This is used, for example, in situations where an array
878  /// copy/move/set is converted to a sequence of store operations. Its use
879  /// helps to ensure that such replacements don't generate code that causes an
880  /// alignment error (trap) on the target machine.
881  virtual bool allowsMisalignedMemoryAccesses(EVT,
882                                              unsigned AddrSpace = 0,
883                                              unsigned Align = 1,
884                                              bool * /*Fast*/ = nullptr) const {
885    return false;
886  }
887
888  /// Return true if the target supports a memory access of this type for the
889  /// given address space and alignment. If the access is allowed, the optional
890  /// final parameter returns if the access is also fast (as defined by the
891  /// target).
892  bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
893                          unsigned AddrSpace = 0, unsigned Alignment = 1,
894                          bool *Fast = nullptr) const;
895
896  /// Returns the target specific optimal type for load and store operations as
897  /// a result of memset, memcpy, and memmove lowering.
898  ///
899  /// If DstAlign is zero that means it's safe to destination alignment can
900  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
901  /// a need to check it against alignment requirement, probably because the
902  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
903  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
904  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
905  /// does not need to be loaded.  It returns EVT::Other if the type should be
906  /// determined using generic target-independent logic.
907  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
908                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
909                                  bool /*IsMemset*/,
910                                  bool /*ZeroMemset*/,
911                                  bool /*MemcpyStrSrc*/,
912                                  MachineFunction &/*MF*/) const {
913    return MVT::Other;
914  }
915
916  /// Returns true if it's safe to use load / store of the specified type to
917  /// expand memcpy / memset inline.
918  ///
919  /// This is mostly true for all types except for some special cases. For
920  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
921  /// fstpl which also does type conversion. Note the specified type doesn't
922  /// have to be legal as the hook is used before type legalization.
923  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
924
925  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
926  bool usesUnderscoreSetJmp() const {
927    return UseUnderscoreSetJmp;
928  }
929
930  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
931  bool usesUnderscoreLongJmp() const {
932    return UseUnderscoreLongJmp;
933  }
934
935  /// Return integer threshold on number of blocks to use jump tables rather
936  /// than if sequence.
937  int getMinimumJumpTableEntries() const {
938    return MinimumJumpTableEntries;
939  }
940
941  /// If a physical register, this specifies the register that
942  /// llvm.savestack/llvm.restorestack should save and restore.
943  unsigned getStackPointerRegisterToSaveRestore() const {
944    return StackPointerRegisterToSaveRestore;
945  }
946
947  /// If a physical register, this returns the register that receives the
948  /// exception address on entry to an EH pad.
949  virtual unsigned
950  getExceptionPointerRegister(const Constant *PersonalityFn) const {
951    // 0 is guaranteed to be the NoRegister value on all targets
952    return 0;
953  }
954
955  /// If a physical register, this returns the register that receives the
956  /// exception typeid on entry to a landing pad.
957  virtual unsigned
958  getExceptionSelectorRegister(const Constant *PersonalityFn) const {
959    // 0 is guaranteed to be the NoRegister value on all targets
960    return 0;
961  }
962
963  /// Returns the target's jmp_buf size in bytes (if never set, the default is
964  /// 200)
965  unsigned getJumpBufSize() const {
966    return JumpBufSize;
967  }
968
969  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
970  /// is 0)
971  unsigned getJumpBufAlignment() const {
972    return JumpBufAlignment;
973  }
974
975  /// Return the minimum stack alignment of an argument.
976  unsigned getMinStackArgumentAlignment() const {
977    return MinStackArgumentAlignment;
978  }
979
980  /// Return the minimum function alignment.
981  unsigned getMinFunctionAlignment() const {
982    return MinFunctionAlignment;
983  }
984
985  /// Return the preferred function alignment.
986  unsigned getPrefFunctionAlignment() const {
987    return PrefFunctionAlignment;
988  }
989
990  /// Return the preferred loop alignment.
991  virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
992    return PrefLoopAlignment;
993  }
994
995  /// Return whether the DAG builder should automatically insert fences and
996  /// reduce ordering for atomics.
997  bool getInsertFencesForAtomic() const {
998    return InsertFencesForAtomic;
999  }
1000
1001  /// Return true if the target stores stack protector cookies at a fixed offset
1002  /// in some non-standard address space, and populates the address space and
1003  /// offset as appropriate.
1004  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
1005                                      unsigned &/*Offset*/) const {
1006    return false;
1007  }
1008
1009  /// If the target has a standard location for the unsafe stack pointer,
1010  /// returns the address of that location. Otherwise, returns nullptr.
1011  virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1012
1013  /// Returns true if a cast between SrcAS and DestAS is a noop.
1014  virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1015    return false;
1016  }
1017
1018  /// Return true if the pointer arguments to CI should be aligned by aligning
1019  /// the object whose address is being passed. If so then MinSize is set to the
1020  /// minimum size the object must be to be aligned and PrefAlign is set to the
1021  /// preferred alignment.
1022  virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1023                                      unsigned & /*PrefAlign*/) const {
1024    return false;
1025  }
1026
1027  //===--------------------------------------------------------------------===//
1028  /// \name Helpers for TargetTransformInfo implementations
1029  /// @{
1030
1031  /// Get the ISD node that corresponds to the Instruction class opcode.
1032  int InstructionOpcodeToISD(unsigned Opcode) const;
1033
1034  /// Estimate the cost of type-legalization and the legalized type.
1035  std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1036                                              Type *Ty) const;
1037
1038  /// @}
1039
1040  //===--------------------------------------------------------------------===//
1041  /// \name Helpers for atomic expansion.
1042  /// @{
1043
1044  /// Perform a load-linked operation on Addr, returning a "Value *" with the
1045  /// corresponding pointee type. This may entail some non-trivial operations to
1046  /// truncate or reconstruct types that will be illegal in the backend. See
1047  /// ARMISelLowering for an example implementation.
1048  virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1049                                AtomicOrdering Ord) const {
1050    llvm_unreachable("Load linked unimplemented on this target");
1051  }
1052
1053  /// Perform a store-conditional operation to Addr. Return the status of the
1054  /// store. This should be 0 if the store succeeded, non-zero otherwise.
1055  virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1056                                      Value *Addr, AtomicOrdering Ord) const {
1057    llvm_unreachable("Store conditional unimplemented on this target");
1058  }
1059
1060  /// Inserts in the IR a target-specific intrinsic specifying a fence.
1061  /// It is called by AtomicExpandPass before expanding an
1062  ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
1063  /// RMW and CmpXchg set both IsStore and IsLoad to true.
1064  /// This function should either return a nullptr, or a pointer to an IR-level
1065  ///   Instruction*. Even complex fence sequences can be represented by a
1066  ///   single Instruction* through an intrinsic to be lowered later.
1067  /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
1068  /// Backends should override this method to produce target-specific intrinsic
1069  ///   for their fences.
1070  /// FIXME: Please note that the default implementation here in terms of
1071  ///   IR-level fences exists for historical/compatibility reasons and is
1072  ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1073  ///   consistency. For example, consider the following example:
1074  /// atomic<int> x = y = 0;
1075  /// int r1, r2, r3, r4;
1076  /// Thread 0:
1077  ///   x.store(1);
1078  /// Thread 1:
1079  ///   y.store(1);
1080  /// Thread 2:
1081  ///   r1 = x.load();
1082  ///   r2 = y.load();
1083  /// Thread 3:
1084  ///   r3 = y.load();
1085  ///   r4 = x.load();
1086  ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1087  ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1088  ///  IR-level fences can prevent it.
1089  /// @{
1090  virtual Instruction *emitLeadingFence(IRBuilder<> &Builder,
1091                                        AtomicOrdering Ord, bool IsStore,
1092                                        bool IsLoad) const {
1093    if (!getInsertFencesForAtomic())
1094      return nullptr;
1095
1096    if (isAtLeastRelease(Ord) && IsStore)
1097      return Builder.CreateFence(Ord);
1098    else
1099      return nullptr;
1100  }
1101
1102  virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1103                                         AtomicOrdering Ord, bool IsStore,
1104                                         bool IsLoad) const {
1105    if (!getInsertFencesForAtomic())
1106      return nullptr;
1107
1108    if (isAtLeastAcquire(Ord))
1109      return Builder.CreateFence(Ord);
1110    else
1111      return nullptr;
1112  }
1113  /// @}
1114
1115  // Emits code that executes when the comparison result in the ll/sc
1116  // expansion of a cmpxchg instruction is such that the store-conditional will
1117  // not execute.  This makes it possible to balance out the load-linked with
1118  // a dedicated instruction, if desired.
1119  // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1120  // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1121  virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1122
1123  /// Returns true if the given (atomic) store should be expanded by the
1124  /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1125  virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1126    return false;
1127  }
1128
1129  /// Returns true if arguments should be sign-extended in lib calls.
1130  virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1131    return IsSigned;
1132  }
1133
1134  /// Returns how the given (atomic) load should be expanded by the
1135  /// IR-level AtomicExpand pass.
1136  virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1137    return AtomicExpansionKind::None;
1138  }
1139
1140  /// Returns true if the given atomic cmpxchg should be expanded by the
1141  /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence
1142  /// (through emitLoadLinked() and emitStoreConditional()).
1143  virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1144    return false;
1145  }
1146
1147  /// Returns how the IR-level AtomicExpand pass should expand the given
1148  /// AtomicRMW, if at all. Default is to never expand.
1149  virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
1150    return AtomicExpansionKind::None;
1151  }
1152
1153  /// On some platforms, an AtomicRMW that never actually modifies the value
1154  /// (such as fetch_add of 0) can be turned into a fence followed by an
1155  /// atomic load. This may sound useless, but it makes it possible for the
1156  /// processor to keep the cacheline shared, dramatically improving
1157  /// performance. And such idempotent RMWs are useful for implementing some
1158  /// kinds of locks, see for example (justification + benchmarks):
1159  /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1160  /// This method tries doing that transformation, returning the atomic load if
1161  /// it succeeds, and nullptr otherwise.
1162  /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1163  /// another round of expansion.
1164  virtual LoadInst *
1165  lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1166    return nullptr;
1167  }
1168
1169  /// Returns true if we should normalize
1170  /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1171  /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1172  /// that it saves us from materializing N0 and N1 in an integer register.
1173  /// Targets that are able to perform and/or on flags should return false here.
1174  virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1175                                               EVT VT) const {
1176    // If a target has multiple condition registers, then it likely has logical
1177    // operations on those registers.
1178    if (hasMultipleConditionRegisters())
1179      return false;
1180    // Only do the transform if the value won't be split into multiple
1181    // registers.
1182    LegalizeTypeAction Action = getTypeAction(Context, VT);
1183    return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1184      Action != TypeSplitVector;
1185  }
1186
1187  //===--------------------------------------------------------------------===//
1188  // TargetLowering Configuration Methods - These methods should be invoked by
1189  // the derived class constructor to configure this object for the target.
1190  //
1191protected:
1192  /// Specify how the target extends the result of integer and floating point
1193  /// boolean values from i1 to a wider type.  See getBooleanContents.
1194  void setBooleanContents(BooleanContent Ty) {
1195    BooleanContents = Ty;
1196    BooleanFloatContents = Ty;
1197  }
1198
1199  /// Specify how the target extends the result of integer and floating point
1200  /// boolean values from i1 to a wider type.  See getBooleanContents.
1201  void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1202    BooleanContents = IntTy;
1203    BooleanFloatContents = FloatTy;
1204  }
1205
1206  /// Specify how the target extends the result of a vector boolean value from a
1207  /// vector of i1 to a wider type.  See getBooleanContents.
1208  void setBooleanVectorContents(BooleanContent Ty) {
1209    BooleanVectorContents = Ty;
1210  }
1211
1212  /// Specify the target scheduling preference.
1213  void setSchedulingPreference(Sched::Preference Pref) {
1214    SchedPreferenceInfo = Pref;
1215  }
1216
1217  /// Indicate whether this target prefers to use _setjmp to implement
1218  /// llvm.setjmp or the version without _.  Defaults to false.
1219  void setUseUnderscoreSetJmp(bool Val) {
1220    UseUnderscoreSetJmp = Val;
1221  }
1222
1223  /// Indicate whether this target prefers to use _longjmp to implement
1224  /// llvm.longjmp or the version without _.  Defaults to false.
1225  void setUseUnderscoreLongJmp(bool Val) {
1226    UseUnderscoreLongJmp = Val;
1227  }
1228
1229  /// Indicate the number of blocks to generate jump tables rather than if
1230  /// sequence.
1231  void setMinimumJumpTableEntries(int Val) {
1232    MinimumJumpTableEntries = Val;
1233  }
1234
1235  /// If set to a physical register, this specifies the register that
1236  /// llvm.savestack/llvm.restorestack should save and restore.
1237  void setStackPointerRegisterToSaveRestore(unsigned R) {
1238    StackPointerRegisterToSaveRestore = R;
1239  }
1240
1241  /// Tells the code generator not to expand operations into sequences that use
1242  /// the select operations if possible.
1243  void setSelectIsExpensive(bool isExpensive = true) {
1244    SelectIsExpensive = isExpensive;
1245  }
1246
1247  /// Tells the code generator that the target has multiple (allocatable)
1248  /// condition registers that can be used to store the results of comparisons
1249  /// for use by selects and conditional branches. With multiple condition
1250  /// registers, the code generator will not aggressively sink comparisons into
1251  /// the blocks of their users.
1252  void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1253    HasMultipleConditionRegisters = hasManyRegs;
1254  }
1255
1256  /// Tells the code generator that the target has BitExtract instructions.
1257  /// The code generator will aggressively sink "shift"s into the blocks of
1258  /// their users if the users will generate "and" instructions which can be
1259  /// combined with "shift" to BitExtract instructions.
1260  void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1261    HasExtractBitsInsn = hasExtractInsn;
1262  }
1263
1264  /// Tells the code generator not to expand logic operations on comparison
1265  /// predicates into separate sequences that increase the amount of flow
1266  /// control.
1267  void setJumpIsExpensive(bool isExpensive = true);
1268
1269  /// Tells the code generator that fsqrt is cheap, and should not be replaced
1270  /// with an alternative sequence of instructions.
1271  void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
1272
1273  /// Tells the code generator that this target supports floating point
1274  /// exceptions and cares about preserving floating point exception behavior.
1275  void setHasFloatingPointExceptions(bool FPExceptions = true) {
1276    HasFloatingPointExceptions = FPExceptions;
1277  }
1278
1279  /// Tells the code generator which bitwidths to bypass.
1280  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1281    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1282  }
1283
1284  /// Add the specified register class as an available regclass for the
1285  /// specified value type. This indicates the selector can handle values of
1286  /// that class natively.
1287  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1288    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1289    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1290    RegClassForVT[VT.SimpleTy] = RC;
1291  }
1292
1293  /// Remove all register classes.
1294  void clearRegisterClasses() {
1295    std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
1296
1297    AvailableRegClasses.clear();
1298  }
1299
1300  /// \brief Remove all operation actions.
1301  void clearOperationActions() {
1302  }
1303
1304  /// Return the largest legal super-reg register class of the register class
1305  /// for the specified type and its associated "cost".
1306  virtual std::pair<const TargetRegisterClass *, uint8_t>
1307  findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1308
1309  /// Once all of the register classes are added, this allows us to compute
1310  /// derived properties we expose.
1311  void computeRegisterProperties(const TargetRegisterInfo *TRI);
1312
1313  /// Indicate that the specified operation does not work with the specified
1314  /// type and indicate what to do about it.
1315  void setOperationAction(unsigned Op, MVT VT,
1316                          LegalizeAction Action) {
1317    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1318    OpActions[(unsigned)VT.SimpleTy][Op] = Action;
1319  }
1320
1321  /// Indicate that the specified load with extension does not work with the
1322  /// specified type and indicate what to do about it.
1323  void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1324                        LegalizeAction Action) {
1325    assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1326           MemVT.isValid() && "Table isn't big enough!");
1327    LoadExtActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = Action;
1328  }
1329
1330  /// Indicate that the specified truncating store does not work with the
1331  /// specified type and indicate what to do about it.
1332  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1333                           LegalizeAction Action) {
1334    assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1335    TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
1336  }
1337
1338  /// Indicate that the specified indexed load does or does not work with the
1339  /// specified type and indicate what to do abort it.
1340  ///
1341  /// NOTE: All indexed mode loads are initialized to Expand in
1342  /// TargetLowering.cpp
1343  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1344                            LegalizeAction Action) {
1345    assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1346           (unsigned)Action < 0xf && "Table isn't big enough!");
1347    // Load action are kept in the upper half.
1348    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1349    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1350  }
1351
1352  /// Indicate that the specified indexed store does or does not work with the
1353  /// specified type and indicate what to do about it.
1354  ///
1355  /// NOTE: All indexed mode stores are initialized to Expand in
1356  /// TargetLowering.cpp
1357  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1358                             LegalizeAction Action) {
1359    assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1360           (unsigned)Action < 0xf && "Table isn't big enough!");
1361    // Store action are kept in the lower half.
1362    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1363    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1364  }
1365
1366  /// Indicate that the specified condition code is or isn't supported on the
1367  /// target and indicate what to do about it.
1368  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1369                         LegalizeAction Action) {
1370    assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
1371           "Table isn't big enough!");
1372    assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
1373    /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
1374    /// value and the upper 29 bits index into the second dimension of the array
1375    /// to select what 32-bit value to use.
1376    uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1377    CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
1378    CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
1379  }
1380
1381  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1382  /// to trying a larger integer/fp until it can find one that works. If that
1383  /// default is insufficient, this method can be used by the target to override
1384  /// the default.
1385  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1386    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1387  }
1388
1389  /// Targets should invoke this method for each target independent node that
1390  /// they want to provide a custom DAG combiner for by implementing the
1391  /// PerformDAGCombine virtual method.
1392  void setTargetDAGCombine(ISD::NodeType NT) {
1393    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1394    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1395  }
1396
1397  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1398  void setJumpBufSize(unsigned Size) {
1399    JumpBufSize = Size;
1400  }
1401
1402  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1403  /// 0
1404  void setJumpBufAlignment(unsigned Align) {
1405    JumpBufAlignment = Align;
1406  }
1407
1408  /// Set the target's minimum function alignment (in log2(bytes))
1409  void setMinFunctionAlignment(unsigned Align) {
1410    MinFunctionAlignment = Align;
1411  }
1412
1413  /// Set the target's preferred function alignment.  This should be set if
1414  /// there is a performance benefit to higher-than-minimum alignment (in
1415  /// log2(bytes))
1416  void setPrefFunctionAlignment(unsigned Align) {
1417    PrefFunctionAlignment = Align;
1418  }
1419
1420  /// Set the target's preferred loop alignment. Default alignment is zero, it
1421  /// means the target does not care about loop alignment.  The alignment is
1422  /// specified in log2(bytes). The target may also override
1423  /// getPrefLoopAlignment to provide per-loop values.
1424  void setPrefLoopAlignment(unsigned Align) {
1425    PrefLoopAlignment = Align;
1426  }
1427
1428  /// Set the minimum stack alignment of an argument (in log2(bytes)).
1429  void setMinStackArgumentAlignment(unsigned Align) {
1430    MinStackArgumentAlignment = Align;
1431  }
1432
1433  /// Set if the DAG builder should automatically insert fences and reduce the
1434  /// order of atomic memory operations to Monotonic.
1435  void setInsertFencesForAtomic(bool fence) {
1436    InsertFencesForAtomic = fence;
1437  }
1438
1439public:
1440  //===--------------------------------------------------------------------===//
1441  // Addressing mode description hooks (used by LSR etc).
1442  //
1443
1444  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1445  /// instructions reading the address. This allows as much computation as
1446  /// possible to be done in the address mode for that operand. This hook lets
1447  /// targets also pass back when this should be done on intrinsics which
1448  /// load/store.
1449  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1450                                    SmallVectorImpl<Value*> &/*Ops*/,
1451                                    Type *&/*AccessTy*/,
1452                                    unsigned AddrSpace = 0) const {
1453    return false;
1454  }
1455
1456  /// This represents an addressing mode of:
1457  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1458  /// If BaseGV is null,  there is no BaseGV.
1459  /// If BaseOffs is zero, there is no base offset.
1460  /// If HasBaseReg is false, there is no base register.
1461  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1462  /// no scale.
1463  struct AddrMode {
1464    GlobalValue *BaseGV;
1465    int64_t      BaseOffs;
1466    bool         HasBaseReg;
1467    int64_t      Scale;
1468    AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1469  };
1470
1471  /// Return true if the addressing mode represented by AM is legal for this
1472  /// target, for a load/store of the specified type.
1473  ///
1474  /// The type may be VoidTy, in which case only return true if the addressing
1475  /// mode is legal for a load/store of any legal type.  TODO: Handle
1476  /// pre/postinc as well.
1477  ///
1478  /// If the address space cannot be determined, it will be -1.
1479  ///
1480  /// TODO: Remove default argument
1481  virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1482                                     Type *Ty, unsigned AddrSpace) const;
1483
1484  /// \brief Return the cost of the scaling factor used in the addressing mode
1485  /// represented by AM for this target, for a load/store of the specified type.
1486  ///
1487  /// If the AM is supported, the return value must be >= 0.
1488  /// If the AM is not supported, it returns a negative value.
1489  /// TODO: Handle pre/postinc as well.
1490  /// TODO: Remove default argument
1491  virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
1492                                   Type *Ty, unsigned AS = 0) const {
1493    // Default: assume that any scaling factor used in a legal AM is free.
1494    if (isLegalAddressingMode(DL, AM, Ty, AS))
1495      return 0;
1496    return -1;
1497  }
1498
1499  /// Return true if the specified immediate is legal icmp immediate, that is
1500  /// the target has icmp instructions which can compare a register against the
1501  /// immediate without having to materialize the immediate into a register.
1502  virtual bool isLegalICmpImmediate(int64_t) const {
1503    return true;
1504  }
1505
1506  /// Return true if the specified immediate is legal add immediate, that is the
1507  /// target has add instructions which can add a register with the immediate
1508  /// without having to materialize the immediate into a register.
1509  virtual bool isLegalAddImmediate(int64_t) const {
1510    return true;
1511  }
1512
1513  /// Return true if it's significantly cheaper to shift a vector by a uniform
1514  /// scalar than by an amount which will vary across each lane. On x86, for
1515  /// example, there is a "psllw" instruction for the former case, but no simple
1516  /// instruction for a general "a << b" operation on vectors.
1517  virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
1518    return false;
1519  }
1520
1521  /// Return true if it's free to truncate a value of type FromTy to type
1522  /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1523  /// by referencing its sub-register AX.
1524  /// Targets must return false when FromTy <= ToTy.
1525  virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
1526    return false;
1527  }
1528
1529  /// Return true if a truncation from FromTy to ToTy is permitted when deciding
1530  /// whether a call is in tail position. Typically this means that both results
1531  /// would be assigned to the same register or stack slot, but it could mean
1532  /// the target performs adequate checks of its own before proceeding with the
1533  /// tail call.  Targets must return false when FromTy <= ToTy.
1534  virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
1535    return false;
1536  }
1537
1538  virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
1539    return false;
1540  }
1541
1542  virtual bool isProfitableToHoist(Instruction *I) const { return true; }
1543
1544  /// Return true if the extension represented by \p I is free.
1545  /// Unlikely the is[Z|FP]ExtFree family which is based on types,
1546  /// this method can use the context provided by \p I to decide
1547  /// whether or not \p I is free.
1548  /// This method extends the behavior of the is[Z|FP]ExtFree family.
1549  /// In other words, if is[Z|FP]Free returns true, then this method
1550  /// returns true as well. The converse is not true.
1551  /// The target can perform the adequate checks by overriding isExtFreeImpl.
1552  /// \pre \p I must be a sign, zero, or fp extension.
1553  bool isExtFree(const Instruction *I) const {
1554    switch (I->getOpcode()) {
1555    case Instruction::FPExt:
1556      if (isFPExtFree(EVT::getEVT(I->getType())))
1557        return true;
1558      break;
1559    case Instruction::ZExt:
1560      if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
1561        return true;
1562      break;
1563    case Instruction::SExt:
1564      break;
1565    default:
1566      llvm_unreachable("Instruction is not an extension");
1567    }
1568    return isExtFreeImpl(I);
1569  }
1570
1571  /// Return true if any actual instruction that defines a value of type FromTy
1572  /// implicitly zero-extends the value to ToTy in the result register.
1573  ///
1574  /// The function should return true when it is likely that the truncate can
1575  /// be freely folded with an instruction defining a value of FromTy. If
1576  /// the defining instruction is unknown (because you're looking at a
1577  /// function argument, PHI, etc.) then the target may require an
1578  /// explicit truncate, which is not necessarily free, but this function
1579  /// does not deal with those cases.
1580  /// Targets must return false when FromTy >= ToTy.
1581  virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
1582    return false;
1583  }
1584
1585  virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
1586    return false;
1587  }
1588
1589  /// Return true if the target supplies and combines to a paired load
1590  /// two loaded values of type LoadedType next to each other in memory.
1591  /// RequiredAlignment gives the minimal alignment constraints that must be met
1592  /// to be able to select this paired load.
1593  ///
1594  /// This information is *not* used to generate actual paired loads, but it is
1595  /// used to generate a sequence of loads that is easier to combine into a
1596  /// paired load.
1597  /// For instance, something like this:
1598  /// a = load i64* addr
1599  /// b = trunc i64 a to i32
1600  /// c = lshr i64 a, 32
1601  /// d = trunc i64 c to i32
1602  /// will be optimized into:
1603  /// b = load i32* addr1
1604  /// d = load i32* addr2
1605  /// Where addr1 = addr2 +/- sizeof(i32).
1606  ///
1607  /// In other words, unless the target performs a post-isel load combining,
1608  /// this information should not be provided because it will generate more
1609  /// loads.
1610  virtual bool hasPairedLoad(Type * /*LoadedType*/,
1611                             unsigned & /*RequiredAligment*/) const {
1612    return false;
1613  }
1614
1615  virtual bool hasPairedLoad(EVT /*LoadedType*/,
1616                             unsigned & /*RequiredAligment*/) const {
1617    return false;
1618  }
1619
1620  /// \brief Get the maximum supported factor for interleaved memory accesses.
1621  /// Default to be the minimum interleave factor: 2.
1622  virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
1623
1624  /// \brief Lower an interleaved load to target specific intrinsics. Return
1625  /// true on success.
1626  ///
1627  /// \p LI is the vector load instruction.
1628  /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
1629  /// \p Indices is the corresponding indices for each shufflevector.
1630  /// \p Factor is the interleave factor.
1631  virtual bool lowerInterleavedLoad(LoadInst *LI,
1632                                    ArrayRef<ShuffleVectorInst *> Shuffles,
1633                                    ArrayRef<unsigned> Indices,
1634                                    unsigned Factor) const {
1635    return false;
1636  }
1637
1638  /// \brief Lower an interleaved store to target specific intrinsics. Return
1639  /// true on success.
1640  ///
1641  /// \p SI is the vector store instruction.
1642  /// \p SVI is the shufflevector to RE-interleave the stored vector.
1643  /// \p Factor is the interleave factor.
1644  virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
1645                                     unsigned Factor) const {
1646    return false;
1647  }
1648
1649  /// Return true if zero-extending the specific node Val to type VT2 is free
1650  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1651  /// because it's folded such as X86 zero-extending loads).
1652  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1653    return isZExtFree(Val.getValueType(), VT2);
1654  }
1655
1656  /// Return true if an fpext operation is free (for instance, because
1657  /// single-precision floating-point numbers are implicitly extended to
1658  /// double-precision).
1659  virtual bool isFPExtFree(EVT VT) const {
1660    assert(VT.isFloatingPoint());
1661    return false;
1662  }
1663
1664  /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1665  /// extend node) is profitable.
1666  virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
1667
1668  /// Return true if an fneg operation is free to the point where it is never
1669  /// worthwhile to replace it with a bitwise operation.
1670  virtual bool isFNegFree(EVT VT) const {
1671    assert(VT.isFloatingPoint());
1672    return false;
1673  }
1674
1675  /// Return true if an fabs operation is free to the point where it is never
1676  /// worthwhile to replace it with a bitwise operation.
1677  virtual bool isFAbsFree(EVT VT) const {
1678    assert(VT.isFloatingPoint());
1679    return false;
1680  }
1681
1682  /// Return true if an FMA operation is faster than a pair of fmul and fadd
1683  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1684  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1685  ///
1686  /// NOTE: This may be called before legalization on types for which FMAs are
1687  /// not legal, but should return true if those types will eventually legalize
1688  /// to types that support FMAs. After legalization, it will only be called on
1689  /// types that support FMAs (via Legal or Custom actions)
1690  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1691    return false;
1692  }
1693
1694  /// Return true if it's profitable to narrow operations of type VT1 to
1695  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1696  /// i32 to i16.
1697  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1698    return false;
1699  }
1700
1701  /// \brief Return true if it is beneficial to convert a load of a constant to
1702  /// just the constant itself.
1703  /// On some targets it might be more efficient to use a combination of
1704  /// arithmetic instructions to materialize the constant instead of loading it
1705  /// from a constant pool.
1706  virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1707                                                 Type *Ty) const {
1708    return false;
1709  }
1710
1711  /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1712  /// with this index. This is needed because EXTRACT_SUBVECTOR usually
1713  /// has custom lowering that depends on the index of the first element,
1714  /// and only the target knows which lowering is cheap.
1715  virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
1716    return false;
1717  }
1718
1719  // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
1720  // even if the vector itself has multiple uses.
1721  virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
1722    return false;
1723  }
1724
1725  //===--------------------------------------------------------------------===//
1726  // Runtime Library hooks
1727  //
1728
1729  /// Rename the default libcall routine name for the specified libcall.
1730  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1731    LibcallRoutineNames[Call] = Name;
1732  }
1733
1734  /// Get the libcall routine name for the specified libcall.
1735  const char *getLibcallName(RTLIB::Libcall Call) const {
1736    return LibcallRoutineNames[Call];
1737  }
1738
1739  /// Override the default CondCode to be used to test the result of the
1740  /// comparison libcall against zero.
1741  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1742    CmpLibcallCCs[Call] = CC;
1743  }
1744
1745  /// Get the CondCode that's to be used to test the result of the comparison
1746  /// libcall against zero.
1747  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1748    return CmpLibcallCCs[Call];
1749  }
1750
1751  /// Set the CallingConv that should be used for the specified libcall.
1752  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1753    LibcallCallingConvs[Call] = CC;
1754  }
1755
1756  /// Get the CallingConv that should be used for the specified libcall.
1757  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1758    return LibcallCallingConvs[Call];
1759  }
1760
1761private:
1762  const TargetMachine &TM;
1763
1764  /// Tells the code generator not to expand operations into sequences that use
1765  /// the select operations if possible.
1766  bool SelectIsExpensive;
1767
1768  /// Tells the code generator that the target has multiple (allocatable)
1769  /// condition registers that can be used to store the results of comparisons
1770  /// for use by selects and conditional branches. With multiple condition
1771  /// registers, the code generator will not aggressively sink comparisons into
1772  /// the blocks of their users.
1773  bool HasMultipleConditionRegisters;
1774
1775  /// Tells the code generator that the target has BitExtract instructions.
1776  /// The code generator will aggressively sink "shift"s into the blocks of
1777  /// their users if the users will generate "and" instructions which can be
1778  /// combined with "shift" to BitExtract instructions.
1779  bool HasExtractBitsInsn;
1780
1781  // Don't expand fsqrt with an approximation based on the inverse sqrt.
1782  bool FsqrtIsCheap;
1783
1784  /// Tells the code generator to bypass slow divide or remainder
1785  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1786  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1787  /// div/rem when the operands are positive and less than 256.
1788  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1789
1790  /// Tells the code generator that it shouldn't generate extra flow control
1791  /// instructions and should attempt to combine flow control instructions via
1792  /// predication.
1793  bool JumpIsExpensive;
1794
1795  /// Whether the target supports or cares about preserving floating point
1796  /// exception behavior.
1797  bool HasFloatingPointExceptions;
1798
1799  /// This target prefers to use _setjmp to implement llvm.setjmp.
1800  ///
1801  /// Defaults to false.
1802  bool UseUnderscoreSetJmp;
1803
1804  /// This target prefers to use _longjmp to implement llvm.longjmp.
1805  ///
1806  /// Defaults to false.
1807  bool UseUnderscoreLongJmp;
1808
1809  /// Number of blocks threshold to use jump tables.
1810  int MinimumJumpTableEntries;
1811
1812  /// Information about the contents of the high-bits in boolean values held in
1813  /// a type wider than i1. See getBooleanContents.
1814  BooleanContent BooleanContents;
1815
1816  /// Information about the contents of the high-bits in boolean values held in
1817  /// a type wider than i1. See getBooleanContents.
1818  BooleanContent BooleanFloatContents;
1819
1820  /// Information about the contents of the high-bits in boolean vector values
1821  /// when the element type is wider than i1. See getBooleanContents.
1822  BooleanContent BooleanVectorContents;
1823
1824  /// The target scheduling preference: shortest possible total cycles or lowest
1825  /// register usage.
1826  Sched::Preference SchedPreferenceInfo;
1827
1828  /// The size, in bytes, of the target's jmp_buf buffers
1829  unsigned JumpBufSize;
1830
1831  /// The alignment, in bytes, of the target's jmp_buf buffers
1832  unsigned JumpBufAlignment;
1833
1834  /// The minimum alignment that any argument on the stack needs to have.
1835  unsigned MinStackArgumentAlignment;
1836
1837  /// The minimum function alignment (used when optimizing for size, and to
1838  /// prevent explicitly provided alignment from leading to incorrect code).
1839  unsigned MinFunctionAlignment;
1840
1841  /// The preferred function alignment (used when alignment unspecified and
1842  /// optimizing for speed).
1843  unsigned PrefFunctionAlignment;
1844
1845  /// The preferred loop alignment.
1846  unsigned PrefLoopAlignment;
1847
1848  /// Whether the DAG builder should automatically insert fences and reduce
1849  /// ordering for atomics.  (This will be set for for most architectures with
1850  /// weak memory ordering.)
1851  bool InsertFencesForAtomic;
1852
1853  /// If set to a physical register, this specifies the register that
1854  /// llvm.savestack/llvm.restorestack should save and restore.
1855  unsigned StackPointerRegisterToSaveRestore;
1856
1857  /// This indicates the default register class to use for each ValueType the
1858  /// target supports natively.
1859  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1860  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1861  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1862
1863  /// This indicates the "representative" register class to use for each
1864  /// ValueType the target supports natively. This information is used by the
1865  /// scheduler to track register pressure. By default, the representative
1866  /// register class is the largest legal super-reg register class of the
1867  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1868  /// representative class would be GR32.
1869  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1870
1871  /// This indicates the "cost" of the "representative" register class for each
1872  /// ValueType. The cost is used by the scheduler to approximate register
1873  /// pressure.
1874  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1875
1876  /// For any value types we are promoting or expanding, this contains the value
1877  /// type that we are changing to.  For Expanded types, this contains one step
1878  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1879  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1880  /// the same type (e.g. i32 -> i32).
1881  MVT TransformToType[MVT::LAST_VALUETYPE];
1882
1883  /// For each operation and each value type, keep a LegalizeAction that
1884  /// indicates how instruction selection should deal with the operation.  Most
1885  /// operations are Legal (aka, supported natively by the target), but
1886  /// operations that are not should be described.  Note that operations on
1887  /// non-legal value types are not described here.
1888  LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1889
1890  /// For each load extension type and each value type, keep a LegalizeAction
1891  /// that indicates how instruction selection should deal with a load of a
1892  /// specific value type and extension type.
1893  LegalizeAction LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
1894                               [ISD::LAST_LOADEXT_TYPE];
1895
1896  /// For each value type pair keep a LegalizeAction that indicates whether a
1897  /// truncating store of a specific value type and truncating type is legal.
1898  LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1899
1900  /// For each indexed mode and each value type, keep a pair of LegalizeAction
1901  /// that indicates how instruction selection should deal with the load /
1902  /// store.
1903  ///
1904  /// The first dimension is the value_type for the reference. The second
1905  /// dimension represents the various modes for load store.
1906  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1907
1908  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1909  /// indicates how instruction selection should deal with the condition code.
1910  ///
1911  /// Because each CC action takes up 4 bits, we need to have the array size be
1912  /// large enough to fit all of the value types. This can be done by rounding
1913  /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
1914  uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
1915
1916protected:
1917  ValueTypeActionImpl ValueTypeActions;
1918
1919private:
1920  LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1921
1922private:
1923  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1924
1925  /// Targets can specify ISD nodes that they would like PerformDAGCombine
1926  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1927  /// array.
1928  unsigned char
1929  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1930
1931  /// For operations that must be promoted to a specific type, this holds the
1932  /// destination type.  This map should be sparse, so don't hold it as an
1933  /// array.
1934  ///
1935  /// Targets add entries to this map with AddPromotedToType(..), clients access
1936  /// this with getTypeToPromoteTo(..).
1937  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1938    PromoteToType;
1939
1940  /// Stores the name each libcall.
1941  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1942
1943  /// The ISD::CondCode that should be used to test the result of each of the
1944  /// comparison libcall against zero.
1945  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1946
1947  /// Stores the CallingConv that should be used for each libcall.
1948  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1949
1950protected:
1951  /// Return true if the extension represented by \p I is free.
1952  /// \pre \p I is a sign, zero, or fp extension and
1953  ///      is[Z|FP]ExtFree of the related types is not true.
1954  virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
1955
1956  /// Depth that GatherAllAliases should should continue looking for chain
1957  /// dependencies when trying to find a more preferrable chain. As an
1958  /// approximation, this should be more than the number of consecutive stores
1959  /// expected to be merged.
1960  unsigned GatherAllAliasesMaxDepth;
1961
1962  /// \brief Specify maximum number of store instructions per memset call.
1963  ///
1964  /// When lowering \@llvm.memset this field specifies the maximum number of
1965  /// store operations that may be substituted for the call to memset. Targets
1966  /// must set this value based on the cost threshold for that target. Targets
1967  /// should assume that the memset will be done using as many of the largest
1968  /// store operations first, followed by smaller ones, if necessary, per
1969  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1970  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1971  /// store.  This only applies to setting a constant array of a constant size.
1972  unsigned MaxStoresPerMemset;
1973
1974  /// Maximum number of stores operations that may be substituted for the call
1975  /// to memset, used for functions with OptSize attribute.
1976  unsigned MaxStoresPerMemsetOptSize;
1977
1978  /// \brief Specify maximum bytes of store instructions per memcpy call.
1979  ///
1980  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1981  /// store operations that may be substituted for a call to memcpy. Targets
1982  /// must set this value based on the cost threshold for that target. Targets
1983  /// should assume that the memcpy will be done using as many of the largest
1984  /// store operations first, followed by smaller ones, if necessary, per
1985  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1986  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1987  /// and one 1-byte store. This only applies to copying a constant array of
1988  /// constant size.
1989  unsigned MaxStoresPerMemcpy;
1990
1991  /// Maximum number of store operations that may be substituted for a call to
1992  /// memcpy, used for functions with OptSize attribute.
1993  unsigned MaxStoresPerMemcpyOptSize;
1994
1995  /// \brief Specify maximum bytes of store instructions per memmove call.
1996  ///
1997  /// When lowering \@llvm.memmove this field specifies the maximum number of
1998  /// store instructions that may be substituted for a call to memmove. Targets
1999  /// must set this value based on the cost threshold for that target. Targets
2000  /// should assume that the memmove will be done using as many of the largest
2001  /// store operations first, followed by smaller ones, if necessary, per
2002  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2003  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2004  /// applies to copying a constant array of constant size.
2005  unsigned MaxStoresPerMemmove;
2006
2007  /// Maximum number of store instructions that may be substituted for a call to
2008  /// memmove, used for functions with OptSize attribute.
2009  unsigned MaxStoresPerMemmoveOptSize;
2010
2011  /// Tells the code generator that select is more expensive than a branch if
2012  /// the branch is usually predicted right.
2013  bool PredictableSelectIsExpensive;
2014
2015  /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
2016  /// a mask of a single bit, a compare, and a branch into a single instruction.
2017  bool MaskAndBranchFoldingIsLegal;
2018
2019  /// \see enableExtLdPromotion.
2020  bool EnableExtLdPromotion;
2021
2022protected:
2023  /// Return true if the value types that can be represented by the specified
2024  /// register class are all legal.
2025  bool isLegalRC(const TargetRegisterClass *RC) const;
2026
2027  /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2028  /// sequence of memory operands that is recognized by PrologEpilogInserter.
2029  MachineBasicBlock *emitPatchPoint(MachineInstr *MI,
2030                                    MachineBasicBlock *MBB) const;
2031};
2032
2033/// This class defines information used to lower LLVM code to legal SelectionDAG
2034/// operators that the target instruction selector can accept natively.
2035///
2036/// This class also defines callbacks that targets must implement to lower
2037/// target-specific constructs to SelectionDAG operators.
2038class TargetLowering : public TargetLoweringBase {
2039  TargetLowering(const TargetLowering&) = delete;
2040  void operator=(const TargetLowering&) = delete;
2041
2042public:
2043  /// NOTE: The TargetMachine owns TLOF.
2044  explicit TargetLowering(const TargetMachine &TM);
2045
2046  /// Returns true by value, base pointer and offset pointer and addressing mode
2047  /// by reference if the node's address can be legally represented as
2048  /// pre-indexed load / store address.
2049  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2050                                         SDValue &/*Offset*/,
2051                                         ISD::MemIndexedMode &/*AM*/,
2052                                         SelectionDAG &/*DAG*/) const {
2053    return false;
2054  }
2055
2056  /// Returns true by value, base pointer and offset pointer and addressing mode
2057  /// by reference if this node can be combined with a load / store to form a
2058  /// post-indexed load / store.
2059  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2060                                          SDValue &/*Base*/,
2061                                          SDValue &/*Offset*/,
2062                                          ISD::MemIndexedMode &/*AM*/,
2063                                          SelectionDAG &/*DAG*/) const {
2064    return false;
2065  }
2066
2067  /// Return the entry encoding for a jump table in the current function.  The
2068  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2069  virtual unsigned getJumpTableEncoding() const;
2070
2071  virtual const MCExpr *
2072  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2073                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2074                            MCContext &/*Ctx*/) const {
2075    llvm_unreachable("Need to implement this hook if target has custom JTIs");
2076  }
2077
2078  /// Returns relocation base for the given PIC jumptable.
2079  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2080                                           SelectionDAG &DAG) const;
2081
2082  /// This returns the relocation base for the given PIC jumptable, the same as
2083  /// getPICJumpTableRelocBase, but as an MCExpr.
2084  virtual const MCExpr *
2085  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2086                               unsigned JTI, MCContext &Ctx) const;
2087
2088  /// Return true if folding a constant offset with the given GlobalAddress is
2089  /// legal.  It is frequently not legal in PIC relocation models.
2090  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2091
2092  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2093                            SDValue &Chain) const;
2094
2095  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
2096                           SDValue &NewLHS, SDValue &NewRHS,
2097                           ISD::CondCode &CCCode, SDLoc DL) const;
2098
2099  /// Returns a pair of (return value, chain).
2100  /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2101  std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
2102                                          EVT RetVT, ArrayRef<SDValue> Ops,
2103                                          bool isSigned, SDLoc dl,
2104                                          bool doesNotReturn = false,
2105                                          bool isReturnValueUsed = true) const;
2106
2107  //===--------------------------------------------------------------------===//
2108  // TargetLowering Optimization Methods
2109  //
2110
2111  /// A convenience struct that encapsulates a DAG, and two SDValues for
2112  /// returning information from TargetLowering to its clients that want to
2113  /// combine.
2114  struct TargetLoweringOpt {
2115    SelectionDAG &DAG;
2116    bool LegalTys;
2117    bool LegalOps;
2118    SDValue Old;
2119    SDValue New;
2120
2121    explicit TargetLoweringOpt(SelectionDAG &InDAG,
2122                               bool LT, bool LO) :
2123      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2124
2125    bool LegalTypes() const { return LegalTys; }
2126    bool LegalOperations() const { return LegalOps; }
2127
2128    bool CombineTo(SDValue O, SDValue N) {
2129      Old = O;
2130      New = N;
2131      return true;
2132    }
2133
2134    /// Check to see if the specified operand of the specified instruction is a
2135    /// constant integer.  If so, check to see if there are any bits set in the
2136    /// constant that are not demanded.  If so, shrink the constant and return
2137    /// true.
2138    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
2139
2140    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
2141    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
2142    /// generalized for targets with other types of implicit widening casts.
2143    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
2144                          SDLoc dl);
2145  };
2146
2147  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
2148  /// result of Op are ever used downstream.  If we can use this information to
2149  /// simplify Op, create a new simplified DAG node and return true, returning
2150  /// the original and new nodes in Old and New.  Otherwise, analyze the
2151  /// expression and return a mask of KnownOne and KnownZero bits for the
2152  /// expression (used to simplify the caller).  The KnownZero/One bits may only
2153  /// be accurate for those bits in the DemandedMask.
2154  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2155                            APInt &KnownZero, APInt &KnownOne,
2156                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
2157
2158  /// Determine which of the bits specified in Mask are known to be either zero
2159  /// or one and return them in the KnownZero/KnownOne bitsets.
2160  virtual void computeKnownBitsForTargetNode(const SDValue Op,
2161                                             APInt &KnownZero,
2162                                             APInt &KnownOne,
2163                                             const SelectionDAG &DAG,
2164                                             unsigned Depth = 0) const;
2165
2166  /// This method can be implemented by targets that want to expose additional
2167  /// information about sign bits to the DAG Combiner.
2168  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
2169                                                   const SelectionDAG &DAG,
2170                                                   unsigned Depth = 0) const;
2171
2172  struct DAGCombinerInfo {
2173    void *DC;  // The DAG Combiner object.
2174    CombineLevel Level;
2175    bool CalledByLegalizer;
2176  public:
2177    SelectionDAG &DAG;
2178
2179    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
2180      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2181
2182    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
2183    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
2184    bool isAfterLegalizeVectorOps() const {
2185      return Level == AfterLegalizeDAG;
2186    }
2187    CombineLevel getDAGCombineLevel() { return Level; }
2188    bool isCalledByLegalizer() const { return CalledByLegalizer; }
2189
2190    void AddToWorklist(SDNode *N);
2191    void RemoveFromWorklist(SDNode *N);
2192    SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
2193    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2194    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2195
2196    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2197  };
2198
2199  /// Return if the N is a constant or constant vector equal to the true value
2200  /// from getBooleanContents().
2201  bool isConstTrueVal(const SDNode *N) const;
2202
2203  /// Return if the N is a constant or constant vector equal to the false value
2204  /// from getBooleanContents().
2205  bool isConstFalseVal(const SDNode *N) const;
2206
2207  /// Try to simplify a setcc built with the specified operands and cc. If it is
2208  /// unable to simplify it, return a null SDValue.
2209  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2210                          ISD::CondCode Cond, bool foldBooleans,
2211                          DAGCombinerInfo &DCI, SDLoc dl) const;
2212
2213  /// Returns true (and the GlobalValue and the offset) if the node is a
2214  /// GlobalAddress + offset.
2215  virtual bool
2216  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2217
2218  /// This method will be invoked for all target nodes and for any
2219  /// target-independent nodes that the target has registered with invoke it
2220  /// for.
2221  ///
2222  /// The semantics are as follows:
2223  /// Return Value:
2224  ///   SDValue.Val == 0   - No change was made
2225  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
2226  ///   otherwise          - N should be replaced by the returned Operand.
2227  ///
2228  /// In addition, methods provided by DAGCombinerInfo may be used to perform
2229  /// more complex transformations.
2230  ///
2231  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2232
2233  /// Return true if it is profitable to move a following shift through this
2234  //  node, adjusting any immediate operands as necessary to preserve semantics.
2235  //  This transformation may not be desirable if it disrupts a particularly
2236  //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
2237  //  By default, it returns true.
2238  virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
2239    return true;
2240  }
2241
2242  /// Return true if the target has native support for the specified value type
2243  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
2244  /// i16 is legal, but undesirable since i16 instruction encodings are longer
2245  /// and some i16 instructions are slow.
2246  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
2247    // By default, assume all legal types are desirable.
2248    return isTypeLegal(VT);
2249  }
2250
2251  /// Return true if it is profitable for dag combiner to transform a floating
2252  /// point op of specified opcode to a equivalent op of an integer
2253  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
2254  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
2255                                                 EVT /*VT*/) const {
2256    return false;
2257  }
2258
2259  /// This method query the target whether it is beneficial for dag combiner to
2260  /// promote the specified node. If true, it should return the desired
2261  /// promotion type by reference.
2262  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
2263    return false;
2264  }
2265
2266  /// Return true if the target supports that a subset of CSRs for the given
2267  /// machine function is handled explicitly via copies.
2268  virtual bool supportSplitCSR(MachineFunction *MF) const {
2269    return false;
2270  }
2271
2272  /// Perform necessary initialization to handle a subset of CSRs explicitly
2273  /// via copies. This function is called at the beginning of instruction
2274  /// selection.
2275  virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
2276    llvm_unreachable("Not Implemented");
2277  }
2278
2279  /// Insert explicit copies in entry and exit blocks. We copy a subset of
2280  /// CSRs to virtual registers in the entry block, and copy them back to
2281  /// physical registers in the exit blocks. This function is called at the end
2282  /// of instruction selection.
2283  virtual void insertCopiesSplitCSR(
2284      MachineBasicBlock *Entry,
2285      const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2286    llvm_unreachable("Not Implemented");
2287  }
2288
2289  //===--------------------------------------------------------------------===//
2290  // Lowering methods - These methods must be implemented by targets so that
2291  // the SelectionDAGBuilder code knows how to lower these.
2292  //
2293
2294  /// This hook must be implemented to lower the incoming (formal) arguments,
2295  /// described by the Ins array, into the specified DAG. The implementation
2296  /// should fill in the InVals array with legal-type argument values, and
2297  /// return the resulting token chain value.
2298  ///
2299  virtual SDValue
2300    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2301                         bool /*isVarArg*/,
2302                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
2303                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
2304                         SmallVectorImpl<SDValue> &/*InVals*/) const {
2305    llvm_unreachable("Not Implemented");
2306  }
2307
2308  struct ArgListEntry {
2309    SDValue Node;
2310    Type* Ty;
2311    bool isSExt     : 1;
2312    bool isZExt     : 1;
2313    bool isInReg    : 1;
2314    bool isSRet     : 1;
2315    bool isNest     : 1;
2316    bool isByVal    : 1;
2317    bool isInAlloca : 1;
2318    bool isReturned : 1;
2319    uint16_t Alignment;
2320
2321    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
2322      isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
2323      isReturned(false), Alignment(0) { }
2324
2325    void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
2326  };
2327  typedef std::vector<ArgListEntry> ArgListTy;
2328
2329  /// This structure contains all information that is necessary for lowering
2330  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
2331  /// needs to lower a call, and targets will see this struct in their LowerCall
2332  /// implementation.
2333  struct CallLoweringInfo {
2334    SDValue Chain;
2335    Type *RetTy;
2336    bool RetSExt           : 1;
2337    bool RetZExt           : 1;
2338    bool IsVarArg          : 1;
2339    bool IsInReg           : 1;
2340    bool DoesNotReturn     : 1;
2341    bool IsReturnValueUsed : 1;
2342
2343    // IsTailCall should be modified by implementations of
2344    // TargetLowering::LowerCall that perform tail call conversions.
2345    bool IsTailCall;
2346
2347    unsigned NumFixedArgs;
2348    CallingConv::ID CallConv;
2349    SDValue Callee;
2350    ArgListTy Args;
2351    SelectionDAG &DAG;
2352    SDLoc DL;
2353    ImmutableCallSite *CS;
2354    bool IsPatchPoint;
2355    SmallVector<ISD::OutputArg, 32> Outs;
2356    SmallVector<SDValue, 32> OutVals;
2357    SmallVector<ISD::InputArg, 32> Ins;
2358
2359    CallLoweringInfo(SelectionDAG &DAG)
2360      : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
2361        IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
2362        IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
2363        DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
2364
2365    CallLoweringInfo &setDebugLoc(SDLoc dl) {
2366      DL = dl;
2367      return *this;
2368    }
2369
2370    CallLoweringInfo &setChain(SDValue InChain) {
2371      Chain = InChain;
2372      return *this;
2373    }
2374
2375    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
2376                                SDValue Target, ArgListTy &&ArgsList,
2377                                unsigned FixedArgs = -1) {
2378      RetTy = ResultType;
2379      Callee = Target;
2380      CallConv = CC;
2381      NumFixedArgs =
2382        (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
2383      Args = std::move(ArgsList);
2384      return *this;
2385    }
2386
2387    CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
2388                                SDValue Target, ArgListTy &&ArgsList,
2389                                ImmutableCallSite &Call) {
2390      RetTy = ResultType;
2391
2392      IsInReg = Call.paramHasAttr(0, Attribute::InReg);
2393      DoesNotReturn = Call.doesNotReturn();
2394      IsVarArg = FTy->isVarArg();
2395      IsReturnValueUsed = !Call.getInstruction()->use_empty();
2396      RetSExt = Call.paramHasAttr(0, Attribute::SExt);
2397      RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
2398
2399      Callee = Target;
2400
2401      CallConv = Call.getCallingConv();
2402      NumFixedArgs = FTy->getNumParams();
2403      Args = std::move(ArgsList);
2404
2405      CS = &Call;
2406
2407      return *this;
2408    }
2409
2410    CallLoweringInfo &setInRegister(bool Value = true) {
2411      IsInReg = Value;
2412      return *this;
2413    }
2414
2415    CallLoweringInfo &setNoReturn(bool Value = true) {
2416      DoesNotReturn = Value;
2417      return *this;
2418    }
2419
2420    CallLoweringInfo &setVarArg(bool Value = true) {
2421      IsVarArg = Value;
2422      return *this;
2423    }
2424
2425    CallLoweringInfo &setTailCall(bool Value = true) {
2426      IsTailCall = Value;
2427      return *this;
2428    }
2429
2430    CallLoweringInfo &setDiscardResult(bool Value = true) {
2431      IsReturnValueUsed = !Value;
2432      return *this;
2433    }
2434
2435    CallLoweringInfo &setSExtResult(bool Value = true) {
2436      RetSExt = Value;
2437      return *this;
2438    }
2439
2440    CallLoweringInfo &setZExtResult(bool Value = true) {
2441      RetZExt = Value;
2442      return *this;
2443    }
2444
2445    CallLoweringInfo &setIsPatchPoint(bool Value = true) {
2446      IsPatchPoint = Value;
2447      return *this;
2448    }
2449
2450    ArgListTy &getArgs() {
2451      return Args;
2452    }
2453
2454  };
2455
2456  // Mark inreg arguments for lib-calls. For normal calls this is done by
2457  // the frontend ABI code.
2458  virtual void markInRegArguments(SelectionDAG &DAG,
2459                 TargetLowering::ArgListTy &Args) const {
2460    return;
2461  }
2462
2463  /// This function lowers an abstract call to a function into an actual call.
2464  /// This returns a pair of operands.  The first element is the return value
2465  /// for the function (if RetTy is not VoidTy).  The second element is the
2466  /// outgoing token chain. It calls LowerCall to do the actual lowering.
2467  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
2468
2469  /// This hook must be implemented to lower calls into the specified
2470  /// DAG. The outgoing arguments to the call are described by the Outs array,
2471  /// and the values to be returned by the call are described by the Ins
2472  /// array. The implementation should fill in the InVals array with legal-type
2473  /// return values from the call, and return the resulting token chain value.
2474  virtual SDValue
2475    LowerCall(CallLoweringInfo &/*CLI*/,
2476              SmallVectorImpl<SDValue> &/*InVals*/) const {
2477    llvm_unreachable("Not Implemented");
2478  }
2479
2480  /// Target-specific cleanup for formal ByVal parameters.
2481  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2482
2483  /// This hook should be implemented to check whether the return values
2484  /// described by the Outs array can fit into the return registers.  If false
2485  /// is returned, an sret-demotion is performed.
2486  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2487                              MachineFunction &/*MF*/, bool /*isVarArg*/,
2488               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2489               LLVMContext &/*Context*/) const
2490  {
2491    // Return true by default to get preexisting behavior.
2492    return true;
2493  }
2494
2495  /// This hook must be implemented to lower outgoing return values, described
2496  /// by the Outs array, into the specified DAG. The implementation should
2497  /// return the resulting token chain value.
2498  virtual SDValue
2499    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2500                bool /*isVarArg*/,
2501                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2502                const SmallVectorImpl<SDValue> &/*OutVals*/,
2503                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2504    llvm_unreachable("Not Implemented");
2505  }
2506
2507  /// Return true if result of the specified node is used by a return node
2508  /// only. It also compute and return the input chain for the tail call.
2509  ///
2510  /// This is used to determine whether it is possible to codegen a libcall as
2511  /// tail call at legalization time.
2512  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2513    return false;
2514  }
2515
2516  /// Return true if the target may be able emit the call instruction as a tail
2517  /// call. This is used by optimization passes to determine if it's profitable
2518  /// to duplicate return instructions to enable tailcall optimization.
2519  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2520    return false;
2521  }
2522
2523  /// Return the builtin name for the __builtin___clear_cache intrinsic
2524  /// Default is to invoke the clear cache library call
2525  virtual const char * getClearCacheBuiltinName() const {
2526    return "__clear_cache";
2527  }
2528
2529  /// Return the register ID of the name passed in. Used by named register
2530  /// global variables extension. There is no target-independent behaviour
2531  /// so the default action is to bail.
2532  virtual unsigned getRegisterByName(const char* RegName, EVT VT,
2533                                     SelectionDAG &DAG) const {
2534    report_fatal_error("Named registers not implemented for this target");
2535  }
2536
2537  /// Return the type that should be used to zero or sign extend a
2538  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2539  /// convention requires the return type to be promoted, but this is not true
2540  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2541  /// calling conventions. The frontend should handle this and include all of
2542  /// the necessary information.
2543  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2544                                       ISD::NodeType /*ExtendKind*/) const {
2545    EVT MinVT = getRegisterType(Context, MVT::i32);
2546    return VT.bitsLT(MinVT) ? MinVT : VT;
2547  }
2548
2549  /// For some targets, an LLVM struct type must be broken down into multiple
2550  /// simple types, but the calling convention specifies that the entire struct
2551  /// must be passed in a block of consecutive registers.
2552  virtual bool
2553  functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
2554                                            bool isVarArg) const {
2555    return false;
2556  }
2557
2558  /// Returns a 0 terminated array of registers that can be safely used as
2559  /// scratch registers.
2560  virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
2561    return nullptr;
2562  }
2563
2564  /// This callback is used to prepare for a volatile or atomic load.
2565  /// It takes a chain node as input and returns the chain for the load itself.
2566  ///
2567  /// Having a callback like this is necessary for targets like SystemZ,
2568  /// which allows a CPU to reuse the result of a previous load indefinitely,
2569  /// even if a cache-coherent store is performed by another CPU.  The default
2570  /// implementation does nothing.
2571  virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
2572                                              SelectionDAG &DAG) const {
2573    return Chain;
2574  }
2575
2576  /// This callback is invoked by the type legalizer to legalize nodes with an
2577  /// illegal operand type but legal result types.  It replaces the
2578  /// LowerOperation callback in the type Legalizer.  The reason we can not do
2579  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2580  /// use this callback.
2581  ///
2582  /// TODO: Consider merging with ReplaceNodeResults.
2583  ///
2584  /// The target places new result values for the node in Results (their number
2585  /// and types must exactly match those of the original return values of
2586  /// the node), or leaves Results empty, which indicates that the node is not
2587  /// to be custom lowered after all.
2588  /// The default implementation calls LowerOperation.
2589  virtual void LowerOperationWrapper(SDNode *N,
2590                                     SmallVectorImpl<SDValue> &Results,
2591                                     SelectionDAG &DAG) const;
2592
2593  /// This callback is invoked for operations that are unsupported by the
2594  /// target, which are registered to use 'custom' lowering, and whose defined
2595  /// values are all legal.  If the target has no operations that require custom
2596  /// lowering, it need not implement this.  The default implementation of this
2597  /// aborts.
2598  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2599
2600  /// This callback is invoked when a node result type is illegal for the
2601  /// target, and the operation was registered to use 'custom' lowering for that
2602  /// result type.  The target places new result values for the node in Results
2603  /// (their number and types must exactly match those of the original return
2604  /// values of the node), or leaves Results empty, which indicates that the
2605  /// node is not to be custom lowered after all.
2606  ///
2607  /// If the target has no operations that require custom lowering, it need not
2608  /// implement this.  The default implementation aborts.
2609  virtual void ReplaceNodeResults(SDNode * /*N*/,
2610                                  SmallVectorImpl<SDValue> &/*Results*/,
2611                                  SelectionDAG &/*DAG*/) const {
2612    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2613  }
2614
2615  /// This method returns the name of a target specific DAG node.
2616  virtual const char *getTargetNodeName(unsigned Opcode) const;
2617
2618  /// This method returns a target specific FastISel object, or null if the
2619  /// target does not support "fast" ISel.
2620  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2621                                   const TargetLibraryInfo *) const {
2622    return nullptr;
2623  }
2624
2625
2626  bool verifyReturnAddressArgumentIsConstant(SDValue Op,
2627                                             SelectionDAG &DAG) const;
2628
2629  //===--------------------------------------------------------------------===//
2630  // Inline Asm Support hooks
2631  //
2632
2633  /// This hook allows the target to expand an inline asm call to be explicit
2634  /// llvm code if it wants to.  This is useful for turning simple inline asms
2635  /// into LLVM intrinsics, which gives the compiler more information about the
2636  /// behavior of the code.
2637  virtual bool ExpandInlineAsm(CallInst *) const {
2638    return false;
2639  }
2640
2641  enum ConstraintType {
2642    C_Register,            // Constraint represents specific register(s).
2643    C_RegisterClass,       // Constraint represents any of register(s) in class.
2644    C_Memory,              // Memory constraint.
2645    C_Other,               // Something else.
2646    C_Unknown              // Unsupported constraint.
2647  };
2648
2649  enum ConstraintWeight {
2650    // Generic weights.
2651    CW_Invalid  = -1,     // No match.
2652    CW_Okay     = 0,      // Acceptable.
2653    CW_Good     = 1,      // Good weight.
2654    CW_Better   = 2,      // Better weight.
2655    CW_Best     = 3,      // Best weight.
2656
2657    // Well-known weights.
2658    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2659    CW_Register     = CW_Good,    // Register operands.
2660    CW_Memory       = CW_Better,  // Memory operands.
2661    CW_Constant     = CW_Best,    // Constant operand.
2662    CW_Default      = CW_Okay     // Default or don't know type.
2663  };
2664
2665  /// This contains information for each constraint that we are lowering.
2666  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2667    /// This contains the actual string for the code, like "m".  TargetLowering
2668    /// picks the 'best' code from ConstraintInfo::Codes that most closely
2669    /// matches the operand.
2670    std::string ConstraintCode;
2671
2672    /// Information about the constraint code, e.g. Register, RegisterClass,
2673    /// Memory, Other, Unknown.
2674    TargetLowering::ConstraintType ConstraintType;
2675
2676    /// If this is the result output operand or a clobber, this is null,
2677    /// otherwise it is the incoming operand to the CallInst.  This gets
2678    /// modified as the asm is processed.
2679    Value *CallOperandVal;
2680
2681    /// The ValueType for the operand value.
2682    MVT ConstraintVT;
2683
2684    /// Return true of this is an input operand that is a matching constraint
2685    /// like "4".
2686    bool isMatchingInputConstraint() const;
2687
2688    /// If this is an input matching constraint, this method returns the output
2689    /// operand it matches.
2690    unsigned getMatchedOperand() const;
2691
2692    /// Copy constructor for copying from a ConstraintInfo.
2693    AsmOperandInfo(InlineAsm::ConstraintInfo Info)
2694        : InlineAsm::ConstraintInfo(std::move(Info)),
2695          ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
2696          ConstraintVT(MVT::Other) {}
2697  };
2698
2699  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2700
2701  /// Split up the constraint string from the inline assembly value into the
2702  /// specific constraints and their prefixes, and also tie in the associated
2703  /// operand values.  If this returns an empty vector, and if the constraint
2704  /// string itself isn't empty, there was an error parsing.
2705  virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
2706                                                const TargetRegisterInfo *TRI,
2707                                                ImmutableCallSite CS) const;
2708
2709  /// Examine constraint type and operand type and determine a weight value.
2710  /// The operand object must already have been set up with the operand type.
2711  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2712      AsmOperandInfo &info, int maIndex) const;
2713
2714  /// Examine constraint string and operand type and determine a weight value.
2715  /// The operand object must already have been set up with the operand type.
2716  virtual ConstraintWeight getSingleConstraintMatchWeight(
2717      AsmOperandInfo &info, const char *constraint) const;
2718
2719  /// Determines the constraint code and constraint type to use for the specific
2720  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2721  /// If the actual operand being passed in is available, it can be passed in as
2722  /// Op, otherwise an empty SDValue can be passed.
2723  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2724                                      SDValue Op,
2725                                      SelectionDAG *DAG = nullptr) const;
2726
2727  /// Given a constraint, return the type of constraint it is for this target.
2728  virtual ConstraintType getConstraintType(StringRef Constraint) const;
2729
2730  /// Given a physical register constraint (e.g.  {edx}), return the register
2731  /// number and the register class for the register.
2732  ///
2733  /// Given a register class constraint, like 'r', if this corresponds directly
2734  /// to an LLVM register class, return a register of 0 and the register class
2735  /// pointer.
2736  ///
2737  /// This should only be used for C_Register constraints.  On error, this
2738  /// returns a register number of 0 and a null register class pointer.
2739  virtual std::pair<unsigned, const TargetRegisterClass *>
2740  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2741                               StringRef Constraint, MVT VT) const;
2742
2743  virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2744    if (ConstraintCode == "i")
2745      return InlineAsm::Constraint_i;
2746    else if (ConstraintCode == "m")
2747      return InlineAsm::Constraint_m;
2748    return InlineAsm::Constraint_Unknown;
2749  }
2750
2751  /// Try to replace an X constraint, which matches anything, with another that
2752  /// has more specific requirements based on the type of the corresponding
2753  /// operand.  This returns null if there is no replacement to make.
2754  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2755
2756  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2757  /// add anything to Ops.
2758  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2759                                            std::vector<SDValue> &Ops,
2760                                            SelectionDAG &DAG) const;
2761
2762  //===--------------------------------------------------------------------===//
2763  // Div utility functions
2764  //
2765  SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2766                    bool IsAfterLegalization,
2767                    std::vector<SDNode *> *Created) const;
2768  SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2769                    bool IsAfterLegalization,
2770                    std::vector<SDNode *> *Created) const;
2771
2772  /// Targets may override this function to provide custom SDIV lowering for
2773  /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
2774  /// assumes SDIV is expensive and replaces it with a series of other integer
2775  /// operations.
2776  virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2777                                SelectionDAG &DAG,
2778                                std::vector<SDNode *> *Created) const;
2779
2780  /// Indicate whether this target prefers to combine FDIVs with the same
2781  /// divisor. If the transform should never be done, return zero. If the
2782  /// transform should be done, return the minimum number of divisor uses
2783  /// that must exist.
2784  virtual unsigned combineRepeatedFPDivisors() const {
2785    return 0;
2786  }
2787
2788  /// Hooks for building estimates in place of slower divisions and square
2789  /// roots.
2790
2791  /// Return a reciprocal square root estimate value for the input operand.
2792  /// The RefinementSteps output is the number of Newton-Raphson refinement
2793  /// iterations required to generate a sufficient (though not necessarily
2794  /// IEEE-754 compliant) estimate for the value type.
2795  /// The boolean UseOneConstNR output is used to select a Newton-Raphson
2796  /// algorithm implementation that uses one constant or two constants.
2797  /// A target may choose to implement its own refinement within this function.
2798  /// If that's true, then return '0' as the number of RefinementSteps to avoid
2799  /// any further refinement of the estimate.
2800  /// An empty SDValue return means no estimate sequence can be created.
2801  virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
2802                                   unsigned &RefinementSteps,
2803                                   bool &UseOneConstNR) const {
2804    return SDValue();
2805  }
2806
2807  /// Return a reciprocal estimate value for the input operand.
2808  /// The RefinementSteps output is the number of Newton-Raphson refinement
2809  /// iterations required to generate a sufficient (though not necessarily
2810  /// IEEE-754 compliant) estimate for the value type.
2811  /// A target may choose to implement its own refinement within this function.
2812  /// If that's true, then return '0' as the number of RefinementSteps to avoid
2813  /// any further refinement of the estimate.
2814  /// An empty SDValue return means no estimate sequence can be created.
2815  virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
2816                                   unsigned &RefinementSteps) const {
2817    return SDValue();
2818  }
2819
2820  //===--------------------------------------------------------------------===//
2821  // Legalization utility functions
2822  //
2823
2824  /// Expand a MUL into two nodes.  One that computes the high bits of
2825  /// the result and one that computes the low bits.
2826  /// \param HiLoVT The value type to use for the Lo and Hi nodes.
2827  /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
2828  ///        if you want to control how low bits are extracted from the LHS.
2829  /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
2830  /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
2831  /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
2832  /// \returns true if the node has been expanded. false if it has not
2833  bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2834                 SelectionDAG &DAG, SDValue LL = SDValue(),
2835                 SDValue LH = SDValue(), SDValue RL = SDValue(),
2836                 SDValue RH = SDValue()) const;
2837
2838  /// Expand float(f32) to SINT(i64) conversion
2839  /// \param N Node to expand
2840  /// \param Result output after conversion
2841  /// \returns True, if the expansion was successful, false otherwise
2842  bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
2843
2844  //===--------------------------------------------------------------------===//
2845  // Instruction Emitting Hooks
2846  //
2847
2848  /// This method should be implemented by targets that mark instructions with
2849  /// the 'usesCustomInserter' flag.  These instructions are special in various
2850  /// ways, which require special support to insert.  The specified MachineInstr
2851  /// is created but not inserted into any basic blocks, and this method is
2852  /// called to expand it into a sequence of instructions, potentially also
2853  /// creating new basic blocks and control flow.
2854  /// As long as the returned basic block is different (i.e., we created a new
2855  /// one), the custom inserter is free to modify the rest of \p MBB.
2856  virtual MachineBasicBlock *
2857    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2858
2859  /// This method should be implemented by targets that mark instructions with
2860  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2861  /// instruction selection by target hooks.  e.g. To fill in optional defs for
2862  /// ARM 's' setting instructions.
2863  virtual void
2864  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2865
2866  /// If this function returns true, SelectionDAGBuilder emits a
2867  /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
2868  virtual bool useLoadStackGuardNode() const {
2869    return false;
2870  }
2871
2872  /// Lower TLS global address SDNode for target independent emulated TLS model.
2873  virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
2874                                          SelectionDAG &DAG) const;
2875};
2876
2877/// Given an LLVM IR type and return type attributes, compute the return value
2878/// EVTs and flags, and optionally also the offsets, if the return value is
2879/// being lowered to memory.
2880void GetReturnInfo(Type *ReturnType, AttributeSet attr,
2881                   SmallVectorImpl<ISD::OutputArg> &Outs,
2882                   const TargetLowering &TLI, const DataLayout &DL);
2883
2884} // end llvm namespace
2885
2886#endif
2887