1//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/Optional.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/AssumptionCache.h"
67#include "llvm/Analysis/ConstantFolding.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/TargetLibraryInfo.h"
72#include "llvm/Analysis/ValueTracking.h"
73#include "llvm/IR/ConstantRange.h"
74#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/GetElementPtrTypeIterator.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
81#include "llvm/IR/InstIterator.h"
82#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Operator.h"
86#include "llvm/IR/PatternMatch.h"
87#include "llvm/Support/CommandLine.h"
88#include "llvm/Support/Debug.h"
89#include "llvm/Support/ErrorHandling.h"
90#include "llvm/Support/MathExtras.h"
91#include "llvm/Support/raw_ostream.h"
92#include "llvm/Support/SaveAndRestore.h"
93#include <algorithm>
94using namespace llvm;
95
96#define DEBUG_TYPE "scalar-evolution"
97
98STATISTIC(NumArrayLenItCounts,
99          "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101          "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103          "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105          "Number of loops with trip counts computed by force");
106
107static cl::opt<unsigned>
108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                        cl::desc("Maximum number of iterations SCEV will "
110                                 "symbolically execute a constant "
111                                 "derived loop"),
112                        cl::init(100));
113
114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117           cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118
119//===----------------------------------------------------------------------===//
120//                           SCEV class definitions
121//===----------------------------------------------------------------------===//
122
123//===----------------------------------------------------------------------===//
124// Implementation of the SCEV class.
125//
126
127LLVM_DUMP_METHOD
128void SCEV::dump() const {
129  print(dbgs());
130  dbgs() << '\n';
131}
132
133void SCEV::print(raw_ostream &OS) const {
134  switch (static_cast<SCEVTypes>(getSCEVType())) {
135  case scConstant:
136    cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
137    return;
138  case scTruncate: {
139    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140    const SCEV *Op = Trunc->getOperand();
141    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142       << *Trunc->getType() << ")";
143    return;
144  }
145  case scZeroExtend: {
146    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147    const SCEV *Op = ZExt->getOperand();
148    OS << "(zext " << *Op->getType() << " " << *Op << " to "
149       << *ZExt->getType() << ")";
150    return;
151  }
152  case scSignExtend: {
153    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154    const SCEV *Op = SExt->getOperand();
155    OS << "(sext " << *Op->getType() << " " << *Op << " to "
156       << *SExt->getType() << ")";
157    return;
158  }
159  case scAddRecExpr: {
160    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161    OS << "{" << *AR->getOperand(0);
162    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163      OS << ",+," << *AR->getOperand(i);
164    OS << "}<";
165    if (AR->getNoWrapFlags(FlagNUW))
166      OS << "nuw><";
167    if (AR->getNoWrapFlags(FlagNSW))
168      OS << "nsw><";
169    if (AR->getNoWrapFlags(FlagNW) &&
170        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171      OS << "nw><";
172    AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
173    OS << ">";
174    return;
175  }
176  case scAddExpr:
177  case scMulExpr:
178  case scUMaxExpr:
179  case scSMaxExpr: {
180    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
181    const char *OpStr = nullptr;
182    switch (NAry->getSCEVType()) {
183    case scAddExpr: OpStr = " + "; break;
184    case scMulExpr: OpStr = " * "; break;
185    case scUMaxExpr: OpStr = " umax "; break;
186    case scSMaxExpr: OpStr = " smax "; break;
187    }
188    OS << "(";
189    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190         I != E; ++I) {
191      OS << **I;
192      if (std::next(I) != E)
193        OS << OpStr;
194    }
195    OS << ")";
196    switch (NAry->getSCEVType()) {
197    case scAddExpr:
198    case scMulExpr:
199      if (NAry->getNoWrapFlags(FlagNUW))
200        OS << "<nuw>";
201      if (NAry->getNoWrapFlags(FlagNSW))
202        OS << "<nsw>";
203    }
204    return;
205  }
206  case scUDivExpr: {
207    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209    return;
210  }
211  case scUnknown: {
212    const SCEVUnknown *U = cast<SCEVUnknown>(this);
213    Type *AllocTy;
214    if (U->isSizeOf(AllocTy)) {
215      OS << "sizeof(" << *AllocTy << ")";
216      return;
217    }
218    if (U->isAlignOf(AllocTy)) {
219      OS << "alignof(" << *AllocTy << ")";
220      return;
221    }
222
223    Type *CTy;
224    Constant *FieldNo;
225    if (U->isOffsetOf(CTy, FieldNo)) {
226      OS << "offsetof(" << *CTy << ", ";
227      FieldNo->printAsOperand(OS, false);
228      OS << ")";
229      return;
230    }
231
232    // Otherwise just print it normally.
233    U->getValue()->printAsOperand(OS, false);
234    return;
235  }
236  case scCouldNotCompute:
237    OS << "***COULDNOTCOMPUTE***";
238    return;
239  }
240  llvm_unreachable("Unknown SCEV kind!");
241}
242
243Type *SCEV::getType() const {
244  switch (static_cast<SCEVTypes>(getSCEVType())) {
245  case scConstant:
246    return cast<SCEVConstant>(this)->getType();
247  case scTruncate:
248  case scZeroExtend:
249  case scSignExtend:
250    return cast<SCEVCastExpr>(this)->getType();
251  case scAddRecExpr:
252  case scMulExpr:
253  case scUMaxExpr:
254  case scSMaxExpr:
255    return cast<SCEVNAryExpr>(this)->getType();
256  case scAddExpr:
257    return cast<SCEVAddExpr>(this)->getType();
258  case scUDivExpr:
259    return cast<SCEVUDivExpr>(this)->getType();
260  case scUnknown:
261    return cast<SCEVUnknown>(this)->getType();
262  case scCouldNotCompute:
263    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
264  }
265  llvm_unreachable("Unknown SCEV kind!");
266}
267
268bool SCEV::isZero() const {
269  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270    return SC->getValue()->isZero();
271  return false;
272}
273
274bool SCEV::isOne() const {
275  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276    return SC->getValue()->isOne();
277  return false;
278}
279
280bool SCEV::isAllOnesValue() const {
281  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282    return SC->getValue()->isAllOnesValue();
283  return false;
284}
285
286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290  if (!Mul) return false;
291
292  // If there is a constant factor, it will be first.
293  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294  if (!SC) return false;
295
296  // Return true if the value is negative, this matches things like (-42 * V).
297  return SC->getAPInt().isNegative();
298}
299
300SCEVCouldNotCompute::SCEVCouldNotCompute() :
301  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
302
303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304  return S->getSCEVType() == scCouldNotCompute;
305}
306
307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
308  FoldingSetNodeID ID;
309  ID.AddInteger(scConstant);
310  ID.AddPointer(V);
311  void *IP = nullptr;
312  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
313  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
314  UniqueSCEVs.InsertNode(S, IP);
315  return S;
316}
317
318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
319  return getConstant(ConstantInt::get(getContext(), Val));
320}
321
322const SCEV *
323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
325  return getConstant(ConstantInt::get(ITy, V, isSigned));
326}
327
328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
329                           unsigned SCEVTy, const SCEV *op, Type *ty)
330  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
331
332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
333                                   const SCEV *op, Type *ty)
334  : SCEVCastExpr(ID, scTruncate, op, ty) {
335  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
337         "Cannot truncate non-integer value!");
338}
339
340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
341                                       const SCEV *op, Type *ty)
342  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
343  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
345         "Cannot zero extend non-integer value!");
346}
347
348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
349                                       const SCEV *op, Type *ty)
350  : SCEVCastExpr(ID, scSignExtend, op, ty) {
351  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
353         "Cannot sign extend non-integer value!");
354}
355
356void SCEVUnknown::deleted() {
357  // Clear this SCEVUnknown from various maps.
358  SE->forgetMemoizedResults(this);
359
360  // Remove this SCEVUnknown from the uniquing map.
361  SE->UniqueSCEVs.RemoveNode(this);
362
363  // Release the value.
364  setValPtr(nullptr);
365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
368  // Clear this SCEVUnknown from various maps.
369  SE->forgetMemoizedResults(this);
370
371  // Remove this SCEVUnknown from the uniquing map.
372  SE->UniqueSCEVs.RemoveNode(this);
373
374  // Update this SCEVUnknown to point to the new value. This is needed
375  // because there may still be outstanding SCEVs which still point to
376  // this SCEVUnknown.
377  setValPtr(New);
378}
379
380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
381  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
382    if (VCE->getOpcode() == Instruction::PtrToInt)
383      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
384        if (CE->getOpcode() == Instruction::GetElementPtr &&
385            CE->getOperand(0)->isNullValue() &&
386            CE->getNumOperands() == 2)
387          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388            if (CI->isOne()) {
389              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390                                 ->getElementType();
391              return true;
392            }
393
394  return false;
395}
396
397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
398  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
399    if (VCE->getOpcode() == Instruction::PtrToInt)
400      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
401        if (CE->getOpcode() == Instruction::GetElementPtr &&
402            CE->getOperand(0)->isNullValue()) {
403          Type *Ty =
404            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
405          if (StructType *STy = dyn_cast<StructType>(Ty))
406            if (!STy->isPacked() &&
407                CE->getNumOperands() == 3 &&
408                CE->getOperand(1)->isNullValue()) {
409              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410                if (CI->isOne() &&
411                    STy->getNumElements() == 2 &&
412                    STy->getElementType(0)->isIntegerTy(1)) {
413                  AllocTy = STy->getElementType(1);
414                  return true;
415                }
416            }
417        }
418
419  return false;
420}
421
422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
423  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
424    if (VCE->getOpcode() == Instruction::PtrToInt)
425      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426        if (CE->getOpcode() == Instruction::GetElementPtr &&
427            CE->getNumOperands() == 3 &&
428            CE->getOperand(0)->isNullValue() &&
429            CE->getOperand(1)->isNullValue()) {
430          Type *Ty =
431            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432          // Ignore vector types here so that ScalarEvolutionExpander doesn't
433          // emit getelementptrs that index into vectors.
434          if (Ty->isStructTy() || Ty->isArrayTy()) {
435            CTy = Ty;
436            FieldNo = CE->getOperand(2);
437            return true;
438          }
439        }
440
441  return false;
442}
443
444//===----------------------------------------------------------------------===//
445//                               SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450/// than the complexity of the RHS.  This comparator is used to canonicalize
451/// expressions.
452class SCEVComplexityCompare {
453  const LoopInfo *const LI;
454public:
455  explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
456
457  // Return true or false if LHS is less than, or at least RHS, respectively.
458  bool operator()(const SCEV *LHS, const SCEV *RHS) const {
459    return compare(LHS, RHS) < 0;
460  }
461
462  // Return negative, zero, or positive, if LHS is less than, equal to, or
463  // greater than RHS, respectively. A three-way result allows recursive
464  // comparisons to be more efficient.
465  int compare(const SCEV *LHS, const SCEV *RHS) const {
466    // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467    if (LHS == RHS)
468      return 0;
469
470    // Primarily, sort the SCEVs by their getSCEVType().
471    unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472    if (LType != RType)
473      return (int)LType - (int)RType;
474
475    // Aside from the getSCEVType() ordering, the particular ordering
476    // isn't very important except that it's beneficial to be consistent,
477    // so that (a + b) and (b + a) don't end up as different expressions.
478    switch (static_cast<SCEVTypes>(LType)) {
479    case scUnknown: {
480      const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
481      const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
482
483      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484      // not as complete as it could be.
485      const Value *LV = LU->getValue(), *RV = RU->getValue();
486
487      // Order pointer values after integer values. This helps SCEVExpander
488      // form GEPs.
489      bool LIsPointer = LV->getType()->isPointerTy(),
490        RIsPointer = RV->getType()->isPointerTy();
491      if (LIsPointer != RIsPointer)
492        return (int)LIsPointer - (int)RIsPointer;
493
494      // Compare getValueID values.
495      unsigned LID = LV->getValueID(),
496        RID = RV->getValueID();
497      if (LID != RID)
498        return (int)LID - (int)RID;
499
500      // Sort arguments by their position.
501      if (const Argument *LA = dyn_cast<Argument>(LV)) {
502        const Argument *RA = cast<Argument>(RV);
503        unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504        return (int)LArgNo - (int)RArgNo;
505      }
506
507      // For instructions, compare their loop depth, and their operand
508      // count.  This is pretty loose.
509      if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510        const Instruction *RInst = cast<Instruction>(RV);
511
512        // Compare loop depths.
513        const BasicBlock *LParent = LInst->getParent(),
514          *RParent = RInst->getParent();
515        if (LParent != RParent) {
516          unsigned LDepth = LI->getLoopDepth(LParent),
517            RDepth = LI->getLoopDepth(RParent);
518          if (LDepth != RDepth)
519            return (int)LDepth - (int)RDepth;
520        }
521
522        // Compare the number of operands.
523        unsigned LNumOps = LInst->getNumOperands(),
524          RNumOps = RInst->getNumOperands();
525        return (int)LNumOps - (int)RNumOps;
526      }
527
528      return 0;
529    }
530
531    case scConstant: {
532      const SCEVConstant *LC = cast<SCEVConstant>(LHS);
533      const SCEVConstant *RC = cast<SCEVConstant>(RHS);
534
535      // Compare constant values.
536      const APInt &LA = LC->getAPInt();
537      const APInt &RA = RC->getAPInt();
538      unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
539      if (LBitWidth != RBitWidth)
540        return (int)LBitWidth - (int)RBitWidth;
541      return LA.ult(RA) ? -1 : 1;
542    }
543
544    case scAddRecExpr: {
545      const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
546      const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
547
548      // Compare addrec loop depths.
549      const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550      if (LLoop != RLoop) {
551        unsigned LDepth = LLoop->getLoopDepth(),
552          RDepth = RLoop->getLoopDepth();
553        if (LDepth != RDepth)
554          return (int)LDepth - (int)RDepth;
555      }
556
557      // Addrec complexity grows with operand count.
558      unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559      if (LNumOps != RNumOps)
560        return (int)LNumOps - (int)RNumOps;
561
562      // Lexicographically compare.
563      for (unsigned i = 0; i != LNumOps; ++i) {
564        long X = compare(LA->getOperand(i), RA->getOperand(i));
565        if (X != 0)
566          return X;
567      }
568
569      return 0;
570    }
571
572    case scAddExpr:
573    case scMulExpr:
574    case scSMaxExpr:
575    case scUMaxExpr: {
576      const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
577      const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578
579      // Lexicographically compare n-ary expressions.
580      unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
581      if (LNumOps != RNumOps)
582        return (int)LNumOps - (int)RNumOps;
583
584      for (unsigned i = 0; i != LNumOps; ++i) {
585        if (i >= RNumOps)
586          return 1;
587        long X = compare(LC->getOperand(i), RC->getOperand(i));
588        if (X != 0)
589          return X;
590      }
591      return (int)LNumOps - (int)RNumOps;
592    }
593
594    case scUDivExpr: {
595      const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
596      const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
597
598      // Lexicographically compare udiv expressions.
599      long X = compare(LC->getLHS(), RC->getLHS());
600      if (X != 0)
601        return X;
602      return compare(LC->getRHS(), RC->getRHS());
603    }
604
605    case scTruncate:
606    case scZeroExtend:
607    case scSignExtend: {
608      const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
609      const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
610
611      // Compare cast expressions by operand.
612      return compare(LC->getOperand(), RC->getOperand());
613    }
614
615    case scCouldNotCompute:
616      llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
617    }
618    llvm_unreachable("Unknown SCEV kind!");
619  }
620};
621}  // end anonymous namespace
622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
628/// Note that we go take special precautions to ensure that we get deterministic
629/// results from this routine.  In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
634                              LoopInfo *LI) {
635  if (Ops.size() < 2) return;  // Noop
636  if (Ops.size() == 2) {
637    // This is the common case, which also happens to be trivially simple.
638    // Special case it.
639    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640    if (SCEVComplexityCompare(LI)(RHS, LHS))
641      std::swap(LHS, RHS);
642    return;
643  }
644
645  // Do the rough sort by complexity.
646  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648  // Now that we are sorted by complexity, group elements of the same
649  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
650  // be extremely short in practice.  Note that we take this approach because we
651  // do not want to depend on the addresses of the objects we are grouping.
652  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653    const SCEV *S = Ops[i];
654    unsigned Complexity = S->getSCEVType();
655
656    // If there are any objects of the same complexity and same value as this
657    // one, group them.
658    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659      if (Ops[j] == S) { // Found a duplicate.
660        // Move it to immediately after i'th element.
661        std::swap(Ops[i+1], Ops[j]);
662        ++i;   // no need to rescan it.
663        if (i == e-2) return;  // Done!
664      }
665    }
666  }
667}
668
669// Returns the size of the SCEV S.
670static inline int sizeOfSCEV(const SCEV *S) {
671  struct FindSCEVSize {
672    int Size;
673    FindSCEVSize() : Size(0) {}
674
675    bool follow(const SCEV *S) {
676      ++Size;
677      // Keep looking at all operands of S.
678      return true;
679    }
680    bool isDone() const {
681      return false;
682    }
683  };
684
685  FindSCEVSize F;
686  SCEVTraversal<FindSCEVSize> ST(F);
687  ST.visitAll(S);
688  return F.Size;
689}
690
691namespace {
692
693struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
694public:
695  // Computes the Quotient and Remainder of the division of Numerator by
696  // Denominator.
697  static void divide(ScalarEvolution &SE, const SCEV *Numerator,
698                     const SCEV *Denominator, const SCEV **Quotient,
699                     const SCEV **Remainder) {
700    assert(Numerator && Denominator && "Uninitialized SCEV");
701
702    SCEVDivision D(SE, Numerator, Denominator);
703
704    // Check for the trivial case here to avoid having to check for it in the
705    // rest of the code.
706    if (Numerator == Denominator) {
707      *Quotient = D.One;
708      *Remainder = D.Zero;
709      return;
710    }
711
712    if (Numerator->isZero()) {
713      *Quotient = D.Zero;
714      *Remainder = D.Zero;
715      return;
716    }
717
718    // A simple case when N/1. The quotient is N.
719    if (Denominator->isOne()) {
720      *Quotient = Numerator;
721      *Remainder = D.Zero;
722      return;
723    }
724
725    // Split the Denominator when it is a product.
726    if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
727      const SCEV *Q, *R;
728      *Quotient = Numerator;
729      for (const SCEV *Op : T->operands()) {
730        divide(SE, *Quotient, Op, &Q, &R);
731        *Quotient = Q;
732
733        // Bail out when the Numerator is not divisible by one of the terms of
734        // the Denominator.
735        if (!R->isZero()) {
736          *Quotient = D.Zero;
737          *Remainder = Numerator;
738          return;
739        }
740      }
741      *Remainder = D.Zero;
742      return;
743    }
744
745    D.visit(Numerator);
746    *Quotient = D.Quotient;
747    *Remainder = D.Remainder;
748  }
749
750  // Except in the trivial case described above, we do not know how to divide
751  // Expr by Denominator for the following functions with empty implementation.
752  void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
753  void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
754  void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
755  void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
756  void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
757  void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
758  void visitUnknown(const SCEVUnknown *Numerator) {}
759  void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
760
761  void visitConstant(const SCEVConstant *Numerator) {
762    if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
763      APInt NumeratorVal = Numerator->getAPInt();
764      APInt DenominatorVal = D->getAPInt();
765      uint32_t NumeratorBW = NumeratorVal.getBitWidth();
766      uint32_t DenominatorBW = DenominatorVal.getBitWidth();
767
768      if (NumeratorBW > DenominatorBW)
769        DenominatorVal = DenominatorVal.sext(NumeratorBW);
770      else if (NumeratorBW < DenominatorBW)
771        NumeratorVal = NumeratorVal.sext(DenominatorBW);
772
773      APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
774      APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
775      APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
776      Quotient = SE.getConstant(QuotientVal);
777      Remainder = SE.getConstant(RemainderVal);
778      return;
779    }
780  }
781
782  void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
783    const SCEV *StartQ, *StartR, *StepQ, *StepR;
784    if (!Numerator->isAffine())
785      return cannotDivide(Numerator);
786    divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
787    divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
788    // Bail out if the types do not match.
789    Type *Ty = Denominator->getType();
790    if (Ty != StartQ->getType() || Ty != StartR->getType() ||
791        Ty != StepQ->getType() || Ty != StepR->getType())
792      return cannotDivide(Numerator);
793    Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
794                                Numerator->getNoWrapFlags());
795    Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
796                                 Numerator->getNoWrapFlags());
797  }
798
799  void visitAddExpr(const SCEVAddExpr *Numerator) {
800    SmallVector<const SCEV *, 2> Qs, Rs;
801    Type *Ty = Denominator->getType();
802
803    for (const SCEV *Op : Numerator->operands()) {
804      const SCEV *Q, *R;
805      divide(SE, Op, Denominator, &Q, &R);
806
807      // Bail out if types do not match.
808      if (Ty != Q->getType() || Ty != R->getType())
809        return cannotDivide(Numerator);
810
811      Qs.push_back(Q);
812      Rs.push_back(R);
813    }
814
815    if (Qs.size() == 1) {
816      Quotient = Qs[0];
817      Remainder = Rs[0];
818      return;
819    }
820
821    Quotient = SE.getAddExpr(Qs);
822    Remainder = SE.getAddExpr(Rs);
823  }
824
825  void visitMulExpr(const SCEVMulExpr *Numerator) {
826    SmallVector<const SCEV *, 2> Qs;
827    Type *Ty = Denominator->getType();
828
829    bool FoundDenominatorTerm = false;
830    for (const SCEV *Op : Numerator->operands()) {
831      // Bail out if types do not match.
832      if (Ty != Op->getType())
833        return cannotDivide(Numerator);
834
835      if (FoundDenominatorTerm) {
836        Qs.push_back(Op);
837        continue;
838      }
839
840      // Check whether Denominator divides one of the product operands.
841      const SCEV *Q, *R;
842      divide(SE, Op, Denominator, &Q, &R);
843      if (!R->isZero()) {
844        Qs.push_back(Op);
845        continue;
846      }
847
848      // Bail out if types do not match.
849      if (Ty != Q->getType())
850        return cannotDivide(Numerator);
851
852      FoundDenominatorTerm = true;
853      Qs.push_back(Q);
854    }
855
856    if (FoundDenominatorTerm) {
857      Remainder = Zero;
858      if (Qs.size() == 1)
859        Quotient = Qs[0];
860      else
861        Quotient = SE.getMulExpr(Qs);
862      return;
863    }
864
865    if (!isa<SCEVUnknown>(Denominator))
866      return cannotDivide(Numerator);
867
868    // The Remainder is obtained by replacing Denominator by 0 in Numerator.
869    ValueToValueMap RewriteMap;
870    RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
871        cast<SCEVConstant>(Zero)->getValue();
872    Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
873
874    if (Remainder->isZero()) {
875      // The Quotient is obtained by replacing Denominator by 1 in Numerator.
876      RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
877          cast<SCEVConstant>(One)->getValue();
878      Quotient =
879          SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
880      return;
881    }
882
883    // Quotient is (Numerator - Remainder) divided by Denominator.
884    const SCEV *Q, *R;
885    const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
886    // This SCEV does not seem to simplify: fail the division here.
887    if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
888      return cannotDivide(Numerator);
889    divide(SE, Diff, Denominator, &Q, &R);
890    if (R != Zero)
891      return cannotDivide(Numerator);
892    Quotient = Q;
893  }
894
895private:
896  SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
897               const SCEV *Denominator)
898      : SE(S), Denominator(Denominator) {
899    Zero = SE.getZero(Denominator->getType());
900    One = SE.getOne(Denominator->getType());
901
902    // We generally do not know how to divide Expr by Denominator. We
903    // initialize the division to a "cannot divide" state to simplify the rest
904    // of the code.
905    cannotDivide(Numerator);
906  }
907
908  // Convenience function for giving up on the division. We set the quotient to
909  // be equal to zero and the remainder to be equal to the numerator.
910  void cannotDivide(const SCEV *Numerator) {
911    Quotient = Zero;
912    Remainder = Numerator;
913  }
914
915  ScalarEvolution &SE;
916  const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
917};
918
919}
920
921//===----------------------------------------------------------------------===//
922//                      Simple SCEV method implementations
923//===----------------------------------------------------------------------===//
924
925/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
926/// Assume, K > 0.
927static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
928                                       ScalarEvolution &SE,
929                                       Type *ResultTy) {
930  // Handle the simplest case efficiently.
931  if (K == 1)
932    return SE.getTruncateOrZeroExtend(It, ResultTy);
933
934  // We are using the following formula for BC(It, K):
935  //
936  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
937  //
938  // Suppose, W is the bitwidth of the return value.  We must be prepared for
939  // overflow.  Hence, we must assure that the result of our computation is
940  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
941  // safe in modular arithmetic.
942  //
943  // However, this code doesn't use exactly that formula; the formula it uses
944  // is something like the following, where T is the number of factors of 2 in
945  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
946  // exponentiation:
947  //
948  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
949  //
950  // This formula is trivially equivalent to the previous formula.  However,
951  // this formula can be implemented much more efficiently.  The trick is that
952  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
953  // arithmetic.  To do exact division in modular arithmetic, all we have
954  // to do is multiply by the inverse.  Therefore, this step can be done at
955  // width W.
956  //
957  // The next issue is how to safely do the division by 2^T.  The way this
958  // is done is by doing the multiplication step at a width of at least W + T
959  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
960  // when we perform the division by 2^T (which is equivalent to a right shift
961  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
962  // truncated out after the division by 2^T.
963  //
964  // In comparison to just directly using the first formula, this technique
965  // is much more efficient; using the first formula requires W * K bits,
966  // but this formula less than W + K bits. Also, the first formula requires
967  // a division step, whereas this formula only requires multiplies and shifts.
968  //
969  // It doesn't matter whether the subtraction step is done in the calculation
970  // width or the input iteration count's width; if the subtraction overflows,
971  // the result must be zero anyway.  We prefer here to do it in the width of
972  // the induction variable because it helps a lot for certain cases; CodeGen
973  // isn't smart enough to ignore the overflow, which leads to much less
974  // efficient code if the width of the subtraction is wider than the native
975  // register width.
976  //
977  // (It's possible to not widen at all by pulling out factors of 2 before
978  // the multiplication; for example, K=2 can be calculated as
979  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
980  // extra arithmetic, so it's not an obvious win, and it gets
981  // much more complicated for K > 3.)
982
983  // Protection from insane SCEVs; this bound is conservative,
984  // but it probably doesn't matter.
985  if (K > 1000)
986    return SE.getCouldNotCompute();
987
988  unsigned W = SE.getTypeSizeInBits(ResultTy);
989
990  // Calculate K! / 2^T and T; we divide out the factors of two before
991  // multiplying for calculating K! / 2^T to avoid overflow.
992  // Other overflow doesn't matter because we only care about the bottom
993  // W bits of the result.
994  APInt OddFactorial(W, 1);
995  unsigned T = 1;
996  for (unsigned i = 3; i <= K; ++i) {
997    APInt Mult(W, i);
998    unsigned TwoFactors = Mult.countTrailingZeros();
999    T += TwoFactors;
1000    Mult = Mult.lshr(TwoFactors);
1001    OddFactorial *= Mult;
1002  }
1003
1004  // We need at least W + T bits for the multiplication step
1005  unsigned CalculationBits = W + T;
1006
1007  // Calculate 2^T, at width T+W.
1008  APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1009
1010  // Calculate the multiplicative inverse of K! / 2^T;
1011  // this multiplication factor will perform the exact division by
1012  // K! / 2^T.
1013  APInt Mod = APInt::getSignedMinValue(W+1);
1014  APInt MultiplyFactor = OddFactorial.zext(W+1);
1015  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1016  MultiplyFactor = MultiplyFactor.trunc(W);
1017
1018  // Calculate the product, at width T+W
1019  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1020                                                      CalculationBits);
1021  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1022  for (unsigned i = 1; i != K; ++i) {
1023    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1024    Dividend = SE.getMulExpr(Dividend,
1025                             SE.getTruncateOrZeroExtend(S, CalculationTy));
1026  }
1027
1028  // Divide by 2^T
1029  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1030
1031  // Truncate the result, and divide by K! / 2^T.
1032
1033  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1034                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1035}
1036
1037/// evaluateAtIteration - Return the value of this chain of recurrences at
1038/// the specified iteration number.  We can evaluate this recurrence by
1039/// multiplying each element in the chain by the binomial coefficient
1040/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1041///
1042///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1043///
1044/// where BC(It, k) stands for binomial coefficient.
1045///
1046const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1047                                                ScalarEvolution &SE) const {
1048  const SCEV *Result = getStart();
1049  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1050    // The computation is correct in the face of overflow provided that the
1051    // multiplication is performed _after_ the evaluation of the binomial
1052    // coefficient.
1053    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1054    if (isa<SCEVCouldNotCompute>(Coeff))
1055      return Coeff;
1056
1057    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1058  }
1059  return Result;
1060}
1061
1062//===----------------------------------------------------------------------===//
1063//                    SCEV Expression folder implementations
1064//===----------------------------------------------------------------------===//
1065
1066const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1067                                             Type *Ty) {
1068  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1069         "This is not a truncating conversion!");
1070  assert(isSCEVable(Ty) &&
1071         "This is not a conversion to a SCEVable type!");
1072  Ty = getEffectiveSCEVType(Ty);
1073
1074  FoldingSetNodeID ID;
1075  ID.AddInteger(scTruncate);
1076  ID.AddPointer(Op);
1077  ID.AddPointer(Ty);
1078  void *IP = nullptr;
1079  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1080
1081  // Fold if the operand is constant.
1082  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1083    return getConstant(
1084      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1085
1086  // trunc(trunc(x)) --> trunc(x)
1087  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1088    return getTruncateExpr(ST->getOperand(), Ty);
1089
1090  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1091  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1092    return getTruncateOrSignExtend(SS->getOperand(), Ty);
1093
1094  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1095  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1096    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1097
1098  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1099  // eliminate all the truncates, or we replace other casts with truncates.
1100  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1101    SmallVector<const SCEV *, 4> Operands;
1102    bool hasTrunc = false;
1103    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1104      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1105      if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1106        hasTrunc = isa<SCEVTruncateExpr>(S);
1107      Operands.push_back(S);
1108    }
1109    if (!hasTrunc)
1110      return getAddExpr(Operands);
1111    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1112  }
1113
1114  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1115  // eliminate all the truncates, or we replace other casts with truncates.
1116  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1117    SmallVector<const SCEV *, 4> Operands;
1118    bool hasTrunc = false;
1119    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1120      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1121      if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1122        hasTrunc = isa<SCEVTruncateExpr>(S);
1123      Operands.push_back(S);
1124    }
1125    if (!hasTrunc)
1126      return getMulExpr(Operands);
1127    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1128  }
1129
1130  // If the input value is a chrec scev, truncate the chrec's operands.
1131  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1132    SmallVector<const SCEV *, 4> Operands;
1133    for (const SCEV *Op : AddRec->operands())
1134      Operands.push_back(getTruncateExpr(Op, Ty));
1135    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1136  }
1137
1138  // The cast wasn't folded; create an explicit cast node. We can reuse
1139  // the existing insert position since if we get here, we won't have
1140  // made any changes which would invalidate it.
1141  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1142                                                 Op, Ty);
1143  UniqueSCEVs.InsertNode(S, IP);
1144  return S;
1145}
1146
1147// Get the limit of a recurrence such that incrementing by Step cannot cause
1148// signed overflow as long as the value of the recurrence within the
1149// loop does not exceed this limit before incrementing.
1150static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1151                                                 ICmpInst::Predicate *Pred,
1152                                                 ScalarEvolution *SE) {
1153  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1154  if (SE->isKnownPositive(Step)) {
1155    *Pred = ICmpInst::ICMP_SLT;
1156    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1157                           SE->getSignedRange(Step).getSignedMax());
1158  }
1159  if (SE->isKnownNegative(Step)) {
1160    *Pred = ICmpInst::ICMP_SGT;
1161    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1162                           SE->getSignedRange(Step).getSignedMin());
1163  }
1164  return nullptr;
1165}
1166
1167// Get the limit of a recurrence such that incrementing by Step cannot cause
1168// unsigned overflow as long as the value of the recurrence within the loop does
1169// not exceed this limit before incrementing.
1170static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1171                                                   ICmpInst::Predicate *Pred,
1172                                                   ScalarEvolution *SE) {
1173  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1174  *Pred = ICmpInst::ICMP_ULT;
1175
1176  return SE->getConstant(APInt::getMinValue(BitWidth) -
1177                         SE->getUnsignedRange(Step).getUnsignedMax());
1178}
1179
1180namespace {
1181
1182struct ExtendOpTraitsBase {
1183  typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1184};
1185
1186// Used to make code generic over signed and unsigned overflow.
1187template <typename ExtendOp> struct ExtendOpTraits {
1188  // Members present:
1189  //
1190  // static const SCEV::NoWrapFlags WrapType;
1191  //
1192  // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1193  //
1194  // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1195  //                                           ICmpInst::Predicate *Pred,
1196  //                                           ScalarEvolution *SE);
1197};
1198
1199template <>
1200struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1201  static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1202
1203  static const GetExtendExprTy GetExtendExpr;
1204
1205  static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1206                                             ICmpInst::Predicate *Pred,
1207                                             ScalarEvolution *SE) {
1208    return getSignedOverflowLimitForStep(Step, Pred, SE);
1209  }
1210};
1211
1212const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1213    SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1214
1215template <>
1216struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1217  static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1218
1219  static const GetExtendExprTy GetExtendExpr;
1220
1221  static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1222                                             ICmpInst::Predicate *Pred,
1223                                             ScalarEvolution *SE) {
1224    return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1225  }
1226};
1227
1228const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1229    SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1230}
1231
1232// The recurrence AR has been shown to have no signed/unsigned wrap or something
1233// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1234// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1235// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1236// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1237// expression "Step + sext/zext(PreIncAR)" is congruent with
1238// "sext/zext(PostIncAR)"
1239template <typename ExtendOpTy>
1240static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1241                                        ScalarEvolution *SE) {
1242  auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1243  auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1244
1245  const Loop *L = AR->getLoop();
1246  const SCEV *Start = AR->getStart();
1247  const SCEV *Step = AR->getStepRecurrence(*SE);
1248
1249  // Check for a simple looking step prior to loop entry.
1250  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1251  if (!SA)
1252    return nullptr;
1253
1254  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1255  // subtraction is expensive. For this purpose, perform a quick and dirty
1256  // difference, by checking for Step in the operand list.
1257  SmallVector<const SCEV *, 4> DiffOps;
1258  for (const SCEV *Op : SA->operands())
1259    if (Op != Step)
1260      DiffOps.push_back(Op);
1261
1262  if (DiffOps.size() == SA->getNumOperands())
1263    return nullptr;
1264
1265  // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1266  // `Step`:
1267
1268  // 1. NSW/NUW flags on the step increment.
1269  auto PreStartFlags =
1270    ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1271  const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1272  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273      SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
1275  // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276  // "S+X does not sign/unsign-overflow".
1277  //
1278
1279  const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280  if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281      !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1282    return PreStart;
1283
1284  // 2. Direct overflow check on the step operation's expression.
1285  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287  const SCEV *OperandExtendedStart =
1288      SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289                     (SE->*GetExtendExpr)(Step, WideTy));
1290  if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291    if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292      // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293      // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294      // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1295      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296    }
1297    return PreStart;
1298  }
1299
1300  // 3. Loop precondition.
1301  ICmpInst::Predicate Pred;
1302  const SCEV *OverflowLimit =
1303      ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305  if (OverflowLimit &&
1306      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1307    return PreStart;
1308
1309  return nullptr;
1310}
1311
1312// Get the normalized zero or sign extended expression for this AddRec's Start.
1313template <typename ExtendOpTy>
1314static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315                                        ScalarEvolution *SE) {
1316  auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318  const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319  if (!PreStart)
1320    return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322  return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323                        (SE->*GetExtendExpr)(PreStart, Ty));
1324}
1325
1326// Try to prove away overflow by looking at "nearby" add recurrences.  A
1327// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329//
1330// Formally:
1331//
1332//     {S,+,X} == {S-T,+,X} + T
1333//  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334//
1335// If ({S-T,+,X} + T) does not overflow  ... (1)
1336//
1337//  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338//
1339// If {S-T,+,X} does not overflow  ... (2)
1340//
1341//  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342//      == {Ext(S-T)+Ext(T),+,Ext(X)}
1343//
1344// If (S-T)+T does not overflow  ... (3)
1345//
1346//  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347//      == {Ext(S),+,Ext(X)} == LHS
1348//
1349// Thus, if (1), (2) and (3) are true for some T, then
1350//   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351//
1352// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353// does not overflow" restricted to the 0th iteration.  Therefore we only need
1354// to check for (1) and (2).
1355//
1356// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357// is `Delta` (defined below).
1358//
1359template <typename ExtendOpTy>
1360bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361                                                const SCEV *Step,
1362                                                const Loop *L) {
1363  auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365  // We restrict `Start` to a constant to prevent SCEV from spending too much
1366  // time here.  It is correct (but more expensive) to continue with a
1367  // non-constant `Start` and do a general SCEV subtraction to compute
1368  // `PreStart` below.
1369  //
1370  const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371  if (!StartC)
1372    return false;
1373
1374  APInt StartAI = StartC->getAPInt();
1375
1376  for (unsigned Delta : {-2, -1, 1, 2}) {
1377    const SCEV *PreStart = getConstant(StartAI - Delta);
1378
1379    FoldingSetNodeID ID;
1380    ID.AddInteger(scAddRecExpr);
1381    ID.AddPointer(PreStart);
1382    ID.AddPointer(Step);
1383    ID.AddPointer(L);
1384    void *IP = nullptr;
1385    const auto *PreAR =
1386      static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1387
1388    // Give up if we don't already have the add recurrence we need because
1389    // actually constructing an add recurrence is relatively expensive.
1390    if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1391      const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1392      ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1393      const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1394          DeltaS, &Pred, this);
1395      if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1396        return true;
1397    }
1398  }
1399
1400  return false;
1401}
1402
1403const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1404                                               Type *Ty) {
1405  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1406         "This is not an extending conversion!");
1407  assert(isSCEVable(Ty) &&
1408         "This is not a conversion to a SCEVable type!");
1409  Ty = getEffectiveSCEVType(Ty);
1410
1411  // Fold if the operand is constant.
1412  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1413    return getConstant(
1414      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1415
1416  // zext(zext(x)) --> zext(x)
1417  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1418    return getZeroExtendExpr(SZ->getOperand(), Ty);
1419
1420  // Before doing any expensive analysis, check to see if we've already
1421  // computed a SCEV for this Op and Ty.
1422  FoldingSetNodeID ID;
1423  ID.AddInteger(scZeroExtend);
1424  ID.AddPointer(Op);
1425  ID.AddPointer(Ty);
1426  void *IP = nullptr;
1427  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1428
1429  // zext(trunc(x)) --> zext(x) or x or trunc(x)
1430  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1431    // It's possible the bits taken off by the truncate were all zero bits. If
1432    // so, we should be able to simplify this further.
1433    const SCEV *X = ST->getOperand();
1434    ConstantRange CR = getUnsignedRange(X);
1435    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1436    unsigned NewBits = getTypeSizeInBits(Ty);
1437    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1438            CR.zextOrTrunc(NewBits)))
1439      return getTruncateOrZeroExtend(X, Ty);
1440  }
1441
1442  // If the input value is a chrec scev, and we can prove that the value
1443  // did not overflow the old, smaller, value, we can zero extend all of the
1444  // operands (often constants).  This allows analysis of something like
1445  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1446  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1447    if (AR->isAffine()) {
1448      const SCEV *Start = AR->getStart();
1449      const SCEV *Step = AR->getStepRecurrence(*this);
1450      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1451      const Loop *L = AR->getLoop();
1452
1453      // If we have special knowledge that this addrec won't overflow,
1454      // we don't need to do any further analysis.
1455      if (AR->getNoWrapFlags(SCEV::FlagNUW))
1456        return getAddRecExpr(
1457            getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1458            getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1459
1460      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1461      // Note that this serves two purposes: It filters out loops that are
1462      // simply not analyzable, and it covers the case where this code is
1463      // being called from within backedge-taken count analysis, such that
1464      // attempting to ask for the backedge-taken count would likely result
1465      // in infinite recursion. In the later case, the analysis code will
1466      // cope with a conservative value, and it will take care to purge
1467      // that value once it has finished.
1468      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1469      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1470        // Manually compute the final value for AR, checking for
1471        // overflow.
1472
1473        // Check whether the backedge-taken count can be losslessly casted to
1474        // the addrec's type. The count is always unsigned.
1475        const SCEV *CastedMaxBECount =
1476          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1477        const SCEV *RecastedMaxBECount =
1478          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1479        if (MaxBECount == RecastedMaxBECount) {
1480          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1481          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1482          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1483          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1484          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1485          const SCEV *WideMaxBECount =
1486            getZeroExtendExpr(CastedMaxBECount, WideTy);
1487          const SCEV *OperandExtendedAdd =
1488            getAddExpr(WideStart,
1489                       getMulExpr(WideMaxBECount,
1490                                  getZeroExtendExpr(Step, WideTy)));
1491          if (ZAdd == OperandExtendedAdd) {
1492            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1494            // Return the expression with the addrec on the outside.
1495            return getAddRecExpr(
1496                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1497                getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1498          }
1499          // Similar to above, only this time treat the step value as signed.
1500          // This covers loops that count down.
1501          OperandExtendedAdd =
1502            getAddExpr(WideStart,
1503                       getMulExpr(WideMaxBECount,
1504                                  getSignExtendExpr(Step, WideTy)));
1505          if (ZAdd == OperandExtendedAdd) {
1506            // Cache knowledge of AR NW, which is propagated to this AddRec.
1507            // Negative step causes unsigned wrap, but it still can't self-wrap.
1508            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1509            // Return the expression with the addrec on the outside.
1510            return getAddRecExpr(
1511                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1512                getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1513          }
1514        }
1515
1516        // If the backedge is guarded by a comparison with the pre-inc value
1517        // the addrec is safe. Also, if the entry is guarded by a comparison
1518        // with the start value and the backedge is guarded by a comparison
1519        // with the post-inc value, the addrec is safe.
1520        if (isKnownPositive(Step)) {
1521          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1522                                      getUnsignedRange(Step).getUnsignedMax());
1523          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1524              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1525               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1526                                           AR->getPostIncExpr(*this), N))) {
1527            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1528            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1529            // Return the expression with the addrec on the outside.
1530            return getAddRecExpr(
1531                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1532                getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1533          }
1534        } else if (isKnownNegative(Step)) {
1535          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1536                                      getSignedRange(Step).getSignedMin());
1537          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1538              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1539               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1540                                           AR->getPostIncExpr(*this), N))) {
1541            // Cache knowledge of AR NW, which is propagated to this AddRec.
1542            // Negative step causes unsigned wrap, but it still can't self-wrap.
1543            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1544            // Return the expression with the addrec on the outside.
1545            return getAddRecExpr(
1546                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1547                getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1548          }
1549        }
1550      }
1551
1552      if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1553        const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1554        return getAddRecExpr(
1555            getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556            getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1557      }
1558    }
1559
1560  if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1561    // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1562    if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1563      // If the addition does not unsign overflow then we can, by definition,
1564      // commute the zero extension with the addition operation.
1565      SmallVector<const SCEV *, 4> Ops;
1566      for (const auto *Op : SA->operands())
1567        Ops.push_back(getZeroExtendExpr(Op, Ty));
1568      return getAddExpr(Ops, SCEV::FlagNUW);
1569    }
1570  }
1571
1572  // The cast wasn't folded; create an explicit cast node.
1573  // Recompute the insert position, as it may have been invalidated.
1574  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1575  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1576                                                   Op, Ty);
1577  UniqueSCEVs.InsertNode(S, IP);
1578  return S;
1579}
1580
1581const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1582                                               Type *Ty) {
1583  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1584         "This is not an extending conversion!");
1585  assert(isSCEVable(Ty) &&
1586         "This is not a conversion to a SCEVable type!");
1587  Ty = getEffectiveSCEVType(Ty);
1588
1589  // Fold if the operand is constant.
1590  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1591    return getConstant(
1592      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1593
1594  // sext(sext(x)) --> sext(x)
1595  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1596    return getSignExtendExpr(SS->getOperand(), Ty);
1597
1598  // sext(zext(x)) --> zext(x)
1599  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1600    return getZeroExtendExpr(SZ->getOperand(), Ty);
1601
1602  // Before doing any expensive analysis, check to see if we've already
1603  // computed a SCEV for this Op and Ty.
1604  FoldingSetNodeID ID;
1605  ID.AddInteger(scSignExtend);
1606  ID.AddPointer(Op);
1607  ID.AddPointer(Ty);
1608  void *IP = nullptr;
1609  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1610
1611  // If the input value is provably positive, build a zext instead.
1612  if (isKnownNonNegative(Op))
1613    return getZeroExtendExpr(Op, Ty);
1614
1615  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1616  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617    // It's possible the bits taken off by the truncate were all sign bits. If
1618    // so, we should be able to simplify this further.
1619    const SCEV *X = ST->getOperand();
1620    ConstantRange CR = getSignedRange(X);
1621    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622    unsigned NewBits = getTypeSizeInBits(Ty);
1623    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1624            CR.sextOrTrunc(NewBits)))
1625      return getTruncateOrSignExtend(X, Ty);
1626  }
1627
1628  // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1629  if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1630    if (SA->getNumOperands() == 2) {
1631      auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1632      auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1633      if (SMul && SC1) {
1634        if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1635          const APInt &C1 = SC1->getAPInt();
1636          const APInt &C2 = SC2->getAPInt();
1637          if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1638              C2.ugt(C1) && C2.isPowerOf2())
1639            return getAddExpr(getSignExtendExpr(SC1, Ty),
1640                              getSignExtendExpr(SMul, Ty));
1641        }
1642      }
1643    }
1644
1645    // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1646    if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1647      // If the addition does not sign overflow then we can, by definition,
1648      // commute the sign extension with the addition operation.
1649      SmallVector<const SCEV *, 4> Ops;
1650      for (const auto *Op : SA->operands())
1651        Ops.push_back(getSignExtendExpr(Op, Ty));
1652      return getAddExpr(Ops, SCEV::FlagNSW);
1653    }
1654  }
1655  // If the input value is a chrec scev, and we can prove that the value
1656  // did not overflow the old, smaller, value, we can sign extend all of the
1657  // operands (often constants).  This allows analysis of something like
1658  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1659  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1660    if (AR->isAffine()) {
1661      const SCEV *Start = AR->getStart();
1662      const SCEV *Step = AR->getStepRecurrence(*this);
1663      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1664      const Loop *L = AR->getLoop();
1665
1666      // If we have special knowledge that this addrec won't overflow,
1667      // we don't need to do any further analysis.
1668      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1669        return getAddRecExpr(
1670            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1671            getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1672
1673      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1674      // Note that this serves two purposes: It filters out loops that are
1675      // simply not analyzable, and it covers the case where this code is
1676      // being called from within backedge-taken count analysis, such that
1677      // attempting to ask for the backedge-taken count would likely result
1678      // in infinite recursion. In the later case, the analysis code will
1679      // cope with a conservative value, and it will take care to purge
1680      // that value once it has finished.
1681      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1682      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1683        // Manually compute the final value for AR, checking for
1684        // overflow.
1685
1686        // Check whether the backedge-taken count can be losslessly casted to
1687        // the addrec's type. The count is always unsigned.
1688        const SCEV *CastedMaxBECount =
1689          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1690        const SCEV *RecastedMaxBECount =
1691          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1692        if (MaxBECount == RecastedMaxBECount) {
1693          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1694          // Check whether Start+Step*MaxBECount has no signed overflow.
1695          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1696          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1697          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1698          const SCEV *WideMaxBECount =
1699            getZeroExtendExpr(CastedMaxBECount, WideTy);
1700          const SCEV *OperandExtendedAdd =
1701            getAddExpr(WideStart,
1702                       getMulExpr(WideMaxBECount,
1703                                  getSignExtendExpr(Step, WideTy)));
1704          if (SAdd == OperandExtendedAdd) {
1705            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1706            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1707            // Return the expression with the addrec on the outside.
1708            return getAddRecExpr(
1709                getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1710                getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1711          }
1712          // Similar to above, only this time treat the step value as unsigned.
1713          // This covers loops that count up with an unsigned step.
1714          OperandExtendedAdd =
1715            getAddExpr(WideStart,
1716                       getMulExpr(WideMaxBECount,
1717                                  getZeroExtendExpr(Step, WideTy)));
1718          if (SAdd == OperandExtendedAdd) {
1719            // If AR wraps around then
1720            //
1721            //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1722            // => SAdd != OperandExtendedAdd
1723            //
1724            // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1725            // (SAdd == OperandExtendedAdd => AR is NW)
1726
1727            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1728
1729            // Return the expression with the addrec on the outside.
1730            return getAddRecExpr(
1731                getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1732                getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1733          }
1734        }
1735
1736        // If the backedge is guarded by a comparison with the pre-inc value
1737        // the addrec is safe. Also, if the entry is guarded by a comparison
1738        // with the start value and the backedge is guarded by a comparison
1739        // with the post-inc value, the addrec is safe.
1740        ICmpInst::Predicate Pred;
1741        const SCEV *OverflowLimit =
1742            getSignedOverflowLimitForStep(Step, &Pred, this);
1743        if (OverflowLimit &&
1744            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1745             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1746              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1747                                          OverflowLimit)))) {
1748          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1749          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1750          return getAddRecExpr(
1751              getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752              getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753        }
1754      }
1755      // If Start and Step are constants, check if we can apply this
1756      // transformation:
1757      // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1758      auto *SC1 = dyn_cast<SCEVConstant>(Start);
1759      auto *SC2 = dyn_cast<SCEVConstant>(Step);
1760      if (SC1 && SC2) {
1761        const APInt &C1 = SC1->getAPInt();
1762        const APInt &C2 = SC2->getAPInt();
1763        if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1764            C2.isPowerOf2()) {
1765          Start = getSignExtendExpr(Start, Ty);
1766          const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1767                                            AR->getNoWrapFlags());
1768          return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1769        }
1770      }
1771
1772      if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1773        const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1774        return getAddRecExpr(
1775            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1776            getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1777      }
1778    }
1779
1780  // The cast wasn't folded; create an explicit cast node.
1781  // Recompute the insert position, as it may have been invalidated.
1782  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1783  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1784                                                   Op, Ty);
1785  UniqueSCEVs.InsertNode(S, IP);
1786  return S;
1787}
1788
1789/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1790/// unspecified bits out to the given type.
1791///
1792const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1793                                              Type *Ty) {
1794  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1795         "This is not an extending conversion!");
1796  assert(isSCEVable(Ty) &&
1797         "This is not a conversion to a SCEVable type!");
1798  Ty = getEffectiveSCEVType(Ty);
1799
1800  // Sign-extend negative constants.
1801  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1802    if (SC->getAPInt().isNegative())
1803      return getSignExtendExpr(Op, Ty);
1804
1805  // Peel off a truncate cast.
1806  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1807    const SCEV *NewOp = T->getOperand();
1808    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1809      return getAnyExtendExpr(NewOp, Ty);
1810    return getTruncateOrNoop(NewOp, Ty);
1811  }
1812
1813  // Next try a zext cast. If the cast is folded, use it.
1814  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1815  if (!isa<SCEVZeroExtendExpr>(ZExt))
1816    return ZExt;
1817
1818  // Next try a sext cast. If the cast is folded, use it.
1819  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1820  if (!isa<SCEVSignExtendExpr>(SExt))
1821    return SExt;
1822
1823  // Force the cast to be folded into the operands of an addrec.
1824  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1825    SmallVector<const SCEV *, 4> Ops;
1826    for (const SCEV *Op : AR->operands())
1827      Ops.push_back(getAnyExtendExpr(Op, Ty));
1828    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1829  }
1830
1831  // If the expression is obviously signed, use the sext cast value.
1832  if (isa<SCEVSMaxExpr>(Op))
1833    return SExt;
1834
1835  // Absent any other information, use the zext cast value.
1836  return ZExt;
1837}
1838
1839/// CollectAddOperandsWithScales - Process the given Ops list, which is
1840/// a list of operands to be added under the given scale, update the given
1841/// map. This is a helper function for getAddRecExpr. As an example of
1842/// what it does, given a sequence of operands that would form an add
1843/// expression like this:
1844///
1845///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1846///
1847/// where A and B are constants, update the map with these values:
1848///
1849///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1850///
1851/// and add 13 + A*B*29 to AccumulatedConstant.
1852/// This will allow getAddRecExpr to produce this:
1853///
1854///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1855///
1856/// This form often exposes folding opportunities that are hidden in
1857/// the original operand list.
1858///
1859/// Return true iff it appears that any interesting folding opportunities
1860/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1861/// the common case where no interesting opportunities are present, and
1862/// is also used as a check to avoid infinite recursion.
1863///
1864static bool
1865CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1866                             SmallVectorImpl<const SCEV *> &NewOps,
1867                             APInt &AccumulatedConstant,
1868                             const SCEV *const *Ops, size_t NumOperands,
1869                             const APInt &Scale,
1870                             ScalarEvolution &SE) {
1871  bool Interesting = false;
1872
1873  // Iterate over the add operands. They are sorted, with constants first.
1874  unsigned i = 0;
1875  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1876    ++i;
1877    // Pull a buried constant out to the outside.
1878    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1879      Interesting = true;
1880    AccumulatedConstant += Scale * C->getAPInt();
1881  }
1882
1883  // Next comes everything else. We're especially interested in multiplies
1884  // here, but they're in the middle, so just visit the rest with one loop.
1885  for (; i != NumOperands; ++i) {
1886    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1887    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1888      APInt NewScale =
1889          Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1890      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1891        // A multiplication of a constant with another add; recurse.
1892        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1893        Interesting |=
1894          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1895                                       Add->op_begin(), Add->getNumOperands(),
1896                                       NewScale, SE);
1897      } else {
1898        // A multiplication of a constant with some other value. Update
1899        // the map.
1900        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1901        const SCEV *Key = SE.getMulExpr(MulOps);
1902        auto Pair = M.insert(std::make_pair(Key, NewScale));
1903        if (Pair.second) {
1904          NewOps.push_back(Pair.first->first);
1905        } else {
1906          Pair.first->second += NewScale;
1907          // The map already had an entry for this value, which may indicate
1908          // a folding opportunity.
1909          Interesting = true;
1910        }
1911      }
1912    } else {
1913      // An ordinary operand. Update the map.
1914      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1915        M.insert(std::make_pair(Ops[i], Scale));
1916      if (Pair.second) {
1917        NewOps.push_back(Pair.first->first);
1918      } else {
1919        Pair.first->second += Scale;
1920        // The map already had an entry for this value, which may indicate
1921        // a folding opportunity.
1922        Interesting = true;
1923      }
1924    }
1925  }
1926
1927  return Interesting;
1928}
1929
1930// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1931// `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1932// can't-overflow flags for the operation if possible.
1933static SCEV::NoWrapFlags
1934StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1935                      const SmallVectorImpl<const SCEV *> &Ops,
1936                      SCEV::NoWrapFlags Flags) {
1937  using namespace std::placeholders;
1938  typedef OverflowingBinaryOperator OBO;
1939
1940  bool CanAnalyze =
1941      Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1942  (void)CanAnalyze;
1943  assert(CanAnalyze && "don't call from other places!");
1944
1945  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1946  SCEV::NoWrapFlags SignOrUnsignWrap =
1947      ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1948
1949  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1950  auto IsKnownNonNegative = [&](const SCEV *S) {
1951    return SE->isKnownNonNegative(S);
1952  };
1953
1954  if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1955    Flags =
1956        ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1957
1958  SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1959
1960  if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1961      Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1962
1963    // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1964    // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1965
1966    const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1967    if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1968      auto NSWRegion =
1969        ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1970      if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1971        Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1972    }
1973    if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1974      auto NUWRegion =
1975        ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1976                                        OBO::NoUnsignedWrap);
1977      if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1978        Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1979    }
1980  }
1981
1982  return Flags;
1983}
1984
1985/// getAddExpr - Get a canonical add expression, or something simpler if
1986/// possible.
1987const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1988                                        SCEV::NoWrapFlags Flags) {
1989  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1990         "only nuw or nsw allowed");
1991  assert(!Ops.empty() && "Cannot get empty add!");
1992  if (Ops.size() == 1) return Ops[0];
1993#ifndef NDEBUG
1994  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1995  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1996    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1997           "SCEVAddExpr operand types don't match!");
1998#endif
1999
2000  // Sort by complexity, this groups all similar expression types together.
2001  GroupByComplexity(Ops, &LI);
2002
2003  Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2004
2005  // If there are any constants, fold them together.
2006  unsigned Idx = 0;
2007  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2008    ++Idx;
2009    assert(Idx < Ops.size());
2010    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2011      // We found two constants, fold them together!
2012      Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2013      if (Ops.size() == 2) return Ops[0];
2014      Ops.erase(Ops.begin()+1);  // Erase the folded element
2015      LHSC = cast<SCEVConstant>(Ops[0]);
2016    }
2017
2018    // If we are left with a constant zero being added, strip it off.
2019    if (LHSC->getValue()->isZero()) {
2020      Ops.erase(Ops.begin());
2021      --Idx;
2022    }
2023
2024    if (Ops.size() == 1) return Ops[0];
2025  }
2026
2027  // Okay, check to see if the same value occurs in the operand list more than
2028  // once.  If so, merge them together into an multiply expression.  Since we
2029  // sorted the list, these values are required to be adjacent.
2030  Type *Ty = Ops[0]->getType();
2031  bool FoundMatch = false;
2032  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2033    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2034      // Scan ahead to count how many equal operands there are.
2035      unsigned Count = 2;
2036      while (i+Count != e && Ops[i+Count] == Ops[i])
2037        ++Count;
2038      // Merge the values into a multiply.
2039      const SCEV *Scale = getConstant(Ty, Count);
2040      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2041      if (Ops.size() == Count)
2042        return Mul;
2043      Ops[i] = Mul;
2044      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2045      --i; e -= Count - 1;
2046      FoundMatch = true;
2047    }
2048  if (FoundMatch)
2049    return getAddExpr(Ops, Flags);
2050
2051  // Check for truncates. If all the operands are truncated from the same
2052  // type, see if factoring out the truncate would permit the result to be
2053  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2054  // if the contents of the resulting outer trunc fold to something simple.
2055  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2056    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2057    Type *DstType = Trunc->getType();
2058    Type *SrcType = Trunc->getOperand()->getType();
2059    SmallVector<const SCEV *, 8> LargeOps;
2060    bool Ok = true;
2061    // Check all the operands to see if they can be represented in the
2062    // source type of the truncate.
2063    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2064      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2065        if (T->getOperand()->getType() != SrcType) {
2066          Ok = false;
2067          break;
2068        }
2069        LargeOps.push_back(T->getOperand());
2070      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2071        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2072      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2073        SmallVector<const SCEV *, 8> LargeMulOps;
2074        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2075          if (const SCEVTruncateExpr *T =
2076                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2077            if (T->getOperand()->getType() != SrcType) {
2078              Ok = false;
2079              break;
2080            }
2081            LargeMulOps.push_back(T->getOperand());
2082          } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2083            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2084          } else {
2085            Ok = false;
2086            break;
2087          }
2088        }
2089        if (Ok)
2090          LargeOps.push_back(getMulExpr(LargeMulOps));
2091      } else {
2092        Ok = false;
2093        break;
2094      }
2095    }
2096    if (Ok) {
2097      // Evaluate the expression in the larger type.
2098      const SCEV *Fold = getAddExpr(LargeOps, Flags);
2099      // If it folds to something simple, use it. Otherwise, don't.
2100      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2101        return getTruncateExpr(Fold, DstType);
2102    }
2103  }
2104
2105  // Skip past any other cast SCEVs.
2106  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2107    ++Idx;
2108
2109  // If there are add operands they would be next.
2110  if (Idx < Ops.size()) {
2111    bool DeletedAdd = false;
2112    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2113      // If we have an add, expand the add operands onto the end of the operands
2114      // list.
2115      Ops.erase(Ops.begin()+Idx);
2116      Ops.append(Add->op_begin(), Add->op_end());
2117      DeletedAdd = true;
2118    }
2119
2120    // If we deleted at least one add, we added operands to the end of the list,
2121    // and they are not necessarily sorted.  Recurse to resort and resimplify
2122    // any operands we just acquired.
2123    if (DeletedAdd)
2124      return getAddExpr(Ops);
2125  }
2126
2127  // Skip over the add expression until we get to a multiply.
2128  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2129    ++Idx;
2130
2131  // Check to see if there are any folding opportunities present with
2132  // operands multiplied by constant values.
2133  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2134    uint64_t BitWidth = getTypeSizeInBits(Ty);
2135    DenseMap<const SCEV *, APInt> M;
2136    SmallVector<const SCEV *, 8> NewOps;
2137    APInt AccumulatedConstant(BitWidth, 0);
2138    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2139                                     Ops.data(), Ops.size(),
2140                                     APInt(BitWidth, 1), *this)) {
2141      struct APIntCompare {
2142        bool operator()(const APInt &LHS, const APInt &RHS) const {
2143          return LHS.ult(RHS);
2144        }
2145      };
2146
2147      // Some interesting folding opportunity is present, so its worthwhile to
2148      // re-generate the operands list. Group the operands by constant scale,
2149      // to avoid multiplying by the same constant scale multiple times.
2150      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2151      for (const SCEV *NewOp : NewOps)
2152        MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2153      // Re-generate the operands list.
2154      Ops.clear();
2155      if (AccumulatedConstant != 0)
2156        Ops.push_back(getConstant(AccumulatedConstant));
2157      for (auto &MulOp : MulOpLists)
2158        if (MulOp.first != 0)
2159          Ops.push_back(getMulExpr(getConstant(MulOp.first),
2160                                   getAddExpr(MulOp.second)));
2161      if (Ops.empty())
2162        return getZero(Ty);
2163      if (Ops.size() == 1)
2164        return Ops[0];
2165      return getAddExpr(Ops);
2166    }
2167  }
2168
2169  // If we are adding something to a multiply expression, make sure the
2170  // something is not already an operand of the multiply.  If so, merge it into
2171  // the multiply.
2172  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2173    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2174    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2175      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2176      if (isa<SCEVConstant>(MulOpSCEV))
2177        continue;
2178      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2179        if (MulOpSCEV == Ops[AddOp]) {
2180          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2181          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2182          if (Mul->getNumOperands() != 2) {
2183            // If the multiply has more than two operands, we must get the
2184            // Y*Z term.
2185            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2186                                                Mul->op_begin()+MulOp);
2187            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2188            InnerMul = getMulExpr(MulOps);
2189          }
2190          const SCEV *One = getOne(Ty);
2191          const SCEV *AddOne = getAddExpr(One, InnerMul);
2192          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2193          if (Ops.size() == 2) return OuterMul;
2194          if (AddOp < Idx) {
2195            Ops.erase(Ops.begin()+AddOp);
2196            Ops.erase(Ops.begin()+Idx-1);
2197          } else {
2198            Ops.erase(Ops.begin()+Idx);
2199            Ops.erase(Ops.begin()+AddOp-1);
2200          }
2201          Ops.push_back(OuterMul);
2202          return getAddExpr(Ops);
2203        }
2204
2205      // Check this multiply against other multiplies being added together.
2206      for (unsigned OtherMulIdx = Idx+1;
2207           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2208           ++OtherMulIdx) {
2209        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2210        // If MulOp occurs in OtherMul, we can fold the two multiplies
2211        // together.
2212        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2213             OMulOp != e; ++OMulOp)
2214          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2215            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2216            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2217            if (Mul->getNumOperands() != 2) {
2218              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2219                                                  Mul->op_begin()+MulOp);
2220              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2221              InnerMul1 = getMulExpr(MulOps);
2222            }
2223            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2224            if (OtherMul->getNumOperands() != 2) {
2225              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2226                                                  OtherMul->op_begin()+OMulOp);
2227              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2228              InnerMul2 = getMulExpr(MulOps);
2229            }
2230            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2231            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2232            if (Ops.size() == 2) return OuterMul;
2233            Ops.erase(Ops.begin()+Idx);
2234            Ops.erase(Ops.begin()+OtherMulIdx-1);
2235            Ops.push_back(OuterMul);
2236            return getAddExpr(Ops);
2237          }
2238      }
2239    }
2240  }
2241
2242  // If there are any add recurrences in the operands list, see if any other
2243  // added values are loop invariant.  If so, we can fold them into the
2244  // recurrence.
2245  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2246    ++Idx;
2247
2248  // Scan over all recurrences, trying to fold loop invariants into them.
2249  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2250    // Scan all of the other operands to this add and add them to the vector if
2251    // they are loop invariant w.r.t. the recurrence.
2252    SmallVector<const SCEV *, 8> LIOps;
2253    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2254    const Loop *AddRecLoop = AddRec->getLoop();
2255    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2256      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2257        LIOps.push_back(Ops[i]);
2258        Ops.erase(Ops.begin()+i);
2259        --i; --e;
2260      }
2261
2262    // If we found some loop invariants, fold them into the recurrence.
2263    if (!LIOps.empty()) {
2264      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2265      LIOps.push_back(AddRec->getStart());
2266
2267      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2268                                             AddRec->op_end());
2269      AddRecOps[0] = getAddExpr(LIOps);
2270
2271      // Build the new addrec. Propagate the NUW and NSW flags if both the
2272      // outer add and the inner addrec are guaranteed to have no overflow.
2273      // Always propagate NW.
2274      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2275      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2276
2277      // If all of the other operands were loop invariant, we are done.
2278      if (Ops.size() == 1) return NewRec;
2279
2280      // Otherwise, add the folded AddRec by the non-invariant parts.
2281      for (unsigned i = 0;; ++i)
2282        if (Ops[i] == AddRec) {
2283          Ops[i] = NewRec;
2284          break;
2285        }
2286      return getAddExpr(Ops);
2287    }
2288
2289    // Okay, if there weren't any loop invariants to be folded, check to see if
2290    // there are multiple AddRec's with the same loop induction variable being
2291    // added together.  If so, we can fold them.
2292    for (unsigned OtherIdx = Idx+1;
2293         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2294         ++OtherIdx)
2295      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2296        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2297        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2298                                               AddRec->op_end());
2299        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2300             ++OtherIdx)
2301          if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2302            if (OtherAddRec->getLoop() == AddRecLoop) {
2303              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2304                   i != e; ++i) {
2305                if (i >= AddRecOps.size()) {
2306                  AddRecOps.append(OtherAddRec->op_begin()+i,
2307                                   OtherAddRec->op_end());
2308                  break;
2309                }
2310                AddRecOps[i] = getAddExpr(AddRecOps[i],
2311                                          OtherAddRec->getOperand(i));
2312              }
2313              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2314            }
2315        // Step size has changed, so we cannot guarantee no self-wraparound.
2316        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2317        return getAddExpr(Ops);
2318      }
2319
2320    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2321    // next one.
2322  }
2323
2324  // Okay, it looks like we really DO need an add expr.  Check to see if we
2325  // already have one, otherwise create a new one.
2326  FoldingSetNodeID ID;
2327  ID.AddInteger(scAddExpr);
2328  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2329    ID.AddPointer(Ops[i]);
2330  void *IP = nullptr;
2331  SCEVAddExpr *S =
2332    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2333  if (!S) {
2334    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2335    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2336    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2337                                        O, Ops.size());
2338    UniqueSCEVs.InsertNode(S, IP);
2339  }
2340  S->setNoWrapFlags(Flags);
2341  return S;
2342}
2343
2344static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2345  uint64_t k = i*j;
2346  if (j > 1 && k / j != i) Overflow = true;
2347  return k;
2348}
2349
2350/// Compute the result of "n choose k", the binomial coefficient.  If an
2351/// intermediate computation overflows, Overflow will be set and the return will
2352/// be garbage. Overflow is not cleared on absence of overflow.
2353static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2354  // We use the multiplicative formula:
2355  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2356  // At each iteration, we take the n-th term of the numeral and divide by the
2357  // (k-n)th term of the denominator.  This division will always produce an
2358  // integral result, and helps reduce the chance of overflow in the
2359  // intermediate computations. However, we can still overflow even when the
2360  // final result would fit.
2361
2362  if (n == 0 || n == k) return 1;
2363  if (k > n) return 0;
2364
2365  if (k > n/2)
2366    k = n-k;
2367
2368  uint64_t r = 1;
2369  for (uint64_t i = 1; i <= k; ++i) {
2370    r = umul_ov(r, n-(i-1), Overflow);
2371    r /= i;
2372  }
2373  return r;
2374}
2375
2376/// Determine if any of the operands in this SCEV are a constant or if
2377/// any of the add or multiply expressions in this SCEV contain a constant.
2378static bool containsConstantSomewhere(const SCEV *StartExpr) {
2379  SmallVector<const SCEV *, 4> Ops;
2380  Ops.push_back(StartExpr);
2381  while (!Ops.empty()) {
2382    const SCEV *CurrentExpr = Ops.pop_back_val();
2383    if (isa<SCEVConstant>(*CurrentExpr))
2384      return true;
2385
2386    if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2387      const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2388      Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2389    }
2390  }
2391  return false;
2392}
2393
2394/// getMulExpr - Get a canonical multiply expression, or something simpler if
2395/// possible.
2396const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2397                                        SCEV::NoWrapFlags Flags) {
2398  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2399         "only nuw or nsw allowed");
2400  assert(!Ops.empty() && "Cannot get empty mul!");
2401  if (Ops.size() == 1) return Ops[0];
2402#ifndef NDEBUG
2403  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2404  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2405    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2406           "SCEVMulExpr operand types don't match!");
2407#endif
2408
2409  // Sort by complexity, this groups all similar expression types together.
2410  GroupByComplexity(Ops, &LI);
2411
2412  Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2413
2414  // If there are any constants, fold them together.
2415  unsigned Idx = 0;
2416  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2417
2418    // C1*(C2+V) -> C1*C2 + C1*V
2419    if (Ops.size() == 2)
2420        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2421          // If any of Add's ops are Adds or Muls with a constant,
2422          // apply this transformation as well.
2423          if (Add->getNumOperands() == 2)
2424            if (containsConstantSomewhere(Add))
2425              return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2426                                getMulExpr(LHSC, Add->getOperand(1)));
2427
2428    ++Idx;
2429    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2430      // We found two constants, fold them together!
2431      ConstantInt *Fold =
2432          ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2433      Ops[0] = getConstant(Fold);
2434      Ops.erase(Ops.begin()+1);  // Erase the folded element
2435      if (Ops.size() == 1) return Ops[0];
2436      LHSC = cast<SCEVConstant>(Ops[0]);
2437    }
2438
2439    // If we are left with a constant one being multiplied, strip it off.
2440    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2441      Ops.erase(Ops.begin());
2442      --Idx;
2443    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2444      // If we have a multiply of zero, it will always be zero.
2445      return Ops[0];
2446    } else if (Ops[0]->isAllOnesValue()) {
2447      // If we have a mul by -1 of an add, try distributing the -1 among the
2448      // add operands.
2449      if (Ops.size() == 2) {
2450        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2451          SmallVector<const SCEV *, 4> NewOps;
2452          bool AnyFolded = false;
2453          for (const SCEV *AddOp : Add->operands()) {
2454            const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2455            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2456            NewOps.push_back(Mul);
2457          }
2458          if (AnyFolded)
2459            return getAddExpr(NewOps);
2460        } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2461          // Negation preserves a recurrence's no self-wrap property.
2462          SmallVector<const SCEV *, 4> Operands;
2463          for (const SCEV *AddRecOp : AddRec->operands())
2464            Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2465
2466          return getAddRecExpr(Operands, AddRec->getLoop(),
2467                               AddRec->getNoWrapFlags(SCEV::FlagNW));
2468        }
2469      }
2470    }
2471
2472    if (Ops.size() == 1)
2473      return Ops[0];
2474  }
2475
2476  // Skip over the add expression until we get to a multiply.
2477  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2478    ++Idx;
2479
2480  // If there are mul operands inline them all into this expression.
2481  if (Idx < Ops.size()) {
2482    bool DeletedMul = false;
2483    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2484      // If we have an mul, expand the mul operands onto the end of the operands
2485      // list.
2486      Ops.erase(Ops.begin()+Idx);
2487      Ops.append(Mul->op_begin(), Mul->op_end());
2488      DeletedMul = true;
2489    }
2490
2491    // If we deleted at least one mul, we added operands to the end of the list,
2492    // and they are not necessarily sorted.  Recurse to resort and resimplify
2493    // any operands we just acquired.
2494    if (DeletedMul)
2495      return getMulExpr(Ops);
2496  }
2497
2498  // If there are any add recurrences in the operands list, see if any other
2499  // added values are loop invariant.  If so, we can fold them into the
2500  // recurrence.
2501  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2502    ++Idx;
2503
2504  // Scan over all recurrences, trying to fold loop invariants into them.
2505  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2506    // Scan all of the other operands to this mul and add them to the vector if
2507    // they are loop invariant w.r.t. the recurrence.
2508    SmallVector<const SCEV *, 8> LIOps;
2509    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2510    const Loop *AddRecLoop = AddRec->getLoop();
2511    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2512      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2513        LIOps.push_back(Ops[i]);
2514        Ops.erase(Ops.begin()+i);
2515        --i; --e;
2516      }
2517
2518    // If we found some loop invariants, fold them into the recurrence.
2519    if (!LIOps.empty()) {
2520      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2521      SmallVector<const SCEV *, 4> NewOps;
2522      NewOps.reserve(AddRec->getNumOperands());
2523      const SCEV *Scale = getMulExpr(LIOps);
2524      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2525        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2526
2527      // Build the new addrec. Propagate the NUW and NSW flags if both the
2528      // outer mul and the inner addrec are guaranteed to have no overflow.
2529      //
2530      // No self-wrap cannot be guaranteed after changing the step size, but
2531      // will be inferred if either NUW or NSW is true.
2532      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2533      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2534
2535      // If all of the other operands were loop invariant, we are done.
2536      if (Ops.size() == 1) return NewRec;
2537
2538      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2539      for (unsigned i = 0;; ++i)
2540        if (Ops[i] == AddRec) {
2541          Ops[i] = NewRec;
2542          break;
2543        }
2544      return getMulExpr(Ops);
2545    }
2546
2547    // Okay, if there weren't any loop invariants to be folded, check to see if
2548    // there are multiple AddRec's with the same loop induction variable being
2549    // multiplied together.  If so, we can fold them.
2550
2551    // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2552    // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2553    //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2554    //   ]]],+,...up to x=2n}.
2555    // Note that the arguments to choose() are always integers with values
2556    // known at compile time, never SCEV objects.
2557    //
2558    // The implementation avoids pointless extra computations when the two
2559    // addrec's are of different length (mathematically, it's equivalent to
2560    // an infinite stream of zeros on the right).
2561    bool OpsModified = false;
2562    for (unsigned OtherIdx = Idx+1;
2563         OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2564         ++OtherIdx) {
2565      const SCEVAddRecExpr *OtherAddRec =
2566        dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2567      if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2568        continue;
2569
2570      bool Overflow = false;
2571      Type *Ty = AddRec->getType();
2572      bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2573      SmallVector<const SCEV*, 7> AddRecOps;
2574      for (int x = 0, xe = AddRec->getNumOperands() +
2575             OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2576        const SCEV *Term = getZero(Ty);
2577        for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2578          uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2579          for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2580                 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2581               z < ze && !Overflow; ++z) {
2582            uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2583            uint64_t Coeff;
2584            if (LargerThan64Bits)
2585              Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2586            else
2587              Coeff = Coeff1*Coeff2;
2588            const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2589            const SCEV *Term1 = AddRec->getOperand(y-z);
2590            const SCEV *Term2 = OtherAddRec->getOperand(z);
2591            Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2592          }
2593        }
2594        AddRecOps.push_back(Term);
2595      }
2596      if (!Overflow) {
2597        const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2598                                              SCEV::FlagAnyWrap);
2599        if (Ops.size() == 2) return NewAddRec;
2600        Ops[Idx] = NewAddRec;
2601        Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2602        OpsModified = true;
2603        AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2604        if (!AddRec)
2605          break;
2606      }
2607    }
2608    if (OpsModified)
2609      return getMulExpr(Ops);
2610
2611    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2612    // next one.
2613  }
2614
2615  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2616  // already have one, otherwise create a new one.
2617  FoldingSetNodeID ID;
2618  ID.AddInteger(scMulExpr);
2619  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2620    ID.AddPointer(Ops[i]);
2621  void *IP = nullptr;
2622  SCEVMulExpr *S =
2623    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2624  if (!S) {
2625    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2626    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2627    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2628                                        O, Ops.size());
2629    UniqueSCEVs.InsertNode(S, IP);
2630  }
2631  S->setNoWrapFlags(Flags);
2632  return S;
2633}
2634
2635/// getUDivExpr - Get a canonical unsigned division expression, or something
2636/// simpler if possible.
2637const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2638                                         const SCEV *RHS) {
2639  assert(getEffectiveSCEVType(LHS->getType()) ==
2640         getEffectiveSCEVType(RHS->getType()) &&
2641         "SCEVUDivExpr operand types don't match!");
2642
2643  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2644    if (RHSC->getValue()->equalsInt(1))
2645      return LHS;                               // X udiv 1 --> x
2646    // If the denominator is zero, the result of the udiv is undefined. Don't
2647    // try to analyze it, because the resolution chosen here may differ from
2648    // the resolution chosen in other parts of the compiler.
2649    if (!RHSC->getValue()->isZero()) {
2650      // Determine if the division can be folded into the operands of
2651      // its operands.
2652      // TODO: Generalize this to non-constants by using known-bits information.
2653      Type *Ty = LHS->getType();
2654      unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2655      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2656      // For non-power-of-two values, effectively round the value up to the
2657      // nearest power of two.
2658      if (!RHSC->getAPInt().isPowerOf2())
2659        ++MaxShiftAmt;
2660      IntegerType *ExtTy =
2661        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2662      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2663        if (const SCEVConstant *Step =
2664            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2665          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2666          const APInt &StepInt = Step->getAPInt();
2667          const APInt &DivInt = RHSC->getAPInt();
2668          if (!StepInt.urem(DivInt) &&
2669              getZeroExtendExpr(AR, ExtTy) ==
2670              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2671                            getZeroExtendExpr(Step, ExtTy),
2672                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2673            SmallVector<const SCEV *, 4> Operands;
2674            for (const SCEV *Op : AR->operands())
2675              Operands.push_back(getUDivExpr(Op, RHS));
2676            return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2677          }
2678          /// Get a canonical UDivExpr for a recurrence.
2679          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2680          // We can currently only fold X%N if X is constant.
2681          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2682          if (StartC && !DivInt.urem(StepInt) &&
2683              getZeroExtendExpr(AR, ExtTy) ==
2684              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2685                            getZeroExtendExpr(Step, ExtTy),
2686                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2687            const APInt &StartInt = StartC->getAPInt();
2688            const APInt &StartRem = StartInt.urem(StepInt);
2689            if (StartRem != 0)
2690              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2691                                  AR->getLoop(), SCEV::FlagNW);
2692          }
2693        }
2694      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2695      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2696        SmallVector<const SCEV *, 4> Operands;
2697        for (const SCEV *Op : M->operands())
2698          Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2699        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2700          // Find an operand that's safely divisible.
2701          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2702            const SCEV *Op = M->getOperand(i);
2703            const SCEV *Div = getUDivExpr(Op, RHSC);
2704            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2705              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2706                                                      M->op_end());
2707              Operands[i] = Div;
2708              return getMulExpr(Operands);
2709            }
2710          }
2711      }
2712      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2713      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2714        SmallVector<const SCEV *, 4> Operands;
2715        for (const SCEV *Op : A->operands())
2716          Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2717        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2718          Operands.clear();
2719          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2720            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2721            if (isa<SCEVUDivExpr>(Op) ||
2722                getMulExpr(Op, RHS) != A->getOperand(i))
2723              break;
2724            Operands.push_back(Op);
2725          }
2726          if (Operands.size() == A->getNumOperands())
2727            return getAddExpr(Operands);
2728        }
2729      }
2730
2731      // Fold if both operands are constant.
2732      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2733        Constant *LHSCV = LHSC->getValue();
2734        Constant *RHSCV = RHSC->getValue();
2735        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2736                                                                   RHSCV)));
2737      }
2738    }
2739  }
2740
2741  FoldingSetNodeID ID;
2742  ID.AddInteger(scUDivExpr);
2743  ID.AddPointer(LHS);
2744  ID.AddPointer(RHS);
2745  void *IP = nullptr;
2746  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2747  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2748                                             LHS, RHS);
2749  UniqueSCEVs.InsertNode(S, IP);
2750  return S;
2751}
2752
2753static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2754  APInt A = C1->getAPInt().abs();
2755  APInt B = C2->getAPInt().abs();
2756  uint32_t ABW = A.getBitWidth();
2757  uint32_t BBW = B.getBitWidth();
2758
2759  if (ABW > BBW)
2760    B = B.zext(ABW);
2761  else if (ABW < BBW)
2762    A = A.zext(BBW);
2763
2764  return APIntOps::GreatestCommonDivisor(A, B);
2765}
2766
2767/// getUDivExactExpr - Get a canonical unsigned division expression, or
2768/// something simpler if possible. There is no representation for an exact udiv
2769/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2770/// We can't do this when it's not exact because the udiv may be clearing bits.
2771const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2772                                              const SCEV *RHS) {
2773  // TODO: we could try to find factors in all sorts of things, but for now we
2774  // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2775  // end of this file for inspiration.
2776
2777  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2778  if (!Mul)
2779    return getUDivExpr(LHS, RHS);
2780
2781  if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2782    // If the mulexpr multiplies by a constant, then that constant must be the
2783    // first element of the mulexpr.
2784    if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2785      if (LHSCst == RHSCst) {
2786        SmallVector<const SCEV *, 2> Operands;
2787        Operands.append(Mul->op_begin() + 1, Mul->op_end());
2788        return getMulExpr(Operands);
2789      }
2790
2791      // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2792      // that there's a factor provided by one of the other terms. We need to
2793      // check.
2794      APInt Factor = gcd(LHSCst, RHSCst);
2795      if (!Factor.isIntN(1)) {
2796        LHSCst =
2797            cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2798        RHSCst =
2799            cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2800        SmallVector<const SCEV *, 2> Operands;
2801        Operands.push_back(LHSCst);
2802        Operands.append(Mul->op_begin() + 1, Mul->op_end());
2803        LHS = getMulExpr(Operands);
2804        RHS = RHSCst;
2805        Mul = dyn_cast<SCEVMulExpr>(LHS);
2806        if (!Mul)
2807          return getUDivExactExpr(LHS, RHS);
2808      }
2809    }
2810  }
2811
2812  for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2813    if (Mul->getOperand(i) == RHS) {
2814      SmallVector<const SCEV *, 2> Operands;
2815      Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2816      Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2817      return getMulExpr(Operands);
2818    }
2819  }
2820
2821  return getUDivExpr(LHS, RHS);
2822}
2823
2824/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2825/// Simplify the expression as much as possible.
2826const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2827                                           const Loop *L,
2828                                           SCEV::NoWrapFlags Flags) {
2829  SmallVector<const SCEV *, 4> Operands;
2830  Operands.push_back(Start);
2831  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2832    if (StepChrec->getLoop() == L) {
2833      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2834      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2835    }
2836
2837  Operands.push_back(Step);
2838  return getAddRecExpr(Operands, L, Flags);
2839}
2840
2841/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2842/// Simplify the expression as much as possible.
2843const SCEV *
2844ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2845                               const Loop *L, SCEV::NoWrapFlags Flags) {
2846  if (Operands.size() == 1) return Operands[0];
2847#ifndef NDEBUG
2848  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2849  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2850    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2851           "SCEVAddRecExpr operand types don't match!");
2852  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2853    assert(isLoopInvariant(Operands[i], L) &&
2854           "SCEVAddRecExpr operand is not loop-invariant!");
2855#endif
2856
2857  if (Operands.back()->isZero()) {
2858    Operands.pop_back();
2859    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2860  }
2861
2862  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2863  // use that information to infer NUW and NSW flags. However, computing a
2864  // BE count requires calling getAddRecExpr, so we may not yet have a
2865  // meaningful BE count at this point (and if we don't, we'd be stuck
2866  // with a SCEVCouldNotCompute as the cached BE count).
2867
2868  Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2869
2870  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2871  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2872    const Loop *NestedLoop = NestedAR->getLoop();
2873    if (L->contains(NestedLoop)
2874            ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2875            : (!NestedLoop->contains(L) &&
2876               DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2877      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2878                                                  NestedAR->op_end());
2879      Operands[0] = NestedAR->getStart();
2880      // AddRecs require their operands be loop-invariant with respect to their
2881      // loops. Don't perform this transformation if it would break this
2882      // requirement.
2883      bool AllInvariant = all_of(
2884          Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2885
2886      if (AllInvariant) {
2887        // Create a recurrence for the outer loop with the same step size.
2888        //
2889        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2890        // inner recurrence has the same property.
2891        SCEV::NoWrapFlags OuterFlags =
2892          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2893
2894        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2895        AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2896          return isLoopInvariant(Op, NestedLoop);
2897        });
2898
2899        if (AllInvariant) {
2900          // Ok, both add recurrences are valid after the transformation.
2901          //
2902          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2903          // the outer recurrence has the same property.
2904          SCEV::NoWrapFlags InnerFlags =
2905            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2906          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2907        }
2908      }
2909      // Reset Operands to its original state.
2910      Operands[0] = NestedAR;
2911    }
2912  }
2913
2914  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2915  // already have one, otherwise create a new one.
2916  FoldingSetNodeID ID;
2917  ID.AddInteger(scAddRecExpr);
2918  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2919    ID.AddPointer(Operands[i]);
2920  ID.AddPointer(L);
2921  void *IP = nullptr;
2922  SCEVAddRecExpr *S =
2923    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924  if (!S) {
2925    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2926    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2927    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2928                                           O, Operands.size(), L);
2929    UniqueSCEVs.InsertNode(S, IP);
2930  }
2931  S->setNoWrapFlags(Flags);
2932  return S;
2933}
2934
2935const SCEV *
2936ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2937                            const SmallVectorImpl<const SCEV *> &IndexExprs,
2938                            bool InBounds) {
2939  // getSCEV(Base)->getType() has the same address space as Base->getType()
2940  // because SCEV::getType() preserves the address space.
2941  Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2942  // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2943  // instruction to its SCEV, because the Instruction may be guarded by control
2944  // flow and the no-overflow bits may not be valid for the expression in any
2945  // context. This can be fixed similarly to how these flags are handled for
2946  // adds.
2947  SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2948
2949  const SCEV *TotalOffset = getZero(IntPtrTy);
2950  // The address space is unimportant. The first thing we do on CurTy is getting
2951  // its element type.
2952  Type *CurTy = PointerType::getUnqual(PointeeType);
2953  for (const SCEV *IndexExpr : IndexExprs) {
2954    // Compute the (potentially symbolic) offset in bytes for this index.
2955    if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2956      // For a struct, add the member offset.
2957      ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2958      unsigned FieldNo = Index->getZExtValue();
2959      const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2960
2961      // Add the field offset to the running total offset.
2962      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2963
2964      // Update CurTy to the type of the field at Index.
2965      CurTy = STy->getTypeAtIndex(Index);
2966    } else {
2967      // Update CurTy to its element type.
2968      CurTy = cast<SequentialType>(CurTy)->getElementType();
2969      // For an array, add the element offset, explicitly scaled.
2970      const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2971      // Getelementptr indices are signed.
2972      IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2973
2974      // Multiply the index by the element size to compute the element offset.
2975      const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2976
2977      // Add the element offset to the running total offset.
2978      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2979    }
2980  }
2981
2982  // Add the total offset from all the GEP indices to the base.
2983  return getAddExpr(BaseExpr, TotalOffset, Wrap);
2984}
2985
2986const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2987                                         const SCEV *RHS) {
2988  SmallVector<const SCEV *, 2> Ops;
2989  Ops.push_back(LHS);
2990  Ops.push_back(RHS);
2991  return getSMaxExpr(Ops);
2992}
2993
2994const SCEV *
2995ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2996  assert(!Ops.empty() && "Cannot get empty smax!");
2997  if (Ops.size() == 1) return Ops[0];
2998#ifndef NDEBUG
2999  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3000  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3001    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3002           "SCEVSMaxExpr operand types don't match!");
3003#endif
3004
3005  // Sort by complexity, this groups all similar expression types together.
3006  GroupByComplexity(Ops, &LI);
3007
3008  // If there are any constants, fold them together.
3009  unsigned Idx = 0;
3010  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3011    ++Idx;
3012    assert(Idx < Ops.size());
3013    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3014      // We found two constants, fold them together!
3015      ConstantInt *Fold = ConstantInt::get(
3016          getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3017      Ops[0] = getConstant(Fold);
3018      Ops.erase(Ops.begin()+1);  // Erase the folded element
3019      if (Ops.size() == 1) return Ops[0];
3020      LHSC = cast<SCEVConstant>(Ops[0]);
3021    }
3022
3023    // If we are left with a constant minimum-int, strip it off.
3024    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3025      Ops.erase(Ops.begin());
3026      --Idx;
3027    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3028      // If we have an smax with a constant maximum-int, it will always be
3029      // maximum-int.
3030      return Ops[0];
3031    }
3032
3033    if (Ops.size() == 1) return Ops[0];
3034  }
3035
3036  // Find the first SMax
3037  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3038    ++Idx;
3039
3040  // Check to see if one of the operands is an SMax. If so, expand its operands
3041  // onto our operand list, and recurse to simplify.
3042  if (Idx < Ops.size()) {
3043    bool DeletedSMax = false;
3044    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3045      Ops.erase(Ops.begin()+Idx);
3046      Ops.append(SMax->op_begin(), SMax->op_end());
3047      DeletedSMax = true;
3048    }
3049
3050    if (DeletedSMax)
3051      return getSMaxExpr(Ops);
3052  }
3053
3054  // Okay, check to see if the same value occurs in the operand list twice.  If
3055  // so, delete one.  Since we sorted the list, these values are required to
3056  // be adjacent.
3057  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3058    //  X smax Y smax Y  -->  X smax Y
3059    //  X smax Y         -->  X, if X is always greater than Y
3060    if (Ops[i] == Ops[i+1] ||
3061        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3062      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3063      --i; --e;
3064    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3065      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3066      --i; --e;
3067    }
3068
3069  if (Ops.size() == 1) return Ops[0];
3070
3071  assert(!Ops.empty() && "Reduced smax down to nothing!");
3072
3073  // Okay, it looks like we really DO need an smax expr.  Check to see if we
3074  // already have one, otherwise create a new one.
3075  FoldingSetNodeID ID;
3076  ID.AddInteger(scSMaxExpr);
3077  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3078    ID.AddPointer(Ops[i]);
3079  void *IP = nullptr;
3080  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3081  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3082  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3083  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3084                                             O, Ops.size());
3085  UniqueSCEVs.InsertNode(S, IP);
3086  return S;
3087}
3088
3089const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3090                                         const SCEV *RHS) {
3091  SmallVector<const SCEV *, 2> Ops;
3092  Ops.push_back(LHS);
3093  Ops.push_back(RHS);
3094  return getUMaxExpr(Ops);
3095}
3096
3097const SCEV *
3098ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3099  assert(!Ops.empty() && "Cannot get empty umax!");
3100  if (Ops.size() == 1) return Ops[0];
3101#ifndef NDEBUG
3102  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3103  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3104    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3105           "SCEVUMaxExpr operand types don't match!");
3106#endif
3107
3108  // Sort by complexity, this groups all similar expression types together.
3109  GroupByComplexity(Ops, &LI);
3110
3111  // If there are any constants, fold them together.
3112  unsigned Idx = 0;
3113  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3114    ++Idx;
3115    assert(Idx < Ops.size());
3116    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3117      // We found two constants, fold them together!
3118      ConstantInt *Fold = ConstantInt::get(
3119          getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3120      Ops[0] = getConstant(Fold);
3121      Ops.erase(Ops.begin()+1);  // Erase the folded element
3122      if (Ops.size() == 1) return Ops[0];
3123      LHSC = cast<SCEVConstant>(Ops[0]);
3124    }
3125
3126    // If we are left with a constant minimum-int, strip it off.
3127    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3128      Ops.erase(Ops.begin());
3129      --Idx;
3130    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3131      // If we have an umax with a constant maximum-int, it will always be
3132      // maximum-int.
3133      return Ops[0];
3134    }
3135
3136    if (Ops.size() == 1) return Ops[0];
3137  }
3138
3139  // Find the first UMax
3140  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3141    ++Idx;
3142
3143  // Check to see if one of the operands is a UMax. If so, expand its operands
3144  // onto our operand list, and recurse to simplify.
3145  if (Idx < Ops.size()) {
3146    bool DeletedUMax = false;
3147    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3148      Ops.erase(Ops.begin()+Idx);
3149      Ops.append(UMax->op_begin(), UMax->op_end());
3150      DeletedUMax = true;
3151    }
3152
3153    if (DeletedUMax)
3154      return getUMaxExpr(Ops);
3155  }
3156
3157  // Okay, check to see if the same value occurs in the operand list twice.  If
3158  // so, delete one.  Since we sorted the list, these values are required to
3159  // be adjacent.
3160  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3161    //  X umax Y umax Y  -->  X umax Y
3162    //  X umax Y         -->  X, if X is always greater than Y
3163    if (Ops[i] == Ops[i+1] ||
3164        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3165      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3166      --i; --e;
3167    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3168      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3169      --i; --e;
3170    }
3171
3172  if (Ops.size() == 1) return Ops[0];
3173
3174  assert(!Ops.empty() && "Reduced umax down to nothing!");
3175
3176  // Okay, it looks like we really DO need a umax expr.  Check to see if we
3177  // already have one, otherwise create a new one.
3178  FoldingSetNodeID ID;
3179  ID.AddInteger(scUMaxExpr);
3180  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3181    ID.AddPointer(Ops[i]);
3182  void *IP = nullptr;
3183  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3184  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3185  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3186  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3187                                             O, Ops.size());
3188  UniqueSCEVs.InsertNode(S, IP);
3189  return S;
3190}
3191
3192const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3193                                         const SCEV *RHS) {
3194  // ~smax(~x, ~y) == smin(x, y).
3195  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3196}
3197
3198const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3199                                         const SCEV *RHS) {
3200  // ~umax(~x, ~y) == umin(x, y)
3201  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3202}
3203
3204const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3205  // We can bypass creating a target-independent
3206  // constant expression and then folding it back into a ConstantInt.
3207  // This is just a compile-time optimization.
3208  return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3209}
3210
3211const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3212                                             StructType *STy,
3213                                             unsigned FieldNo) {
3214  // We can bypass creating a target-independent
3215  // constant expression and then folding it back into a ConstantInt.
3216  // This is just a compile-time optimization.
3217  return getConstant(
3218      IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3219}
3220
3221const SCEV *ScalarEvolution::getUnknown(Value *V) {
3222  // Don't attempt to do anything other than create a SCEVUnknown object
3223  // here.  createSCEV only calls getUnknown after checking for all other
3224  // interesting possibilities, and any other code that calls getUnknown
3225  // is doing so in order to hide a value from SCEV canonicalization.
3226
3227  FoldingSetNodeID ID;
3228  ID.AddInteger(scUnknown);
3229  ID.AddPointer(V);
3230  void *IP = nullptr;
3231  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3232    assert(cast<SCEVUnknown>(S)->getValue() == V &&
3233           "Stale SCEVUnknown in uniquing map!");
3234    return S;
3235  }
3236  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3237                                            FirstUnknown);
3238  FirstUnknown = cast<SCEVUnknown>(S);
3239  UniqueSCEVs.InsertNode(S, IP);
3240  return S;
3241}
3242
3243//===----------------------------------------------------------------------===//
3244//            Basic SCEV Analysis and PHI Idiom Recognition Code
3245//
3246
3247/// isSCEVable - Test if values of the given type are analyzable within
3248/// the SCEV framework. This primarily includes integer types, and it
3249/// can optionally include pointer types if the ScalarEvolution class
3250/// has access to target-specific information.
3251bool ScalarEvolution::isSCEVable(Type *Ty) const {
3252  // Integers and pointers are always SCEVable.
3253  return Ty->isIntegerTy() || Ty->isPointerTy();
3254}
3255
3256/// getTypeSizeInBits - Return the size in bits of the specified type,
3257/// for which isSCEVable must return true.
3258uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3259  assert(isSCEVable(Ty) && "Type is not SCEVable!");
3260  return getDataLayout().getTypeSizeInBits(Ty);
3261}
3262
3263/// getEffectiveSCEVType - Return a type with the same bitwidth as
3264/// the given type and which represents how SCEV will treat the given
3265/// type, for which isSCEVable must return true. For pointer types,
3266/// this is the pointer-sized integer type.
3267Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3268  assert(isSCEVable(Ty) && "Type is not SCEVable!");
3269
3270  if (Ty->isIntegerTy())
3271    return Ty;
3272
3273  // The only other support type is pointer.
3274  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3275  return getDataLayout().getIntPtrType(Ty);
3276}
3277
3278const SCEV *ScalarEvolution::getCouldNotCompute() {
3279  return CouldNotCompute.get();
3280}
3281
3282
3283bool ScalarEvolution::checkValidity(const SCEV *S) const {
3284  // Helper class working with SCEVTraversal to figure out if a SCEV contains
3285  // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3286  // is set iff if find such SCEVUnknown.
3287  //
3288  struct FindInvalidSCEVUnknown {
3289    bool FindOne;
3290    FindInvalidSCEVUnknown() { FindOne = false; }
3291    bool follow(const SCEV *S) {
3292      switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3293      case scConstant:
3294        return false;
3295      case scUnknown:
3296        if (!cast<SCEVUnknown>(S)->getValue())
3297          FindOne = true;
3298        return false;
3299      default:
3300        return true;
3301      }
3302    }
3303    bool isDone() const { return FindOne; }
3304  };
3305
3306  FindInvalidSCEVUnknown F;
3307  SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3308  ST.visitAll(S);
3309
3310  return !F.FindOne;
3311}
3312
3313/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3314/// expression and create a new one.
3315const SCEV *ScalarEvolution::getSCEV(Value *V) {
3316  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3317
3318  const SCEV *S = getExistingSCEV(V);
3319  if (S == nullptr) {
3320    S = createSCEV(V);
3321    ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3322  }
3323  return S;
3324}
3325
3326const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3327  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3328
3329  ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3330  if (I != ValueExprMap.end()) {
3331    const SCEV *S = I->second;
3332    if (checkValidity(S))
3333      return S;
3334    ValueExprMap.erase(I);
3335  }
3336  return nullptr;
3337}
3338
3339/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3340///
3341const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3342                                             SCEV::NoWrapFlags Flags) {
3343  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3344    return getConstant(
3345               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3346
3347  Type *Ty = V->getType();
3348  Ty = getEffectiveSCEVType(Ty);
3349  return getMulExpr(
3350      V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3351}
3352
3353/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3354const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3355  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3356    return getConstant(
3357                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3358
3359  Type *Ty = V->getType();
3360  Ty = getEffectiveSCEVType(Ty);
3361  const SCEV *AllOnes =
3362                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3363  return getMinusSCEV(AllOnes, V);
3364}
3365
3366/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3367const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3368                                          SCEV::NoWrapFlags Flags) {
3369  // Fast path: X - X --> 0.
3370  if (LHS == RHS)
3371    return getZero(LHS->getType());
3372
3373  // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3374  // makes it so that we cannot make much use of NUW.
3375  auto AddFlags = SCEV::FlagAnyWrap;
3376  const bool RHSIsNotMinSigned =
3377      !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3378  if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3379    // Let M be the minimum representable signed value. Then (-1)*RHS
3380    // signed-wraps if and only if RHS is M. That can happen even for
3381    // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3382    // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3383    // (-1)*RHS, we need to prove that RHS != M.
3384    //
3385    // If LHS is non-negative and we know that LHS - RHS does not
3386    // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3387    // either by proving that RHS > M or that LHS >= 0.
3388    if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3389      AddFlags = SCEV::FlagNSW;
3390    }
3391  }
3392
3393  // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3394  // RHS is NSW and LHS >= 0.
3395  //
3396  // The difficulty here is that the NSW flag may have been proven
3397  // relative to a loop that is to be found in a recurrence in LHS and
3398  // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3399  // larger scope than intended.
3400  auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3401
3402  return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3403}
3404
3405/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3406/// input value to the specified type.  If the type must be extended, it is zero
3407/// extended.
3408const SCEV *
3409ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3410  Type *SrcTy = V->getType();
3411  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3412         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3413         "Cannot truncate or zero extend with non-integer arguments!");
3414  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3415    return V;  // No conversion
3416  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3417    return getTruncateExpr(V, Ty);
3418  return getZeroExtendExpr(V, Ty);
3419}
3420
3421/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3422/// input value to the specified type.  If the type must be extended, it is sign
3423/// extended.
3424const SCEV *
3425ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3426                                         Type *Ty) {
3427  Type *SrcTy = V->getType();
3428  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3429         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3430         "Cannot truncate or zero extend with non-integer arguments!");
3431  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3432    return V;  // No conversion
3433  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3434    return getTruncateExpr(V, Ty);
3435  return getSignExtendExpr(V, Ty);
3436}
3437
3438/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3439/// input value to the specified type.  If the type must be extended, it is zero
3440/// extended.  The conversion must not be narrowing.
3441const SCEV *
3442ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3443  Type *SrcTy = V->getType();
3444  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3445         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3446         "Cannot noop or zero extend with non-integer arguments!");
3447  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3448         "getNoopOrZeroExtend cannot truncate!");
3449  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3450    return V;  // No conversion
3451  return getZeroExtendExpr(V, Ty);
3452}
3453
3454/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3455/// input value to the specified type.  If the type must be extended, it is sign
3456/// extended.  The conversion must not be narrowing.
3457const SCEV *
3458ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3459  Type *SrcTy = V->getType();
3460  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3461         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3462         "Cannot noop or sign extend with non-integer arguments!");
3463  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3464         "getNoopOrSignExtend cannot truncate!");
3465  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3466    return V;  // No conversion
3467  return getSignExtendExpr(V, Ty);
3468}
3469
3470/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3471/// the input value to the specified type. If the type must be extended,
3472/// it is extended with unspecified bits. The conversion must not be
3473/// narrowing.
3474const SCEV *
3475ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3476  Type *SrcTy = V->getType();
3477  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3478         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3479         "Cannot noop or any extend with non-integer arguments!");
3480  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3481         "getNoopOrAnyExtend cannot truncate!");
3482  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3483    return V;  // No conversion
3484  return getAnyExtendExpr(V, Ty);
3485}
3486
3487/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3488/// input value to the specified type.  The conversion must not be widening.
3489const SCEV *
3490ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3491  Type *SrcTy = V->getType();
3492  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3493         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3494         "Cannot truncate or noop with non-integer arguments!");
3495  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3496         "getTruncateOrNoop cannot extend!");
3497  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3498    return V;  // No conversion
3499  return getTruncateExpr(V, Ty);
3500}
3501
3502/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3503/// the types using zero-extension, and then perform a umax operation
3504/// with them.
3505const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3506                                                        const SCEV *RHS) {
3507  const SCEV *PromotedLHS = LHS;
3508  const SCEV *PromotedRHS = RHS;
3509
3510  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3511    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3512  else
3513    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3514
3515  return getUMaxExpr(PromotedLHS, PromotedRHS);
3516}
3517
3518/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3519/// the types using zero-extension, and then perform a umin operation
3520/// with them.
3521const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3522                                                        const SCEV *RHS) {
3523  const SCEV *PromotedLHS = LHS;
3524  const SCEV *PromotedRHS = RHS;
3525
3526  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3527    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3528  else
3529    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3530
3531  return getUMinExpr(PromotedLHS, PromotedRHS);
3532}
3533
3534/// getPointerBase - Transitively follow the chain of pointer-type operands
3535/// until reaching a SCEV that does not have a single pointer operand. This
3536/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3537/// but corner cases do exist.
3538const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3539  // A pointer operand may evaluate to a nonpointer expression, such as null.
3540  if (!V->getType()->isPointerTy())
3541    return V;
3542
3543  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3544    return getPointerBase(Cast->getOperand());
3545  } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3546    const SCEV *PtrOp = nullptr;
3547    for (const SCEV *NAryOp : NAry->operands()) {
3548      if (NAryOp->getType()->isPointerTy()) {
3549        // Cannot find the base of an expression with multiple pointer operands.
3550        if (PtrOp)
3551          return V;
3552        PtrOp = NAryOp;
3553      }
3554    }
3555    if (!PtrOp)
3556      return V;
3557    return getPointerBase(PtrOp);
3558  }
3559  return V;
3560}
3561
3562/// PushDefUseChildren - Push users of the given Instruction
3563/// onto the given Worklist.
3564static void
3565PushDefUseChildren(Instruction *I,
3566                   SmallVectorImpl<Instruction *> &Worklist) {
3567  // Push the def-use children onto the Worklist stack.
3568  for (User *U : I->users())
3569    Worklist.push_back(cast<Instruction>(U));
3570}
3571
3572/// ForgetSymbolicValue - This looks up computed SCEV values for all
3573/// instructions that depend on the given instruction and removes them from
3574/// the ValueExprMapType map if they reference SymName. This is used during PHI
3575/// resolution.
3576void
3577ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3578  SmallVector<Instruction *, 16> Worklist;
3579  PushDefUseChildren(PN, Worklist);
3580
3581  SmallPtrSet<Instruction *, 8> Visited;
3582  Visited.insert(PN);
3583  while (!Worklist.empty()) {
3584    Instruction *I = Worklist.pop_back_val();
3585    if (!Visited.insert(I).second)
3586      continue;
3587
3588    auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3589    if (It != ValueExprMap.end()) {
3590      const SCEV *Old = It->second;
3591
3592      // Short-circuit the def-use traversal if the symbolic name
3593      // ceases to appear in expressions.
3594      if (Old != SymName && !hasOperand(Old, SymName))
3595        continue;
3596
3597      // SCEVUnknown for a PHI either means that it has an unrecognized
3598      // structure, it's a PHI that's in the progress of being computed
3599      // by createNodeForPHI, or it's a single-value PHI. In the first case,
3600      // additional loop trip count information isn't going to change anything.
3601      // In the second case, createNodeForPHI will perform the necessary
3602      // updates on its own when it gets to that point. In the third, we do
3603      // want to forget the SCEVUnknown.
3604      if (!isa<PHINode>(I) ||
3605          !isa<SCEVUnknown>(Old) ||
3606          (I != PN && Old == SymName)) {
3607        forgetMemoizedResults(Old);
3608        ValueExprMap.erase(It);
3609      }
3610    }
3611
3612    PushDefUseChildren(I, Worklist);
3613  }
3614}
3615
3616namespace {
3617class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3618public:
3619  static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3620                             ScalarEvolution &SE) {
3621    SCEVInitRewriter Rewriter(L, SE);
3622    const SCEV *Result = Rewriter.visit(Scev);
3623    return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3624  }
3625
3626  SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3627      : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3628
3629  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3630    if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3631      Valid = false;
3632    return Expr;
3633  }
3634
3635  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3636    // Only allow AddRecExprs for this loop.
3637    if (Expr->getLoop() == L)
3638      return Expr->getStart();
3639    Valid = false;
3640    return Expr;
3641  }
3642
3643  bool isValid() { return Valid; }
3644
3645private:
3646  const Loop *L;
3647  bool Valid;
3648};
3649
3650class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3651public:
3652  static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3653                             ScalarEvolution &SE) {
3654    SCEVShiftRewriter Rewriter(L, SE);
3655    const SCEV *Result = Rewriter.visit(Scev);
3656    return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3657  }
3658
3659  SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3660      : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3661
3662  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3663    // Only allow AddRecExprs for this loop.
3664    if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3665      Valid = false;
3666    return Expr;
3667  }
3668
3669  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3670    if (Expr->getLoop() == L && Expr->isAffine())
3671      return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3672    Valid = false;
3673    return Expr;
3674  }
3675  bool isValid() { return Valid; }
3676
3677private:
3678  const Loop *L;
3679  bool Valid;
3680};
3681} // end anonymous namespace
3682
3683const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3684  const Loop *L = LI.getLoopFor(PN->getParent());
3685  if (!L || L->getHeader() != PN->getParent())
3686    return nullptr;
3687
3688  // The loop may have multiple entrances or multiple exits; we can analyze
3689  // this phi as an addrec if it has a unique entry value and a unique
3690  // backedge value.
3691  Value *BEValueV = nullptr, *StartValueV = nullptr;
3692  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3693    Value *V = PN->getIncomingValue(i);
3694    if (L->contains(PN->getIncomingBlock(i))) {
3695      if (!BEValueV) {
3696        BEValueV = V;
3697      } else if (BEValueV != V) {
3698        BEValueV = nullptr;
3699        break;
3700      }
3701    } else if (!StartValueV) {
3702      StartValueV = V;
3703    } else if (StartValueV != V) {
3704      StartValueV = nullptr;
3705      break;
3706    }
3707  }
3708  if (BEValueV && StartValueV) {
3709    // While we are analyzing this PHI node, handle its value symbolically.
3710    const SCEV *SymbolicName = getUnknown(PN);
3711    assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3712           "PHI node already processed?");
3713    ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3714
3715    // Using this symbolic name for the PHI, analyze the value coming around
3716    // the back-edge.
3717    const SCEV *BEValue = getSCEV(BEValueV);
3718
3719    // NOTE: If BEValue is loop invariant, we know that the PHI node just
3720    // has a special value for the first iteration of the loop.
3721
3722    // If the value coming around the backedge is an add with the symbolic
3723    // value we just inserted, then we found a simple induction variable!
3724    if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3725      // If there is a single occurrence of the symbolic value, replace it
3726      // with a recurrence.
3727      unsigned FoundIndex = Add->getNumOperands();
3728      for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3729        if (Add->getOperand(i) == SymbolicName)
3730          if (FoundIndex == e) {
3731            FoundIndex = i;
3732            break;
3733          }
3734
3735      if (FoundIndex != Add->getNumOperands()) {
3736        // Create an add with everything but the specified operand.
3737        SmallVector<const SCEV *, 8> Ops;
3738        for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3739          if (i != FoundIndex)
3740            Ops.push_back(Add->getOperand(i));
3741        const SCEV *Accum = getAddExpr(Ops);
3742
3743        // This is not a valid addrec if the step amount is varying each
3744        // loop iteration, but is not itself an addrec in this loop.
3745        if (isLoopInvariant(Accum, L) ||
3746            (isa<SCEVAddRecExpr>(Accum) &&
3747             cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3748          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3749
3750          // If the increment doesn't overflow, then neither the addrec nor
3751          // the post-increment will overflow.
3752          if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3753            if (OBO->getOperand(0) == PN) {
3754              if (OBO->hasNoUnsignedWrap())
3755                Flags = setFlags(Flags, SCEV::FlagNUW);
3756              if (OBO->hasNoSignedWrap())
3757                Flags = setFlags(Flags, SCEV::FlagNSW);
3758            }
3759          } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3760            // If the increment is an inbounds GEP, then we know the address
3761            // space cannot be wrapped around. We cannot make any guarantee
3762            // about signed or unsigned overflow because pointers are
3763            // unsigned but we may have a negative index from the base
3764            // pointer. We can guarantee that no unsigned wrap occurs if the
3765            // indices form a positive value.
3766            if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3767              Flags = setFlags(Flags, SCEV::FlagNW);
3768
3769              const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3770              if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3771                Flags = setFlags(Flags, SCEV::FlagNUW);
3772            }
3773
3774            // We cannot transfer nuw and nsw flags from subtraction
3775            // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3776            // for instance.
3777          }
3778
3779          const SCEV *StartVal = getSCEV(StartValueV);
3780          const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3781
3782          // Since the no-wrap flags are on the increment, they apply to the
3783          // post-incremented value as well.
3784          if (isLoopInvariant(Accum, L))
3785            (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3786
3787          // Okay, for the entire analysis of this edge we assumed the PHI
3788          // to be symbolic.  We now need to go back and purge all of the
3789          // entries for the scalars that use the symbolic expression.
3790          ForgetSymbolicName(PN, SymbolicName);
3791          ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3792          return PHISCEV;
3793        }
3794      }
3795    } else {
3796      // Otherwise, this could be a loop like this:
3797      //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3798      // In this case, j = {1,+,1}  and BEValue is j.
3799      // Because the other in-value of i (0) fits the evolution of BEValue
3800      // i really is an addrec evolution.
3801      //
3802      // We can generalize this saying that i is the shifted value of BEValue
3803      // by one iteration:
3804      //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
3805      const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3806      const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3807      if (Shifted != getCouldNotCompute() &&
3808          Start != getCouldNotCompute()) {
3809        const SCEV *StartVal = getSCEV(StartValueV);
3810        if (Start == StartVal) {
3811          // Okay, for the entire analysis of this edge we assumed the PHI
3812          // to be symbolic.  We now need to go back and purge all of the
3813          // entries for the scalars that use the symbolic expression.
3814          ForgetSymbolicName(PN, SymbolicName);
3815          ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3816          return Shifted;
3817        }
3818      }
3819    }
3820  }
3821
3822  return nullptr;
3823}
3824
3825// Checks if the SCEV S is available at BB.  S is considered available at BB
3826// if S can be materialized at BB without introducing a fault.
3827static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3828                               BasicBlock *BB) {
3829  struct CheckAvailable {
3830    bool TraversalDone = false;
3831    bool Available = true;
3832
3833    const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
3834    BasicBlock *BB = nullptr;
3835    DominatorTree &DT;
3836
3837    CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3838      : L(L), BB(BB), DT(DT) {}
3839
3840    bool setUnavailable() {
3841      TraversalDone = true;
3842      Available = false;
3843      return false;
3844    }
3845
3846    bool follow(const SCEV *S) {
3847      switch (S->getSCEVType()) {
3848      case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3849      case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3850        // These expressions are available if their operand(s) is/are.
3851        return true;
3852
3853      case scAddRecExpr: {
3854        // We allow add recurrences that are on the loop BB is in, or some
3855        // outer loop.  This guarantees availability because the value of the
3856        // add recurrence at BB is simply the "current" value of the induction
3857        // variable.  We can relax this in the future; for instance an add
3858        // recurrence on a sibling dominating loop is also available at BB.
3859        const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3860        if (L && (ARLoop == L || ARLoop->contains(L)))
3861          return true;
3862
3863        return setUnavailable();
3864      }
3865
3866      case scUnknown: {
3867        // For SCEVUnknown, we check for simple dominance.
3868        const auto *SU = cast<SCEVUnknown>(S);
3869        Value *V = SU->getValue();
3870
3871        if (isa<Argument>(V))
3872          return false;
3873
3874        if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3875          return false;
3876
3877        return setUnavailable();
3878      }
3879
3880      case scUDivExpr:
3881      case scCouldNotCompute:
3882        // We do not try to smart about these at all.
3883        return setUnavailable();
3884      }
3885      llvm_unreachable("switch should be fully covered!");
3886    }
3887
3888    bool isDone() { return TraversalDone; }
3889  };
3890
3891  CheckAvailable CA(L, BB, DT);
3892  SCEVTraversal<CheckAvailable> ST(CA);
3893
3894  ST.visitAll(S);
3895  return CA.Available;
3896}
3897
3898// Try to match a control flow sequence that branches out at BI and merges back
3899// at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
3900// match.
3901static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3902                          Value *&C, Value *&LHS, Value *&RHS) {
3903  C = BI->getCondition();
3904
3905  BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3906  BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3907
3908  if (!LeftEdge.isSingleEdge())
3909    return false;
3910
3911  assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3912
3913  Use &LeftUse = Merge->getOperandUse(0);
3914  Use &RightUse = Merge->getOperandUse(1);
3915
3916  if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3917    LHS = LeftUse;
3918    RHS = RightUse;
3919    return true;
3920  }
3921
3922  if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3923    LHS = RightUse;
3924    RHS = LeftUse;
3925    return true;
3926  }
3927
3928  return false;
3929}
3930
3931const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
3932  if (PN->getNumIncomingValues() == 2) {
3933    const Loop *L = LI.getLoopFor(PN->getParent());
3934
3935    // We don't want to break LCSSA, even in a SCEV expression tree.
3936    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3937      if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
3938        return nullptr;
3939
3940    // Try to match
3941    //
3942    //  br %cond, label %left, label %right
3943    // left:
3944    //  br label %merge
3945    // right:
3946    //  br label %merge
3947    // merge:
3948    //  V = phi [ %x, %left ], [ %y, %right ]
3949    //
3950    // as "select %cond, %x, %y"
3951
3952    BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3953    assert(IDom && "At least the entry block should dominate PN");
3954
3955    auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3956    Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3957
3958    if (BI && BI->isConditional() &&
3959        BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3960        IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3961        IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
3962      return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3963  }
3964
3965  return nullptr;
3966}
3967
3968const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3969  if (const SCEV *S = createAddRecFromPHI(PN))
3970    return S;
3971
3972  if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3973    return S;
3974
3975  // If the PHI has a single incoming value, follow that value, unless the
3976  // PHI's incoming blocks are in a different loop, in which case doing so
3977  // risks breaking LCSSA form. Instcombine would normally zap these, but
3978  // it doesn't have DominatorTree information, so it may miss cases.
3979  if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
3980    if (LI.replacementPreservesLCSSAForm(PN, V))
3981      return getSCEV(V);
3982
3983  // If it's not a loop phi, we can't handle it yet.
3984  return getUnknown(PN);
3985}
3986
3987const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3988                                                      Value *Cond,
3989                                                      Value *TrueVal,
3990                                                      Value *FalseVal) {
3991  // Handle "constant" branch or select. This can occur for instance when a
3992  // loop pass transforms an inner loop and moves on to process the outer loop.
3993  if (auto *CI = dyn_cast<ConstantInt>(Cond))
3994    return getSCEV(CI->isOne() ? TrueVal : FalseVal);
3995
3996  // Try to match some simple smax or umax patterns.
3997  auto *ICI = dyn_cast<ICmpInst>(Cond);
3998  if (!ICI)
3999    return getUnknown(I);
4000
4001  Value *LHS = ICI->getOperand(0);
4002  Value *RHS = ICI->getOperand(1);
4003
4004  switch (ICI->getPredicate()) {
4005  case ICmpInst::ICMP_SLT:
4006  case ICmpInst::ICMP_SLE:
4007    std::swap(LHS, RHS);
4008  // fall through
4009  case ICmpInst::ICMP_SGT:
4010  case ICmpInst::ICMP_SGE:
4011    // a >s b ? a+x : b+x  ->  smax(a, b)+x
4012    // a >s b ? b+x : a+x  ->  smin(a, b)+x
4013    if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4014      const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4015      const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4016      const SCEV *LA = getSCEV(TrueVal);
4017      const SCEV *RA = getSCEV(FalseVal);
4018      const SCEV *LDiff = getMinusSCEV(LA, LS);
4019      const SCEV *RDiff = getMinusSCEV(RA, RS);
4020      if (LDiff == RDiff)
4021        return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4022      LDiff = getMinusSCEV(LA, RS);
4023      RDiff = getMinusSCEV(RA, LS);
4024      if (LDiff == RDiff)
4025        return getAddExpr(getSMinExpr(LS, RS), LDiff);
4026    }
4027    break;
4028  case ICmpInst::ICMP_ULT:
4029  case ICmpInst::ICMP_ULE:
4030    std::swap(LHS, RHS);
4031  // fall through
4032  case ICmpInst::ICMP_UGT:
4033  case ICmpInst::ICMP_UGE:
4034    // a >u b ? a+x : b+x  ->  umax(a, b)+x
4035    // a >u b ? b+x : a+x  ->  umin(a, b)+x
4036    if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4037      const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4038      const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4039      const SCEV *LA = getSCEV(TrueVal);
4040      const SCEV *RA = getSCEV(FalseVal);
4041      const SCEV *LDiff = getMinusSCEV(LA, LS);
4042      const SCEV *RDiff = getMinusSCEV(RA, RS);
4043      if (LDiff == RDiff)
4044        return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4045      LDiff = getMinusSCEV(LA, RS);
4046      RDiff = getMinusSCEV(RA, LS);
4047      if (LDiff == RDiff)
4048        return getAddExpr(getUMinExpr(LS, RS), LDiff);
4049    }
4050    break;
4051  case ICmpInst::ICMP_NE:
4052    // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4053    if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4054        isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4055      const SCEV *One = getOne(I->getType());
4056      const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4057      const SCEV *LA = getSCEV(TrueVal);
4058      const SCEV *RA = getSCEV(FalseVal);
4059      const SCEV *LDiff = getMinusSCEV(LA, LS);
4060      const SCEV *RDiff = getMinusSCEV(RA, One);
4061      if (LDiff == RDiff)
4062        return getAddExpr(getUMaxExpr(One, LS), LDiff);
4063    }
4064    break;
4065  case ICmpInst::ICMP_EQ:
4066    // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4067    if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4068        isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4069      const SCEV *One = getOne(I->getType());
4070      const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4071      const SCEV *LA = getSCEV(TrueVal);
4072      const SCEV *RA = getSCEV(FalseVal);
4073      const SCEV *LDiff = getMinusSCEV(LA, One);
4074      const SCEV *RDiff = getMinusSCEV(RA, LS);
4075      if (LDiff == RDiff)
4076        return getAddExpr(getUMaxExpr(One, LS), LDiff);
4077    }
4078    break;
4079  default:
4080    break;
4081  }
4082
4083  return getUnknown(I);
4084}
4085
4086/// createNodeForGEP - Expand GEP instructions into add and multiply
4087/// operations. This allows them to be analyzed by regular SCEV code.
4088///
4089const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4090  Value *Base = GEP->getOperand(0);
4091  // Don't attempt to analyze GEPs over unsized objects.
4092  if (!Base->getType()->getPointerElementType()->isSized())
4093    return getUnknown(GEP);
4094
4095  SmallVector<const SCEV *, 4> IndexExprs;
4096  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4097    IndexExprs.push_back(getSCEV(*Index));
4098  return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4099                    GEP->isInBounds());
4100}
4101
4102/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4103/// guaranteed to end in (at every loop iteration).  It is, at the same time,
4104/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4105/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4106uint32_t
4107ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4108  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4109    return C->getAPInt().countTrailingZeros();
4110
4111  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4112    return std::min(GetMinTrailingZeros(T->getOperand()),
4113                    (uint32_t)getTypeSizeInBits(T->getType()));
4114
4115  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4116    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4117    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4118             getTypeSizeInBits(E->getType()) : OpRes;
4119  }
4120
4121  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4122    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4123    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4124             getTypeSizeInBits(E->getType()) : OpRes;
4125  }
4126
4127  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4128    // The result is the min of all operands results.
4129    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4130    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4131      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4132    return MinOpRes;
4133  }
4134
4135  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4136    // The result is the sum of all operands results.
4137    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4138    uint32_t BitWidth = getTypeSizeInBits(M->getType());
4139    for (unsigned i = 1, e = M->getNumOperands();
4140         SumOpRes != BitWidth && i != e; ++i)
4141      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4142                          BitWidth);
4143    return SumOpRes;
4144  }
4145
4146  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4147    // The result is the min of all operands results.
4148    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4149    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4150      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4151    return MinOpRes;
4152  }
4153
4154  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4155    // The result is the min of all operands results.
4156    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4157    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4158      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4159    return MinOpRes;
4160  }
4161
4162  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4163    // The result is the min of all operands results.
4164    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4165    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4166      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4167    return MinOpRes;
4168  }
4169
4170  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4171    // For a SCEVUnknown, ask ValueTracking.
4172    unsigned BitWidth = getTypeSizeInBits(U->getType());
4173    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4174    computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4175                     nullptr, &DT);
4176    return Zeros.countTrailingOnes();
4177  }
4178
4179  // SCEVUDivExpr
4180  return 0;
4181}
4182
4183/// GetRangeFromMetadata - Helper method to assign a range to V from
4184/// metadata present in the IR.
4185static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4186  if (Instruction *I = dyn_cast<Instruction>(V))
4187    if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4188      return getConstantRangeFromMetadata(*MD);
4189
4190  return None;
4191}
4192
4193/// getRange - Determine the range for a particular SCEV.  If SignHint is
4194/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4195/// with a "cleaner" unsigned (resp. signed) representation.
4196///
4197ConstantRange
4198ScalarEvolution::getRange(const SCEV *S,
4199                          ScalarEvolution::RangeSignHint SignHint) {
4200  DenseMap<const SCEV *, ConstantRange> &Cache =
4201      SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4202                                                       : SignedRanges;
4203
4204  // See if we've computed this range already.
4205  DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4206  if (I != Cache.end())
4207    return I->second;
4208
4209  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4210    return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4211
4212  unsigned BitWidth = getTypeSizeInBits(S->getType());
4213  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4214
4215  // If the value has known zeros, the maximum value will have those known zeros
4216  // as well.
4217  uint32_t TZ = GetMinTrailingZeros(S);
4218  if (TZ != 0) {
4219    if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4220      ConservativeResult =
4221          ConstantRange(APInt::getMinValue(BitWidth),
4222                        APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4223    else
4224      ConservativeResult = ConstantRange(
4225          APInt::getSignedMinValue(BitWidth),
4226          APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4227  }
4228
4229  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4230    ConstantRange X = getRange(Add->getOperand(0), SignHint);
4231    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4232      X = X.add(getRange(Add->getOperand(i), SignHint));
4233    return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4234  }
4235
4236  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4237    ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4238    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4239      X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4240    return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4241  }
4242
4243  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4244    ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4245    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4246      X = X.smax(getRange(SMax->getOperand(i), SignHint));
4247    return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4248  }
4249
4250  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4251    ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4252    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4253      X = X.umax(getRange(UMax->getOperand(i), SignHint));
4254    return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4255  }
4256
4257  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4258    ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4259    ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4260    return setRange(UDiv, SignHint,
4261                    ConservativeResult.intersectWith(X.udiv(Y)));
4262  }
4263
4264  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4265    ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4266    return setRange(ZExt, SignHint,
4267                    ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4268  }
4269
4270  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4271    ConstantRange X = getRange(SExt->getOperand(), SignHint);
4272    return setRange(SExt, SignHint,
4273                    ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4274  }
4275
4276  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4277    ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4278    return setRange(Trunc, SignHint,
4279                    ConservativeResult.intersectWith(X.truncate(BitWidth)));
4280  }
4281
4282  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4283    // If there's no unsigned wrap, the value will never be less than its
4284    // initial value.
4285    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
4286      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4287        if (!C->getValue()->isZero())
4288          ConservativeResult = ConservativeResult.intersectWith(
4289              ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4290
4291    // If there's no signed wrap, and all the operands have the same sign or
4292    // zero, the value won't ever change sign.
4293    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
4294      bool AllNonNeg = true;
4295      bool AllNonPos = true;
4296      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4297        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4298        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4299      }
4300      if (AllNonNeg)
4301        ConservativeResult = ConservativeResult.intersectWith(
4302          ConstantRange(APInt(BitWidth, 0),
4303                        APInt::getSignedMinValue(BitWidth)));
4304      else if (AllNonPos)
4305        ConservativeResult = ConservativeResult.intersectWith(
4306          ConstantRange(APInt::getSignedMinValue(BitWidth),
4307                        APInt(BitWidth, 1)));
4308    }
4309
4310    // TODO: non-affine addrec
4311    if (AddRec->isAffine()) {
4312      Type *Ty = AddRec->getType();
4313      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4314      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4315          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4316
4317        // Check for overflow.  This must be done with ConstantRange arithmetic
4318        // because we could be called from within the ScalarEvolution overflow
4319        // checking code.
4320
4321        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4322        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4323        ConstantRange ZExtMaxBECountRange =
4324            MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4325
4326        const SCEV *Start = AddRec->getStart();
4327        const SCEV *Step = AddRec->getStepRecurrence(*this);
4328        ConstantRange StepSRange = getSignedRange(Step);
4329        ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4330
4331        ConstantRange StartURange = getUnsignedRange(Start);
4332        ConstantRange EndURange =
4333            StartURange.add(MaxBECountRange.multiply(StepSRange));
4334
4335        // Check for unsigned overflow.
4336        ConstantRange ZExtStartURange =
4337            StartURange.zextOrTrunc(BitWidth * 2 + 1);
4338        ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4339        if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4340            ZExtEndURange) {
4341          APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4342                                     EndURange.getUnsignedMin());
4343          APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4344                                     EndURange.getUnsignedMax());
4345          bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4346          if (!IsFullRange)
4347            ConservativeResult =
4348                ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4349        }
4350
4351        ConstantRange StartSRange = getSignedRange(Start);
4352        ConstantRange EndSRange =
4353            StartSRange.add(MaxBECountRange.multiply(StepSRange));
4354
4355        // Check for signed overflow. This must be done with ConstantRange
4356        // arithmetic because we could be called from within the ScalarEvolution
4357        // overflow checking code.
4358        ConstantRange SExtStartSRange =
4359            StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4360        ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4361        if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4362            SExtEndSRange) {
4363          APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4364                                     EndSRange.getSignedMin());
4365          APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4366                                     EndSRange.getSignedMax());
4367          bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4368          if (!IsFullRange)
4369            ConservativeResult =
4370                ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4371        }
4372      }
4373    }
4374
4375    return setRange(AddRec, SignHint, ConservativeResult);
4376  }
4377
4378  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4379    // Check if the IR explicitly contains !range metadata.
4380    Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4381    if (MDRange.hasValue())
4382      ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4383
4384    // Split here to avoid paying the compile-time cost of calling both
4385    // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4386    // if needed.
4387    const DataLayout &DL = getDataLayout();
4388    if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4389      // For a SCEVUnknown, ask ValueTracking.
4390      APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4391      computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4392      if (Ones != ~Zeros + 1)
4393        ConservativeResult =
4394            ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4395    } else {
4396      assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4397             "generalize as needed!");
4398      unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4399      if (NS > 1)
4400        ConservativeResult = ConservativeResult.intersectWith(
4401            ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4402                          APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4403    }
4404
4405    return setRange(U, SignHint, ConservativeResult);
4406  }
4407
4408  return setRange(S, SignHint, ConservativeResult);
4409}
4410
4411SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4412  if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4413  const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4414
4415  // Return early if there are no flags to propagate to the SCEV.
4416  SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4417  if (BinOp->hasNoUnsignedWrap())
4418    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4419  if (BinOp->hasNoSignedWrap())
4420    Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4421  if (Flags == SCEV::FlagAnyWrap) {
4422    return SCEV::FlagAnyWrap;
4423  }
4424
4425  // Here we check that BinOp is in the header of the innermost loop
4426  // containing BinOp, since we only deal with instructions in the loop
4427  // header. The actual loop we need to check later will come from an add
4428  // recurrence, but getting that requires computing the SCEV of the operands,
4429  // which can be expensive. This check we can do cheaply to rule out some
4430  // cases early.
4431  Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4432  if (innermostContainingLoop == nullptr ||
4433      innermostContainingLoop->getHeader() != BinOp->getParent())
4434    return SCEV::FlagAnyWrap;
4435
4436  // Only proceed if we can prove that BinOp does not yield poison.
4437  if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4438
4439  // At this point we know that if V is executed, then it does not wrap
4440  // according to at least one of NSW or NUW. If V is not executed, then we do
4441  // not know if the calculation that V represents would wrap. Multiple
4442  // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4443  // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4444  // derived from other instructions that map to the same SCEV. We cannot make
4445  // that guarantee for cases where V is not executed. So we need to find the
4446  // loop that V is considered in relation to and prove that V is executed for
4447  // every iteration of that loop. That implies that the value that V
4448  // calculates does not wrap anywhere in the loop, so then we can apply the
4449  // flags to the SCEV.
4450  //
4451  // We check isLoopInvariant to disambiguate in case we are adding two
4452  // recurrences from different loops, so that we know which loop to prove
4453  // that V is executed in.
4454  for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4455    const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4456    if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4457      const int OtherOpIndex = 1 - OpIndex;
4458      const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4459      if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4460          isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4461        return Flags;
4462    }
4463  }
4464  return SCEV::FlagAnyWrap;
4465}
4466
4467/// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4468/// the expression.
4469///
4470const SCEV *ScalarEvolution::createSCEV(Value *V) {
4471  if (!isSCEVable(V->getType()))
4472    return getUnknown(V);
4473
4474  unsigned Opcode = Instruction::UserOp1;
4475  if (Instruction *I = dyn_cast<Instruction>(V)) {
4476    Opcode = I->getOpcode();
4477
4478    // Don't attempt to analyze instructions in blocks that aren't
4479    // reachable. Such instructions don't matter, and they aren't required
4480    // to obey basic rules for definitions dominating uses which this
4481    // analysis depends on.
4482    if (!DT.isReachableFromEntry(I->getParent()))
4483      return getUnknown(V);
4484  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4485    Opcode = CE->getOpcode();
4486  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4487    return getConstant(CI);
4488  else if (isa<ConstantPointerNull>(V))
4489    return getZero(V->getType());
4490  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4491    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4492  else
4493    return getUnknown(V);
4494
4495  Operator *U = cast<Operator>(V);
4496  switch (Opcode) {
4497  case Instruction::Add: {
4498    // The simple thing to do would be to just call getSCEV on both operands
4499    // and call getAddExpr with the result. However if we're looking at a
4500    // bunch of things all added together, this can be quite inefficient,
4501    // because it leads to N-1 getAddExpr calls for N ultimate operands.
4502    // Instead, gather up all the operands and make a single getAddExpr call.
4503    // LLVM IR canonical form means we need only traverse the left operands.
4504    SmallVector<const SCEV *, 4> AddOps;
4505    for (Value *Op = U;; Op = U->getOperand(0)) {
4506      U = dyn_cast<Operator>(Op);
4507      unsigned Opcode = U ? U->getOpcode() : 0;
4508      if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4509        assert(Op != V && "V should be an add");
4510        AddOps.push_back(getSCEV(Op));
4511        break;
4512      }
4513
4514      if (auto *OpSCEV = getExistingSCEV(U)) {
4515        AddOps.push_back(OpSCEV);
4516        break;
4517      }
4518
4519      // If a NUW or NSW flag can be applied to the SCEV for this
4520      // addition, then compute the SCEV for this addition by itself
4521      // with a separate call to getAddExpr. We need to do that
4522      // instead of pushing the operands of the addition onto AddOps,
4523      // since the flags are only known to apply to this particular
4524      // addition - they may not apply to other additions that can be
4525      // formed with operands from AddOps.
4526      const SCEV *RHS = getSCEV(U->getOperand(1));
4527      SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4528      if (Flags != SCEV::FlagAnyWrap) {
4529        const SCEV *LHS = getSCEV(U->getOperand(0));
4530        if (Opcode == Instruction::Sub)
4531          AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4532        else
4533          AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4534        break;
4535      }
4536
4537      if (Opcode == Instruction::Sub)
4538        AddOps.push_back(getNegativeSCEV(RHS));
4539      else
4540        AddOps.push_back(RHS);
4541    }
4542    return getAddExpr(AddOps);
4543  }
4544
4545  case Instruction::Mul: {
4546    SmallVector<const SCEV *, 4> MulOps;
4547    for (Value *Op = U;; Op = U->getOperand(0)) {
4548      U = dyn_cast<Operator>(Op);
4549      if (!U || U->getOpcode() != Instruction::Mul) {
4550        assert(Op != V && "V should be a mul");
4551        MulOps.push_back(getSCEV(Op));
4552        break;
4553      }
4554
4555      if (auto *OpSCEV = getExistingSCEV(U)) {
4556        MulOps.push_back(OpSCEV);
4557        break;
4558      }
4559
4560      SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4561      if (Flags != SCEV::FlagAnyWrap) {
4562        MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4563                                    getSCEV(U->getOperand(1)), Flags));
4564        break;
4565      }
4566
4567      MulOps.push_back(getSCEV(U->getOperand(1)));
4568    }
4569    return getMulExpr(MulOps);
4570  }
4571  case Instruction::UDiv:
4572    return getUDivExpr(getSCEV(U->getOperand(0)),
4573                       getSCEV(U->getOperand(1)));
4574  case Instruction::Sub:
4575    return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4576                        getNoWrapFlagsFromUB(U));
4577  case Instruction::And:
4578    // For an expression like x&255 that merely masks off the high bits,
4579    // use zext(trunc(x)) as the SCEV expression.
4580    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4581      if (CI->isNullValue())
4582        return getSCEV(U->getOperand(1));
4583      if (CI->isAllOnesValue())
4584        return getSCEV(U->getOperand(0));
4585      const APInt &A = CI->getValue();
4586
4587      // Instcombine's ShrinkDemandedConstant may strip bits out of
4588      // constants, obscuring what would otherwise be a low-bits mask.
4589      // Use computeKnownBits to compute what ShrinkDemandedConstant
4590      // knew about to reconstruct a low-bits mask value.
4591      unsigned LZ = A.countLeadingZeros();
4592      unsigned TZ = A.countTrailingZeros();
4593      unsigned BitWidth = A.getBitWidth();
4594      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4595      computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4596                       0, &AC, nullptr, &DT);
4597
4598      APInt EffectiveMask =
4599          APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4600      if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4601        const SCEV *MulCount = getConstant(
4602            ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4603        return getMulExpr(
4604            getZeroExtendExpr(
4605                getTruncateExpr(
4606                    getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4607                    IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4608                U->getType()),
4609            MulCount);
4610      }
4611    }
4612    break;
4613
4614  case Instruction::Or:
4615    // If the RHS of the Or is a constant, we may have something like:
4616    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4617    // optimizations will transparently handle this case.
4618    //
4619    // In order for this transformation to be safe, the LHS must be of the
4620    // form X*(2^n) and the Or constant must be less than 2^n.
4621    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4622      const SCEV *LHS = getSCEV(U->getOperand(0));
4623      const APInt &CIVal = CI->getValue();
4624      if (GetMinTrailingZeros(LHS) >=
4625          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4626        // Build a plain add SCEV.
4627        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4628        // If the LHS of the add was an addrec and it has no-wrap flags,
4629        // transfer the no-wrap flags, since an or won't introduce a wrap.
4630        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4631          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4632          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4633            OldAR->getNoWrapFlags());
4634        }
4635        return S;
4636      }
4637    }
4638    break;
4639  case Instruction::Xor:
4640    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4641      // If the RHS of the xor is a signbit, then this is just an add.
4642      // Instcombine turns add of signbit into xor as a strength reduction step.
4643      if (CI->getValue().isSignBit())
4644        return getAddExpr(getSCEV(U->getOperand(0)),
4645                          getSCEV(U->getOperand(1)));
4646
4647      // If the RHS of xor is -1, then this is a not operation.
4648      if (CI->isAllOnesValue())
4649        return getNotSCEV(getSCEV(U->getOperand(0)));
4650
4651      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4652      // This is a variant of the check for xor with -1, and it handles
4653      // the case where instcombine has trimmed non-demanded bits out
4654      // of an xor with -1.
4655      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4656        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4657          if (BO->getOpcode() == Instruction::And &&
4658              LCI->getValue() == CI->getValue())
4659            if (const SCEVZeroExtendExpr *Z =
4660                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4661              Type *UTy = U->getType();
4662              const SCEV *Z0 = Z->getOperand();
4663              Type *Z0Ty = Z0->getType();
4664              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4665
4666              // If C is a low-bits mask, the zero extend is serving to
4667              // mask off the high bits. Complement the operand and
4668              // re-apply the zext.
4669              if (APIntOps::isMask(Z0TySize, CI->getValue()))
4670                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4671
4672              // If C is a single bit, it may be in the sign-bit position
4673              // before the zero-extend. In this case, represent the xor
4674              // using an add, which is equivalent, and re-apply the zext.
4675              APInt Trunc = CI->getValue().trunc(Z0TySize);
4676              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4677                  Trunc.isSignBit())
4678                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4679                                         UTy);
4680            }
4681    }
4682    break;
4683
4684  case Instruction::Shl:
4685    // Turn shift left of a constant amount into a multiply.
4686    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4687      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4688
4689      // If the shift count is not less than the bitwidth, the result of
4690      // the shift is undefined. Don't try to analyze it, because the
4691      // resolution chosen here may differ from the resolution chosen in
4692      // other parts of the compiler.
4693      if (SA->getValue().uge(BitWidth))
4694        break;
4695
4696      // It is currently not resolved how to interpret NSW for left
4697      // shift by BitWidth - 1, so we avoid applying flags in that
4698      // case. Remove this check (or this comment) once the situation
4699      // is resolved. See
4700      // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4701      // and http://reviews.llvm.org/D8890 .
4702      auto Flags = SCEV::FlagAnyWrap;
4703      if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4704
4705      Constant *X = ConstantInt::get(getContext(),
4706        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4707      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
4708    }
4709    break;
4710
4711  case Instruction::LShr:
4712    // Turn logical shift right of a constant into a unsigned divide.
4713    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4714      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4715
4716      // If the shift count is not less than the bitwidth, the result of
4717      // the shift is undefined. Don't try to analyze it, because the
4718      // resolution chosen here may differ from the resolution chosen in
4719      // other parts of the compiler.
4720      if (SA->getValue().uge(BitWidth))
4721        break;
4722
4723      Constant *X = ConstantInt::get(getContext(),
4724        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4725      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4726    }
4727    break;
4728
4729  case Instruction::AShr:
4730    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4731    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4732      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4733        if (L->getOpcode() == Instruction::Shl &&
4734            L->getOperand(1) == U->getOperand(1)) {
4735          uint64_t BitWidth = getTypeSizeInBits(U->getType());
4736
4737          // If the shift count is not less than the bitwidth, the result of
4738          // the shift is undefined. Don't try to analyze it, because the
4739          // resolution chosen here may differ from the resolution chosen in
4740          // other parts of the compiler.
4741          if (CI->getValue().uge(BitWidth))
4742            break;
4743
4744          uint64_t Amt = BitWidth - CI->getZExtValue();
4745          if (Amt == BitWidth)
4746            return getSCEV(L->getOperand(0));       // shift by zero --> noop
4747          return
4748            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4749                                              IntegerType::get(getContext(),
4750                                                               Amt)),
4751                              U->getType());
4752        }
4753    break;
4754
4755  case Instruction::Trunc:
4756    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4757
4758  case Instruction::ZExt:
4759    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4760
4761  case Instruction::SExt:
4762    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4763
4764  case Instruction::BitCast:
4765    // BitCasts are no-op casts so we just eliminate the cast.
4766    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4767      return getSCEV(U->getOperand(0));
4768    break;
4769
4770  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4771  // lead to pointer expressions which cannot safely be expanded to GEPs,
4772  // because ScalarEvolution doesn't respect the GEP aliasing rules when
4773  // simplifying integer expressions.
4774
4775  case Instruction::GetElementPtr:
4776    return createNodeForGEP(cast<GEPOperator>(U));
4777
4778  case Instruction::PHI:
4779    return createNodeForPHI(cast<PHINode>(U));
4780
4781  case Instruction::Select:
4782    // U can also be a select constant expr, which let fall through.  Since
4783    // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4784    // constant expressions cannot have instructions as operands, we'd have
4785    // returned getUnknown for a select constant expressions anyway.
4786    if (isa<Instruction>(U))
4787      return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4788                                      U->getOperand(1), U->getOperand(2));
4789
4790  default: // We cannot analyze this expression.
4791    break;
4792  }
4793
4794  return getUnknown(V);
4795}
4796
4797
4798
4799//===----------------------------------------------------------------------===//
4800//                   Iteration Count Computation Code
4801//
4802
4803unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4804  if (BasicBlock *ExitingBB = L->getExitingBlock())
4805    return getSmallConstantTripCount(L, ExitingBB);
4806
4807  // No trip count information for multiple exits.
4808  return 0;
4809}
4810
4811/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4812/// normal unsigned value. Returns 0 if the trip count is unknown or not
4813/// constant. Will also return 0 if the maximum trip count is very large (>=
4814/// 2^32).
4815///
4816/// This "trip count" assumes that control exits via ExitingBlock. More
4817/// precisely, it is the number of times that control may reach ExitingBlock
4818/// before taking the branch. For loops with multiple exits, it may not be the
4819/// number times that the loop header executes because the loop may exit
4820/// prematurely via another branch.
4821unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4822                                                    BasicBlock *ExitingBlock) {
4823  assert(ExitingBlock && "Must pass a non-null exiting block!");
4824  assert(L->isLoopExiting(ExitingBlock) &&
4825         "Exiting block must actually branch out of the loop!");
4826  const SCEVConstant *ExitCount =
4827      dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4828  if (!ExitCount)
4829    return 0;
4830
4831  ConstantInt *ExitConst = ExitCount->getValue();
4832
4833  // Guard against huge trip counts.
4834  if (ExitConst->getValue().getActiveBits() > 32)
4835    return 0;
4836
4837  // In case of integer overflow, this returns 0, which is correct.
4838  return ((unsigned)ExitConst->getZExtValue()) + 1;
4839}
4840
4841unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4842  if (BasicBlock *ExitingBB = L->getExitingBlock())
4843    return getSmallConstantTripMultiple(L, ExitingBB);
4844
4845  // No trip multiple information for multiple exits.
4846  return 0;
4847}
4848
4849/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4850/// trip count of this loop as a normal unsigned value, if possible. This
4851/// means that the actual trip count is always a multiple of the returned
4852/// value (don't forget the trip count could very well be zero as well!).
4853///
4854/// Returns 1 if the trip count is unknown or not guaranteed to be the
4855/// multiple of a constant (which is also the case if the trip count is simply
4856/// constant, use getSmallConstantTripCount for that case), Will also return 1
4857/// if the trip count is very large (>= 2^32).
4858///
4859/// As explained in the comments for getSmallConstantTripCount, this assumes
4860/// that control exits the loop via ExitingBlock.
4861unsigned
4862ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4863                                              BasicBlock *ExitingBlock) {
4864  assert(ExitingBlock && "Must pass a non-null exiting block!");
4865  assert(L->isLoopExiting(ExitingBlock) &&
4866         "Exiting block must actually branch out of the loop!");
4867  const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4868  if (ExitCount == getCouldNotCompute())
4869    return 1;
4870
4871  // Get the trip count from the BE count by adding 1.
4872  const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
4873  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4874  // to factor simple cases.
4875  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4876    TCMul = Mul->getOperand(0);
4877
4878  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4879  if (!MulC)
4880    return 1;
4881
4882  ConstantInt *Result = MulC->getValue();
4883
4884  // Guard against huge trip counts (this requires checking
4885  // for zero to handle the case where the trip count == -1 and the
4886  // addition wraps).
4887  if (!Result || Result->getValue().getActiveBits() > 32 ||
4888      Result->getValue().getActiveBits() == 0)
4889    return 1;
4890
4891  return (unsigned)Result->getZExtValue();
4892}
4893
4894// getExitCount - Get the expression for the number of loop iterations for which
4895// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4896// SCEVCouldNotCompute.
4897const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4898  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4899}
4900
4901/// getBackedgeTakenCount - If the specified loop has a predictable
4902/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4903/// object. The backedge-taken count is the number of times the loop header
4904/// will be branched to from within the loop. This is one less than the
4905/// trip count of the loop, since it doesn't count the first iteration,
4906/// when the header is branched to from outside the loop.
4907///
4908/// Note that it is not valid to call this method on a loop without a
4909/// loop-invariant backedge-taken count (see
4910/// hasLoopInvariantBackedgeTakenCount).
4911///
4912const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4913  return getBackedgeTakenInfo(L).getExact(this);
4914}
4915
4916/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4917/// return the least SCEV value that is known never to be less than the
4918/// actual backedge taken count.
4919const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4920  return getBackedgeTakenInfo(L).getMax(this);
4921}
4922
4923/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4924/// onto the given Worklist.
4925static void
4926PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4927  BasicBlock *Header = L->getHeader();
4928
4929  // Push all Loop-header PHIs onto the Worklist stack.
4930  for (BasicBlock::iterator I = Header->begin();
4931       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4932    Worklist.push_back(PN);
4933}
4934
4935const ScalarEvolution::BackedgeTakenInfo &
4936ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4937  // Initially insert an invalid entry for this loop. If the insertion
4938  // succeeds, proceed to actually compute a backedge-taken count and
4939  // update the value. The temporary CouldNotCompute value tells SCEV
4940  // code elsewhere that it shouldn't attempt to request a new
4941  // backedge-taken count, which could result in infinite recursion.
4942  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4943    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4944  if (!Pair.second)
4945    return Pair.first->second;
4946
4947  // computeBackedgeTakenCount may allocate memory for its result. Inserting it
4948  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4949  // must be cleared in this scope.
4950  BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
4951
4952  if (Result.getExact(this) != getCouldNotCompute()) {
4953    assert(isLoopInvariant(Result.getExact(this), L) &&
4954           isLoopInvariant(Result.getMax(this), L) &&
4955           "Computed backedge-taken count isn't loop invariant for loop!");
4956    ++NumTripCountsComputed;
4957  }
4958  else if (Result.getMax(this) == getCouldNotCompute() &&
4959           isa<PHINode>(L->getHeader()->begin())) {
4960    // Only count loops that have phi nodes as not being computable.
4961    ++NumTripCountsNotComputed;
4962  }
4963
4964  // Now that we know more about the trip count for this loop, forget any
4965  // existing SCEV values for PHI nodes in this loop since they are only
4966  // conservative estimates made without the benefit of trip count
4967  // information. This is similar to the code in forgetLoop, except that
4968  // it handles SCEVUnknown PHI nodes specially.
4969  if (Result.hasAnyInfo()) {
4970    SmallVector<Instruction *, 16> Worklist;
4971    PushLoopPHIs(L, Worklist);
4972
4973    SmallPtrSet<Instruction *, 8> Visited;
4974    while (!Worklist.empty()) {
4975      Instruction *I = Worklist.pop_back_val();
4976      if (!Visited.insert(I).second)
4977        continue;
4978
4979      ValueExprMapType::iterator It =
4980        ValueExprMap.find_as(static_cast<Value *>(I));
4981      if (It != ValueExprMap.end()) {
4982        const SCEV *Old = It->second;
4983
4984        // SCEVUnknown for a PHI either means that it has an unrecognized
4985        // structure, or it's a PHI that's in the progress of being computed
4986        // by createNodeForPHI.  In the former case, additional loop trip
4987        // count information isn't going to change anything. In the later
4988        // case, createNodeForPHI will perform the necessary updates on its
4989        // own when it gets to that point.
4990        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4991          forgetMemoizedResults(Old);
4992          ValueExprMap.erase(It);
4993        }
4994        if (PHINode *PN = dyn_cast<PHINode>(I))
4995          ConstantEvolutionLoopExitValue.erase(PN);
4996      }
4997
4998      PushDefUseChildren(I, Worklist);
4999    }
5000  }
5001
5002  // Re-lookup the insert position, since the call to
5003  // computeBackedgeTakenCount above could result in a
5004  // recusive call to getBackedgeTakenInfo (on a different
5005  // loop), which would invalidate the iterator computed
5006  // earlier.
5007  return BackedgeTakenCounts.find(L)->second = Result;
5008}
5009
5010/// forgetLoop - This method should be called by the client when it has
5011/// changed a loop in a way that may effect ScalarEvolution's ability to
5012/// compute a trip count, or if the loop is deleted.
5013void ScalarEvolution::forgetLoop(const Loop *L) {
5014  // Drop any stored trip count value.
5015  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5016    BackedgeTakenCounts.find(L);
5017  if (BTCPos != BackedgeTakenCounts.end()) {
5018    BTCPos->second.clear();
5019    BackedgeTakenCounts.erase(BTCPos);
5020  }
5021
5022  // Drop information about expressions based on loop-header PHIs.
5023  SmallVector<Instruction *, 16> Worklist;
5024  PushLoopPHIs(L, Worklist);
5025
5026  SmallPtrSet<Instruction *, 8> Visited;
5027  while (!Worklist.empty()) {
5028    Instruction *I = Worklist.pop_back_val();
5029    if (!Visited.insert(I).second)
5030      continue;
5031
5032    ValueExprMapType::iterator It =
5033      ValueExprMap.find_as(static_cast<Value *>(I));
5034    if (It != ValueExprMap.end()) {
5035      forgetMemoizedResults(It->second);
5036      ValueExprMap.erase(It);
5037      if (PHINode *PN = dyn_cast<PHINode>(I))
5038        ConstantEvolutionLoopExitValue.erase(PN);
5039    }
5040
5041    PushDefUseChildren(I, Worklist);
5042  }
5043
5044  // Forget all contained loops too, to avoid dangling entries in the
5045  // ValuesAtScopes map.
5046  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5047    forgetLoop(*I);
5048}
5049
5050/// forgetValue - This method should be called by the client when it has
5051/// changed a value in a way that may effect its value, or which may
5052/// disconnect it from a def-use chain linking it to a loop.
5053void ScalarEvolution::forgetValue(Value *V) {
5054  Instruction *I = dyn_cast<Instruction>(V);
5055  if (!I) return;
5056
5057  // Drop information about expressions based on loop-header PHIs.
5058  SmallVector<Instruction *, 16> Worklist;
5059  Worklist.push_back(I);
5060
5061  SmallPtrSet<Instruction *, 8> Visited;
5062  while (!Worklist.empty()) {
5063    I = Worklist.pop_back_val();
5064    if (!Visited.insert(I).second)
5065      continue;
5066
5067    ValueExprMapType::iterator It =
5068      ValueExprMap.find_as(static_cast<Value *>(I));
5069    if (It != ValueExprMap.end()) {
5070      forgetMemoizedResults(It->second);
5071      ValueExprMap.erase(It);
5072      if (PHINode *PN = dyn_cast<PHINode>(I))
5073        ConstantEvolutionLoopExitValue.erase(PN);
5074    }
5075
5076    PushDefUseChildren(I, Worklist);
5077  }
5078}
5079
5080/// getExact - Get the exact loop backedge taken count considering all loop
5081/// exits. A computable result can only be returned for loops with a single
5082/// exit.  Returning the minimum taken count among all exits is incorrect
5083/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5084/// assumes that the limit of each loop test is never skipped. This is a valid
5085/// assumption as long as the loop exits via that test. For precise results, it
5086/// is the caller's responsibility to specify the relevant loop exit using
5087/// getExact(ExitingBlock, SE).
5088const SCEV *
5089ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5090  // If any exits were not computable, the loop is not computable.
5091  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5092
5093  // We need exactly one computable exit.
5094  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5095  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5096
5097  const SCEV *BECount = nullptr;
5098  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5099       ENT != nullptr; ENT = ENT->getNextExit()) {
5100
5101    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5102
5103    if (!BECount)
5104      BECount = ENT->ExactNotTaken;
5105    else if (BECount != ENT->ExactNotTaken)
5106      return SE->getCouldNotCompute();
5107  }
5108  assert(BECount && "Invalid not taken count for loop exit");
5109  return BECount;
5110}
5111
5112/// getExact - Get the exact not taken count for this loop exit.
5113const SCEV *
5114ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5115                                             ScalarEvolution *SE) const {
5116  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5117       ENT != nullptr; ENT = ENT->getNextExit()) {
5118
5119    if (ENT->ExitingBlock == ExitingBlock)
5120      return ENT->ExactNotTaken;
5121  }
5122  return SE->getCouldNotCompute();
5123}
5124
5125/// getMax - Get the max backedge taken count for the loop.
5126const SCEV *
5127ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5128  return Max ? Max : SE->getCouldNotCompute();
5129}
5130
5131bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5132                                                    ScalarEvolution *SE) const {
5133  if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5134    return true;
5135
5136  if (!ExitNotTaken.ExitingBlock)
5137    return false;
5138
5139  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5140       ENT != nullptr; ENT = ENT->getNextExit()) {
5141
5142    if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5143        && SE->hasOperand(ENT->ExactNotTaken, S)) {
5144      return true;
5145    }
5146  }
5147  return false;
5148}
5149
5150/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5151/// computable exit into a persistent ExitNotTakenInfo array.
5152ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5153  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5154  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5155
5156  if (!Complete)
5157    ExitNotTaken.setIncomplete();
5158
5159  unsigned NumExits = ExitCounts.size();
5160  if (NumExits == 0) return;
5161
5162  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5163  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5164  if (NumExits == 1) return;
5165
5166  // Handle the rare case of multiple computable exits.
5167  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5168
5169  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5170  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5171    PrevENT->setNextExit(ENT);
5172    ENT->ExitingBlock = ExitCounts[i].first;
5173    ENT->ExactNotTaken = ExitCounts[i].second;
5174  }
5175}
5176
5177/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5178void ScalarEvolution::BackedgeTakenInfo::clear() {
5179  ExitNotTaken.ExitingBlock = nullptr;
5180  ExitNotTaken.ExactNotTaken = nullptr;
5181  delete[] ExitNotTaken.getNextExit();
5182}
5183
5184/// computeBackedgeTakenCount - Compute the number of times the backedge
5185/// of the specified loop will execute.
5186ScalarEvolution::BackedgeTakenInfo
5187ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5188  SmallVector<BasicBlock *, 8> ExitingBlocks;
5189  L->getExitingBlocks(ExitingBlocks);
5190
5191  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5192  bool CouldComputeBECount = true;
5193  BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5194  const SCEV *MustExitMaxBECount = nullptr;
5195  const SCEV *MayExitMaxBECount = nullptr;
5196
5197  // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5198  // and compute maxBECount.
5199  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5200    BasicBlock *ExitBB = ExitingBlocks[i];
5201    ExitLimit EL = computeExitLimit(L, ExitBB);
5202
5203    // 1. For each exit that can be computed, add an entry to ExitCounts.
5204    // CouldComputeBECount is true only if all exits can be computed.
5205    if (EL.Exact == getCouldNotCompute())
5206      // We couldn't compute an exact value for this exit, so
5207      // we won't be able to compute an exact value for the loop.
5208      CouldComputeBECount = false;
5209    else
5210      ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
5211
5212    // 2. Derive the loop's MaxBECount from each exit's max number of
5213    // non-exiting iterations. Partition the loop exits into two kinds:
5214    // LoopMustExits and LoopMayExits.
5215    //
5216    // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5217    // is a LoopMayExit.  If any computable LoopMustExit is found, then
5218    // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5219    // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5220    // considered greater than any computable EL.Max.
5221    if (EL.Max != getCouldNotCompute() && Latch &&
5222        DT.dominates(ExitBB, Latch)) {
5223      if (!MustExitMaxBECount)
5224        MustExitMaxBECount = EL.Max;
5225      else {
5226        MustExitMaxBECount =
5227          getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5228      }
5229    } else if (MayExitMaxBECount != getCouldNotCompute()) {
5230      if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5231        MayExitMaxBECount = EL.Max;
5232      else {
5233        MayExitMaxBECount =
5234          getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5235      }
5236    }
5237  }
5238  const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5239    (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5240  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5241}
5242
5243ScalarEvolution::ExitLimit
5244ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5245
5246  // Okay, we've chosen an exiting block.  See what condition causes us to exit
5247  // at this block and remember the exit block and whether all other targets
5248  // lead to the loop header.
5249  bool MustExecuteLoopHeader = true;
5250  BasicBlock *Exit = nullptr;
5251  for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5252       SI != SE; ++SI)
5253    if (!L->contains(*SI)) {
5254      if (Exit) // Multiple exit successors.
5255        return getCouldNotCompute();
5256      Exit = *SI;
5257    } else if (*SI != L->getHeader()) {
5258      MustExecuteLoopHeader = false;
5259    }
5260
5261  // At this point, we know we have a conditional branch that determines whether
5262  // the loop is exited.  However, we don't know if the branch is executed each
5263  // time through the loop.  If not, then the execution count of the branch will
5264  // not be equal to the trip count of the loop.
5265  //
5266  // Currently we check for this by checking to see if the Exit branch goes to
5267  // the loop header.  If so, we know it will always execute the same number of
5268  // times as the loop.  We also handle the case where the exit block *is* the
5269  // loop header.  This is common for un-rotated loops.
5270  //
5271  // If both of those tests fail, walk up the unique predecessor chain to the
5272  // header, stopping if there is an edge that doesn't exit the loop. If the
5273  // header is reached, the execution count of the branch will be equal to the
5274  // trip count of the loop.
5275  //
5276  //  More extensive analysis could be done to handle more cases here.
5277  //
5278  if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5279    // The simple checks failed, try climbing the unique predecessor chain
5280    // up to the header.
5281    bool Ok = false;
5282    for (BasicBlock *BB = ExitingBlock; BB; ) {
5283      BasicBlock *Pred = BB->getUniquePredecessor();
5284      if (!Pred)
5285        return getCouldNotCompute();
5286      TerminatorInst *PredTerm = Pred->getTerminator();
5287      for (const BasicBlock *PredSucc : PredTerm->successors()) {
5288        if (PredSucc == BB)
5289          continue;
5290        // If the predecessor has a successor that isn't BB and isn't
5291        // outside the loop, assume the worst.
5292        if (L->contains(PredSucc))
5293          return getCouldNotCompute();
5294      }
5295      if (Pred == L->getHeader()) {
5296        Ok = true;
5297        break;
5298      }
5299      BB = Pred;
5300    }
5301    if (!Ok)
5302      return getCouldNotCompute();
5303  }
5304
5305  bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5306  TerminatorInst *Term = ExitingBlock->getTerminator();
5307  if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5308    assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5309    // Proceed to the next level to examine the exit condition expression.
5310    return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5311                                    BI->getSuccessor(1),
5312                                    /*ControlsExit=*/IsOnlyExit);
5313  }
5314
5315  if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5316    return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5317                                                /*ControlsExit=*/IsOnlyExit);
5318
5319  return getCouldNotCompute();
5320}
5321
5322/// computeExitLimitFromCond - Compute the number of times the
5323/// backedge of the specified loop will execute if its exit condition
5324/// were a conditional branch of ExitCond, TBB, and FBB.
5325///
5326/// @param ControlsExit is true if ExitCond directly controls the exit
5327/// branch. In this case, we can assume that the loop exits only if the
5328/// condition is true and can infer that failing to meet the condition prior to
5329/// integer wraparound results in undefined behavior.
5330ScalarEvolution::ExitLimit
5331ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5332                                          Value *ExitCond,
5333                                          BasicBlock *TBB,
5334                                          BasicBlock *FBB,
5335                                          bool ControlsExit) {
5336  // Check if the controlling expression for this loop is an And or Or.
5337  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5338    if (BO->getOpcode() == Instruction::And) {
5339      // Recurse on the operands of the and.
5340      bool EitherMayExit = L->contains(TBB);
5341      ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5342                                               ControlsExit && !EitherMayExit);
5343      ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5344                                               ControlsExit && !EitherMayExit);
5345      const SCEV *BECount = getCouldNotCompute();
5346      const SCEV *MaxBECount = getCouldNotCompute();
5347      if (EitherMayExit) {
5348        // Both conditions must be true for the loop to continue executing.
5349        // Choose the less conservative count.
5350        if (EL0.Exact == getCouldNotCompute() ||
5351            EL1.Exact == getCouldNotCompute())
5352          BECount = getCouldNotCompute();
5353        else
5354          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5355        if (EL0.Max == getCouldNotCompute())
5356          MaxBECount = EL1.Max;
5357        else if (EL1.Max == getCouldNotCompute())
5358          MaxBECount = EL0.Max;
5359        else
5360          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5361      } else {
5362        // Both conditions must be true at the same time for the loop to exit.
5363        // For now, be conservative.
5364        assert(L->contains(FBB) && "Loop block has no successor in loop!");
5365        if (EL0.Max == EL1.Max)
5366          MaxBECount = EL0.Max;
5367        if (EL0.Exact == EL1.Exact)
5368          BECount = EL0.Exact;
5369      }
5370
5371      return ExitLimit(BECount, MaxBECount);
5372    }
5373    if (BO->getOpcode() == Instruction::Or) {
5374      // Recurse on the operands of the or.
5375      bool EitherMayExit = L->contains(FBB);
5376      ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5377                                               ControlsExit && !EitherMayExit);
5378      ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5379                                               ControlsExit && !EitherMayExit);
5380      const SCEV *BECount = getCouldNotCompute();
5381      const SCEV *MaxBECount = getCouldNotCompute();
5382      if (EitherMayExit) {
5383        // Both conditions must be false for the loop to continue executing.
5384        // Choose the less conservative count.
5385        if (EL0.Exact == getCouldNotCompute() ||
5386            EL1.Exact == getCouldNotCompute())
5387          BECount = getCouldNotCompute();
5388        else
5389          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5390        if (EL0.Max == getCouldNotCompute())
5391          MaxBECount = EL1.Max;
5392        else if (EL1.Max == getCouldNotCompute())
5393          MaxBECount = EL0.Max;
5394        else
5395          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5396      } else {
5397        // Both conditions must be false at the same time for the loop to exit.
5398        // For now, be conservative.
5399        assert(L->contains(TBB) && "Loop block has no successor in loop!");
5400        if (EL0.Max == EL1.Max)
5401          MaxBECount = EL0.Max;
5402        if (EL0.Exact == EL1.Exact)
5403          BECount = EL0.Exact;
5404      }
5405
5406      return ExitLimit(BECount, MaxBECount);
5407    }
5408  }
5409
5410  // With an icmp, it may be feasible to compute an exact backedge-taken count.
5411  // Proceed to the next level to examine the icmp.
5412  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5413    return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5414
5415  // Check for a constant condition. These are normally stripped out by
5416  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5417  // preserve the CFG and is temporarily leaving constant conditions
5418  // in place.
5419  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5420    if (L->contains(FBB) == !CI->getZExtValue())
5421      // The backedge is always taken.
5422      return getCouldNotCompute();
5423    else
5424      // The backedge is never taken.
5425      return getZero(CI->getType());
5426  }
5427
5428  // If it's not an integer or pointer comparison then compute it the hard way.
5429  return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5430}
5431
5432ScalarEvolution::ExitLimit
5433ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5434                                          ICmpInst *ExitCond,
5435                                          BasicBlock *TBB,
5436                                          BasicBlock *FBB,
5437                                          bool ControlsExit) {
5438
5439  // If the condition was exit on true, convert the condition to exit on false
5440  ICmpInst::Predicate Cond;
5441  if (!L->contains(FBB))
5442    Cond = ExitCond->getPredicate();
5443  else
5444    Cond = ExitCond->getInversePredicate();
5445
5446  // Handle common loops like: for (X = "string"; *X; ++X)
5447  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5448    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5449      ExitLimit ItCnt =
5450        computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5451      if (ItCnt.hasAnyInfo())
5452        return ItCnt;
5453    }
5454
5455  ExitLimit ShiftEL = computeShiftCompareExitLimit(
5456      ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5457  if (ShiftEL.hasAnyInfo())
5458    return ShiftEL;
5459
5460  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5461  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5462
5463  // Try to evaluate any dependencies out of the loop.
5464  LHS = getSCEVAtScope(LHS, L);
5465  RHS = getSCEVAtScope(RHS, L);
5466
5467  // At this point, we would like to compute how many iterations of the
5468  // loop the predicate will return true for these inputs.
5469  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5470    // If there is a loop-invariant, force it into the RHS.
5471    std::swap(LHS, RHS);
5472    Cond = ICmpInst::getSwappedPredicate(Cond);
5473  }
5474
5475  // Simplify the operands before analyzing them.
5476  (void)SimplifyICmpOperands(Cond, LHS, RHS);
5477
5478  // If we have a comparison of a chrec against a constant, try to use value
5479  // ranges to answer this query.
5480  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5481    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5482      if (AddRec->getLoop() == L) {
5483        // Form the constant range.
5484        ConstantRange CompRange(
5485            ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5486
5487        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5488        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5489      }
5490
5491  switch (Cond) {
5492  case ICmpInst::ICMP_NE: {                     // while (X != Y)
5493    // Convert to: while (X-Y != 0)
5494    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5495    if (EL.hasAnyInfo()) return EL;
5496    break;
5497  }
5498  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5499    // Convert to: while (X-Y == 0)
5500    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5501    if (EL.hasAnyInfo()) return EL;
5502    break;
5503  }
5504  case ICmpInst::ICMP_SLT:
5505  case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5506    bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5507    ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5508    if (EL.hasAnyInfo()) return EL;
5509    break;
5510  }
5511  case ICmpInst::ICMP_SGT:
5512  case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5513    bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5514    ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5515    if (EL.hasAnyInfo()) return EL;
5516    break;
5517  }
5518  default:
5519    break;
5520  }
5521  return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5522}
5523
5524ScalarEvolution::ExitLimit
5525ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5526                                                      SwitchInst *Switch,
5527                                                      BasicBlock *ExitingBlock,
5528                                                      bool ControlsExit) {
5529  assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5530
5531  // Give up if the exit is the default dest of a switch.
5532  if (Switch->getDefaultDest() == ExitingBlock)
5533    return getCouldNotCompute();
5534
5535  assert(L->contains(Switch->getDefaultDest()) &&
5536         "Default case must not exit the loop!");
5537  const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5538  const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5539
5540  // while (X != Y) --> while (X-Y != 0)
5541  ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5542  if (EL.hasAnyInfo())
5543    return EL;
5544
5545  return getCouldNotCompute();
5546}
5547
5548static ConstantInt *
5549EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5550                                ScalarEvolution &SE) {
5551  const SCEV *InVal = SE.getConstant(C);
5552  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5553  assert(isa<SCEVConstant>(Val) &&
5554         "Evaluation of SCEV at constant didn't fold correctly?");
5555  return cast<SCEVConstant>(Val)->getValue();
5556}
5557
5558/// computeLoadConstantCompareExitLimit - Given an exit condition of
5559/// 'icmp op load X, cst', try to see if we can compute the backedge
5560/// execution count.
5561ScalarEvolution::ExitLimit
5562ScalarEvolution::computeLoadConstantCompareExitLimit(
5563  LoadInst *LI,
5564  Constant *RHS,
5565  const Loop *L,
5566  ICmpInst::Predicate predicate) {
5567
5568  if (LI->isVolatile()) return getCouldNotCompute();
5569
5570  // Check to see if the loaded pointer is a getelementptr of a global.
5571  // TODO: Use SCEV instead of manually grubbing with GEPs.
5572  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5573  if (!GEP) return getCouldNotCompute();
5574
5575  // Make sure that it is really a constant global we are gepping, with an
5576  // initializer, and make sure the first IDX is really 0.
5577  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5578  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5579      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5580      !cast<Constant>(GEP->getOperand(1))->isNullValue())
5581    return getCouldNotCompute();
5582
5583  // Okay, we allow one non-constant index into the GEP instruction.
5584  Value *VarIdx = nullptr;
5585  std::vector<Constant*> Indexes;
5586  unsigned VarIdxNum = 0;
5587  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5588    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5589      Indexes.push_back(CI);
5590    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5591      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5592      VarIdx = GEP->getOperand(i);
5593      VarIdxNum = i-2;
5594      Indexes.push_back(nullptr);
5595    }
5596
5597  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5598  if (!VarIdx)
5599    return getCouldNotCompute();
5600
5601  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5602  // Check to see if X is a loop variant variable value now.
5603  const SCEV *Idx = getSCEV(VarIdx);
5604  Idx = getSCEVAtScope(Idx, L);
5605
5606  // We can only recognize very limited forms of loop index expressions, in
5607  // particular, only affine AddRec's like {C1,+,C2}.
5608  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5609  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5610      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5611      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5612    return getCouldNotCompute();
5613
5614  unsigned MaxSteps = MaxBruteForceIterations;
5615  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5616    ConstantInt *ItCst = ConstantInt::get(
5617                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
5618    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5619
5620    // Form the GEP offset.
5621    Indexes[VarIdxNum] = Val;
5622
5623    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5624                                                         Indexes);
5625    if (!Result) break;  // Cannot compute!
5626
5627    // Evaluate the condition for this iteration.
5628    Result = ConstantExpr::getICmp(predicate, Result, RHS);
5629    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5630    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5631      ++NumArrayLenItCounts;
5632      return getConstant(ItCst);   // Found terminating iteration!
5633    }
5634  }
5635  return getCouldNotCompute();
5636}
5637
5638ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5639    Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5640  ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5641  if (!RHS)
5642    return getCouldNotCompute();
5643
5644  const BasicBlock *Latch = L->getLoopLatch();
5645  if (!Latch)
5646    return getCouldNotCompute();
5647
5648  const BasicBlock *Predecessor = L->getLoopPredecessor();
5649  if (!Predecessor)
5650    return getCouldNotCompute();
5651
5652  // Return true if V is of the form "LHS `shift_op` <positive constant>".
5653  // Return LHS in OutLHS and shift_opt in OutOpCode.
5654  auto MatchPositiveShift =
5655      [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5656
5657    using namespace PatternMatch;
5658
5659    ConstantInt *ShiftAmt;
5660    if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5661      OutOpCode = Instruction::LShr;
5662    else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5663      OutOpCode = Instruction::AShr;
5664    else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5665      OutOpCode = Instruction::Shl;
5666    else
5667      return false;
5668
5669    return ShiftAmt->getValue().isStrictlyPositive();
5670  };
5671
5672  // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5673  //
5674  // loop:
5675  //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5676  //   %iv.shifted = lshr i32 %iv, <positive constant>
5677  //
5678  // Return true on a succesful match.  Return the corresponding PHI node (%iv
5679  // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5680  auto MatchShiftRecurrence =
5681      [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5682    Optional<Instruction::BinaryOps> PostShiftOpCode;
5683
5684    {
5685      Instruction::BinaryOps OpC;
5686      Value *V;
5687
5688      // If we encounter a shift instruction, "peel off" the shift operation,
5689      // and remember that we did so.  Later when we inspect %iv's backedge
5690      // value, we will make sure that the backedge value uses the same
5691      // operation.
5692      //
5693      // Note: the peeled shift operation does not have to be the same
5694      // instruction as the one feeding into the PHI's backedge value.  We only
5695      // really care about it being the same *kind* of shift instruction --
5696      // that's all that is required for our later inferences to hold.
5697      if (MatchPositiveShift(LHS, V, OpC)) {
5698        PostShiftOpCode = OpC;
5699        LHS = V;
5700      }
5701    }
5702
5703    PNOut = dyn_cast<PHINode>(LHS);
5704    if (!PNOut || PNOut->getParent() != L->getHeader())
5705      return false;
5706
5707    Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5708    Value *OpLHS;
5709
5710    return
5711        // The backedge value for the PHI node must be a shift by a positive
5712        // amount
5713        MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5714
5715        // of the PHI node itself
5716        OpLHS == PNOut &&
5717
5718        // and the kind of shift should be match the kind of shift we peeled
5719        // off, if any.
5720        (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5721  };
5722
5723  PHINode *PN;
5724  Instruction::BinaryOps OpCode;
5725  if (!MatchShiftRecurrence(LHS, PN, OpCode))
5726    return getCouldNotCompute();
5727
5728  const DataLayout &DL = getDataLayout();
5729
5730  // The key rationale for this optimization is that for some kinds of shift
5731  // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5732  // within a finite number of iterations.  If the condition guarding the
5733  // backedge (in the sense that the backedge is taken if the condition is true)
5734  // is false for the value the shift recurrence stabilizes to, then we know
5735  // that the backedge is taken only a finite number of times.
5736
5737  ConstantInt *StableValue = nullptr;
5738  switch (OpCode) {
5739  default:
5740    llvm_unreachable("Impossible case!");
5741
5742  case Instruction::AShr: {
5743    // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5744    // bitwidth(K) iterations.
5745    Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5746    bool KnownZero, KnownOne;
5747    ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5748                   Predecessor->getTerminator(), &DT);
5749    auto *Ty = cast<IntegerType>(RHS->getType());
5750    if (KnownZero)
5751      StableValue = ConstantInt::get(Ty, 0);
5752    else if (KnownOne)
5753      StableValue = ConstantInt::get(Ty, -1, true);
5754    else
5755      return getCouldNotCompute();
5756
5757    break;
5758  }
5759  case Instruction::LShr:
5760  case Instruction::Shl:
5761    // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5762    // stabilize to 0 in at most bitwidth(K) iterations.
5763    StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5764    break;
5765  }
5766
5767  auto *Result =
5768      ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5769  assert(Result->getType()->isIntegerTy(1) &&
5770         "Otherwise cannot be an operand to a branch instruction");
5771
5772  if (Result->isZeroValue()) {
5773    unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5774    const SCEV *UpperBound =
5775        getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5776    return ExitLimit(getCouldNotCompute(), UpperBound);
5777  }
5778
5779  return getCouldNotCompute();
5780}
5781
5782/// CanConstantFold - Return true if we can constant fold an instruction of the
5783/// specified type, assuming that all operands were constants.
5784static bool CanConstantFold(const Instruction *I) {
5785  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5786      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5787      isa<LoadInst>(I))
5788    return true;
5789
5790  if (const CallInst *CI = dyn_cast<CallInst>(I))
5791    if (const Function *F = CI->getCalledFunction())
5792      return canConstantFoldCallTo(F);
5793  return false;
5794}
5795
5796/// Determine whether this instruction can constant evolve within this loop
5797/// assuming its operands can all constant evolve.
5798static bool canConstantEvolve(Instruction *I, const Loop *L) {
5799  // An instruction outside of the loop can't be derived from a loop PHI.
5800  if (!L->contains(I)) return false;
5801
5802  if (isa<PHINode>(I)) {
5803    // We don't currently keep track of the control flow needed to evaluate
5804    // PHIs, so we cannot handle PHIs inside of loops.
5805    return L->getHeader() == I->getParent();
5806  }
5807
5808  // If we won't be able to constant fold this expression even if the operands
5809  // are constants, bail early.
5810  return CanConstantFold(I);
5811}
5812
5813/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5814/// recursing through each instruction operand until reaching a loop header phi.
5815static PHINode *
5816getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5817                               DenseMap<Instruction *, PHINode *> &PHIMap) {
5818
5819  // Otherwise, we can evaluate this instruction if all of its operands are
5820  // constant or derived from a PHI node themselves.
5821  PHINode *PHI = nullptr;
5822  for (Value *Op : UseInst->operands()) {
5823    if (isa<Constant>(Op)) continue;
5824
5825    Instruction *OpInst = dyn_cast<Instruction>(Op);
5826    if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5827
5828    PHINode *P = dyn_cast<PHINode>(OpInst);
5829    if (!P)
5830      // If this operand is already visited, reuse the prior result.
5831      // We may have P != PHI if this is the deepest point at which the
5832      // inconsistent paths meet.
5833      P = PHIMap.lookup(OpInst);
5834    if (!P) {
5835      // Recurse and memoize the results, whether a phi is found or not.
5836      // This recursive call invalidates pointers into PHIMap.
5837      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5838      PHIMap[OpInst] = P;
5839    }
5840    if (!P)
5841      return nullptr;  // Not evolving from PHI
5842    if (PHI && PHI != P)
5843      return nullptr;  // Evolving from multiple different PHIs.
5844    PHI = P;
5845  }
5846  // This is a expression evolving from a constant PHI!
5847  return PHI;
5848}
5849
5850/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5851/// in the loop that V is derived from.  We allow arbitrary operations along the
5852/// way, but the operands of an operation must either be constants or a value
5853/// derived from a constant PHI.  If this expression does not fit with these
5854/// constraints, return null.
5855static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5856  Instruction *I = dyn_cast<Instruction>(V);
5857  if (!I || !canConstantEvolve(I, L)) return nullptr;
5858
5859  if (PHINode *PN = dyn_cast<PHINode>(I))
5860    return PN;
5861
5862  // Record non-constant instructions contained by the loop.
5863  DenseMap<Instruction *, PHINode *> PHIMap;
5864  return getConstantEvolvingPHIOperands(I, L, PHIMap);
5865}
5866
5867/// EvaluateExpression - Given an expression that passes the
5868/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5869/// in the loop has the value PHIVal.  If we can't fold this expression for some
5870/// reason, return null.
5871static Constant *EvaluateExpression(Value *V, const Loop *L,
5872                                    DenseMap<Instruction *, Constant *> &Vals,
5873                                    const DataLayout &DL,
5874                                    const TargetLibraryInfo *TLI) {
5875  // Convenient constant check, but redundant for recursive calls.
5876  if (Constant *C = dyn_cast<Constant>(V)) return C;
5877  Instruction *I = dyn_cast<Instruction>(V);
5878  if (!I) return nullptr;
5879
5880  if (Constant *C = Vals.lookup(I)) return C;
5881
5882  // An instruction inside the loop depends on a value outside the loop that we
5883  // weren't given a mapping for, or a value such as a call inside the loop.
5884  if (!canConstantEvolve(I, L)) return nullptr;
5885
5886  // An unmapped PHI can be due to a branch or another loop inside this loop,
5887  // or due to this not being the initial iteration through a loop where we
5888  // couldn't compute the evolution of this particular PHI last time.
5889  if (isa<PHINode>(I)) return nullptr;
5890
5891  std::vector<Constant*> Operands(I->getNumOperands());
5892
5893  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5894    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5895    if (!Operand) {
5896      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5897      if (!Operands[i]) return nullptr;
5898      continue;
5899    }
5900    Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5901    Vals[Operand] = C;
5902    if (!C) return nullptr;
5903    Operands[i] = C;
5904  }
5905
5906  if (CmpInst *CI = dyn_cast<CmpInst>(I))
5907    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5908                                           Operands[1], DL, TLI);
5909  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5910    if (!LI->isVolatile())
5911      return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5912  }
5913  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5914                                  TLI);
5915}
5916
5917
5918// If every incoming value to PN except the one for BB is a specific Constant,
5919// return that, else return nullptr.
5920static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
5921  Constant *IncomingVal = nullptr;
5922
5923  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5924    if (PN->getIncomingBlock(i) == BB)
5925      continue;
5926
5927    auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
5928    if (!CurrentVal)
5929      return nullptr;
5930
5931    if (IncomingVal != CurrentVal) {
5932      if (IncomingVal)
5933        return nullptr;
5934      IncomingVal = CurrentVal;
5935    }
5936  }
5937
5938  return IncomingVal;
5939}
5940
5941/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5942/// in the header of its containing loop, we know the loop executes a
5943/// constant number of times, and the PHI node is just a recurrence
5944/// involving constants, fold it.
5945Constant *
5946ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5947                                                   const APInt &BEs,
5948                                                   const Loop *L) {
5949  auto I = ConstantEvolutionLoopExitValue.find(PN);
5950  if (I != ConstantEvolutionLoopExitValue.end())
5951    return I->second;
5952
5953  if (BEs.ugt(MaxBruteForceIterations))
5954    return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5955
5956  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5957
5958  DenseMap<Instruction *, Constant *> CurrentIterVals;
5959  BasicBlock *Header = L->getHeader();
5960  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5961
5962  BasicBlock *Latch = L->getLoopLatch();
5963  if (!Latch)
5964    return nullptr;
5965
5966  for (auto &I : *Header) {
5967    PHINode *PHI = dyn_cast<PHINode>(&I);
5968    if (!PHI) break;
5969    auto *StartCST = getOtherIncomingValue(PHI, Latch);
5970    if (!StartCST) continue;
5971    CurrentIterVals[PHI] = StartCST;
5972  }
5973  if (!CurrentIterVals.count(PN))
5974    return RetVal = nullptr;
5975
5976  Value *BEValue = PN->getIncomingValueForBlock(Latch);
5977
5978  // Execute the loop symbolically to determine the exit value.
5979  if (BEs.getActiveBits() >= 32)
5980    return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5981
5982  unsigned NumIterations = BEs.getZExtValue(); // must be in range
5983  unsigned IterationNum = 0;
5984  const DataLayout &DL = getDataLayout();
5985  for (; ; ++IterationNum) {
5986    if (IterationNum == NumIterations)
5987      return RetVal = CurrentIterVals[PN];  // Got exit value!
5988
5989    // Compute the value of the PHIs for the next iteration.
5990    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5991    DenseMap<Instruction *, Constant *> NextIterVals;
5992    Constant *NextPHI =
5993        EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
5994    if (!NextPHI)
5995      return nullptr;        // Couldn't evaluate!
5996    NextIterVals[PN] = NextPHI;
5997
5998    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5999
6000    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6001    // cease to be able to evaluate one of them or if they stop evolving,
6002    // because that doesn't necessarily prevent us from computing PN.
6003    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6004    for (const auto &I : CurrentIterVals) {
6005      PHINode *PHI = dyn_cast<PHINode>(I.first);
6006      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6007      PHIsToCompute.emplace_back(PHI, I.second);
6008    }
6009    // We use two distinct loops because EvaluateExpression may invalidate any
6010    // iterators into CurrentIterVals.
6011    for (const auto &I : PHIsToCompute) {
6012      PHINode *PHI = I.first;
6013      Constant *&NextPHI = NextIterVals[PHI];
6014      if (!NextPHI) {   // Not already computed.
6015        Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6016        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6017      }
6018      if (NextPHI != I.second)
6019        StoppedEvolving = false;
6020    }
6021
6022    // If all entries in CurrentIterVals == NextIterVals then we can stop
6023    // iterating, the loop can't continue to change.
6024    if (StoppedEvolving)
6025      return RetVal = CurrentIterVals[PN];
6026
6027    CurrentIterVals.swap(NextIterVals);
6028  }
6029}
6030
6031const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6032                                                          Value *Cond,
6033                                                          bool ExitWhen) {
6034  PHINode *PN = getConstantEvolvingPHI(Cond, L);
6035  if (!PN) return getCouldNotCompute();
6036
6037  // If the loop is canonicalized, the PHI will have exactly two entries.
6038  // That's the only form we support here.
6039  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6040
6041  DenseMap<Instruction *, Constant *> CurrentIterVals;
6042  BasicBlock *Header = L->getHeader();
6043  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6044
6045  BasicBlock *Latch = L->getLoopLatch();
6046  assert(Latch && "Should follow from NumIncomingValues == 2!");
6047
6048  for (auto &I : *Header) {
6049    PHINode *PHI = dyn_cast<PHINode>(&I);
6050    if (!PHI)
6051      break;
6052    auto *StartCST = getOtherIncomingValue(PHI, Latch);
6053    if (!StartCST) continue;
6054    CurrentIterVals[PHI] = StartCST;
6055  }
6056  if (!CurrentIterVals.count(PN))
6057    return getCouldNotCompute();
6058
6059  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6060  // the loop symbolically to determine when the condition gets a value of
6061  // "ExitWhen".
6062  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6063  const DataLayout &DL = getDataLayout();
6064  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6065    auto *CondVal = dyn_cast_or_null<ConstantInt>(
6066        EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6067
6068    // Couldn't symbolically evaluate.
6069    if (!CondVal) return getCouldNotCompute();
6070
6071    if (CondVal->getValue() == uint64_t(ExitWhen)) {
6072      ++NumBruteForceTripCountsComputed;
6073      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6074    }
6075
6076    // Update all the PHI nodes for the next iteration.
6077    DenseMap<Instruction *, Constant *> NextIterVals;
6078
6079    // Create a list of which PHIs we need to compute. We want to do this before
6080    // calling EvaluateExpression on them because that may invalidate iterators
6081    // into CurrentIterVals.
6082    SmallVector<PHINode *, 8> PHIsToCompute;
6083    for (const auto &I : CurrentIterVals) {
6084      PHINode *PHI = dyn_cast<PHINode>(I.first);
6085      if (!PHI || PHI->getParent() != Header) continue;
6086      PHIsToCompute.push_back(PHI);
6087    }
6088    for (PHINode *PHI : PHIsToCompute) {
6089      Constant *&NextPHI = NextIterVals[PHI];
6090      if (NextPHI) continue;    // Already computed!
6091
6092      Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6093      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6094    }
6095    CurrentIterVals.swap(NextIterVals);
6096  }
6097
6098  // Too many iterations were needed to evaluate.
6099  return getCouldNotCompute();
6100}
6101
6102/// getSCEVAtScope - Return a SCEV expression for the specified value
6103/// at the specified scope in the program.  The L value specifies a loop
6104/// nest to evaluate the expression at, where null is the top-level or a
6105/// specified loop is immediately inside of the loop.
6106///
6107/// This method can be used to compute the exit value for a variable defined
6108/// in a loop by querying what the value will hold in the parent loop.
6109///
6110/// In the case that a relevant loop exit value cannot be computed, the
6111/// original value V is returned.
6112const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6113  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6114      ValuesAtScopes[V];
6115  // Check to see if we've folded this expression at this loop before.
6116  for (auto &LS : Values)
6117    if (LS.first == L)
6118      return LS.second ? LS.second : V;
6119
6120  Values.emplace_back(L, nullptr);
6121
6122  // Otherwise compute it.
6123  const SCEV *C = computeSCEVAtScope(V, L);
6124  for (auto &LS : reverse(ValuesAtScopes[V]))
6125    if (LS.first == L) {
6126      LS.second = C;
6127      break;
6128    }
6129  return C;
6130}
6131
6132/// This builds up a Constant using the ConstantExpr interface.  That way, we
6133/// will return Constants for objects which aren't represented by a
6134/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6135/// Returns NULL if the SCEV isn't representable as a Constant.
6136static Constant *BuildConstantFromSCEV(const SCEV *V) {
6137  switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6138    case scCouldNotCompute:
6139    case scAddRecExpr:
6140      break;
6141    case scConstant:
6142      return cast<SCEVConstant>(V)->getValue();
6143    case scUnknown:
6144      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6145    case scSignExtend: {
6146      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6147      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6148        return ConstantExpr::getSExt(CastOp, SS->getType());
6149      break;
6150    }
6151    case scZeroExtend: {
6152      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6153      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6154        return ConstantExpr::getZExt(CastOp, SZ->getType());
6155      break;
6156    }
6157    case scTruncate: {
6158      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6159      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6160        return ConstantExpr::getTrunc(CastOp, ST->getType());
6161      break;
6162    }
6163    case scAddExpr: {
6164      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6165      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6166        if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6167          unsigned AS = PTy->getAddressSpace();
6168          Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6169          C = ConstantExpr::getBitCast(C, DestPtrTy);
6170        }
6171        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6172          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6173          if (!C2) return nullptr;
6174
6175          // First pointer!
6176          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6177            unsigned AS = C2->getType()->getPointerAddressSpace();
6178            std::swap(C, C2);
6179            Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6180            // The offsets have been converted to bytes.  We can add bytes to an
6181            // i8* by GEP with the byte count in the first index.
6182            C = ConstantExpr::getBitCast(C, DestPtrTy);
6183          }
6184
6185          // Don't bother trying to sum two pointers. We probably can't
6186          // statically compute a load that results from it anyway.
6187          if (C2->getType()->isPointerTy())
6188            return nullptr;
6189
6190          if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6191            if (PTy->getElementType()->isStructTy())
6192              C2 = ConstantExpr::getIntegerCast(
6193                  C2, Type::getInt32Ty(C->getContext()), true);
6194            C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6195          } else
6196            C = ConstantExpr::getAdd(C, C2);
6197        }
6198        return C;
6199      }
6200      break;
6201    }
6202    case scMulExpr: {
6203      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6204      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6205        // Don't bother with pointers at all.
6206        if (C->getType()->isPointerTy()) return nullptr;
6207        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6208          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6209          if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6210          C = ConstantExpr::getMul(C, C2);
6211        }
6212        return C;
6213      }
6214      break;
6215    }
6216    case scUDivExpr: {
6217      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6218      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6219        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6220          if (LHS->getType() == RHS->getType())
6221            return ConstantExpr::getUDiv(LHS, RHS);
6222      break;
6223    }
6224    case scSMaxExpr:
6225    case scUMaxExpr:
6226      break; // TODO: smax, umax.
6227  }
6228  return nullptr;
6229}
6230
6231const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6232  if (isa<SCEVConstant>(V)) return V;
6233
6234  // If this instruction is evolved from a constant-evolving PHI, compute the
6235  // exit value from the loop without using SCEVs.
6236  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6237    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6238      const Loop *LI = this->LI[I->getParent()];
6239      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6240        if (PHINode *PN = dyn_cast<PHINode>(I))
6241          if (PN->getParent() == LI->getHeader()) {
6242            // Okay, there is no closed form solution for the PHI node.  Check
6243            // to see if the loop that contains it has a known backedge-taken
6244            // count.  If so, we may be able to force computation of the exit
6245            // value.
6246            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6247            if (const SCEVConstant *BTCC =
6248                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6249              // Okay, we know how many times the containing loop executes.  If
6250              // this is a constant evolving PHI node, get the final value at
6251              // the specified iteration number.
6252              Constant *RV =
6253                  getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6254              if (RV) return getSCEV(RV);
6255            }
6256          }
6257
6258      // Okay, this is an expression that we cannot symbolically evaluate
6259      // into a SCEV.  Check to see if it's possible to symbolically evaluate
6260      // the arguments into constants, and if so, try to constant propagate the
6261      // result.  This is particularly useful for computing loop exit values.
6262      if (CanConstantFold(I)) {
6263        SmallVector<Constant *, 4> Operands;
6264        bool MadeImprovement = false;
6265        for (Value *Op : I->operands()) {
6266          if (Constant *C = dyn_cast<Constant>(Op)) {
6267            Operands.push_back(C);
6268            continue;
6269          }
6270
6271          // If any of the operands is non-constant and if they are
6272          // non-integer and non-pointer, don't even try to analyze them
6273          // with scev techniques.
6274          if (!isSCEVable(Op->getType()))
6275            return V;
6276
6277          const SCEV *OrigV = getSCEV(Op);
6278          const SCEV *OpV = getSCEVAtScope(OrigV, L);
6279          MadeImprovement |= OrigV != OpV;
6280
6281          Constant *C = BuildConstantFromSCEV(OpV);
6282          if (!C) return V;
6283          if (C->getType() != Op->getType())
6284            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6285                                                              Op->getType(),
6286                                                              false),
6287                                      C, Op->getType());
6288          Operands.push_back(C);
6289        }
6290
6291        // Check to see if getSCEVAtScope actually made an improvement.
6292        if (MadeImprovement) {
6293          Constant *C = nullptr;
6294          const DataLayout &DL = getDataLayout();
6295          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6296            C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6297                                                Operands[1], DL, &TLI);
6298          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6299            if (!LI->isVolatile())
6300              C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
6301          } else
6302            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
6303                                         DL, &TLI);
6304          if (!C) return V;
6305          return getSCEV(C);
6306        }
6307      }
6308    }
6309
6310    // This is some other type of SCEVUnknown, just return it.
6311    return V;
6312  }
6313
6314  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6315    // Avoid performing the look-up in the common case where the specified
6316    // expression has no loop-variant portions.
6317    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6318      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6319      if (OpAtScope != Comm->getOperand(i)) {
6320        // Okay, at least one of these operands is loop variant but might be
6321        // foldable.  Build a new instance of the folded commutative expression.
6322        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6323                                            Comm->op_begin()+i);
6324        NewOps.push_back(OpAtScope);
6325
6326        for (++i; i != e; ++i) {
6327          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6328          NewOps.push_back(OpAtScope);
6329        }
6330        if (isa<SCEVAddExpr>(Comm))
6331          return getAddExpr(NewOps);
6332        if (isa<SCEVMulExpr>(Comm))
6333          return getMulExpr(NewOps);
6334        if (isa<SCEVSMaxExpr>(Comm))
6335          return getSMaxExpr(NewOps);
6336        if (isa<SCEVUMaxExpr>(Comm))
6337          return getUMaxExpr(NewOps);
6338        llvm_unreachable("Unknown commutative SCEV type!");
6339      }
6340    }
6341    // If we got here, all operands are loop invariant.
6342    return Comm;
6343  }
6344
6345  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6346    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6347    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6348    if (LHS == Div->getLHS() && RHS == Div->getRHS())
6349      return Div;   // must be loop invariant
6350    return getUDivExpr(LHS, RHS);
6351  }
6352
6353  // If this is a loop recurrence for a loop that does not contain L, then we
6354  // are dealing with the final value computed by the loop.
6355  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6356    // First, attempt to evaluate each operand.
6357    // Avoid performing the look-up in the common case where the specified
6358    // expression has no loop-variant portions.
6359    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6360      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6361      if (OpAtScope == AddRec->getOperand(i))
6362        continue;
6363
6364      // Okay, at least one of these operands is loop variant but might be
6365      // foldable.  Build a new instance of the folded commutative expression.
6366      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6367                                          AddRec->op_begin()+i);
6368      NewOps.push_back(OpAtScope);
6369      for (++i; i != e; ++i)
6370        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6371
6372      const SCEV *FoldedRec =
6373        getAddRecExpr(NewOps, AddRec->getLoop(),
6374                      AddRec->getNoWrapFlags(SCEV::FlagNW));
6375      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6376      // The addrec may be folded to a nonrecurrence, for example, if the
6377      // induction variable is multiplied by zero after constant folding. Go
6378      // ahead and return the folded value.
6379      if (!AddRec)
6380        return FoldedRec;
6381      break;
6382    }
6383
6384    // If the scope is outside the addrec's loop, evaluate it by using the
6385    // loop exit value of the addrec.
6386    if (!AddRec->getLoop()->contains(L)) {
6387      // To evaluate this recurrence, we need to know how many times the AddRec
6388      // loop iterates.  Compute this now.
6389      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6390      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6391
6392      // Then, evaluate the AddRec.
6393      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6394    }
6395
6396    return AddRec;
6397  }
6398
6399  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6400    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6401    if (Op == Cast->getOperand())
6402      return Cast;  // must be loop invariant
6403    return getZeroExtendExpr(Op, Cast->getType());
6404  }
6405
6406  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6407    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6408    if (Op == Cast->getOperand())
6409      return Cast;  // must be loop invariant
6410    return getSignExtendExpr(Op, Cast->getType());
6411  }
6412
6413  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6414    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6415    if (Op == Cast->getOperand())
6416      return Cast;  // must be loop invariant
6417    return getTruncateExpr(Op, Cast->getType());
6418  }
6419
6420  llvm_unreachable("Unknown SCEV type!");
6421}
6422
6423/// getSCEVAtScope - This is a convenience function which does
6424/// getSCEVAtScope(getSCEV(V), L).
6425const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6426  return getSCEVAtScope(getSCEV(V), L);
6427}
6428
6429/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6430/// following equation:
6431///
6432///     A * X = B (mod N)
6433///
6434/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6435/// A and B isn't important.
6436///
6437/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6438static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6439                                               ScalarEvolution &SE) {
6440  uint32_t BW = A.getBitWidth();
6441  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6442  assert(A != 0 && "A must be non-zero.");
6443
6444  // 1. D = gcd(A, N)
6445  //
6446  // The gcd of A and N may have only one prime factor: 2. The number of
6447  // trailing zeros in A is its multiplicity
6448  uint32_t Mult2 = A.countTrailingZeros();
6449  // D = 2^Mult2
6450
6451  // 2. Check if B is divisible by D.
6452  //
6453  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6454  // is not less than multiplicity of this prime factor for D.
6455  if (B.countTrailingZeros() < Mult2)
6456    return SE.getCouldNotCompute();
6457
6458  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6459  // modulo (N / D).
6460  //
6461  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6462  // bit width during computations.
6463  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6464  APInt Mod(BW + 1, 0);
6465  Mod.setBit(BW - Mult2);  // Mod = N / D
6466  APInt I = AD.multiplicativeInverse(Mod);
6467
6468  // 4. Compute the minimum unsigned root of the equation:
6469  // I * (B / D) mod (N / D)
6470  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6471
6472  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6473  // bits.
6474  return SE.getConstant(Result.trunc(BW));
6475}
6476
6477/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6478/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6479/// might be the same) or two SCEVCouldNotCompute objects.
6480///
6481static std::pair<const SCEV *,const SCEV *>
6482SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6483  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6484  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6485  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6486  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6487
6488  // We currently can only solve this if the coefficients are constants.
6489  if (!LC || !MC || !NC) {
6490    const SCEV *CNC = SE.getCouldNotCompute();
6491    return std::make_pair(CNC, CNC);
6492  }
6493
6494  uint32_t BitWidth = LC->getAPInt().getBitWidth();
6495  const APInt &L = LC->getAPInt();
6496  const APInt &M = MC->getAPInt();
6497  const APInt &N = NC->getAPInt();
6498  APInt Two(BitWidth, 2);
6499  APInt Four(BitWidth, 4);
6500
6501  {
6502    using namespace APIntOps;
6503    const APInt& C = L;
6504    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6505    // The B coefficient is M-N/2
6506    APInt B(M);
6507    B -= sdiv(N,Two);
6508
6509    // The A coefficient is N/2
6510    APInt A(N.sdiv(Two));
6511
6512    // Compute the B^2-4ac term.
6513    APInt SqrtTerm(B);
6514    SqrtTerm *= B;
6515    SqrtTerm -= Four * (A * C);
6516
6517    if (SqrtTerm.isNegative()) {
6518      // The loop is provably infinite.
6519      const SCEV *CNC = SE.getCouldNotCompute();
6520      return std::make_pair(CNC, CNC);
6521    }
6522
6523    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6524    // integer value or else APInt::sqrt() will assert.
6525    APInt SqrtVal(SqrtTerm.sqrt());
6526
6527    // Compute the two solutions for the quadratic formula.
6528    // The divisions must be performed as signed divisions.
6529    APInt NegB(-B);
6530    APInt TwoA(A << 1);
6531    if (TwoA.isMinValue()) {
6532      const SCEV *CNC = SE.getCouldNotCompute();
6533      return std::make_pair(CNC, CNC);
6534    }
6535
6536    LLVMContext &Context = SE.getContext();
6537
6538    ConstantInt *Solution1 =
6539      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6540    ConstantInt *Solution2 =
6541      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6542
6543    return std::make_pair(SE.getConstant(Solution1),
6544                          SE.getConstant(Solution2));
6545  } // end APIntOps namespace
6546}
6547
6548/// HowFarToZero - Return the number of times a backedge comparing the specified
6549/// value to zero will execute.  If not computable, return CouldNotCompute.
6550///
6551/// This is only used for loops with a "x != y" exit test. The exit condition is
6552/// now expressed as a single expression, V = x-y. So the exit test is
6553/// effectively V != 0.  We know and take advantage of the fact that this
6554/// expression only being used in a comparison by zero context.
6555ScalarEvolution::ExitLimit
6556ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6557  // If the value is a constant
6558  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6559    // If the value is already zero, the branch will execute zero times.
6560    if (C->getValue()->isZero()) return C;
6561    return getCouldNotCompute();  // Otherwise it will loop infinitely.
6562  }
6563
6564  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6565  if (!AddRec || AddRec->getLoop() != L)
6566    return getCouldNotCompute();
6567
6568  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6569  // the quadratic equation to solve it.
6570  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6571    std::pair<const SCEV *,const SCEV *> Roots =
6572      SolveQuadraticEquation(AddRec, *this);
6573    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6574    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6575    if (R1 && R2) {
6576      // Pick the smallest positive root value.
6577      if (ConstantInt *CB =
6578          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6579                                                      R1->getValue(),
6580                                                      R2->getValue()))) {
6581        if (!CB->getZExtValue())
6582          std::swap(R1, R2);   // R1 is the minimum root now.
6583
6584        // We can only use this value if the chrec ends up with an exact zero
6585        // value at this index.  When solving for "X*X != 5", for example, we
6586        // should not accept a root of 2.
6587        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6588        if (Val->isZero())
6589          return R1;  // We found a quadratic root!
6590      }
6591    }
6592    return getCouldNotCompute();
6593  }
6594
6595  // Otherwise we can only handle this if it is affine.
6596  if (!AddRec->isAffine())
6597    return getCouldNotCompute();
6598
6599  // If this is an affine expression, the execution count of this branch is
6600  // the minimum unsigned root of the following equation:
6601  //
6602  //     Start + Step*N = 0 (mod 2^BW)
6603  //
6604  // equivalent to:
6605  //
6606  //             Step*N = -Start (mod 2^BW)
6607  //
6608  // where BW is the common bit width of Start and Step.
6609
6610  // Get the initial value for the loop.
6611  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6612  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6613
6614  // For now we handle only constant steps.
6615  //
6616  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6617  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6618  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6619  // We have not yet seen any such cases.
6620  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6621  if (!StepC || StepC->getValue()->equalsInt(0))
6622    return getCouldNotCompute();
6623
6624  // For positive steps (counting up until unsigned overflow):
6625  //   N = -Start/Step (as unsigned)
6626  // For negative steps (counting down to zero):
6627  //   N = Start/-Step
6628  // First compute the unsigned distance from zero in the direction of Step.
6629  bool CountDown = StepC->getAPInt().isNegative();
6630  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6631
6632  // Handle unitary steps, which cannot wraparound.
6633  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6634  //   N = Distance (as unsigned)
6635  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6636    ConstantRange CR = getUnsignedRange(Start);
6637    const SCEV *MaxBECount;
6638    if (!CountDown && CR.getUnsignedMin().isMinValue())
6639      // When counting up, the worst starting value is 1, not 0.
6640      MaxBECount = CR.getUnsignedMax().isMinValue()
6641        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6642        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6643    else
6644      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6645                                         : -CR.getUnsignedMin());
6646    return ExitLimit(Distance, MaxBECount);
6647  }
6648
6649  // As a special case, handle the instance where Step is a positive power of
6650  // two. In this case, determining whether Step divides Distance evenly can be
6651  // done by counting and comparing the number of trailing zeros of Step and
6652  // Distance.
6653  if (!CountDown) {
6654    const APInt &StepV = StepC->getAPInt();
6655    // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6656    // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6657    // case is not handled as this code is guarded by !CountDown.
6658    if (StepV.isPowerOf2() &&
6659        GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6660      // Here we've constrained the equation to be of the form
6661      //
6662      //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
6663      //
6664      // where we're operating on a W bit wide integer domain and k is
6665      // non-negative.  The smallest unsigned solution for X is the trip count.
6666      //
6667      // (0) is equivalent to:
6668      //
6669      //      2^(N + k) * Distance' - 2^N * X = L * 2^W
6670      // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6671      // <=>  2^k * Distance' - X = L * 2^(W - N)
6672      // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
6673      //
6674      // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6675      // by 2^(W - N).
6676      //
6677      // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
6678      //
6679      // E.g. say we're solving
6680      //
6681      //   2 * Val = 2 * X  (in i8)   ... (3)
6682      //
6683      // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6684      //
6685      // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6686      // necessarily the smallest unsigned value of X that satisfies (3).
6687      // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6688      // is i8 1, not i8 -127
6689
6690      const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6691
6692      // Since SCEV does not have a URem node, we construct one using a truncate
6693      // and a zero extend.
6694
6695      unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6696      auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6697      auto *WideTy = Distance->getType();
6698
6699      return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6700    }
6701  }
6702
6703  // If the condition controls loop exit (the loop exits only if the expression
6704  // is true) and the addition is no-wrap we can use unsigned divide to
6705  // compute the backedge count.  In this case, the step may not divide the
6706  // distance, but we don't care because if the condition is "missed" the loop
6707  // will have undefined behavior due to wrapping.
6708  if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6709    const SCEV *Exact =
6710        getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6711    return ExitLimit(Exact, Exact);
6712  }
6713
6714  // Then, try to solve the above equation provided that Start is constant.
6715  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6716    return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
6717                                        *this);
6718  return getCouldNotCompute();
6719}
6720
6721/// HowFarToNonZero - Return the number of times a backedge checking the
6722/// specified value for nonzero will execute.  If not computable, return
6723/// CouldNotCompute
6724ScalarEvolution::ExitLimit
6725ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6726  // Loops that look like: while (X == 0) are very strange indeed.  We don't
6727  // handle them yet except for the trivial case.  This could be expanded in the
6728  // future as needed.
6729
6730  // If the value is a constant, check to see if it is known to be non-zero
6731  // already.  If so, the backedge will execute zero times.
6732  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6733    if (!C->getValue()->isNullValue())
6734      return getZero(C->getType());
6735    return getCouldNotCompute();  // Otherwise it will loop infinitely.
6736  }
6737
6738  // We could implement others, but I really doubt anyone writes loops like
6739  // this, and if they did, they would already be constant folded.
6740  return getCouldNotCompute();
6741}
6742
6743/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6744/// (which may not be an immediate predecessor) which has exactly one
6745/// successor from which BB is reachable, or null if no such block is
6746/// found.
6747///
6748std::pair<BasicBlock *, BasicBlock *>
6749ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6750  // If the block has a unique predecessor, then there is no path from the
6751  // predecessor to the block that does not go through the direct edge
6752  // from the predecessor to the block.
6753  if (BasicBlock *Pred = BB->getSinglePredecessor())
6754    return std::make_pair(Pred, BB);
6755
6756  // A loop's header is defined to be a block that dominates the loop.
6757  // If the header has a unique predecessor outside the loop, it must be
6758  // a block that has exactly one successor that can reach the loop.
6759  if (Loop *L = LI.getLoopFor(BB))
6760    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6761
6762  return std::pair<BasicBlock *, BasicBlock *>();
6763}
6764
6765/// HasSameValue - SCEV structural equivalence is usually sufficient for
6766/// testing whether two expressions are equal, however for the purposes of
6767/// looking for a condition guarding a loop, it can be useful to be a little
6768/// more general, since a front-end may have replicated the controlling
6769/// expression.
6770///
6771static bool HasSameValue(const SCEV *A, const SCEV *B) {
6772  // Quick check to see if they are the same SCEV.
6773  if (A == B) return true;
6774
6775  auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6776    // Not all instructions that are "identical" compute the same value.  For
6777    // instance, two distinct alloca instructions allocating the same type are
6778    // identical and do not read memory; but compute distinct values.
6779    return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6780  };
6781
6782  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6783  // two different instructions with the same value. Check for this case.
6784  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6785    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6786      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6787        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6788          if (ComputesEqualValues(AI, BI))
6789            return true;
6790
6791  // Otherwise assume they may have a different value.
6792  return false;
6793}
6794
6795/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6796/// predicate Pred. Return true iff any changes were made.
6797///
6798bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6799                                           const SCEV *&LHS, const SCEV *&RHS,
6800                                           unsigned Depth) {
6801  bool Changed = false;
6802
6803  // If we hit the max recursion limit bail out.
6804  if (Depth >= 3)
6805    return false;
6806
6807  // Canonicalize a constant to the right side.
6808  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6809    // Check for both operands constant.
6810    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6811      if (ConstantExpr::getICmp(Pred,
6812                                LHSC->getValue(),
6813                                RHSC->getValue())->isNullValue())
6814        goto trivially_false;
6815      else
6816        goto trivially_true;
6817    }
6818    // Otherwise swap the operands to put the constant on the right.
6819    std::swap(LHS, RHS);
6820    Pred = ICmpInst::getSwappedPredicate(Pred);
6821    Changed = true;
6822  }
6823
6824  // If we're comparing an addrec with a value which is loop-invariant in the
6825  // addrec's loop, put the addrec on the left. Also make a dominance check,
6826  // as both operands could be addrecs loop-invariant in each other's loop.
6827  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6828    const Loop *L = AR->getLoop();
6829    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6830      std::swap(LHS, RHS);
6831      Pred = ICmpInst::getSwappedPredicate(Pred);
6832      Changed = true;
6833    }
6834  }
6835
6836  // If there's a constant operand, canonicalize comparisons with boundary
6837  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6838  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6839    const APInt &RA = RC->getAPInt();
6840    switch (Pred) {
6841    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6842    case ICmpInst::ICMP_EQ:
6843    case ICmpInst::ICMP_NE:
6844      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6845      if (!RA)
6846        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6847          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6848            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6849                ME->getOperand(0)->isAllOnesValue()) {
6850              RHS = AE->getOperand(1);
6851              LHS = ME->getOperand(1);
6852              Changed = true;
6853            }
6854      break;
6855    case ICmpInst::ICMP_UGE:
6856      if ((RA - 1).isMinValue()) {
6857        Pred = ICmpInst::ICMP_NE;
6858        RHS = getConstant(RA - 1);
6859        Changed = true;
6860        break;
6861      }
6862      if (RA.isMaxValue()) {
6863        Pred = ICmpInst::ICMP_EQ;
6864        Changed = true;
6865        break;
6866      }
6867      if (RA.isMinValue()) goto trivially_true;
6868
6869      Pred = ICmpInst::ICMP_UGT;
6870      RHS = getConstant(RA - 1);
6871      Changed = true;
6872      break;
6873    case ICmpInst::ICMP_ULE:
6874      if ((RA + 1).isMaxValue()) {
6875        Pred = ICmpInst::ICMP_NE;
6876        RHS = getConstant(RA + 1);
6877        Changed = true;
6878        break;
6879      }
6880      if (RA.isMinValue()) {
6881        Pred = ICmpInst::ICMP_EQ;
6882        Changed = true;
6883        break;
6884      }
6885      if (RA.isMaxValue()) goto trivially_true;
6886
6887      Pred = ICmpInst::ICMP_ULT;
6888      RHS = getConstant(RA + 1);
6889      Changed = true;
6890      break;
6891    case ICmpInst::ICMP_SGE:
6892      if ((RA - 1).isMinSignedValue()) {
6893        Pred = ICmpInst::ICMP_NE;
6894        RHS = getConstant(RA - 1);
6895        Changed = true;
6896        break;
6897      }
6898      if (RA.isMaxSignedValue()) {
6899        Pred = ICmpInst::ICMP_EQ;
6900        Changed = true;
6901        break;
6902      }
6903      if (RA.isMinSignedValue()) goto trivially_true;
6904
6905      Pred = ICmpInst::ICMP_SGT;
6906      RHS = getConstant(RA - 1);
6907      Changed = true;
6908      break;
6909    case ICmpInst::ICMP_SLE:
6910      if ((RA + 1).isMaxSignedValue()) {
6911        Pred = ICmpInst::ICMP_NE;
6912        RHS = getConstant(RA + 1);
6913        Changed = true;
6914        break;
6915      }
6916      if (RA.isMinSignedValue()) {
6917        Pred = ICmpInst::ICMP_EQ;
6918        Changed = true;
6919        break;
6920      }
6921      if (RA.isMaxSignedValue()) goto trivially_true;
6922
6923      Pred = ICmpInst::ICMP_SLT;
6924      RHS = getConstant(RA + 1);
6925      Changed = true;
6926      break;
6927    case ICmpInst::ICMP_UGT:
6928      if (RA.isMinValue()) {
6929        Pred = ICmpInst::ICMP_NE;
6930        Changed = true;
6931        break;
6932      }
6933      if ((RA + 1).isMaxValue()) {
6934        Pred = ICmpInst::ICMP_EQ;
6935        RHS = getConstant(RA + 1);
6936        Changed = true;
6937        break;
6938      }
6939      if (RA.isMaxValue()) goto trivially_false;
6940      break;
6941    case ICmpInst::ICMP_ULT:
6942      if (RA.isMaxValue()) {
6943        Pred = ICmpInst::ICMP_NE;
6944        Changed = true;
6945        break;
6946      }
6947      if ((RA - 1).isMinValue()) {
6948        Pred = ICmpInst::ICMP_EQ;
6949        RHS = getConstant(RA - 1);
6950        Changed = true;
6951        break;
6952      }
6953      if (RA.isMinValue()) goto trivially_false;
6954      break;
6955    case ICmpInst::ICMP_SGT:
6956      if (RA.isMinSignedValue()) {
6957        Pred = ICmpInst::ICMP_NE;
6958        Changed = true;
6959        break;
6960      }
6961      if ((RA + 1).isMaxSignedValue()) {
6962        Pred = ICmpInst::ICMP_EQ;
6963        RHS = getConstant(RA + 1);
6964        Changed = true;
6965        break;
6966      }
6967      if (RA.isMaxSignedValue()) goto trivially_false;
6968      break;
6969    case ICmpInst::ICMP_SLT:
6970      if (RA.isMaxSignedValue()) {
6971        Pred = ICmpInst::ICMP_NE;
6972        Changed = true;
6973        break;
6974      }
6975      if ((RA - 1).isMinSignedValue()) {
6976       Pred = ICmpInst::ICMP_EQ;
6977       RHS = getConstant(RA - 1);
6978        Changed = true;
6979       break;
6980      }
6981      if (RA.isMinSignedValue()) goto trivially_false;
6982      break;
6983    }
6984  }
6985
6986  // Check for obvious equality.
6987  if (HasSameValue(LHS, RHS)) {
6988    if (ICmpInst::isTrueWhenEqual(Pred))
6989      goto trivially_true;
6990    if (ICmpInst::isFalseWhenEqual(Pred))
6991      goto trivially_false;
6992  }
6993
6994  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6995  // adding or subtracting 1 from one of the operands.
6996  switch (Pred) {
6997  case ICmpInst::ICMP_SLE:
6998    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6999      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7000                       SCEV::FlagNSW);
7001      Pred = ICmpInst::ICMP_SLT;
7002      Changed = true;
7003    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7004      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7005                       SCEV::FlagNSW);
7006      Pred = ICmpInst::ICMP_SLT;
7007      Changed = true;
7008    }
7009    break;
7010  case ICmpInst::ICMP_SGE:
7011    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7012      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7013                       SCEV::FlagNSW);
7014      Pred = ICmpInst::ICMP_SGT;
7015      Changed = true;
7016    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7017      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7018                       SCEV::FlagNSW);
7019      Pred = ICmpInst::ICMP_SGT;
7020      Changed = true;
7021    }
7022    break;
7023  case ICmpInst::ICMP_ULE:
7024    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7025      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7026                       SCEV::FlagNUW);
7027      Pred = ICmpInst::ICMP_ULT;
7028      Changed = true;
7029    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7030      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7031      Pred = ICmpInst::ICMP_ULT;
7032      Changed = true;
7033    }
7034    break;
7035  case ICmpInst::ICMP_UGE:
7036    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7037      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7038      Pred = ICmpInst::ICMP_UGT;
7039      Changed = true;
7040    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7041      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7042                       SCEV::FlagNUW);
7043      Pred = ICmpInst::ICMP_UGT;
7044      Changed = true;
7045    }
7046    break;
7047  default:
7048    break;
7049  }
7050
7051  // TODO: More simplifications are possible here.
7052
7053  // Recursively simplify until we either hit a recursion limit or nothing
7054  // changes.
7055  if (Changed)
7056    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7057
7058  return Changed;
7059
7060trivially_true:
7061  // Return 0 == 0.
7062  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7063  Pred = ICmpInst::ICMP_EQ;
7064  return true;
7065
7066trivially_false:
7067  // Return 0 != 0.
7068  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7069  Pred = ICmpInst::ICMP_NE;
7070  return true;
7071}
7072
7073bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7074  return getSignedRange(S).getSignedMax().isNegative();
7075}
7076
7077bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7078  return getSignedRange(S).getSignedMin().isStrictlyPositive();
7079}
7080
7081bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7082  return !getSignedRange(S).getSignedMin().isNegative();
7083}
7084
7085bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7086  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7087}
7088
7089bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7090  return isKnownNegative(S) || isKnownPositive(S);
7091}
7092
7093bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7094                                       const SCEV *LHS, const SCEV *RHS) {
7095  // Canonicalize the inputs first.
7096  (void)SimplifyICmpOperands(Pred, LHS, RHS);
7097
7098  // If LHS or RHS is an addrec, check to see if the condition is true in
7099  // every iteration of the loop.
7100  // If LHS and RHS are both addrec, both conditions must be true in
7101  // every iteration of the loop.
7102  const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7103  const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7104  bool LeftGuarded = false;
7105  bool RightGuarded = false;
7106  if (LAR) {
7107    const Loop *L = LAR->getLoop();
7108    if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7109        isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7110      if (!RAR) return true;
7111      LeftGuarded = true;
7112    }
7113  }
7114  if (RAR) {
7115    const Loop *L = RAR->getLoop();
7116    if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7117        isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7118      if (!LAR) return true;
7119      RightGuarded = true;
7120    }
7121  }
7122  if (LeftGuarded && RightGuarded)
7123    return true;
7124
7125  if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7126    return true;
7127
7128  // Otherwise see what can be done with known constant ranges.
7129  return isKnownPredicateWithRanges(Pred, LHS, RHS);
7130}
7131
7132bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7133                                           ICmpInst::Predicate Pred,
7134                                           bool &Increasing) {
7135  bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7136
7137#ifndef NDEBUG
7138  // Verify an invariant: inverting the predicate should turn a monotonically
7139  // increasing change to a monotonically decreasing one, and vice versa.
7140  bool IncreasingSwapped;
7141  bool ResultSwapped = isMonotonicPredicateImpl(
7142      LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7143
7144  assert(Result == ResultSwapped && "should be able to analyze both!");
7145  if (ResultSwapped)
7146    assert(Increasing == !IncreasingSwapped &&
7147           "monotonicity should flip as we flip the predicate");
7148#endif
7149
7150  return Result;
7151}
7152
7153bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7154                                               ICmpInst::Predicate Pred,
7155                                               bool &Increasing) {
7156
7157  // A zero step value for LHS means the induction variable is essentially a
7158  // loop invariant value. We don't really depend on the predicate actually
7159  // flipping from false to true (for increasing predicates, and the other way
7160  // around for decreasing predicates), all we care about is that *if* the
7161  // predicate changes then it only changes from false to true.
7162  //
7163  // A zero step value in itself is not very useful, but there may be places
7164  // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7165  // as general as possible.
7166
7167  switch (Pred) {
7168  default:
7169    return false; // Conservative answer
7170
7171  case ICmpInst::ICMP_UGT:
7172  case ICmpInst::ICMP_UGE:
7173  case ICmpInst::ICMP_ULT:
7174  case ICmpInst::ICMP_ULE:
7175    if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7176      return false;
7177
7178    Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7179    return true;
7180
7181  case ICmpInst::ICMP_SGT:
7182  case ICmpInst::ICMP_SGE:
7183  case ICmpInst::ICMP_SLT:
7184  case ICmpInst::ICMP_SLE: {
7185    if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7186      return false;
7187
7188    const SCEV *Step = LHS->getStepRecurrence(*this);
7189
7190    if (isKnownNonNegative(Step)) {
7191      Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7192      return true;
7193    }
7194
7195    if (isKnownNonPositive(Step)) {
7196      Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7197      return true;
7198    }
7199
7200    return false;
7201  }
7202
7203  }
7204
7205  llvm_unreachable("switch has default clause!");
7206}
7207
7208bool ScalarEvolution::isLoopInvariantPredicate(
7209    ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7210    ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7211    const SCEV *&InvariantRHS) {
7212
7213  // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7214  if (!isLoopInvariant(RHS, L)) {
7215    if (!isLoopInvariant(LHS, L))
7216      return false;
7217
7218    std::swap(LHS, RHS);
7219    Pred = ICmpInst::getSwappedPredicate(Pred);
7220  }
7221
7222  const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7223  if (!ArLHS || ArLHS->getLoop() != L)
7224    return false;
7225
7226  bool Increasing;
7227  if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7228    return false;
7229
7230  // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7231  // true as the loop iterates, and the backedge is control dependent on
7232  // "ArLHS `Pred` RHS" == true then we can reason as follows:
7233  //
7234  //   * if the predicate was false in the first iteration then the predicate
7235  //     is never evaluated again, since the loop exits without taking the
7236  //     backedge.
7237  //   * if the predicate was true in the first iteration then it will
7238  //     continue to be true for all future iterations since it is
7239  //     monotonically increasing.
7240  //
7241  // For both the above possibilities, we can replace the loop varying
7242  // predicate with its value on the first iteration of the loop (which is
7243  // loop invariant).
7244  //
7245  // A similar reasoning applies for a monotonically decreasing predicate, by
7246  // replacing true with false and false with true in the above two bullets.
7247
7248  auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7249
7250  if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7251    return false;
7252
7253  InvariantPred = Pred;
7254  InvariantLHS = ArLHS->getStart();
7255  InvariantRHS = RHS;
7256  return true;
7257}
7258
7259bool
7260ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7261                                            const SCEV *LHS, const SCEV *RHS) {
7262  if (HasSameValue(LHS, RHS))
7263    return ICmpInst::isTrueWhenEqual(Pred);
7264
7265  // This code is split out from isKnownPredicate because it is called from
7266  // within isLoopEntryGuardedByCond.
7267  switch (Pred) {
7268  default:
7269    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7270  case ICmpInst::ICMP_SGT:
7271    std::swap(LHS, RHS);
7272  case ICmpInst::ICMP_SLT: {
7273    ConstantRange LHSRange = getSignedRange(LHS);
7274    ConstantRange RHSRange = getSignedRange(RHS);
7275    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7276      return true;
7277    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7278      return false;
7279    break;
7280  }
7281  case ICmpInst::ICMP_SGE:
7282    std::swap(LHS, RHS);
7283  case ICmpInst::ICMP_SLE: {
7284    ConstantRange LHSRange = getSignedRange(LHS);
7285    ConstantRange RHSRange = getSignedRange(RHS);
7286    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7287      return true;
7288    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7289      return false;
7290    break;
7291  }
7292  case ICmpInst::ICMP_UGT:
7293    std::swap(LHS, RHS);
7294  case ICmpInst::ICMP_ULT: {
7295    ConstantRange LHSRange = getUnsignedRange(LHS);
7296    ConstantRange RHSRange = getUnsignedRange(RHS);
7297    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7298      return true;
7299    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7300      return false;
7301    break;
7302  }
7303  case ICmpInst::ICMP_UGE:
7304    std::swap(LHS, RHS);
7305  case ICmpInst::ICMP_ULE: {
7306    ConstantRange LHSRange = getUnsignedRange(LHS);
7307    ConstantRange RHSRange = getUnsignedRange(RHS);
7308    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7309      return true;
7310    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7311      return false;
7312    break;
7313  }
7314  case ICmpInst::ICMP_NE: {
7315    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7316      return true;
7317    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7318      return true;
7319
7320    const SCEV *Diff = getMinusSCEV(LHS, RHS);
7321    if (isKnownNonZero(Diff))
7322      return true;
7323    break;
7324  }
7325  case ICmpInst::ICMP_EQ:
7326    // The check at the top of the function catches the case where
7327    // the values are known to be equal.
7328    break;
7329  }
7330  return false;
7331}
7332
7333bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7334                                                    const SCEV *LHS,
7335                                                    const SCEV *RHS) {
7336
7337  // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7338  // Return Y via OutY.
7339  auto MatchBinaryAddToConst =
7340      [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7341             SCEV::NoWrapFlags ExpectedFlags) {
7342    const SCEV *NonConstOp, *ConstOp;
7343    SCEV::NoWrapFlags FlagsPresent;
7344
7345    if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7346        !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7347      return false;
7348
7349    OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7350    return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7351  };
7352
7353  APInt C;
7354
7355  switch (Pred) {
7356  default:
7357    break;
7358
7359  case ICmpInst::ICMP_SGE:
7360    std::swap(LHS, RHS);
7361  case ICmpInst::ICMP_SLE:
7362    // X s<= (X + C)<nsw> if C >= 0
7363    if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7364      return true;
7365
7366    // (X + C)<nsw> s<= X if C <= 0
7367    if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7368        !C.isStrictlyPositive())
7369      return true;
7370    break;
7371
7372  case ICmpInst::ICMP_SGT:
7373    std::swap(LHS, RHS);
7374  case ICmpInst::ICMP_SLT:
7375    // X s< (X + C)<nsw> if C > 0
7376    if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7377        C.isStrictlyPositive())
7378      return true;
7379
7380    // (X + C)<nsw> s< X if C < 0
7381    if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7382      return true;
7383    break;
7384  }
7385
7386  return false;
7387}
7388
7389bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7390                                                   const SCEV *LHS,
7391                                                   const SCEV *RHS) {
7392  if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7393    return false;
7394
7395  // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7396  // the stack can result in exponential time complexity.
7397  SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7398
7399  // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7400  //
7401  // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7402  // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7403  // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7404  // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7405  // use isKnownPredicate later if needed.
7406  return isKnownNonNegative(RHS) &&
7407         isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7408         isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7409}
7410
7411/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7412/// protected by a conditional between LHS and RHS.  This is used to
7413/// to eliminate casts.
7414bool
7415ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7416                                             ICmpInst::Predicate Pred,
7417                                             const SCEV *LHS, const SCEV *RHS) {
7418  // Interpret a null as meaning no loop, where there is obviously no guard
7419  // (interprocedural conditions notwithstanding).
7420  if (!L) return true;
7421
7422  if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7423
7424  BasicBlock *Latch = L->getLoopLatch();
7425  if (!Latch)
7426    return false;
7427
7428  BranchInst *LoopContinuePredicate =
7429    dyn_cast<BranchInst>(Latch->getTerminator());
7430  if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7431      isImpliedCond(Pred, LHS, RHS,
7432                    LoopContinuePredicate->getCondition(),
7433                    LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7434    return true;
7435
7436  // We don't want more than one activation of the following loops on the stack
7437  // -- that can lead to O(n!) time complexity.
7438  if (WalkingBEDominatingConds)
7439    return false;
7440
7441  SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7442
7443  // See if we can exploit a trip count to prove the predicate.
7444  const auto &BETakenInfo = getBackedgeTakenInfo(L);
7445  const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7446  if (LatchBECount != getCouldNotCompute()) {
7447    // We know that Latch branches back to the loop header exactly
7448    // LatchBECount times.  This means the backdege condition at Latch is
7449    // equivalent to  "{0,+,1} u< LatchBECount".
7450    Type *Ty = LatchBECount->getType();
7451    auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7452    const SCEV *LoopCounter =
7453      getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7454    if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7455                      LatchBECount))
7456      return true;
7457  }
7458
7459  // Check conditions due to any @llvm.assume intrinsics.
7460  for (auto &AssumeVH : AC.assumptions()) {
7461    if (!AssumeVH)
7462      continue;
7463    auto *CI = cast<CallInst>(AssumeVH);
7464    if (!DT.dominates(CI, Latch->getTerminator()))
7465      continue;
7466
7467    if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7468      return true;
7469  }
7470
7471  // If the loop is not reachable from the entry block, we risk running into an
7472  // infinite loop as we walk up into the dom tree.  These loops do not matter
7473  // anyway, so we just return a conservative answer when we see them.
7474  if (!DT.isReachableFromEntry(L->getHeader()))
7475    return false;
7476
7477  for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7478       DTN != HeaderDTN; DTN = DTN->getIDom()) {
7479
7480    assert(DTN && "should reach the loop header before reaching the root!");
7481
7482    BasicBlock *BB = DTN->getBlock();
7483    BasicBlock *PBB = BB->getSinglePredecessor();
7484    if (!PBB)
7485      continue;
7486
7487    BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7488    if (!ContinuePredicate || !ContinuePredicate->isConditional())
7489      continue;
7490
7491    Value *Condition = ContinuePredicate->getCondition();
7492
7493    // If we have an edge `E` within the loop body that dominates the only
7494    // latch, the condition guarding `E` also guards the backedge.  This
7495    // reasoning works only for loops with a single latch.
7496
7497    BasicBlockEdge DominatingEdge(PBB, BB);
7498    if (DominatingEdge.isSingleEdge()) {
7499      // We're constructively (and conservatively) enumerating edges within the
7500      // loop body that dominate the latch.  The dominator tree better agree
7501      // with us on this:
7502      assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7503
7504      if (isImpliedCond(Pred, LHS, RHS, Condition,
7505                        BB != ContinuePredicate->getSuccessor(0)))
7506        return true;
7507    }
7508  }
7509
7510  return false;
7511}
7512
7513/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7514/// by a conditional between LHS and RHS.  This is used to help avoid max
7515/// expressions in loop trip counts, and to eliminate casts.
7516bool
7517ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7518                                          ICmpInst::Predicate Pred,
7519                                          const SCEV *LHS, const SCEV *RHS) {
7520  // Interpret a null as meaning no loop, where there is obviously no guard
7521  // (interprocedural conditions notwithstanding).
7522  if (!L) return false;
7523
7524  if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7525
7526  // Starting at the loop predecessor, climb up the predecessor chain, as long
7527  // as there are predecessors that can be found that have unique successors
7528  // leading to the original header.
7529  for (std::pair<BasicBlock *, BasicBlock *>
7530         Pair(L->getLoopPredecessor(), L->getHeader());
7531       Pair.first;
7532       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7533
7534    BranchInst *LoopEntryPredicate =
7535      dyn_cast<BranchInst>(Pair.first->getTerminator());
7536    if (!LoopEntryPredicate ||
7537        LoopEntryPredicate->isUnconditional())
7538      continue;
7539
7540    if (isImpliedCond(Pred, LHS, RHS,
7541                      LoopEntryPredicate->getCondition(),
7542                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
7543      return true;
7544  }
7545
7546  // Check conditions due to any @llvm.assume intrinsics.
7547  for (auto &AssumeVH : AC.assumptions()) {
7548    if (!AssumeVH)
7549      continue;
7550    auto *CI = cast<CallInst>(AssumeVH);
7551    if (!DT.dominates(CI, L->getHeader()))
7552      continue;
7553
7554    if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7555      return true;
7556  }
7557
7558  return false;
7559}
7560
7561namespace {
7562/// RAII wrapper to prevent recursive application of isImpliedCond.
7563/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7564/// currently evaluating isImpliedCond.
7565struct MarkPendingLoopPredicate {
7566  Value *Cond;
7567  DenseSet<Value*> &LoopPreds;
7568  bool Pending;
7569
7570  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7571    : Cond(C), LoopPreds(LP) {
7572    Pending = !LoopPreds.insert(Cond).second;
7573  }
7574  ~MarkPendingLoopPredicate() {
7575    if (!Pending)
7576      LoopPreds.erase(Cond);
7577  }
7578};
7579} // end anonymous namespace
7580
7581/// isImpliedCond - Test whether the condition described by Pred, LHS,
7582/// and RHS is true whenever the given Cond value evaluates to true.
7583bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7584                                    const SCEV *LHS, const SCEV *RHS,
7585                                    Value *FoundCondValue,
7586                                    bool Inverse) {
7587  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7588  if (Mark.Pending)
7589    return false;
7590
7591  // Recursively handle And and Or conditions.
7592  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7593    if (BO->getOpcode() == Instruction::And) {
7594      if (!Inverse)
7595        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7596               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7597    } else if (BO->getOpcode() == Instruction::Or) {
7598      if (Inverse)
7599        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7600               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7601    }
7602  }
7603
7604  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7605  if (!ICI) return false;
7606
7607  // Now that we found a conditional branch that dominates the loop or controls
7608  // the loop latch. Check to see if it is the comparison we are looking for.
7609  ICmpInst::Predicate FoundPred;
7610  if (Inverse)
7611    FoundPred = ICI->getInversePredicate();
7612  else
7613    FoundPred = ICI->getPredicate();
7614
7615  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7616  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7617
7618  return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7619}
7620
7621bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7622                                    const SCEV *RHS,
7623                                    ICmpInst::Predicate FoundPred,
7624                                    const SCEV *FoundLHS,
7625                                    const SCEV *FoundRHS) {
7626  // Balance the types.
7627  if (getTypeSizeInBits(LHS->getType()) <
7628      getTypeSizeInBits(FoundLHS->getType())) {
7629    if (CmpInst::isSigned(Pred)) {
7630      LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7631      RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7632    } else {
7633      LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7634      RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7635    }
7636  } else if (getTypeSizeInBits(LHS->getType()) >
7637      getTypeSizeInBits(FoundLHS->getType())) {
7638    if (CmpInst::isSigned(FoundPred)) {
7639      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7640      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7641    } else {
7642      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7643      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7644    }
7645  }
7646
7647  // Canonicalize the query to match the way instcombine will have
7648  // canonicalized the comparison.
7649  if (SimplifyICmpOperands(Pred, LHS, RHS))
7650    if (LHS == RHS)
7651      return CmpInst::isTrueWhenEqual(Pred);
7652  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7653    if (FoundLHS == FoundRHS)
7654      return CmpInst::isFalseWhenEqual(FoundPred);
7655
7656  // Check to see if we can make the LHS or RHS match.
7657  if (LHS == FoundRHS || RHS == FoundLHS) {
7658    if (isa<SCEVConstant>(RHS)) {
7659      std::swap(FoundLHS, FoundRHS);
7660      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7661    } else {
7662      std::swap(LHS, RHS);
7663      Pred = ICmpInst::getSwappedPredicate(Pred);
7664    }
7665  }
7666
7667  // Check whether the found predicate is the same as the desired predicate.
7668  if (FoundPred == Pred)
7669    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7670
7671  // Check whether swapping the found predicate makes it the same as the
7672  // desired predicate.
7673  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7674    if (isa<SCEVConstant>(RHS))
7675      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7676    else
7677      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7678                                   RHS, LHS, FoundLHS, FoundRHS);
7679  }
7680
7681  // Unsigned comparison is the same as signed comparison when both the operands
7682  // are non-negative.
7683  if (CmpInst::isUnsigned(FoundPred) &&
7684      CmpInst::getSignedPredicate(FoundPred) == Pred &&
7685      isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7686    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7687
7688  // Check if we can make progress by sharpening ranges.
7689  if (FoundPred == ICmpInst::ICMP_NE &&
7690      (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7691
7692    const SCEVConstant *C = nullptr;
7693    const SCEV *V = nullptr;
7694
7695    if (isa<SCEVConstant>(FoundLHS)) {
7696      C = cast<SCEVConstant>(FoundLHS);
7697      V = FoundRHS;
7698    } else {
7699      C = cast<SCEVConstant>(FoundRHS);
7700      V = FoundLHS;
7701    }
7702
7703    // The guarding predicate tells us that C != V. If the known range
7704    // of V is [C, t), we can sharpen the range to [C + 1, t).  The
7705    // range we consider has to correspond to same signedness as the
7706    // predicate we're interested in folding.
7707
7708    APInt Min = ICmpInst::isSigned(Pred) ?
7709        getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7710
7711    if (Min == C->getAPInt()) {
7712      // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7713      // This is true even if (Min + 1) wraps around -- in case of
7714      // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7715
7716      APInt SharperMin = Min + 1;
7717
7718      switch (Pred) {
7719        case ICmpInst::ICMP_SGE:
7720        case ICmpInst::ICMP_UGE:
7721          // We know V `Pred` SharperMin.  If this implies LHS `Pred`
7722          // RHS, we're done.
7723          if (isImpliedCondOperands(Pred, LHS, RHS, V,
7724                                    getConstant(SharperMin)))
7725            return true;
7726
7727        case ICmpInst::ICMP_SGT:
7728        case ICmpInst::ICMP_UGT:
7729          // We know from the range information that (V `Pred` Min ||
7730          // V == Min).  We know from the guarding condition that !(V
7731          // == Min).  This gives us
7732          //
7733          //       V `Pred` Min || V == Min && !(V == Min)
7734          //   =>  V `Pred` Min
7735          //
7736          // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7737
7738          if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7739            return true;
7740
7741        default:
7742          // No change
7743          break;
7744      }
7745    }
7746  }
7747
7748  // Check whether the actual condition is beyond sufficient.
7749  if (FoundPred == ICmpInst::ICMP_EQ)
7750    if (ICmpInst::isTrueWhenEqual(Pred))
7751      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7752        return true;
7753  if (Pred == ICmpInst::ICMP_NE)
7754    if (!ICmpInst::isTrueWhenEqual(FoundPred))
7755      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7756        return true;
7757
7758  // Otherwise assume the worst.
7759  return false;
7760}
7761
7762bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7763                                     const SCEV *&L, const SCEV *&R,
7764                                     SCEV::NoWrapFlags &Flags) {
7765  const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7766  if (!AE || AE->getNumOperands() != 2)
7767    return false;
7768
7769  L = AE->getOperand(0);
7770  R = AE->getOperand(1);
7771  Flags = AE->getNoWrapFlags();
7772  return true;
7773}
7774
7775bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7776                                                const SCEV *More,
7777                                                APInt &C) {
7778  // We avoid subtracting expressions here because this function is usually
7779  // fairly deep in the call stack (i.e. is called many times).
7780
7781  if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7782    const auto *LAR = cast<SCEVAddRecExpr>(Less);
7783    const auto *MAR = cast<SCEVAddRecExpr>(More);
7784
7785    if (LAR->getLoop() != MAR->getLoop())
7786      return false;
7787
7788    // We look at affine expressions only; not for correctness but to keep
7789    // getStepRecurrence cheap.
7790    if (!LAR->isAffine() || !MAR->isAffine())
7791      return false;
7792
7793    if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
7794      return false;
7795
7796    Less = LAR->getStart();
7797    More = MAR->getStart();
7798
7799    // fall through
7800  }
7801
7802  if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7803    const auto &M = cast<SCEVConstant>(More)->getAPInt();
7804    const auto &L = cast<SCEVConstant>(Less)->getAPInt();
7805    C = M - L;
7806    return true;
7807  }
7808
7809  const SCEV *L, *R;
7810  SCEV::NoWrapFlags Flags;
7811  if (splitBinaryAdd(Less, L, R, Flags))
7812    if (const auto *LC = dyn_cast<SCEVConstant>(L))
7813      if (R == More) {
7814        C = -(LC->getAPInt());
7815        return true;
7816      }
7817
7818  if (splitBinaryAdd(More, L, R, Flags))
7819    if (const auto *LC = dyn_cast<SCEVConstant>(L))
7820      if (R == Less) {
7821        C = LC->getAPInt();
7822        return true;
7823      }
7824
7825  return false;
7826}
7827
7828bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7829    ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7830    const SCEV *FoundLHS, const SCEV *FoundRHS) {
7831  if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7832    return false;
7833
7834  const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7835  if (!AddRecLHS)
7836    return false;
7837
7838  const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7839  if (!AddRecFoundLHS)
7840    return false;
7841
7842  // We'd like to let SCEV reason about control dependencies, so we constrain
7843  // both the inequalities to be about add recurrences on the same loop.  This
7844  // way we can use isLoopEntryGuardedByCond later.
7845
7846  const Loop *L = AddRecFoundLHS->getLoop();
7847  if (L != AddRecLHS->getLoop())
7848    return false;
7849
7850  //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
7851  //
7852  //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7853  //                                                                  ... (2)
7854  //
7855  // Informal proof for (2), assuming (1) [*]:
7856  //
7857  // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7858  //
7859  // Then
7860  //
7861  //       FoundLHS s< FoundRHS s< INT_MIN - C
7862  // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
7863  // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7864  // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
7865  //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7866  // <=>  FoundLHS + C s< FoundRHS + C
7867  //
7868  // [*]: (1) can be proved by ruling out overflow.
7869  //
7870  // [**]: This can be proved by analyzing all the four possibilities:
7871  //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7872  //    (A s>= 0, B s>= 0).
7873  //
7874  // Note:
7875  // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7876  // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
7877  // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
7878  // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
7879  // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7880  // C)".
7881
7882  APInt LDiff, RDiff;
7883  if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7884      !computeConstantDifference(FoundRHS, RHS, RDiff) ||
7885      LDiff != RDiff)
7886    return false;
7887
7888  if (LDiff == 0)
7889    return true;
7890
7891  APInt FoundRHSLimit;
7892
7893  if (Pred == CmpInst::ICMP_ULT) {
7894    FoundRHSLimit = -RDiff;
7895  } else {
7896    assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
7897    FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
7898  }
7899
7900  // Try to prove (1) or (2), as needed.
7901  return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7902                                  getConstant(FoundRHSLimit));
7903}
7904
7905/// isImpliedCondOperands - Test whether the condition described by Pred,
7906/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
7907/// and FoundRHS is true.
7908bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7909                                            const SCEV *LHS, const SCEV *RHS,
7910                                            const SCEV *FoundLHS,
7911                                            const SCEV *FoundRHS) {
7912  if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7913    return true;
7914
7915  if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7916    return true;
7917
7918  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7919                                     FoundLHS, FoundRHS) ||
7920         // ~x < ~y --> x > y
7921         isImpliedCondOperandsHelper(Pred, LHS, RHS,
7922                                     getNotSCEV(FoundRHS),
7923                                     getNotSCEV(FoundLHS));
7924}
7925
7926
7927/// If Expr computes ~A, return A else return nullptr
7928static const SCEV *MatchNotExpr(const SCEV *Expr) {
7929  const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7930  if (!Add || Add->getNumOperands() != 2 ||
7931      !Add->getOperand(0)->isAllOnesValue())
7932    return nullptr;
7933
7934  const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7935  if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7936      !AddRHS->getOperand(0)->isAllOnesValue())
7937    return nullptr;
7938
7939  return AddRHS->getOperand(1);
7940}
7941
7942
7943/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7944template<typename MaxExprType>
7945static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7946                              const SCEV *Candidate) {
7947  const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7948  if (!MaxExpr) return false;
7949
7950  return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
7951}
7952
7953
7954/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7955template<typename MaxExprType>
7956static bool IsMinConsistingOf(ScalarEvolution &SE,
7957                              const SCEV *MaybeMinExpr,
7958                              const SCEV *Candidate) {
7959  const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7960  if (!MaybeMaxExpr)
7961    return false;
7962
7963  return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7964}
7965
7966static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7967                                           ICmpInst::Predicate Pred,
7968                                           const SCEV *LHS, const SCEV *RHS) {
7969
7970  // If both sides are affine addrecs for the same loop, with equal
7971  // steps, and we know the recurrences don't wrap, then we only
7972  // need to check the predicate on the starting values.
7973
7974  if (!ICmpInst::isRelational(Pred))
7975    return false;
7976
7977  const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7978  if (!LAR)
7979    return false;
7980  const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7981  if (!RAR)
7982    return false;
7983  if (LAR->getLoop() != RAR->getLoop())
7984    return false;
7985  if (!LAR->isAffine() || !RAR->isAffine())
7986    return false;
7987
7988  if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7989    return false;
7990
7991  SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7992                         SCEV::FlagNSW : SCEV::FlagNUW;
7993  if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
7994    return false;
7995
7996  return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7997}
7998
7999/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8000/// expression?
8001static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8002                                        ICmpInst::Predicate Pred,
8003                                        const SCEV *LHS, const SCEV *RHS) {
8004  switch (Pred) {
8005  default:
8006    return false;
8007
8008  case ICmpInst::ICMP_SGE:
8009    std::swap(LHS, RHS);
8010    // fall through
8011  case ICmpInst::ICMP_SLE:
8012    return
8013      // min(A, ...) <= A
8014      IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8015      // A <= max(A, ...)
8016      IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8017
8018  case ICmpInst::ICMP_UGE:
8019    std::swap(LHS, RHS);
8020    // fall through
8021  case ICmpInst::ICMP_ULE:
8022    return
8023      // min(A, ...) <= A
8024      IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8025      // A <= max(A, ...)
8026      IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8027  }
8028
8029  llvm_unreachable("covered switch fell through?!");
8030}
8031
8032/// isImpliedCondOperandsHelper - Test whether the condition described by
8033/// Pred, LHS, and RHS is true whenever the condition described by Pred,
8034/// FoundLHS, and FoundRHS is true.
8035bool
8036ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8037                                             const SCEV *LHS, const SCEV *RHS,
8038                                             const SCEV *FoundLHS,
8039                                             const SCEV *FoundRHS) {
8040  auto IsKnownPredicateFull =
8041      [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8042    return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
8043           IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8044           IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8045           isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8046  };
8047
8048  switch (Pred) {
8049  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8050  case ICmpInst::ICMP_EQ:
8051  case ICmpInst::ICMP_NE:
8052    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8053      return true;
8054    break;
8055  case ICmpInst::ICMP_SLT:
8056  case ICmpInst::ICMP_SLE:
8057    if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8058        IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8059      return true;
8060    break;
8061  case ICmpInst::ICMP_SGT:
8062  case ICmpInst::ICMP_SGE:
8063    if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8064        IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8065      return true;
8066    break;
8067  case ICmpInst::ICMP_ULT:
8068  case ICmpInst::ICMP_ULE:
8069    if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8070        IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8071      return true;
8072    break;
8073  case ICmpInst::ICMP_UGT:
8074  case ICmpInst::ICMP_UGE:
8075    if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8076        IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8077      return true;
8078    break;
8079  }
8080
8081  return false;
8082}
8083
8084/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8085/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8086bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8087                                                     const SCEV *LHS,
8088                                                     const SCEV *RHS,
8089                                                     const SCEV *FoundLHS,
8090                                                     const SCEV *FoundRHS) {
8091  if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8092    // The restriction on `FoundRHS` be lifted easily -- it exists only to
8093    // reduce the compile time impact of this optimization.
8094    return false;
8095
8096  const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8097  if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8098      !isa<SCEVConstant>(AddLHS->getOperand(0)))
8099    return false;
8100
8101  APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8102
8103  // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8104  // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8105  ConstantRange FoundLHSRange =
8106      ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8107
8108  // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8109  // for `LHS`:
8110  APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8111  ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8112
8113  // We can also compute the range of values for `LHS` that satisfy the
8114  // consequent, "`LHS` `Pred` `RHS`":
8115  APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8116  ConstantRange SatisfyingLHSRange =
8117      ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8118
8119  // The antecedent implies the consequent if every value of `LHS` that
8120  // satisfies the antecedent also satisfies the consequent.
8121  return SatisfyingLHSRange.contains(LHSRange);
8122}
8123
8124// Verify if an linear IV with positive stride can overflow when in a
8125// less-than comparison, knowing the invariant term of the comparison, the
8126// stride and the knowledge of NSW/NUW flags on the recurrence.
8127bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8128                                         bool IsSigned, bool NoWrap) {
8129  if (NoWrap) return false;
8130
8131  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8132  const SCEV *One = getOne(Stride->getType());
8133
8134  if (IsSigned) {
8135    APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8136    APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8137    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8138                                .getSignedMax();
8139
8140    // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8141    return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8142  }
8143
8144  APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8145  APInt MaxValue = APInt::getMaxValue(BitWidth);
8146  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8147                              .getUnsignedMax();
8148
8149  // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8150  return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8151}
8152
8153// Verify if an linear IV with negative stride can overflow when in a
8154// greater-than comparison, knowing the invariant term of the comparison,
8155// the stride and the knowledge of NSW/NUW flags on the recurrence.
8156bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8157                                         bool IsSigned, bool NoWrap) {
8158  if (NoWrap) return false;
8159
8160  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8161  const SCEV *One = getOne(Stride->getType());
8162
8163  if (IsSigned) {
8164    APInt MinRHS = getSignedRange(RHS).getSignedMin();
8165    APInt MinValue = APInt::getSignedMinValue(BitWidth);
8166    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8167                               .getSignedMax();
8168
8169    // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8170    return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8171  }
8172
8173  APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8174  APInt MinValue = APInt::getMinValue(BitWidth);
8175  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8176                            .getUnsignedMax();
8177
8178  // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8179  return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8180}
8181
8182// Compute the backedge taken count knowing the interval difference, the
8183// stride and presence of the equality in the comparison.
8184const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8185                                            bool Equality) {
8186  const SCEV *One = getOne(Step->getType());
8187  Delta = Equality ? getAddExpr(Delta, Step)
8188                   : getAddExpr(Delta, getMinusSCEV(Step, One));
8189  return getUDivExpr(Delta, Step);
8190}
8191
8192/// HowManyLessThans - Return the number of times a backedge containing the
8193/// specified less-than comparison will execute.  If not computable, return
8194/// CouldNotCompute.
8195///
8196/// @param ControlsExit is true when the LHS < RHS condition directly controls
8197/// the branch (loops exits only if condition is true). In this case, we can use
8198/// NoWrapFlags to skip overflow checks.
8199ScalarEvolution::ExitLimit
8200ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8201                                  const Loop *L, bool IsSigned,
8202                                  bool ControlsExit) {
8203  // We handle only IV < Invariant
8204  if (!isLoopInvariant(RHS, L))
8205    return getCouldNotCompute();
8206
8207  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8208
8209  // Avoid weird loops
8210  if (!IV || IV->getLoop() != L || !IV->isAffine())
8211    return getCouldNotCompute();
8212
8213  bool NoWrap = ControlsExit &&
8214                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8215
8216  const SCEV *Stride = IV->getStepRecurrence(*this);
8217
8218  // Avoid negative or zero stride values
8219  if (!isKnownPositive(Stride))
8220    return getCouldNotCompute();
8221
8222  // Avoid proven overflow cases: this will ensure that the backedge taken count
8223  // will not generate any unsigned overflow. Relaxed no-overflow conditions
8224  // exploit NoWrapFlags, allowing to optimize in presence of undefined
8225  // behaviors like the case of C language.
8226  if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8227    return getCouldNotCompute();
8228
8229  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8230                                      : ICmpInst::ICMP_ULT;
8231  const SCEV *Start = IV->getStart();
8232  const SCEV *End = RHS;
8233  if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8234    const SCEV *Diff = getMinusSCEV(RHS, Start);
8235    // If we have NoWrap set, then we can assume that the increment won't
8236    // overflow, in which case if RHS - Start is a constant, we don't need to
8237    // do a max operation since we can just figure it out statically
8238    if (NoWrap && isa<SCEVConstant>(Diff)) {
8239      APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8240      if (D.isNegative())
8241        End = Start;
8242    } else
8243      End = IsSigned ? getSMaxExpr(RHS, Start)
8244                     : getUMaxExpr(RHS, Start);
8245  }
8246
8247  const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8248
8249  APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8250                            : getUnsignedRange(Start).getUnsignedMin();
8251
8252  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8253                             : getUnsignedRange(Stride).getUnsignedMin();
8254
8255  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8256  APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8257                         : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8258
8259  // Although End can be a MAX expression we estimate MaxEnd considering only
8260  // the case End = RHS. This is safe because in the other case (End - Start)
8261  // is zero, leading to a zero maximum backedge taken count.
8262  APInt MaxEnd =
8263    IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8264             : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8265
8266  const SCEV *MaxBECount;
8267  if (isa<SCEVConstant>(BECount))
8268    MaxBECount = BECount;
8269  else
8270    MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8271                                getConstant(MinStride), false);
8272
8273  if (isa<SCEVCouldNotCompute>(MaxBECount))
8274    MaxBECount = BECount;
8275
8276  return ExitLimit(BECount, MaxBECount);
8277}
8278
8279ScalarEvolution::ExitLimit
8280ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8281                                     const Loop *L, bool IsSigned,
8282                                     bool ControlsExit) {
8283  // We handle only IV > Invariant
8284  if (!isLoopInvariant(RHS, L))
8285    return getCouldNotCompute();
8286
8287  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8288
8289  // Avoid weird loops
8290  if (!IV || IV->getLoop() != L || !IV->isAffine())
8291    return getCouldNotCompute();
8292
8293  bool NoWrap = ControlsExit &&
8294                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8295
8296  const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8297
8298  // Avoid negative or zero stride values
8299  if (!isKnownPositive(Stride))
8300    return getCouldNotCompute();
8301
8302  // Avoid proven overflow cases: this will ensure that the backedge taken count
8303  // will not generate any unsigned overflow. Relaxed no-overflow conditions
8304  // exploit NoWrapFlags, allowing to optimize in presence of undefined
8305  // behaviors like the case of C language.
8306  if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8307    return getCouldNotCompute();
8308
8309  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8310                                      : ICmpInst::ICMP_UGT;
8311
8312  const SCEV *Start = IV->getStart();
8313  const SCEV *End = RHS;
8314  if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8315    const SCEV *Diff = getMinusSCEV(RHS, Start);
8316    // If we have NoWrap set, then we can assume that the increment won't
8317    // overflow, in which case if RHS - Start is a constant, we don't need to
8318    // do a max operation since we can just figure it out statically
8319    if (NoWrap && isa<SCEVConstant>(Diff)) {
8320      APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8321      if (!D.isNegative())
8322        End = Start;
8323    } else
8324      End = IsSigned ? getSMinExpr(RHS, Start)
8325                     : getUMinExpr(RHS, Start);
8326  }
8327
8328  const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8329
8330  APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8331                            : getUnsignedRange(Start).getUnsignedMax();
8332
8333  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8334                             : getUnsignedRange(Stride).getUnsignedMin();
8335
8336  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8337  APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8338                         : APInt::getMinValue(BitWidth) + (MinStride - 1);
8339
8340  // Although End can be a MIN expression we estimate MinEnd considering only
8341  // the case End = RHS. This is safe because in the other case (Start - End)
8342  // is zero, leading to a zero maximum backedge taken count.
8343  APInt MinEnd =
8344    IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8345             : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8346
8347
8348  const SCEV *MaxBECount = getCouldNotCompute();
8349  if (isa<SCEVConstant>(BECount))
8350    MaxBECount = BECount;
8351  else
8352    MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8353                                getConstant(MinStride), false);
8354
8355  if (isa<SCEVCouldNotCompute>(MaxBECount))
8356    MaxBECount = BECount;
8357
8358  return ExitLimit(BECount, MaxBECount);
8359}
8360
8361/// getNumIterationsInRange - Return the number of iterations of this loop that
8362/// produce values in the specified constant range.  Another way of looking at
8363/// this is that it returns the first iteration number where the value is not in
8364/// the condition, thus computing the exit count. If the iteration count can't
8365/// be computed, an instance of SCEVCouldNotCompute is returned.
8366const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8367                                                    ScalarEvolution &SE) const {
8368  if (Range.isFullSet())  // Infinite loop.
8369    return SE.getCouldNotCompute();
8370
8371  // If the start is a non-zero constant, shift the range to simplify things.
8372  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8373    if (!SC->getValue()->isZero()) {
8374      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8375      Operands[0] = SE.getZero(SC->getType());
8376      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8377                                             getNoWrapFlags(FlagNW));
8378      if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8379        return ShiftedAddRec->getNumIterationsInRange(
8380            Range.subtract(SC->getAPInt()), SE);
8381      // This is strange and shouldn't happen.
8382      return SE.getCouldNotCompute();
8383    }
8384
8385  // The only time we can solve this is when we have all constant indices.
8386  // Otherwise, we cannot determine the overflow conditions.
8387  if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8388    return SE.getCouldNotCompute();
8389
8390  // Okay at this point we know that all elements of the chrec are constants and
8391  // that the start element is zero.
8392
8393  // First check to see if the range contains zero.  If not, the first
8394  // iteration exits.
8395  unsigned BitWidth = SE.getTypeSizeInBits(getType());
8396  if (!Range.contains(APInt(BitWidth, 0)))
8397    return SE.getZero(getType());
8398
8399  if (isAffine()) {
8400    // If this is an affine expression then we have this situation:
8401    //   Solve {0,+,A} in Range  ===  Ax in Range
8402
8403    // We know that zero is in the range.  If A is positive then we know that
8404    // the upper value of the range must be the first possible exit value.
8405    // If A is negative then the lower of the range is the last possible loop
8406    // value.  Also note that we already checked for a full range.
8407    APInt One(BitWidth,1);
8408    APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8409    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8410
8411    // The exit value should be (End+A)/A.
8412    APInt ExitVal = (End + A).udiv(A);
8413    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8414
8415    // Evaluate at the exit value.  If we really did fall out of the valid
8416    // range, then we computed our trip count, otherwise wrap around or other
8417    // things must have happened.
8418    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8419    if (Range.contains(Val->getValue()))
8420      return SE.getCouldNotCompute();  // Something strange happened
8421
8422    // Ensure that the previous value is in the range.  This is a sanity check.
8423    assert(Range.contains(
8424           EvaluateConstantChrecAtConstant(this,
8425           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8426           "Linear scev computation is off in a bad way!");
8427    return SE.getConstant(ExitValue);
8428  } else if (isQuadratic()) {
8429    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8430    // quadratic equation to solve it.  To do this, we must frame our problem in
8431    // terms of figuring out when zero is crossed, instead of when
8432    // Range.getUpper() is crossed.
8433    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8434    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8435    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8436                                             // getNoWrapFlags(FlagNW)
8437                                             FlagAnyWrap);
8438
8439    // Next, solve the constructed addrec
8440    auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8441    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8442    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8443    if (R1) {
8444      // Pick the smallest positive root value.
8445      if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8446              ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8447        if (!CB->getZExtValue())
8448          std::swap(R1, R2);   // R1 is the minimum root now.
8449
8450        // Make sure the root is not off by one.  The returned iteration should
8451        // not be in the range, but the previous one should be.  When solving
8452        // for "X*X < 5", for example, we should not return a root of 2.
8453        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8454                                                             R1->getValue(),
8455                                                             SE);
8456        if (Range.contains(R1Val->getValue())) {
8457          // The next iteration must be out of the range...
8458          ConstantInt *NextVal =
8459              ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8460
8461          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8462          if (!Range.contains(R1Val->getValue()))
8463            return SE.getConstant(NextVal);
8464          return SE.getCouldNotCompute();  // Something strange happened
8465        }
8466
8467        // If R1 was not in the range, then it is a good return value.  Make
8468        // sure that R1-1 WAS in the range though, just in case.
8469        ConstantInt *NextVal =
8470            ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8471        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8472        if (Range.contains(R1Val->getValue()))
8473          return R1;
8474        return SE.getCouldNotCompute();  // Something strange happened
8475      }
8476    }
8477  }
8478
8479  return SE.getCouldNotCompute();
8480}
8481
8482namespace {
8483struct FindUndefs {
8484  bool Found;
8485  FindUndefs() : Found(false) {}
8486
8487  bool follow(const SCEV *S) {
8488    if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8489      if (isa<UndefValue>(C->getValue()))
8490        Found = true;
8491    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8492      if (isa<UndefValue>(C->getValue()))
8493        Found = true;
8494    }
8495
8496    // Keep looking if we haven't found it yet.
8497    return !Found;
8498  }
8499  bool isDone() const {
8500    // Stop recursion if we have found an undef.
8501    return Found;
8502  }
8503};
8504}
8505
8506// Return true when S contains at least an undef value.
8507static inline bool
8508containsUndefs(const SCEV *S) {
8509  FindUndefs F;
8510  SCEVTraversal<FindUndefs> ST(F);
8511  ST.visitAll(S);
8512
8513  return F.Found;
8514}
8515
8516namespace {
8517// Collect all steps of SCEV expressions.
8518struct SCEVCollectStrides {
8519  ScalarEvolution &SE;
8520  SmallVectorImpl<const SCEV *> &Strides;
8521
8522  SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8523      : SE(SE), Strides(S) {}
8524
8525  bool follow(const SCEV *S) {
8526    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8527      Strides.push_back(AR->getStepRecurrence(SE));
8528    return true;
8529  }
8530  bool isDone() const { return false; }
8531};
8532
8533// Collect all SCEVUnknown and SCEVMulExpr expressions.
8534struct SCEVCollectTerms {
8535  SmallVectorImpl<const SCEV *> &Terms;
8536
8537  SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8538      : Terms(T) {}
8539
8540  bool follow(const SCEV *S) {
8541    if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8542      if (!containsUndefs(S))
8543        Terms.push_back(S);
8544
8545      // Stop recursion: once we collected a term, do not walk its operands.
8546      return false;
8547    }
8548
8549    // Keep looking.
8550    return true;
8551  }
8552  bool isDone() const { return false; }
8553};
8554
8555// Check if a SCEV contains an AddRecExpr.
8556struct SCEVHasAddRec {
8557  bool &ContainsAddRec;
8558
8559  SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8560   ContainsAddRec = false;
8561  }
8562
8563  bool follow(const SCEV *S) {
8564    if (isa<SCEVAddRecExpr>(S)) {
8565      ContainsAddRec = true;
8566
8567      // Stop recursion: once we collected a term, do not walk its operands.
8568      return false;
8569    }
8570
8571    // Keep looking.
8572    return true;
8573  }
8574  bool isDone() const { return false; }
8575};
8576
8577// Find factors that are multiplied with an expression that (possibly as a
8578// subexpression) contains an AddRecExpr. In the expression:
8579//
8580//  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
8581//
8582// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8583// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8584// parameters as they form a product with an induction variable.
8585//
8586// This collector expects all array size parameters to be in the same MulExpr.
8587// It might be necessary to later add support for collecting parameters that are
8588// spread over different nested MulExpr.
8589struct SCEVCollectAddRecMultiplies {
8590  SmallVectorImpl<const SCEV *> &Terms;
8591  ScalarEvolution &SE;
8592
8593  SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8594      : Terms(T), SE(SE) {}
8595
8596  bool follow(const SCEV *S) {
8597    if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8598      bool HasAddRec = false;
8599      SmallVector<const SCEV *, 0> Operands;
8600      for (auto Op : Mul->operands()) {
8601        if (isa<SCEVUnknown>(Op)) {
8602          Operands.push_back(Op);
8603        } else {
8604          bool ContainsAddRec;
8605          SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8606          visitAll(Op, ContiansAddRec);
8607          HasAddRec |= ContainsAddRec;
8608        }
8609      }
8610      if (Operands.size() == 0)
8611        return true;
8612
8613      if (!HasAddRec)
8614        return false;
8615
8616      Terms.push_back(SE.getMulExpr(Operands));
8617      // Stop recursion: once we collected a term, do not walk its operands.
8618      return false;
8619    }
8620
8621    // Keep looking.
8622    return true;
8623  }
8624  bool isDone() const { return false; }
8625};
8626}
8627
8628/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8629/// two places:
8630///   1) The strides of AddRec expressions.
8631///   2) Unknowns that are multiplied with AddRec expressions.
8632void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8633    SmallVectorImpl<const SCEV *> &Terms) {
8634  SmallVector<const SCEV *, 4> Strides;
8635  SCEVCollectStrides StrideCollector(*this, Strides);
8636  visitAll(Expr, StrideCollector);
8637
8638  DEBUG({
8639      dbgs() << "Strides:\n";
8640      for (const SCEV *S : Strides)
8641        dbgs() << *S << "\n";
8642    });
8643
8644  for (const SCEV *S : Strides) {
8645    SCEVCollectTerms TermCollector(Terms);
8646    visitAll(S, TermCollector);
8647  }
8648
8649  DEBUG({
8650      dbgs() << "Terms:\n";
8651      for (const SCEV *T : Terms)
8652        dbgs() << *T << "\n";
8653    });
8654
8655  SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8656  visitAll(Expr, MulCollector);
8657}
8658
8659static bool findArrayDimensionsRec(ScalarEvolution &SE,
8660                                   SmallVectorImpl<const SCEV *> &Terms,
8661                                   SmallVectorImpl<const SCEV *> &Sizes) {
8662  int Last = Terms.size() - 1;
8663  const SCEV *Step = Terms[Last];
8664
8665  // End of recursion.
8666  if (Last == 0) {
8667    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8668      SmallVector<const SCEV *, 2> Qs;
8669      for (const SCEV *Op : M->operands())
8670        if (!isa<SCEVConstant>(Op))
8671          Qs.push_back(Op);
8672
8673      Step = SE.getMulExpr(Qs);
8674    }
8675
8676    Sizes.push_back(Step);
8677    return true;
8678  }
8679
8680  for (const SCEV *&Term : Terms) {
8681    // Normalize the terms before the next call to findArrayDimensionsRec.
8682    const SCEV *Q, *R;
8683    SCEVDivision::divide(SE, Term, Step, &Q, &R);
8684
8685    // Bail out when GCD does not evenly divide one of the terms.
8686    if (!R->isZero())
8687      return false;
8688
8689    Term = Q;
8690  }
8691
8692  // Remove all SCEVConstants.
8693  Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8694                return isa<SCEVConstant>(E);
8695              }),
8696              Terms.end());
8697
8698  if (Terms.size() > 0)
8699    if (!findArrayDimensionsRec(SE, Terms, Sizes))
8700      return false;
8701
8702  Sizes.push_back(Step);
8703  return true;
8704}
8705
8706// Returns true when S contains at least a SCEVUnknown parameter.
8707static inline bool
8708containsParameters(const SCEV *S) {
8709  struct FindParameter {
8710    bool FoundParameter;
8711    FindParameter() : FoundParameter(false) {}
8712
8713    bool follow(const SCEV *S) {
8714      if (isa<SCEVUnknown>(S)) {
8715        FoundParameter = true;
8716        // Stop recursion: we found a parameter.
8717        return false;
8718      }
8719      // Keep looking.
8720      return true;
8721    }
8722    bool isDone() const {
8723      // Stop recursion if we have found a parameter.
8724      return FoundParameter;
8725    }
8726  };
8727
8728  FindParameter F;
8729  SCEVTraversal<FindParameter> ST(F);
8730  ST.visitAll(S);
8731
8732  return F.FoundParameter;
8733}
8734
8735// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8736static inline bool
8737containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8738  for (const SCEV *T : Terms)
8739    if (containsParameters(T))
8740      return true;
8741  return false;
8742}
8743
8744// Return the number of product terms in S.
8745static inline int numberOfTerms(const SCEV *S) {
8746  if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8747    return Expr->getNumOperands();
8748  return 1;
8749}
8750
8751static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8752  if (isa<SCEVConstant>(T))
8753    return nullptr;
8754
8755  if (isa<SCEVUnknown>(T))
8756    return T;
8757
8758  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8759    SmallVector<const SCEV *, 2> Factors;
8760    for (const SCEV *Op : M->operands())
8761      if (!isa<SCEVConstant>(Op))
8762        Factors.push_back(Op);
8763
8764    return SE.getMulExpr(Factors);
8765  }
8766
8767  return T;
8768}
8769
8770/// Return the size of an element read or written by Inst.
8771const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8772  Type *Ty;
8773  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8774    Ty = Store->getValueOperand()->getType();
8775  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
8776    Ty = Load->getType();
8777  else
8778    return nullptr;
8779
8780  Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8781  return getSizeOfExpr(ETy, Ty);
8782}
8783
8784/// Second step of delinearization: compute the array dimensions Sizes from the
8785/// set of Terms extracted from the memory access function of this SCEVAddRec.
8786void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8787                                          SmallVectorImpl<const SCEV *> &Sizes,
8788                                          const SCEV *ElementSize) const {
8789
8790  if (Terms.size() < 1 || !ElementSize)
8791    return;
8792
8793  // Early return when Terms do not contain parameters: we do not delinearize
8794  // non parametric SCEVs.
8795  if (!containsParameters(Terms))
8796    return;
8797
8798  DEBUG({
8799      dbgs() << "Terms:\n";
8800      for (const SCEV *T : Terms)
8801        dbgs() << *T << "\n";
8802    });
8803
8804  // Remove duplicates.
8805  std::sort(Terms.begin(), Terms.end());
8806  Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8807
8808  // Put larger terms first.
8809  std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8810    return numberOfTerms(LHS) > numberOfTerms(RHS);
8811  });
8812
8813  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8814
8815  // Try to divide all terms by the element size. If term is not divisible by
8816  // element size, proceed with the original term.
8817  for (const SCEV *&Term : Terms) {
8818    const SCEV *Q, *R;
8819    SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
8820    if (!Q->isZero())
8821      Term = Q;
8822  }
8823
8824  SmallVector<const SCEV *, 4> NewTerms;
8825
8826  // Remove constant factors.
8827  for (const SCEV *T : Terms)
8828    if (const SCEV *NewT = removeConstantFactors(SE, T))
8829      NewTerms.push_back(NewT);
8830
8831  DEBUG({
8832      dbgs() << "Terms after sorting:\n";
8833      for (const SCEV *T : NewTerms)
8834        dbgs() << *T << "\n";
8835    });
8836
8837  if (NewTerms.empty() ||
8838      !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
8839    Sizes.clear();
8840    return;
8841  }
8842
8843  // The last element to be pushed into Sizes is the size of an element.
8844  Sizes.push_back(ElementSize);
8845
8846  DEBUG({
8847      dbgs() << "Sizes:\n";
8848      for (const SCEV *S : Sizes)
8849        dbgs() << *S << "\n";
8850    });
8851}
8852
8853/// Third step of delinearization: compute the access functions for the
8854/// Subscripts based on the dimensions in Sizes.
8855void ScalarEvolution::computeAccessFunctions(
8856    const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8857    SmallVectorImpl<const SCEV *> &Sizes) {
8858
8859  // Early exit in case this SCEV is not an affine multivariate function.
8860  if (Sizes.empty())
8861    return;
8862
8863  if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
8864    if (!AR->isAffine())
8865      return;
8866
8867  const SCEV *Res = Expr;
8868  int Last = Sizes.size() - 1;
8869  for (int i = Last; i >= 0; i--) {
8870    const SCEV *Q, *R;
8871    SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
8872
8873    DEBUG({
8874        dbgs() << "Res: " << *Res << "\n";
8875        dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8876        dbgs() << "Res divided by Sizes[i]:\n";
8877        dbgs() << "Quotient: " << *Q << "\n";
8878        dbgs() << "Remainder: " << *R << "\n";
8879      });
8880
8881    Res = Q;
8882
8883    // Do not record the last subscript corresponding to the size of elements in
8884    // the array.
8885    if (i == Last) {
8886
8887      // Bail out if the remainder is too complex.
8888      if (isa<SCEVAddRecExpr>(R)) {
8889        Subscripts.clear();
8890        Sizes.clear();
8891        return;
8892      }
8893
8894      continue;
8895    }
8896
8897    // Record the access function for the current subscript.
8898    Subscripts.push_back(R);
8899  }
8900
8901  // Also push in last position the remainder of the last division: it will be
8902  // the access function of the innermost dimension.
8903  Subscripts.push_back(Res);
8904
8905  std::reverse(Subscripts.begin(), Subscripts.end());
8906
8907  DEBUG({
8908      dbgs() << "Subscripts:\n";
8909      for (const SCEV *S : Subscripts)
8910        dbgs() << *S << "\n";
8911    });
8912}
8913
8914/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8915/// sizes of an array access. Returns the remainder of the delinearization that
8916/// is the offset start of the array.  The SCEV->delinearize algorithm computes
8917/// the multiples of SCEV coefficients: that is a pattern matching of sub
8918/// expressions in the stride and base of a SCEV corresponding to the
8919/// computation of a GCD (greatest common divisor) of base and stride.  When
8920/// SCEV->delinearize fails, it returns the SCEV unchanged.
8921///
8922/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8923///
8924///  void foo(long n, long m, long o, double A[n][m][o]) {
8925///
8926///    for (long i = 0; i < n; i++)
8927///      for (long j = 0; j < m; j++)
8928///        for (long k = 0; k < o; k++)
8929///          A[i][j][k] = 1.0;
8930///  }
8931///
8932/// the delinearization input is the following AddRec SCEV:
8933///
8934///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8935///
8936/// From this SCEV, we are able to say that the base offset of the access is %A
8937/// because it appears as an offset that does not divide any of the strides in
8938/// the loops:
8939///
8940///  CHECK: Base offset: %A
8941///
8942/// and then SCEV->delinearize determines the size of some of the dimensions of
8943/// the array as these are the multiples by which the strides are happening:
8944///
8945///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8946///
8947/// Note that the outermost dimension remains of UnknownSize because there are
8948/// no strides that would help identifying the size of the last dimension: when
8949/// the array has been statically allocated, one could compute the size of that
8950/// dimension by dividing the overall size of the array by the size of the known
8951/// dimensions: %m * %o * 8.
8952///
8953/// Finally delinearize provides the access functions for the array reference
8954/// that does correspond to A[i][j][k] of the above C testcase:
8955///
8956///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8957///
8958/// The testcases are checking the output of a function pass:
8959/// DelinearizationPass that walks through all loads and stores of a function
8960/// asking for the SCEV of the memory access with respect to all enclosing
8961/// loops, calling SCEV->delinearize on that and printing the results.
8962
8963void ScalarEvolution::delinearize(const SCEV *Expr,
8964                                 SmallVectorImpl<const SCEV *> &Subscripts,
8965                                 SmallVectorImpl<const SCEV *> &Sizes,
8966                                 const SCEV *ElementSize) {
8967  // First step: collect parametric terms.
8968  SmallVector<const SCEV *, 4> Terms;
8969  collectParametricTerms(Expr, Terms);
8970
8971  if (Terms.empty())
8972    return;
8973
8974  // Second step: find subscript sizes.
8975  findArrayDimensions(Terms, Sizes, ElementSize);
8976
8977  if (Sizes.empty())
8978    return;
8979
8980  // Third step: compute the access functions for each subscript.
8981  computeAccessFunctions(Expr, Subscripts, Sizes);
8982
8983  if (Subscripts.empty())
8984    return;
8985
8986  DEBUG({
8987      dbgs() << "succeeded to delinearize " << *Expr << "\n";
8988      dbgs() << "ArrayDecl[UnknownSize]";
8989      for (const SCEV *S : Sizes)
8990        dbgs() << "[" << *S << "]";
8991
8992      dbgs() << "\nArrayRef";
8993      for (const SCEV *S : Subscripts)
8994        dbgs() << "[" << *S << "]";
8995      dbgs() << "\n";
8996    });
8997}
8998
8999//===----------------------------------------------------------------------===//
9000//                   SCEVCallbackVH Class Implementation
9001//===----------------------------------------------------------------------===//
9002
9003void ScalarEvolution::SCEVCallbackVH::deleted() {
9004  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9005  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9006    SE->ConstantEvolutionLoopExitValue.erase(PN);
9007  SE->ValueExprMap.erase(getValPtr());
9008  // this now dangles!
9009}
9010
9011void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9012  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9013
9014  // Forget all the expressions associated with users of the old value,
9015  // so that future queries will recompute the expressions using the new
9016  // value.
9017  Value *Old = getValPtr();
9018  SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9019  SmallPtrSet<User *, 8> Visited;
9020  while (!Worklist.empty()) {
9021    User *U = Worklist.pop_back_val();
9022    // Deleting the Old value will cause this to dangle. Postpone
9023    // that until everything else is done.
9024    if (U == Old)
9025      continue;
9026    if (!Visited.insert(U).second)
9027      continue;
9028    if (PHINode *PN = dyn_cast<PHINode>(U))
9029      SE->ConstantEvolutionLoopExitValue.erase(PN);
9030    SE->ValueExprMap.erase(U);
9031    Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9032  }
9033  // Delete the Old value.
9034  if (PHINode *PN = dyn_cast<PHINode>(Old))
9035    SE->ConstantEvolutionLoopExitValue.erase(PN);
9036  SE->ValueExprMap.erase(Old);
9037  // this now dangles!
9038}
9039
9040ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9041  : CallbackVH(V), SE(se) {}
9042
9043//===----------------------------------------------------------------------===//
9044//                   ScalarEvolution Class Implementation
9045//===----------------------------------------------------------------------===//
9046
9047ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9048                                 AssumptionCache &AC, DominatorTree &DT,
9049                                 LoopInfo &LI)
9050    : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9051      CouldNotCompute(new SCEVCouldNotCompute()),
9052      WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9053      ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9054      FirstUnknown(nullptr) {}
9055
9056ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9057    : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9058      CouldNotCompute(std::move(Arg.CouldNotCompute)),
9059      ValueExprMap(std::move(Arg.ValueExprMap)),
9060      WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9061      BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9062      ConstantEvolutionLoopExitValue(
9063          std::move(Arg.ConstantEvolutionLoopExitValue)),
9064      ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9065      LoopDispositions(std::move(Arg.LoopDispositions)),
9066      BlockDispositions(std::move(Arg.BlockDispositions)),
9067      UnsignedRanges(std::move(Arg.UnsignedRanges)),
9068      SignedRanges(std::move(Arg.SignedRanges)),
9069      UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9070      UniquePreds(std::move(Arg.UniquePreds)),
9071      SCEVAllocator(std::move(Arg.SCEVAllocator)),
9072      FirstUnknown(Arg.FirstUnknown) {
9073  Arg.FirstUnknown = nullptr;
9074}
9075
9076ScalarEvolution::~ScalarEvolution() {
9077  // Iterate through all the SCEVUnknown instances and call their
9078  // destructors, so that they release their references to their values.
9079  for (SCEVUnknown *U = FirstUnknown; U;) {
9080    SCEVUnknown *Tmp = U;
9081    U = U->Next;
9082    Tmp->~SCEVUnknown();
9083  }
9084  FirstUnknown = nullptr;
9085
9086  ValueExprMap.clear();
9087
9088  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9089  // that a loop had multiple computable exits.
9090  for (auto &BTCI : BackedgeTakenCounts)
9091    BTCI.second.clear();
9092
9093  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9094  assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9095  assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9096}
9097
9098bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9099  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9100}
9101
9102static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9103                          const Loop *L) {
9104  // Print all inner loops first
9105  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9106    PrintLoopInfo(OS, SE, *I);
9107
9108  OS << "Loop ";
9109  L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9110  OS << ": ";
9111
9112  SmallVector<BasicBlock *, 8> ExitBlocks;
9113  L->getExitBlocks(ExitBlocks);
9114  if (ExitBlocks.size() != 1)
9115    OS << "<multiple exits> ";
9116
9117  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9118    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9119  } else {
9120    OS << "Unpredictable backedge-taken count. ";
9121  }
9122
9123  OS << "\n"
9124        "Loop ";
9125  L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9126  OS << ": ";
9127
9128  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9129    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9130  } else {
9131    OS << "Unpredictable max backedge-taken count. ";
9132  }
9133
9134  OS << "\n";
9135}
9136
9137void ScalarEvolution::print(raw_ostream &OS) const {
9138  // ScalarEvolution's implementation of the print method is to print
9139  // out SCEV values of all instructions that are interesting. Doing
9140  // this potentially causes it to create new SCEV objects though,
9141  // which technically conflicts with the const qualifier. This isn't
9142  // observable from outside the class though, so casting away the
9143  // const isn't dangerous.
9144  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9145
9146  OS << "Classifying expressions for: ";
9147  F.printAsOperand(OS, /*PrintType=*/false);
9148  OS << "\n";
9149  for (Instruction &I : instructions(F))
9150    if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9151      OS << I << '\n';
9152      OS << "  -->  ";
9153      const SCEV *SV = SE.getSCEV(&I);
9154      SV->print(OS);
9155      if (!isa<SCEVCouldNotCompute>(SV)) {
9156        OS << " U: ";
9157        SE.getUnsignedRange(SV).print(OS);
9158        OS << " S: ";
9159        SE.getSignedRange(SV).print(OS);
9160      }
9161
9162      const Loop *L = LI.getLoopFor(I.getParent());
9163
9164      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9165      if (AtUse != SV) {
9166        OS << "  -->  ";
9167        AtUse->print(OS);
9168        if (!isa<SCEVCouldNotCompute>(AtUse)) {
9169          OS << " U: ";
9170          SE.getUnsignedRange(AtUse).print(OS);
9171          OS << " S: ";
9172          SE.getSignedRange(AtUse).print(OS);
9173        }
9174      }
9175
9176      if (L) {
9177        OS << "\t\t" "Exits: ";
9178        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9179        if (!SE.isLoopInvariant(ExitValue, L)) {
9180          OS << "<<Unknown>>";
9181        } else {
9182          OS << *ExitValue;
9183        }
9184      }
9185
9186      OS << "\n";
9187    }
9188
9189  OS << "Determining loop execution counts for: ";
9190  F.printAsOperand(OS, /*PrintType=*/false);
9191  OS << "\n";
9192  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9193    PrintLoopInfo(OS, &SE, *I);
9194}
9195
9196ScalarEvolution::LoopDisposition
9197ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9198  auto &Values = LoopDispositions[S];
9199  for (auto &V : Values) {
9200    if (V.getPointer() == L)
9201      return V.getInt();
9202  }
9203  Values.emplace_back(L, LoopVariant);
9204  LoopDisposition D = computeLoopDisposition(S, L);
9205  auto &Values2 = LoopDispositions[S];
9206  for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9207    if (V.getPointer() == L) {
9208      V.setInt(D);
9209      break;
9210    }
9211  }
9212  return D;
9213}
9214
9215ScalarEvolution::LoopDisposition
9216ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9217  switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9218  case scConstant:
9219    return LoopInvariant;
9220  case scTruncate:
9221  case scZeroExtend:
9222  case scSignExtend:
9223    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9224  case scAddRecExpr: {
9225    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9226
9227    // If L is the addrec's loop, it's computable.
9228    if (AR->getLoop() == L)
9229      return LoopComputable;
9230
9231    // Add recurrences are never invariant in the function-body (null loop).
9232    if (!L)
9233      return LoopVariant;
9234
9235    // This recurrence is variant w.r.t. L if L contains AR's loop.
9236    if (L->contains(AR->getLoop()))
9237      return LoopVariant;
9238
9239    // This recurrence is invariant w.r.t. L if AR's loop contains L.
9240    if (AR->getLoop()->contains(L))
9241      return LoopInvariant;
9242
9243    // This recurrence is variant w.r.t. L if any of its operands
9244    // are variant.
9245    for (auto *Op : AR->operands())
9246      if (!isLoopInvariant(Op, L))
9247        return LoopVariant;
9248
9249    // Otherwise it's loop-invariant.
9250    return LoopInvariant;
9251  }
9252  case scAddExpr:
9253  case scMulExpr:
9254  case scUMaxExpr:
9255  case scSMaxExpr: {
9256    bool HasVarying = false;
9257    for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9258      LoopDisposition D = getLoopDisposition(Op, L);
9259      if (D == LoopVariant)
9260        return LoopVariant;
9261      if (D == LoopComputable)
9262        HasVarying = true;
9263    }
9264    return HasVarying ? LoopComputable : LoopInvariant;
9265  }
9266  case scUDivExpr: {
9267    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9268    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9269    if (LD == LoopVariant)
9270      return LoopVariant;
9271    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9272    if (RD == LoopVariant)
9273      return LoopVariant;
9274    return (LD == LoopInvariant && RD == LoopInvariant) ?
9275           LoopInvariant : LoopComputable;
9276  }
9277  case scUnknown:
9278    // All non-instruction values are loop invariant.  All instructions are loop
9279    // invariant if they are not contained in the specified loop.
9280    // Instructions are never considered invariant in the function body
9281    // (null loop) because they are defined within the "loop".
9282    if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9283      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9284    return LoopInvariant;
9285  case scCouldNotCompute:
9286    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9287  }
9288  llvm_unreachable("Unknown SCEV kind!");
9289}
9290
9291bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9292  return getLoopDisposition(S, L) == LoopInvariant;
9293}
9294
9295bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9296  return getLoopDisposition(S, L) == LoopComputable;
9297}
9298
9299ScalarEvolution::BlockDisposition
9300ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9301  auto &Values = BlockDispositions[S];
9302  for (auto &V : Values) {
9303    if (V.getPointer() == BB)
9304      return V.getInt();
9305  }
9306  Values.emplace_back(BB, DoesNotDominateBlock);
9307  BlockDisposition D = computeBlockDisposition(S, BB);
9308  auto &Values2 = BlockDispositions[S];
9309  for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9310    if (V.getPointer() == BB) {
9311      V.setInt(D);
9312      break;
9313    }
9314  }
9315  return D;
9316}
9317
9318ScalarEvolution::BlockDisposition
9319ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9320  switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9321  case scConstant:
9322    return ProperlyDominatesBlock;
9323  case scTruncate:
9324  case scZeroExtend:
9325  case scSignExtend:
9326    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9327  case scAddRecExpr: {
9328    // This uses a "dominates" query instead of "properly dominates" query
9329    // to test for proper dominance too, because the instruction which
9330    // produces the addrec's value is a PHI, and a PHI effectively properly
9331    // dominates its entire containing block.
9332    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9333    if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9334      return DoesNotDominateBlock;
9335  }
9336  // FALL THROUGH into SCEVNAryExpr handling.
9337  case scAddExpr:
9338  case scMulExpr:
9339  case scUMaxExpr:
9340  case scSMaxExpr: {
9341    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9342    bool Proper = true;
9343    for (const SCEV *NAryOp : NAry->operands()) {
9344      BlockDisposition D = getBlockDisposition(NAryOp, BB);
9345      if (D == DoesNotDominateBlock)
9346        return DoesNotDominateBlock;
9347      if (D == DominatesBlock)
9348        Proper = false;
9349    }
9350    return Proper ? ProperlyDominatesBlock : DominatesBlock;
9351  }
9352  case scUDivExpr: {
9353    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9354    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9355    BlockDisposition LD = getBlockDisposition(LHS, BB);
9356    if (LD == DoesNotDominateBlock)
9357      return DoesNotDominateBlock;
9358    BlockDisposition RD = getBlockDisposition(RHS, BB);
9359    if (RD == DoesNotDominateBlock)
9360      return DoesNotDominateBlock;
9361    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9362      ProperlyDominatesBlock : DominatesBlock;
9363  }
9364  case scUnknown:
9365    if (Instruction *I =
9366          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9367      if (I->getParent() == BB)
9368        return DominatesBlock;
9369      if (DT.properlyDominates(I->getParent(), BB))
9370        return ProperlyDominatesBlock;
9371      return DoesNotDominateBlock;
9372    }
9373    return ProperlyDominatesBlock;
9374  case scCouldNotCompute:
9375    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9376  }
9377  llvm_unreachable("Unknown SCEV kind!");
9378}
9379
9380bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9381  return getBlockDisposition(S, BB) >= DominatesBlock;
9382}
9383
9384bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9385  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9386}
9387
9388bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9389  // Search for a SCEV expression node within an expression tree.
9390  // Implements SCEVTraversal::Visitor.
9391  struct SCEVSearch {
9392    const SCEV *Node;
9393    bool IsFound;
9394
9395    SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9396
9397    bool follow(const SCEV *S) {
9398      IsFound |= (S == Node);
9399      return !IsFound;
9400    }
9401    bool isDone() const { return IsFound; }
9402  };
9403
9404  SCEVSearch Search(Op);
9405  visitAll(S, Search);
9406  return Search.IsFound;
9407}
9408
9409void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9410  ValuesAtScopes.erase(S);
9411  LoopDispositions.erase(S);
9412  BlockDispositions.erase(S);
9413  UnsignedRanges.erase(S);
9414  SignedRanges.erase(S);
9415
9416  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9417         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9418    BackedgeTakenInfo &BEInfo = I->second;
9419    if (BEInfo.hasOperand(S, this)) {
9420      BEInfo.clear();
9421      BackedgeTakenCounts.erase(I++);
9422    }
9423    else
9424      ++I;
9425  }
9426}
9427
9428typedef DenseMap<const Loop *, std::string> VerifyMap;
9429
9430/// replaceSubString - Replaces all occurrences of From in Str with To.
9431static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9432  size_t Pos = 0;
9433  while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9434    Str.replace(Pos, From.size(), To.data(), To.size());
9435    Pos += To.size();
9436  }
9437}
9438
9439/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9440static void
9441getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9442  for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9443    getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9444
9445    std::string &S = Map[L];
9446    if (S.empty()) {
9447      raw_string_ostream OS(S);
9448      SE.getBackedgeTakenCount(L)->print(OS);
9449
9450      // false and 0 are semantically equivalent. This can happen in dead loops.
9451      replaceSubString(OS.str(), "false", "0");
9452      // Remove wrap flags, their use in SCEV is highly fragile.
9453      // FIXME: Remove this when SCEV gets smarter about them.
9454      replaceSubString(OS.str(), "<nw>", "");
9455      replaceSubString(OS.str(), "<nsw>", "");
9456      replaceSubString(OS.str(), "<nuw>", "");
9457    }
9458  }
9459}
9460
9461void ScalarEvolution::verify() const {
9462  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9463
9464  // Gather stringified backedge taken counts for all loops using SCEV's caches.
9465  // FIXME: It would be much better to store actual values instead of strings,
9466  //        but SCEV pointers will change if we drop the caches.
9467  VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9468  for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9469    getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9470
9471  // Gather stringified backedge taken counts for all loops using a fresh
9472  // ScalarEvolution object.
9473  ScalarEvolution SE2(F, TLI, AC, DT, LI);
9474  for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9475    getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9476
9477  // Now compare whether they're the same with and without caches. This allows
9478  // verifying that no pass changed the cache.
9479  assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9480         "New loops suddenly appeared!");
9481
9482  for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9483                           OldE = BackedgeDumpsOld.end(),
9484                           NewI = BackedgeDumpsNew.begin();
9485       OldI != OldE; ++OldI, ++NewI) {
9486    assert(OldI->first == NewI->first && "Loop order changed!");
9487
9488    // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9489    // changes.
9490    // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9491    // means that a pass is buggy or SCEV has to learn a new pattern but is
9492    // usually not harmful.
9493    if (OldI->second != NewI->second &&
9494        OldI->second.find("undef") == std::string::npos &&
9495        NewI->second.find("undef") == std::string::npos &&
9496        OldI->second != "***COULDNOTCOMPUTE***" &&
9497        NewI->second != "***COULDNOTCOMPUTE***") {
9498      dbgs() << "SCEVValidator: SCEV for loop '"
9499             << OldI->first->getHeader()->getName()
9500             << "' changed from '" << OldI->second
9501             << "' to '" << NewI->second << "'!\n";
9502      std::abort();
9503    }
9504  }
9505
9506  // TODO: Verify more things.
9507}
9508
9509char ScalarEvolutionAnalysis::PassID;
9510
9511ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9512                                             AnalysisManager<Function> *AM) {
9513  return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9514                         AM->getResult<AssumptionAnalysis>(F),
9515                         AM->getResult<DominatorTreeAnalysis>(F),
9516                         AM->getResult<LoopAnalysis>(F));
9517}
9518
9519PreservedAnalyses
9520ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9521  AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9522  return PreservedAnalyses::all();
9523}
9524
9525INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9526                      "Scalar Evolution Analysis", false, true)
9527INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9528INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9529INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9530INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9531INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9532                    "Scalar Evolution Analysis", false, true)
9533char ScalarEvolutionWrapperPass::ID = 0;
9534
9535ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9536  initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9537}
9538
9539bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9540  SE.reset(new ScalarEvolution(
9541      F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9542      getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9543      getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9544      getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9545  return false;
9546}
9547
9548void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9549
9550void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9551  SE->print(OS);
9552}
9553
9554void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9555  if (!VerifySCEV)
9556    return;
9557
9558  SE->verify();
9559}
9560
9561void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9562  AU.setPreservesAll();
9563  AU.addRequiredTransitive<AssumptionCacheTracker>();
9564  AU.addRequiredTransitive<LoopInfoWrapperPass>();
9565  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9566  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9567}
9568
9569const SCEVPredicate *
9570ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9571                                   const SCEVConstant *RHS) {
9572  FoldingSetNodeID ID;
9573  // Unique this node based on the arguments
9574  ID.AddInteger(SCEVPredicate::P_Equal);
9575  ID.AddPointer(LHS);
9576  ID.AddPointer(RHS);
9577  void *IP = nullptr;
9578  if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9579    return S;
9580  SCEVEqualPredicate *Eq = new (SCEVAllocator)
9581      SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9582  UniquePreds.InsertNode(Eq, IP);
9583  return Eq;
9584}
9585
9586namespace {
9587class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9588public:
9589  static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
9590                             SCEVUnionPredicate &A) {
9591    SCEVPredicateRewriter Rewriter(SE, A);
9592    return Rewriter.visit(Scev);
9593  }
9594
9595  SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
9596      : SCEVRewriteVisitor(SE), P(P) {}
9597
9598  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9599    auto ExprPreds = P.getPredicatesForExpr(Expr);
9600    for (auto *Pred : ExprPreds)
9601      if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9602        if (IPred->getLHS() == Expr)
9603          return IPred->getRHS();
9604
9605    return Expr;
9606  }
9607
9608private:
9609  SCEVUnionPredicate &P;
9610};
9611} // end anonymous namespace
9612
9613const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9614                                                   SCEVUnionPredicate &Preds) {
9615  return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
9616}
9617
9618/// SCEV predicates
9619SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9620                             SCEVPredicateKind Kind)
9621    : FastID(ID), Kind(Kind) {}
9622
9623SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9624                                       const SCEVUnknown *LHS,
9625                                       const SCEVConstant *RHS)
9626    : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9627
9628bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9629  const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9630
9631  if (!Op)
9632    return false;
9633
9634  return Op->LHS == LHS && Op->RHS == RHS;
9635}
9636
9637bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9638
9639const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9640
9641void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9642  OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9643}
9644
9645/// Union predicates don't get cached so create a dummy set ID for it.
9646SCEVUnionPredicate::SCEVUnionPredicate()
9647    : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9648
9649bool SCEVUnionPredicate::isAlwaysTrue() const {
9650  return all_of(Preds,
9651                [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
9652}
9653
9654ArrayRef<const SCEVPredicate *>
9655SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9656  auto I = SCEVToPreds.find(Expr);
9657  if (I == SCEVToPreds.end())
9658    return ArrayRef<const SCEVPredicate *>();
9659  return I->second;
9660}
9661
9662bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9663  if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
9664    return all_of(Set->Preds,
9665                  [this](const SCEVPredicate *I) { return this->implies(I); });
9666
9667  auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9668  if (ScevPredsIt == SCEVToPreds.end())
9669    return false;
9670  auto &SCEVPreds = ScevPredsIt->second;
9671
9672  return any_of(SCEVPreds,
9673                [N](const SCEVPredicate *I) { return I->implies(N); });
9674}
9675
9676const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9677
9678void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9679  for (auto Pred : Preds)
9680    Pred->print(OS, Depth);
9681}
9682
9683void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9684  if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9685    for (auto Pred : Set->Preds)
9686      add(Pred);
9687    return;
9688  }
9689
9690  if (implies(N))
9691    return;
9692
9693  const SCEV *Key = N->getExpr();
9694  assert(Key && "Only SCEVUnionPredicate doesn't have an "
9695                " associated expression!");
9696
9697  SCEVToPreds[Key].push_back(N);
9698  Preds.push_back(N);
9699}
9700
9701PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE)
9702    : SE(SE), Generation(0) {}
9703
9704const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9705  const SCEV *Expr = SE.getSCEV(V);
9706  RewriteEntry &Entry = RewriteMap[Expr];
9707
9708  // If we already have an entry and the version matches, return it.
9709  if (Entry.second && Generation == Entry.first)
9710    return Entry.second;
9711
9712  // We found an entry but it's stale. Rewrite the stale entry
9713  // acording to the current predicate.
9714  if (Entry.second)
9715    Expr = Entry.second;
9716
9717  const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, Preds);
9718  Entry = {Generation, NewSCEV};
9719
9720  return NewSCEV;
9721}
9722
9723void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9724  if (Preds.implies(&Pred))
9725    return;
9726  Preds.add(&Pred);
9727  updateGeneration();
9728}
9729
9730const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9731  return Preds;
9732}
9733
9734void PredicatedScalarEvolution::updateGeneration() {
9735  // If the generation number wrapped recompute everything.
9736  if (++Generation == 0) {
9737    for (auto &II : RewriteMap) {
9738      const SCEV *Rewritten = II.second.second;
9739      II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, Preds)};
9740    }
9741  }
9742}
9743