1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/CodeGen/RegAllocPBQP.h"
33#include "RegisterCoalescer.h"
34#include "Spiller.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/CodeGen/CalcSpillWeights.h"
37#include "llvm/CodeGen/LiveIntervalAnalysis.h"
38#include "llvm/CodeGen/LiveRangeEdit.h"
39#include "llvm/CodeGen/LiveStackAnalysis.h"
40#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
41#include "llvm/CodeGen/MachineDominators.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineLoopInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/VirtRegMap.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/FileSystem.h"
50#include "llvm/Support/Printable.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Target/TargetSubtargetInfo.h"
54#include <limits>
55#include <memory>
56#include <queue>
57#include <set>
58#include <sstream>
59#include <vector>
60
61using namespace llvm;
62
63#define DEBUG_TYPE "regalloc"
64
65static RegisterRegAlloc
66RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
67                       createDefaultPBQPRegisterAllocator);
68
69static cl::opt<bool>
70PBQPCoalescing("pbqp-coalescing",
71                cl::desc("Attempt coalescing during PBQP register allocation."),
72                cl::init(false), cl::Hidden);
73
74#ifndef NDEBUG
75static cl::opt<bool>
76PBQPDumpGraphs("pbqp-dump-graphs",
77               cl::desc("Dump graphs for each function/round in the compilation unit."),
78               cl::init(false), cl::Hidden);
79#endif
80
81namespace {
82
83///
84/// PBQP based allocators solve the register allocation problem by mapping
85/// register allocation problems to Partitioned Boolean Quadratic
86/// Programming problems.
87class RegAllocPBQP : public MachineFunctionPass {
88public:
89
90  static char ID;
91
92  /// Construct a PBQP register allocator.
93  RegAllocPBQP(char *cPassID = nullptr)
94      : MachineFunctionPass(ID), customPassID(cPassID) {
95    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
96    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
98    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
99  }
100
101  /// Return the pass name.
102  const char* getPassName() const override {
103    return "PBQP Register Allocator";
104  }
105
106  /// PBQP analysis usage.
107  void getAnalysisUsage(AnalysisUsage &au) const override;
108
109  /// Perform register allocation
110  bool runOnMachineFunction(MachineFunction &MF) override;
111
112private:
113
114  typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
115  typedef std::vector<const LiveInterval*> Node2LIMap;
116  typedef std::vector<unsigned> AllowedSet;
117  typedef std::vector<AllowedSet> AllowedSetMap;
118  typedef std::pair<unsigned, unsigned> RegPair;
119  typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
120  typedef std::set<unsigned> RegSet;
121
122  char *customPassID;
123
124  RegSet VRegsToAlloc, EmptyIntervalVRegs;
125
126  /// \brief Finds the initial set of vreg intervals to allocate.
127  void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
128
129  /// \brief Constructs an initial graph.
130  void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
131
132  /// \brief Spill the given VReg.
133  void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
134                 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
135                 Spiller &VRegSpiller);
136
137  /// \brief Given a solved PBQP problem maps this solution back to a register
138  /// assignment.
139  bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
140                         const PBQP::Solution &Solution,
141                         VirtRegMap &VRM,
142                         Spiller &VRegSpiller);
143
144  /// \brief Postprocessing before final spilling. Sets basic block "live in"
145  /// variables.
146  void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
147                     VirtRegMap &VRM) const;
148
149};
150
151char RegAllocPBQP::ID = 0;
152
153/// @brief Set spill costs for each node in the PBQP reg-alloc graph.
154class SpillCosts : public PBQPRAConstraint {
155public:
156  void apply(PBQPRAGraph &G) override {
157    LiveIntervals &LIS = G.getMetadata().LIS;
158
159    // A minimum spill costs, so that register constraints can can be set
160    // without normalization in the [0.0:MinSpillCost( interval.
161    const PBQP::PBQPNum MinSpillCost = 10.0;
162
163    for (auto NId : G.nodeIds()) {
164      PBQP::PBQPNum SpillCost =
165        LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
166      if (SpillCost == 0.0)
167        SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
168      else
169        SpillCost += MinSpillCost;
170      PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
171      NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
172      G.setNodeCosts(NId, std::move(NodeCosts));
173    }
174  }
175};
176
177/// @brief Add interference edges between overlapping vregs.
178class Interference : public PBQPRAConstraint {
179private:
180
181  typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
182  typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
183  typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
184  typedef DenseSet<IKey> DisjointAllowedRegsCache;
185  typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
186  typedef DenseSet<IEdgeKey> IEdgeCache;
187
188  bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
189                               PBQPRAGraph::NodeId MId,
190                               const DisjointAllowedRegsCache &D) const {
191    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
192    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
193
194    if (NRegs == MRegs)
195      return false;
196
197    if (NRegs < MRegs)
198      return D.count(IKey(NRegs, MRegs)) > 0;
199
200    return D.count(IKey(MRegs, NRegs)) > 0;
201  }
202
203  void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
204                              PBQPRAGraph::NodeId MId,
205                              DisjointAllowedRegsCache &D) {
206    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
207    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
208
209    assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
210
211    if (NRegs < MRegs)
212      D.insert(IKey(NRegs, MRegs));
213    else
214      D.insert(IKey(MRegs, NRegs));
215  }
216
217  // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
218  // for the fast interference graph construction algorithm. The last is there
219  // to save us from looking up node ids via the VRegToNode map in the graph
220  // metadata.
221  typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
222    IntervalInfo;
223
224  static SlotIndex getStartPoint(const IntervalInfo &I) {
225    return std::get<0>(I)->segments[std::get<1>(I)].start;
226  }
227
228  static SlotIndex getEndPoint(const IntervalInfo &I) {
229    return std::get<0>(I)->segments[std::get<1>(I)].end;
230  }
231
232  static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
233    return std::get<2>(I);
234  }
235
236  static bool lowestStartPoint(const IntervalInfo &I1,
237                               const IntervalInfo &I2) {
238    // Condition reversed because priority queue has the *highest* element at
239    // the front, rather than the lowest.
240    return getStartPoint(I1) > getStartPoint(I2);
241  }
242
243  static bool lowestEndPoint(const IntervalInfo &I1,
244                             const IntervalInfo &I2) {
245    SlotIndex E1 = getEndPoint(I1);
246    SlotIndex E2 = getEndPoint(I2);
247
248    if (E1 < E2)
249      return true;
250
251    if (E1 > E2)
252      return false;
253
254    // If two intervals end at the same point, we need a way to break the tie or
255    // the set will assume they're actually equal and refuse to insert a
256    // "duplicate". Just compare the vregs - fast and guaranteed unique.
257    return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
258  }
259
260  static bool isAtLastSegment(const IntervalInfo &I) {
261    return std::get<1>(I) == std::get<0>(I)->size() - 1;
262  }
263
264  static IntervalInfo nextSegment(const IntervalInfo &I) {
265    return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
266  }
267
268public:
269
270  void apply(PBQPRAGraph &G) override {
271    // The following is loosely based on the linear scan algorithm introduced in
272    // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
273    // isn't linear, because the size of the active set isn't bound by the
274    // number of registers, but rather the size of the largest clique in the
275    // graph. Still, we expect this to be better than N^2.
276    LiveIntervals &LIS = G.getMetadata().LIS;
277
278    // Interferenc matrices are incredibly regular - they're only a function of
279    // the allowed sets, so we cache them to avoid the overhead of constructing
280    // and uniquing them.
281    IMatrixCache C;
282
283    // Finding an edge is expensive in the worst case (O(max_clique(G))). So
284    // cache locally edges we have already seen.
285    IEdgeCache EC;
286
287    // Cache known disjoint allowed registers pairs
288    DisjointAllowedRegsCache D;
289
290    typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
291    typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
292                                decltype(&lowestStartPoint)> IntervalQueue;
293    IntervalSet Active(lowestEndPoint);
294    IntervalQueue Inactive(lowestStartPoint);
295
296    // Start by building the inactive set.
297    for (auto NId : G.nodeIds()) {
298      unsigned VReg = G.getNodeMetadata(NId).getVReg();
299      LiveInterval &LI = LIS.getInterval(VReg);
300      assert(!LI.empty() && "PBQP graph contains node for empty interval");
301      Inactive.push(std::make_tuple(&LI, 0, NId));
302    }
303
304    while (!Inactive.empty()) {
305      // Tentatively grab the "next" interval - this choice may be overriden
306      // below.
307      IntervalInfo Cur = Inactive.top();
308
309      // Retire any active intervals that end before Cur starts.
310      IntervalSet::iterator RetireItr = Active.begin();
311      while (RetireItr != Active.end() &&
312             (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
313        // If this interval has subsequent segments, add the next one to the
314        // inactive list.
315        if (!isAtLastSegment(*RetireItr))
316          Inactive.push(nextSegment(*RetireItr));
317
318        ++RetireItr;
319      }
320      Active.erase(Active.begin(), RetireItr);
321
322      // One of the newly retired segments may actually start before the
323      // Cur segment, so re-grab the front of the inactive list.
324      Cur = Inactive.top();
325      Inactive.pop();
326
327      // At this point we know that Cur overlaps all active intervals. Add the
328      // interference edges.
329      PBQP::GraphBase::NodeId NId = getNodeId(Cur);
330      for (const auto &A : Active) {
331        PBQP::GraphBase::NodeId MId = getNodeId(A);
332
333        // Do not add an edge when the nodes' allowed registers do not
334        // intersect: there is obviously no interference.
335        if (haveDisjointAllowedRegs(G, NId, MId, D))
336          continue;
337
338        // Check that we haven't already added this edge
339        IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
340        if (EC.count(EK))
341          continue;
342
343        // This is a new edge - add it to the graph.
344        if (!createInterferenceEdge(G, NId, MId, C))
345          setDisjointAllowedRegs(G, NId, MId, D);
346        else
347          EC.insert(EK);
348      }
349
350      // Finally, add Cur to the Active set.
351      Active.insert(Cur);
352    }
353  }
354
355private:
356
357  // Create an Interference edge and add it to the graph, unless it is
358  // a null matrix, meaning the nodes' allowed registers do not have any
359  // interference. This case occurs frequently between integer and floating
360  // point registers for example.
361  // return true iff both nodes interferes.
362  bool createInterferenceEdge(PBQPRAGraph &G,
363                              PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
364                              IMatrixCache &C) {
365
366    const TargetRegisterInfo &TRI =
367        *G.getMetadata().MF.getSubtarget().getRegisterInfo();
368    const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
369    const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
370
371    // Try looking the edge costs up in the IMatrixCache first.
372    IKey K(&NRegs, &MRegs);
373    IMatrixCache::iterator I = C.find(K);
374    if (I != C.end()) {
375      G.addEdgeBypassingCostAllocator(NId, MId, I->second);
376      return true;
377    }
378
379    PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
380    bool NodesInterfere = false;
381    for (unsigned I = 0; I != NRegs.size(); ++I) {
382      unsigned PRegN = NRegs[I];
383      for (unsigned J = 0; J != MRegs.size(); ++J) {
384        unsigned PRegM = MRegs[J];
385        if (TRI.regsOverlap(PRegN, PRegM)) {
386          M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
387          NodesInterfere = true;
388        }
389      }
390    }
391
392    if (!NodesInterfere)
393      return false;
394
395    PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
396    C[K] = G.getEdgeCostsPtr(EId);
397
398    return true;
399  }
400};
401
402
403class Coalescing : public PBQPRAConstraint {
404public:
405  void apply(PBQPRAGraph &G) override {
406    MachineFunction &MF = G.getMetadata().MF;
407    MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
408    CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
409
410    // Scan the machine function and add a coalescing cost whenever CoalescerPair
411    // gives the Ok.
412    for (const auto &MBB : MF) {
413      for (const auto &MI : MBB) {
414
415        // Skip not-coalescable or already coalesced copies.
416        if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
417          continue;
418
419        unsigned DstReg = CP.getDstReg();
420        unsigned SrcReg = CP.getSrcReg();
421
422        const float Scale = 1.0f / MBFI.getEntryFreq();
423        PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
424
425        if (CP.isPhys()) {
426          if (!MF.getRegInfo().isAllocatable(DstReg))
427            continue;
428
429          PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
430
431          const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
432            G.getNodeMetadata(NId).getAllowedRegs();
433
434          unsigned PRegOpt = 0;
435          while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
436            ++PRegOpt;
437
438          if (PRegOpt < Allowed.size()) {
439            PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
440            NewCosts[PRegOpt + 1] -= CBenefit;
441            G.setNodeCosts(NId, std::move(NewCosts));
442          }
443        } else {
444          PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
445          PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
446          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
447            &G.getNodeMetadata(N1Id).getAllowedRegs();
448          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
449            &G.getNodeMetadata(N2Id).getAllowedRegs();
450
451          PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
452          if (EId == G.invalidEdgeId()) {
453            PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
454                                         Allowed2->size() + 1, 0);
455            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
456            G.addEdge(N1Id, N2Id, std::move(Costs));
457          } else {
458            if (G.getEdgeNode1Id(EId) == N2Id) {
459              std::swap(N1Id, N2Id);
460              std::swap(Allowed1, Allowed2);
461            }
462            PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
463            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
464            G.updateEdgeCosts(EId, std::move(Costs));
465          }
466        }
467      }
468    }
469  }
470
471private:
472
473  void addVirtRegCoalesce(
474                    PBQPRAGraph::RawMatrix &CostMat,
475                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
476                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
477                    PBQP::PBQPNum Benefit) {
478    assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
479    assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
480    for (unsigned I = 0; I != Allowed1.size(); ++I) {
481      unsigned PReg1 = Allowed1[I];
482      for (unsigned J = 0; J != Allowed2.size(); ++J) {
483        unsigned PReg2 = Allowed2[J];
484        if (PReg1 == PReg2)
485          CostMat[I + 1][J + 1] -= Benefit;
486      }
487    }
488  }
489
490};
491
492} // End anonymous namespace.
493
494// Out-of-line destructor/anchor for PBQPRAConstraint.
495PBQPRAConstraint::~PBQPRAConstraint() {}
496void PBQPRAConstraint::anchor() {}
497void PBQPRAConstraintList::anchor() {}
498
499void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
500  au.setPreservesCFG();
501  au.addRequired<AAResultsWrapperPass>();
502  au.addPreserved<AAResultsWrapperPass>();
503  au.addRequired<SlotIndexes>();
504  au.addPreserved<SlotIndexes>();
505  au.addRequired<LiveIntervals>();
506  au.addPreserved<LiveIntervals>();
507  //au.addRequiredID(SplitCriticalEdgesID);
508  if (customPassID)
509    au.addRequiredID(*customPassID);
510  au.addRequired<LiveStacks>();
511  au.addPreserved<LiveStacks>();
512  au.addRequired<MachineBlockFrequencyInfo>();
513  au.addPreserved<MachineBlockFrequencyInfo>();
514  au.addRequired<MachineLoopInfo>();
515  au.addPreserved<MachineLoopInfo>();
516  au.addRequired<MachineDominatorTree>();
517  au.addPreserved<MachineDominatorTree>();
518  au.addRequired<VirtRegMap>();
519  au.addPreserved<VirtRegMap>();
520  MachineFunctionPass::getAnalysisUsage(au);
521}
522
523void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
524                                            LiveIntervals &LIS) {
525  const MachineRegisterInfo &MRI = MF.getRegInfo();
526
527  // Iterate over all live ranges.
528  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
529    unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
530    if (MRI.reg_nodbg_empty(Reg))
531      continue;
532    LiveInterval &LI = LIS.getInterval(Reg);
533
534    // If this live interval is non-empty we will use pbqp to allocate it.
535    // Empty intervals we allocate in a simple post-processing stage in
536    // finalizeAlloc.
537    if (!LI.empty()) {
538      VRegsToAlloc.insert(LI.reg);
539    } else {
540      EmptyIntervalVRegs.insert(LI.reg);
541    }
542  }
543}
544
545static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
546                                   const MachineFunction &MF) {
547  const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
548  for (unsigned i = 0; CSR[i] != 0; ++i)
549    if (TRI.regsOverlap(reg, CSR[i]))
550      return true;
551  return false;
552}
553
554void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
555                                   Spiller &VRegSpiller) {
556  MachineFunction &MF = G.getMetadata().MF;
557
558  LiveIntervals &LIS = G.getMetadata().LIS;
559  const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
560  const TargetRegisterInfo &TRI =
561      *G.getMetadata().MF.getSubtarget().getRegisterInfo();
562
563  std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
564
565  while (!Worklist.empty()) {
566    unsigned VReg = Worklist.back();
567    Worklist.pop_back();
568
569    const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
570    LiveInterval &VRegLI = LIS.getInterval(VReg);
571
572    // Record any overlaps with regmask operands.
573    BitVector RegMaskOverlaps;
574    LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
575
576    // Compute an initial allowed set for the current vreg.
577    std::vector<unsigned> VRegAllowed;
578    ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
579    for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
580      unsigned PReg = RawPRegOrder[I];
581      if (MRI.isReserved(PReg))
582        continue;
583
584      // vregLI crosses a regmask operand that clobbers preg.
585      if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
586        continue;
587
588      // vregLI overlaps fixed regunit interference.
589      bool Interference = false;
590      for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
591        if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
592          Interference = true;
593          break;
594        }
595      }
596      if (Interference)
597        continue;
598
599      // preg is usable for this virtual register.
600      VRegAllowed.push_back(PReg);
601    }
602
603    // Check for vregs that have no allowed registers. These should be
604    // pre-spilled and the new vregs added to the worklist.
605    if (VRegAllowed.empty()) {
606      SmallVector<unsigned, 8> NewVRegs;
607      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
608      Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
609      continue;
610    }
611
612    PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
613
614    // Tweak cost of callee saved registers, as using then force spilling and
615    // restoring them. This would only happen in the prologue / epilogue though.
616    for (unsigned i = 0; i != VRegAllowed.size(); ++i)
617      if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
618        NodeCosts[1 + i] += 1.0;
619
620    PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
621    G.getNodeMetadata(NId).setVReg(VReg);
622    G.getNodeMetadata(NId).setAllowedRegs(
623      G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
624    G.getMetadata().setNodeIdForVReg(VReg, NId);
625  }
626}
627
628void RegAllocPBQP::spillVReg(unsigned VReg,
629                             SmallVectorImpl<unsigned> &NewIntervals,
630                             MachineFunction &MF, LiveIntervals &LIS,
631                             VirtRegMap &VRM, Spiller &VRegSpiller) {
632
633  VRegsToAlloc.erase(VReg);
634  LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM);
635  VRegSpiller.spill(LRE);
636
637  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
638  (void)TRI;
639  DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
640               << LRE.getParent().weight << ", New vregs: ");
641
642  // Copy any newly inserted live intervals into the list of regs to
643  // allocate.
644  for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
645       I != E; ++I) {
646    const LiveInterval &LI = LIS.getInterval(*I);
647    assert(!LI.empty() && "Empty spill range.");
648    DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
649    VRegsToAlloc.insert(LI.reg);
650  }
651
652  DEBUG(dbgs() << ")\n");
653}
654
655bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
656                                     const PBQP::Solution &Solution,
657                                     VirtRegMap &VRM,
658                                     Spiller &VRegSpiller) {
659  MachineFunction &MF = G.getMetadata().MF;
660  LiveIntervals &LIS = G.getMetadata().LIS;
661  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
662  (void)TRI;
663
664  // Set to true if we have any spills
665  bool AnotherRoundNeeded = false;
666
667  // Clear the existing allocation.
668  VRM.clearAllVirt();
669
670  // Iterate over the nodes mapping the PBQP solution to a register
671  // assignment.
672  for (auto NId : G.nodeIds()) {
673    unsigned VReg = G.getNodeMetadata(NId).getVReg();
674    unsigned AllocOption = Solution.getSelection(NId);
675
676    if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
677      unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
678      DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
679            << TRI.getName(PReg) << "\n");
680      assert(PReg != 0 && "Invalid preg selected.");
681      VRM.assignVirt2Phys(VReg, PReg);
682    } else {
683      // Spill VReg. If this introduces new intervals we'll need another round
684      // of allocation.
685      SmallVector<unsigned, 8> NewVRegs;
686      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
687      AnotherRoundNeeded |= !NewVRegs.empty();
688    }
689  }
690
691  return !AnotherRoundNeeded;
692}
693
694void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
695                                 LiveIntervals &LIS,
696                                 VirtRegMap &VRM) const {
697  MachineRegisterInfo &MRI = MF.getRegInfo();
698
699  // First allocate registers for the empty intervals.
700  for (RegSet::const_iterator
701         I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
702         I != E; ++I) {
703    LiveInterval &LI = LIS.getInterval(*I);
704
705    unsigned PReg = MRI.getSimpleHint(LI.reg);
706
707    if (PReg == 0) {
708      const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
709      PReg = RC.getRawAllocationOrder(MF).front();
710    }
711
712    VRM.assignVirt2Phys(LI.reg, PReg);
713  }
714}
715
716static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
717                                         unsigned NumInstr) {
718  // All intervals have a spill weight that is mostly proportional to the number
719  // of uses, with uses in loops having a bigger weight.
720  return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
721}
722
723bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
724  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
725  MachineBlockFrequencyInfo &MBFI =
726    getAnalysis<MachineBlockFrequencyInfo>();
727
728  VirtRegMap &VRM = getAnalysis<VirtRegMap>();
729
730  calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
731                                MBFI, normalizePBQPSpillWeight);
732
733  std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
734
735  MF.getRegInfo().freezeReservedRegs(MF);
736
737  DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
738
739  // Allocator main loop:
740  //
741  // * Map current regalloc problem to a PBQP problem
742  // * Solve the PBQP problem
743  // * Map the solution back to a register allocation
744  // * Spill if necessary
745  //
746  // This process is continued till no more spills are generated.
747
748  // Find the vreg intervals in need of allocation.
749  findVRegIntervalsToAlloc(MF, LIS);
750
751#ifndef NDEBUG
752  const Function &F = *MF.getFunction();
753  std::string FullyQualifiedName =
754    F.getParent()->getModuleIdentifier() + "." + F.getName().str();
755#endif
756
757  // If there are non-empty intervals allocate them using pbqp.
758  if (!VRegsToAlloc.empty()) {
759
760    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
761    std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
762      llvm::make_unique<PBQPRAConstraintList>();
763    ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
764    ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
765    if (PBQPCoalescing)
766      ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
767    ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
768
769    bool PBQPAllocComplete = false;
770    unsigned Round = 0;
771
772    while (!PBQPAllocComplete) {
773      DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
774
775      PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
776      initializeGraph(G, VRM, *VRegSpiller);
777      ConstraintsRoot->apply(G);
778
779#ifndef NDEBUG
780      if (PBQPDumpGraphs) {
781        std::ostringstream RS;
782        RS << Round;
783        std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
784                                    ".pbqpgraph";
785        std::error_code EC;
786        raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
787        DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
788              << GraphFileName << "\"\n");
789        G.dump(OS);
790      }
791#endif
792
793      PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
794      PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
795      ++Round;
796    }
797  }
798
799  // Finalise allocation, allocate empty ranges.
800  finalizeAlloc(MF, LIS, VRM);
801  VRegsToAlloc.clear();
802  EmptyIntervalVRegs.clear();
803
804  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
805
806  return true;
807}
808
809/// Create Printable object for node and register info.
810static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
811                               const PBQP::RegAlloc::PBQPRAGraph &G) {
812  return Printable([NId, &G](raw_ostream &OS) {
813    const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
814    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
815    unsigned VReg = G.getNodeMetadata(NId).getVReg();
816    const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
817    OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
818  });
819}
820
821void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
822  for (auto NId : nodeIds()) {
823    const Vector &Costs = getNodeCosts(NId);
824    assert(Costs.getLength() != 0 && "Empty vector in graph.");
825    OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
826  }
827  OS << '\n';
828
829  for (auto EId : edgeIds()) {
830    NodeId N1Id = getEdgeNode1Id(EId);
831    NodeId N2Id = getEdgeNode2Id(EId);
832    assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
833    const Matrix &M = getEdgeCosts(EId);
834    assert(M.getRows() != 0 && "No rows in matrix.");
835    assert(M.getCols() != 0 && "No cols in matrix.");
836    OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
837    OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
838    OS << M << '\n';
839  }
840}
841
842void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
843
844void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
845  OS << "graph {\n";
846  for (auto NId : nodeIds()) {
847    OS << "  node" << NId << " [ label=\""
848       << PrintNodeInfo(NId, *this) << "\\n"
849       << getNodeCosts(NId) << "\" ]\n";
850  }
851
852  OS << "  edge [ len=" << nodeIds().size() << " ]\n";
853  for (auto EId : edgeIds()) {
854    OS << "  node" << getEdgeNode1Id(EId)
855       << " -- node" << getEdgeNode2Id(EId)
856       << " [ label=\"";
857    const Matrix &EdgeCosts = getEdgeCosts(EId);
858    for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
859      OS << EdgeCosts.getRowAsVector(i) << "\\n";
860    }
861    OS << "\" ]\n";
862  }
863  OS << "}\n";
864}
865
866FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
867  return new RegAllocPBQP(customPassID);
868}
869
870FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
871  return createPBQPRegisterAllocator();
872}
873
874#undef DEBUG_TYPE
875