1//===-- Type.cpp - Implement the Type class -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Type class for the IR library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Type.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/IR/Module.h"
18#include <algorithm>
19#include <cstdarg>
20using namespace llvm;
21
22//===----------------------------------------------------------------------===//
23//                         Type Class Implementation
24//===----------------------------------------------------------------------===//
25
26Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27  switch (IDNumber) {
28  case VoidTyID      : return getVoidTy(C);
29  case HalfTyID      : return getHalfTy(C);
30  case FloatTyID     : return getFloatTy(C);
31  case DoubleTyID    : return getDoubleTy(C);
32  case X86_FP80TyID  : return getX86_FP80Ty(C);
33  case FP128TyID     : return getFP128Ty(C);
34  case PPC_FP128TyID : return getPPC_FP128Ty(C);
35  case LabelTyID     : return getLabelTy(C);
36  case MetadataTyID  : return getMetadataTy(C);
37  case X86_MMXTyID   : return getX86_MMXTy(C);
38  case TokenTyID     : return getTokenTy(C);
39  default:
40    return nullptr;
41  }
42}
43
44/// getScalarType - If this is a vector type, return the element type,
45/// otherwise return this.
46Type *Type::getScalarType() const {
47  if (auto *VTy = dyn_cast<VectorType>(this))
48    return VTy->getElementType();
49  return const_cast<Type*>(this);
50}
51
52/// isIntegerTy - Return true if this is an IntegerType of the specified width.
53bool Type::isIntegerTy(unsigned Bitwidth) const {
54  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
55}
56
57// canLosslesslyBitCastTo - Return true if this type can be converted to
58// 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
59//
60bool Type::canLosslesslyBitCastTo(Type *Ty) const {
61  // Identity cast means no change so return true
62  if (this == Ty)
63    return true;
64
65  // They are not convertible unless they are at least first class types
66  if (!this->isFirstClassType() || !Ty->isFirstClassType())
67    return false;
68
69  // Vector -> Vector conversions are always lossless if the two vector types
70  // have the same size, otherwise not.  Also, 64-bit vector types can be
71  // converted to x86mmx.
72  if (auto *thisPTy = dyn_cast<VectorType>(this)) {
73    if (auto *thatPTy = dyn_cast<VectorType>(Ty))
74      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
75    if (Ty->getTypeID() == Type::X86_MMXTyID &&
76        thisPTy->getBitWidth() == 64)
77      return true;
78  }
79
80  if (this->getTypeID() == Type::X86_MMXTyID)
81    if (auto *thatPTy = dyn_cast<VectorType>(Ty))
82      if (thatPTy->getBitWidth() == 64)
83        return true;
84
85  // At this point we have only various mismatches of the first class types
86  // remaining and ptr->ptr. Just select the lossless conversions. Everything
87  // else is not lossless. Conservatively assume we can't losslessly convert
88  // between pointers with different address spaces.
89  if (auto *PTy = dyn_cast<PointerType>(this)) {
90    if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
91      return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
92    return false;
93  }
94  return false;  // Other types have no identity values
95}
96
97bool Type::isEmptyTy() const {
98  if (auto *ATy = dyn_cast<ArrayType>(this)) {
99    unsigned NumElements = ATy->getNumElements();
100    return NumElements == 0 || ATy->getElementType()->isEmptyTy();
101  }
102
103  if (auto *STy = dyn_cast<StructType>(this)) {
104    unsigned NumElements = STy->getNumElements();
105    for (unsigned i = 0; i < NumElements; ++i)
106      if (!STy->getElementType(i)->isEmptyTy())
107        return false;
108    return true;
109  }
110
111  return false;
112}
113
114unsigned Type::getPrimitiveSizeInBits() const {
115  switch (getTypeID()) {
116  case Type::HalfTyID: return 16;
117  case Type::FloatTyID: return 32;
118  case Type::DoubleTyID: return 64;
119  case Type::X86_FP80TyID: return 80;
120  case Type::FP128TyID: return 128;
121  case Type::PPC_FP128TyID: return 128;
122  case Type::X86_MMXTyID: return 64;
123  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
124  case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
125  default: return 0;
126  }
127}
128
129/// getScalarSizeInBits - If this is a vector type, return the
130/// getPrimitiveSizeInBits value for the element type. Otherwise return the
131/// getPrimitiveSizeInBits value for this type.
132unsigned Type::getScalarSizeInBits() const {
133  return getScalarType()->getPrimitiveSizeInBits();
134}
135
136/// getFPMantissaWidth - Return the width of the mantissa of this type.  This
137/// is only valid on floating point types.  If the FP type does not
138/// have a stable mantissa (e.g. ppc long double), this method returns -1.
139int Type::getFPMantissaWidth() const {
140  if (auto *VTy = dyn_cast<VectorType>(this))
141    return VTy->getElementType()->getFPMantissaWidth();
142  assert(isFloatingPointTy() && "Not a floating point type!");
143  if (getTypeID() == HalfTyID) return 11;
144  if (getTypeID() == FloatTyID) return 24;
145  if (getTypeID() == DoubleTyID) return 53;
146  if (getTypeID() == X86_FP80TyID) return 64;
147  if (getTypeID() == FP128TyID) return 113;
148  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
149  return -1;
150}
151
152/// isSizedDerivedType - Derived types like structures and arrays are sized
153/// iff all of the members of the type are sized as well.  Since asking for
154/// their size is relatively uncommon, move this operation out of line.
155bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
156  if (auto *ATy = dyn_cast<ArrayType>(this))
157    return ATy->getElementType()->isSized(Visited);
158
159  if (auto *VTy = dyn_cast<VectorType>(this))
160    return VTy->getElementType()->isSized(Visited);
161
162  return cast<StructType>(this)->isSized(Visited);
163}
164
165//===----------------------------------------------------------------------===//
166//                         Subclass Helper Methods
167//===----------------------------------------------------------------------===//
168
169unsigned Type::getIntegerBitWidth() const {
170  return cast<IntegerType>(this)->getBitWidth();
171}
172
173bool Type::isFunctionVarArg() const {
174  return cast<FunctionType>(this)->isVarArg();
175}
176
177Type *Type::getFunctionParamType(unsigned i) const {
178  return cast<FunctionType>(this)->getParamType(i);
179}
180
181unsigned Type::getFunctionNumParams() const {
182  return cast<FunctionType>(this)->getNumParams();
183}
184
185StringRef Type::getStructName() const {
186  return cast<StructType>(this)->getName();
187}
188
189unsigned Type::getStructNumElements() const {
190  return cast<StructType>(this)->getNumElements();
191}
192
193Type *Type::getStructElementType(unsigned N) const {
194  return cast<StructType>(this)->getElementType(N);
195}
196
197Type *Type::getSequentialElementType() const {
198  return cast<SequentialType>(this)->getElementType();
199}
200
201uint64_t Type::getArrayNumElements() const {
202  return cast<ArrayType>(this)->getNumElements();
203}
204
205unsigned Type::getVectorNumElements() const {
206  return cast<VectorType>(this)->getNumElements();
207}
208
209unsigned Type::getPointerAddressSpace() const {
210  return cast<PointerType>(getScalarType())->getAddressSpace();
211}
212
213
214//===----------------------------------------------------------------------===//
215//                          Primitive 'Type' data
216//===----------------------------------------------------------------------===//
217
218Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
219Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
220Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
221Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
222Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
223Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
224Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
225Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
226Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
227Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
228Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
229
230IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
231IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
232IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
233IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
234IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
235IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
236
237IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
238  return IntegerType::get(C, N);
239}
240
241PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
242  return getHalfTy(C)->getPointerTo(AS);
243}
244
245PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
246  return getFloatTy(C)->getPointerTo(AS);
247}
248
249PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
250  return getDoubleTy(C)->getPointerTo(AS);
251}
252
253PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
254  return getX86_FP80Ty(C)->getPointerTo(AS);
255}
256
257PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
258  return getFP128Ty(C)->getPointerTo(AS);
259}
260
261PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
262  return getPPC_FP128Ty(C)->getPointerTo(AS);
263}
264
265PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
266  return getX86_MMXTy(C)->getPointerTo(AS);
267}
268
269PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
270  return getIntNTy(C, N)->getPointerTo(AS);
271}
272
273PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
274  return getInt1Ty(C)->getPointerTo(AS);
275}
276
277PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
278  return getInt8Ty(C)->getPointerTo(AS);
279}
280
281PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
282  return getInt16Ty(C)->getPointerTo(AS);
283}
284
285PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
286  return getInt32Ty(C)->getPointerTo(AS);
287}
288
289PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
290  return getInt64Ty(C)->getPointerTo(AS);
291}
292
293
294//===----------------------------------------------------------------------===//
295//                       IntegerType Implementation
296//===----------------------------------------------------------------------===//
297
298IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
299  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
300  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
301
302  // Check for the built-in integer types
303  switch (NumBits) {
304  case   1: return cast<IntegerType>(Type::getInt1Ty(C));
305  case   8: return cast<IntegerType>(Type::getInt8Ty(C));
306  case  16: return cast<IntegerType>(Type::getInt16Ty(C));
307  case  32: return cast<IntegerType>(Type::getInt32Ty(C));
308  case  64: return cast<IntegerType>(Type::getInt64Ty(C));
309  case 128: return cast<IntegerType>(Type::getInt128Ty(C));
310  default:
311    break;
312  }
313
314  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
315
316  if (!Entry)
317    Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
318
319  return Entry;
320}
321
322bool IntegerType::isPowerOf2ByteWidth() const {
323  unsigned BitWidth = getBitWidth();
324  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
325}
326
327APInt IntegerType::getMask() const {
328  return APInt::getAllOnesValue(getBitWidth());
329}
330
331//===----------------------------------------------------------------------===//
332//                       FunctionType Implementation
333//===----------------------------------------------------------------------===//
334
335FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
336                           bool IsVarArgs)
337  : Type(Result->getContext(), FunctionTyID) {
338  Type **SubTys = reinterpret_cast<Type**>(this+1);
339  assert(isValidReturnType(Result) && "invalid return type for function");
340  setSubclassData(IsVarArgs);
341
342  SubTys[0] = Result;
343
344  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
345    assert(isValidArgumentType(Params[i]) &&
346           "Not a valid type for function argument!");
347    SubTys[i+1] = Params[i];
348  }
349
350  ContainedTys = SubTys;
351  NumContainedTys = Params.size() + 1; // + 1 for result type
352}
353
354// FunctionType::get - The factory function for the FunctionType class.
355FunctionType *FunctionType::get(Type *ReturnType,
356                                ArrayRef<Type*> Params, bool isVarArg) {
357  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
358  FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
359  auto I = pImpl->FunctionTypes.find_as(Key);
360  FunctionType *FT;
361
362  if (I == pImpl->FunctionTypes.end()) {
363    FT = (FunctionType*) pImpl->TypeAllocator.
364      Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
365               AlignOf<FunctionType>::Alignment);
366    new (FT) FunctionType(ReturnType, Params, isVarArg);
367    pImpl->FunctionTypes.insert(FT);
368  } else {
369    FT = *I;
370  }
371
372  return FT;
373}
374
375FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
376  return get(Result, None, isVarArg);
377}
378
379/// isValidReturnType - Return true if the specified type is valid as a return
380/// type.
381bool FunctionType::isValidReturnType(Type *RetTy) {
382  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
383  !RetTy->isMetadataTy();
384}
385
386/// isValidArgumentType - Return true if the specified type is valid as an
387/// argument type.
388bool FunctionType::isValidArgumentType(Type *ArgTy) {
389  return ArgTy->isFirstClassType();
390}
391
392//===----------------------------------------------------------------------===//
393//                       StructType Implementation
394//===----------------------------------------------------------------------===//
395
396// Primitive Constructors.
397
398StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
399                            bool isPacked) {
400  LLVMContextImpl *pImpl = Context.pImpl;
401  AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
402  auto I = pImpl->AnonStructTypes.find_as(Key);
403  StructType *ST;
404
405  if (I == pImpl->AnonStructTypes.end()) {
406    // Value not found.  Create a new type!
407    ST = new (Context.pImpl->TypeAllocator) StructType(Context);
408    ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
409    ST->setBody(ETypes, isPacked);
410    Context.pImpl->AnonStructTypes.insert(ST);
411  } else {
412    ST = *I;
413  }
414
415  return ST;
416}
417
418void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
419  assert(isOpaque() && "Struct body already set!");
420
421  setSubclassData(getSubclassData() | SCDB_HasBody);
422  if (isPacked)
423    setSubclassData(getSubclassData() | SCDB_Packed);
424
425  NumContainedTys = Elements.size();
426
427  if (Elements.empty()) {
428    ContainedTys = nullptr;
429    return;
430  }
431
432  ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data();
433}
434
435void StructType::setName(StringRef Name) {
436  if (Name == getName()) return;
437
438  StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
439  typedef StringMap<StructType *>::MapEntryTy EntryTy;
440
441  // If this struct already had a name, remove its symbol table entry. Don't
442  // delete the data yet because it may be part of the new name.
443  if (SymbolTableEntry)
444    SymbolTable.remove((EntryTy *)SymbolTableEntry);
445
446  // If this is just removing the name, we're done.
447  if (Name.empty()) {
448    if (SymbolTableEntry) {
449      // Delete the old string data.
450      ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
451      SymbolTableEntry = nullptr;
452    }
453    return;
454  }
455
456  // Look up the entry for the name.
457  auto IterBool =
458      getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
459
460  // While we have a name collision, try a random rename.
461  if (!IterBool.second) {
462    SmallString<64> TempStr(Name);
463    TempStr.push_back('.');
464    raw_svector_ostream TmpStream(TempStr);
465    unsigned NameSize = Name.size();
466
467    do {
468      TempStr.resize(NameSize + 1);
469      TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
470
471      IterBool = getContext().pImpl->NamedStructTypes.insert(
472          std::make_pair(TmpStream.str(), this));
473    } while (!IterBool.second);
474  }
475
476  // Delete the old string data.
477  if (SymbolTableEntry)
478    ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
479  SymbolTableEntry = &*IterBool.first;
480}
481
482//===----------------------------------------------------------------------===//
483// StructType Helper functions.
484
485StructType *StructType::create(LLVMContext &Context, StringRef Name) {
486  StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
487  if (!Name.empty())
488    ST->setName(Name);
489  return ST;
490}
491
492StructType *StructType::get(LLVMContext &Context, bool isPacked) {
493  return get(Context, None, isPacked);
494}
495
496StructType *StructType::get(Type *type, ...) {
497  assert(type && "Cannot create a struct type with no elements with this");
498  LLVMContext &Ctx = type->getContext();
499  va_list ap;
500  SmallVector<llvm::Type*, 8> StructFields;
501  va_start(ap, type);
502  while (type) {
503    StructFields.push_back(type);
504    type = va_arg(ap, llvm::Type*);
505  }
506  auto *Ret = llvm::StructType::get(Ctx, StructFields);
507  va_end(ap);
508  return Ret;
509}
510
511StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
512                               StringRef Name, bool isPacked) {
513  StructType *ST = create(Context, Name);
514  ST->setBody(Elements, isPacked);
515  return ST;
516}
517
518StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
519  return create(Context, Elements, StringRef());
520}
521
522StructType *StructType::create(LLVMContext &Context) {
523  return create(Context, StringRef());
524}
525
526StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
527                               bool isPacked) {
528  assert(!Elements.empty() &&
529         "This method may not be invoked with an empty list");
530  return create(Elements[0]->getContext(), Elements, Name, isPacked);
531}
532
533StructType *StructType::create(ArrayRef<Type*> Elements) {
534  assert(!Elements.empty() &&
535         "This method may not be invoked with an empty list");
536  return create(Elements[0]->getContext(), Elements, StringRef());
537}
538
539StructType *StructType::create(StringRef Name, Type *type, ...) {
540  assert(type && "Cannot create a struct type with no elements with this");
541  LLVMContext &Ctx = type->getContext();
542  va_list ap;
543  SmallVector<llvm::Type*, 8> StructFields;
544  va_start(ap, type);
545  while (type) {
546    StructFields.push_back(type);
547    type = va_arg(ap, llvm::Type*);
548  }
549  auto *Ret = llvm::StructType::create(Ctx, StructFields, Name);
550  va_end(ap);
551  return Ret;
552}
553
554bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
555  if ((getSubclassData() & SCDB_IsSized) != 0)
556    return true;
557  if (isOpaque())
558    return false;
559
560  if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
561    return false;
562
563  // Okay, our struct is sized if all of the elements are, but if one of the
564  // elements is opaque, the struct isn't sized *yet*, but may become sized in
565  // the future, so just bail out without caching.
566  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
567    if (!(*I)->isSized(Visited))
568      return false;
569
570  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
571  // we find a sized type, as types can only move from opaque to sized, not the
572  // other way.
573  const_cast<StructType*>(this)->setSubclassData(
574    getSubclassData() | SCDB_IsSized);
575  return true;
576}
577
578StringRef StructType::getName() const {
579  assert(!isLiteral() && "Literal structs never have names");
580  if (!SymbolTableEntry) return StringRef();
581
582  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
583}
584
585void StructType::setBody(Type *type, ...) {
586  assert(type && "Cannot create a struct type with no elements with this");
587  va_list ap;
588  SmallVector<llvm::Type*, 8> StructFields;
589  va_start(ap, type);
590  while (type) {
591    StructFields.push_back(type);
592    type = va_arg(ap, llvm::Type*);
593  }
594  setBody(StructFields);
595  va_end(ap);
596}
597
598bool StructType::isValidElementType(Type *ElemTy) {
599  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
600         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
601         !ElemTy->isTokenTy();
602}
603
604/// isLayoutIdentical - Return true if this is layout identical to the
605/// specified struct.
606bool StructType::isLayoutIdentical(StructType *Other) const {
607  if (this == Other) return true;
608
609  if (isPacked() != Other->isPacked())
610    return false;
611
612  return elements() == Other->elements();
613}
614
615/// getTypeByName - Return the type with the specified name, or null if there
616/// is none by that name.
617StructType *Module::getTypeByName(StringRef Name) const {
618  return getContext().pImpl->NamedStructTypes.lookup(Name);
619}
620
621
622//===----------------------------------------------------------------------===//
623//                       CompositeType Implementation
624//===----------------------------------------------------------------------===//
625
626Type *CompositeType::getTypeAtIndex(const Value *V) const {
627  if (auto *STy = dyn_cast<StructType>(this)) {
628    unsigned Idx =
629      (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
630    assert(indexValid(Idx) && "Invalid structure index!");
631    return STy->getElementType(Idx);
632  }
633
634  return cast<SequentialType>(this)->getElementType();
635}
636
637Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
638  if (auto *STy = dyn_cast<StructType>(this)) {
639    assert(indexValid(Idx) && "Invalid structure index!");
640    return STy->getElementType(Idx);
641  }
642
643  return cast<SequentialType>(this)->getElementType();
644}
645
646bool CompositeType::indexValid(const Value *V) const {
647  if (auto *STy = dyn_cast<StructType>(this)) {
648    // Structure indexes require (vectors of) 32-bit integer constants.  In the
649    // vector case all of the indices must be equal.
650    if (!V->getType()->getScalarType()->isIntegerTy(32))
651      return false;
652    const Constant *C = dyn_cast<Constant>(V);
653    if (C && V->getType()->isVectorTy())
654      C = C->getSplatValue();
655    const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
656    return CU && CU->getZExtValue() < STy->getNumElements();
657  }
658
659  // Sequential types can be indexed by any integer.
660  return V->getType()->isIntOrIntVectorTy();
661}
662
663bool CompositeType::indexValid(unsigned Idx) const {
664  if (auto *STy = dyn_cast<StructType>(this))
665    return Idx < STy->getNumElements();
666  // Sequential types can be indexed by any integer.
667  return true;
668}
669
670
671//===----------------------------------------------------------------------===//
672//                           ArrayType Implementation
673//===----------------------------------------------------------------------===//
674
675ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
676  : SequentialType(ArrayTyID, ElType) {
677  NumElements = NumEl;
678}
679
680ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
681  assert(isValidElementType(ElementType) && "Invalid type for array element!");
682
683  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
684  ArrayType *&Entry =
685    pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
686
687  if (!Entry)
688    Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
689  return Entry;
690}
691
692bool ArrayType::isValidElementType(Type *ElemTy) {
693  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
694         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
695         !ElemTy->isTokenTy();
696}
697
698//===----------------------------------------------------------------------===//
699//                          VectorType Implementation
700//===----------------------------------------------------------------------===//
701
702VectorType::VectorType(Type *ElType, unsigned NumEl)
703  : SequentialType(VectorTyID, ElType) {
704  NumElements = NumEl;
705}
706
707VectorType *VectorType::get(Type *ElementType, unsigned NumElements) {
708  assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
709  assert(isValidElementType(ElementType) && "Element type of a VectorType must "
710                                            "be an integer, floating point, or "
711                                            "pointer type.");
712
713  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
714  VectorType *&Entry = ElementType->getContext().pImpl
715    ->VectorTypes[std::make_pair(ElementType, NumElements)];
716
717  if (!Entry)
718    Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
719  return Entry;
720}
721
722bool VectorType::isValidElementType(Type *ElemTy) {
723  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
724    ElemTy->isPointerTy();
725}
726
727//===----------------------------------------------------------------------===//
728//                         PointerType Implementation
729//===----------------------------------------------------------------------===//
730
731PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
732  assert(EltTy && "Can't get a pointer to <null> type!");
733  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
734
735  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
736
737  // Since AddressSpace #0 is the common case, we special case it.
738  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
739     : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
740
741  if (!Entry)
742    Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
743  return Entry;
744}
745
746
747PointerType::PointerType(Type *E, unsigned AddrSpace)
748  : SequentialType(PointerTyID, E) {
749#ifndef NDEBUG
750  const unsigned oldNCT = NumContainedTys;
751#endif
752  setSubclassData(AddrSpace);
753  // Check for miscompile. PR11652.
754  assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
755}
756
757PointerType *Type::getPointerTo(unsigned addrs) const {
758  return PointerType::get(const_cast<Type*>(this), addrs);
759}
760
761bool PointerType::isValidElementType(Type *ElemTy) {
762  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
763         !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
764}
765
766bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
767  return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
768}
769