1//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the Hexagon hardware
11// loop instruction.  The hardware loop can perform loop branches with a
12// zero-cycle overhead.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for hardware loops:
21//  - Countable loops (w/ ind. var for a trip count)
22//  - Assumes loops are normalized by IndVarSimplify
23//  - Try inner-most loops first
24//  - No function calls in loops.
25//
26//===----------------------------------------------------------------------===//
27
28#include "llvm/ADT/SmallSet.h"
29#include "Hexagon.h"
30#include "HexagonSubtarget.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/PassSupport.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include <algorithm>
44#include <vector>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "hwloops"
49
50#ifndef NDEBUG
51static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
52
53// Option to create preheader only for a specific function.
54static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
55                                 cl::init(""));
56#endif
57
58// Option to create a preheader if one doesn't exist.
59static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
60    cl::Hidden, cl::init(true),
61    cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
62
63STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
64
65namespace llvm {
66  FunctionPass *createHexagonHardwareLoops();
67  void initializeHexagonHardwareLoopsPass(PassRegistry&);
68}
69
70namespace {
71  class CountValue;
72  struct HexagonHardwareLoops : public MachineFunctionPass {
73    MachineLoopInfo            *MLI;
74    MachineRegisterInfo        *MRI;
75    MachineDominatorTree       *MDT;
76    const HexagonInstrInfo     *TII;
77#ifndef NDEBUG
78    static int Counter;
79#endif
80
81  public:
82    static char ID;
83
84    HexagonHardwareLoops() : MachineFunctionPass(ID) {
85      initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
86    }
87
88    bool runOnMachineFunction(MachineFunction &MF) override;
89
90    const char *getPassName() const override { return "Hexagon Hardware Loops"; }
91
92    void getAnalysisUsage(AnalysisUsage &AU) const override {
93      AU.addRequired<MachineDominatorTree>();
94      AU.addRequired<MachineLoopInfo>();
95      MachineFunctionPass::getAnalysisUsage(AU);
96    }
97
98  private:
99    typedef std::map<unsigned, MachineInstr *> LoopFeederMap;
100
101    /// Kinds of comparisons in the compare instructions.
102    struct Comparison {
103      enum Kind {
104        EQ  = 0x01,
105        NE  = 0x02,
106        L   = 0x04,
107        G   = 0x08,
108        U   = 0x40,
109        LTs = L,
110        LEs = L | EQ,
111        GTs = G,
112        GEs = G | EQ,
113        LTu = L      | U,
114        LEu = L | EQ | U,
115        GTu = G      | U,
116        GEu = G | EQ | U
117      };
118
119      static Kind getSwappedComparison(Kind Cmp) {
120        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
121        if ((Cmp & L) || (Cmp & G))
122          return (Kind)(Cmp ^ (L|G));
123        return Cmp;
124      }
125
126      static Kind getNegatedComparison(Kind Cmp) {
127        if ((Cmp & L) || (Cmp & G))
128          return (Kind)((Cmp ^ (L | G)) ^ EQ);
129        if ((Cmp & NE) || (Cmp & EQ))
130          return (Kind)(Cmp ^ (EQ | NE));
131        return (Kind)0;
132      }
133
134      static bool isSigned(Kind Cmp) {
135        return (Cmp & (L | G) && !(Cmp & U));
136      }
137
138      static bool isUnsigned(Kind Cmp) {
139        return (Cmp & U);
140      }
141
142    };
143
144    /// \brief Find the register that contains the loop controlling
145    /// induction variable.
146    /// If successful, it will return true and set the \p Reg, \p IVBump
147    /// and \p IVOp arguments.  Otherwise it will return false.
148    /// The returned induction register is the register R that follows the
149    /// following induction pattern:
150    /// loop:
151    ///   R = phi ..., [ R.next, LatchBlock ]
152    ///   R.next = R + #bump
153    ///   if (R.next < #N) goto loop
154    /// IVBump is the immediate value added to R, and IVOp is the instruction
155    /// "R.next = R + #bump".
156    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
157                               int64_t &IVBump, MachineInstr *&IVOp) const;
158
159    /// \brief Return the comparison kind for the specified opcode.
160    Comparison::Kind getComparisonKind(unsigned CondOpc,
161                                       MachineOperand *InitialValue,
162                                       const MachineOperand *Endvalue,
163                                       int64_t IVBump) const;
164
165    /// \brief Analyze the statements in a loop to determine if the loop
166    /// has a computable trip count and, if so, return a value that represents
167    /// the trip count expression.
168    CountValue *getLoopTripCount(MachineLoop *L,
169                                 SmallVectorImpl<MachineInstr *> &OldInsts);
170
171    /// \brief Return the expression that represents the number of times
172    /// a loop iterates.  The function takes the operands that represent the
173    /// loop start value, loop end value, and induction value.  Based upon
174    /// these operands, the function attempts to compute the trip count.
175    /// If the trip count is not directly available (as an immediate value,
176    /// or a register), the function will attempt to insert computation of it
177    /// to the loop's preheader.
178    CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
179                             const MachineOperand *End, unsigned IVReg,
180                             int64_t IVBump, Comparison::Kind Cmp) const;
181
182    /// \brief Return true if the instruction is not valid within a hardware
183    /// loop.
184    bool isInvalidLoopOperation(const MachineInstr *MI,
185                                bool IsInnerHWLoop) const;
186
187    /// \brief Return true if the loop contains an instruction that inhibits
188    /// using the hardware loop.
189    bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
190
191    /// \brief Given a loop, check if we can convert it to a hardware loop.
192    /// If so, then perform the conversion and return true.
193    bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
194
195    /// \brief Return true if the instruction is now dead.
196    bool isDead(const MachineInstr *MI,
197                SmallVectorImpl<MachineInstr *> &DeadPhis) const;
198
199    /// \brief Remove the instruction if it is now dead.
200    void removeIfDead(MachineInstr *MI);
201
202    /// \brief Make sure that the "bump" instruction executes before the
203    /// compare.  We need that for the IV fixup, so that the compare
204    /// instruction would not use a bumped value that has not yet been
205    /// defined.  If the instructions are out of order, try to reorder them.
206    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
207
208    /// \brief Return true if MO and MI pair is visited only once. If visited
209    /// more than once, this indicates there is recursion. In such a case,
210    /// return false.
211    bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
212                      const MachineOperand *MO,
213                      LoopFeederMap &LoopFeederPhi) const;
214
215    /// \brief Return true if the Phi may generate a value that may underflow,
216    /// or may wrap.
217    bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
218                               MachineBasicBlock *MBB, MachineLoop *L,
219                               LoopFeederMap &LoopFeederPhi) const;
220
221    /// \brief Return true if the induction variable may underflow an unsigned
222    /// value in the first iteration.
223    bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
224                                     const MachineOperand *EndVal,
225                                     MachineBasicBlock *MBB, MachineLoop *L,
226                                     LoopFeederMap &LoopFeederPhi) const;
227
228    /// \brief Check if the given operand has a compile-time known constant
229    /// value. Return true if yes, and false otherwise. When returning true, set
230    /// Val to the corresponding constant value.
231    bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
232
233    /// \brief Check if the operand has a compile-time known constant value.
234    bool isImmediate(const MachineOperand &MO) const {
235      int64_t V;
236      return checkForImmediate(MO, V);
237    }
238
239    /// \brief Return the immediate for the specified operand.
240    int64_t getImmediate(const MachineOperand &MO) const {
241      int64_t V;
242      if (!checkForImmediate(MO, V))
243        llvm_unreachable("Invalid operand");
244      return V;
245    }
246
247    /// \brief Reset the given machine operand to now refer to a new immediate
248    /// value.  Assumes that the operand was already referencing an immediate
249    /// value, either directly, or via a register.
250    void setImmediate(MachineOperand &MO, int64_t Val);
251
252    /// \brief Fix the data flow of the induction varible.
253    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
254    ///                                     |
255    ///                                     +-> back to phi
256    /// where "bump" is the increment of the induction variable:
257    ///   iv = iv + #const.
258    /// Due to some prior code transformations, the actual flow may look
259    /// like this:
260    ///   phi -+-> bump ---> back to phi
261    ///        |
262    ///        +-> comparison-in-latch (against upper_bound-bump),
263    /// i.e. the comparison that controls the loop execution may be using
264    /// the value of the induction variable from before the increment.
265    ///
266    /// Return true if the loop's flow is the desired one (i.e. it's
267    /// either been fixed, or no fixing was necessary).
268    /// Otherwise, return false.  This can happen if the induction variable
269    /// couldn't be identified, or if the value in the latch's comparison
270    /// cannot be adjusted to reflect the post-bump value.
271    bool fixupInductionVariable(MachineLoop *L);
272
273    /// \brief Given a loop, if it does not have a preheader, create one.
274    /// Return the block that is the preheader.
275    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
276  };
277
278  char HexagonHardwareLoops::ID = 0;
279#ifndef NDEBUG
280  int HexagonHardwareLoops::Counter = 0;
281#endif
282
283  /// \brief Abstraction for a trip count of a loop. A smaller version
284  /// of the MachineOperand class without the concerns of changing the
285  /// operand representation.
286  class CountValue {
287  public:
288    enum CountValueType {
289      CV_Register,
290      CV_Immediate
291    };
292  private:
293    CountValueType Kind;
294    union Values {
295      struct {
296        unsigned Reg;
297        unsigned Sub;
298      } R;
299      unsigned ImmVal;
300    } Contents;
301
302  public:
303    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
304      Kind = t;
305      if (Kind == CV_Register) {
306        Contents.R.Reg = v;
307        Contents.R.Sub = u;
308      } else {
309        Contents.ImmVal = v;
310      }
311    }
312    bool isReg() const { return Kind == CV_Register; }
313    bool isImm() const { return Kind == CV_Immediate; }
314
315    unsigned getReg() const {
316      assert(isReg() && "Wrong CountValue accessor");
317      return Contents.R.Reg;
318    }
319    unsigned getSubReg() const {
320      assert(isReg() && "Wrong CountValue accessor");
321      return Contents.R.Sub;
322    }
323    unsigned getImm() const {
324      assert(isImm() && "Wrong CountValue accessor");
325      return Contents.ImmVal;
326    }
327
328    void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
329      if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
330      if (isImm()) { OS << Contents.ImmVal; }
331    }
332  };
333} // end anonymous namespace
334
335
336INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
337                      "Hexagon Hardware Loops", false, false)
338INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
339INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
340INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
341                    "Hexagon Hardware Loops", false, false)
342
343FunctionPass *llvm::createHexagonHardwareLoops() {
344  return new HexagonHardwareLoops();
345}
346
347bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
348  DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
349
350  bool Changed = false;
351
352  MLI = &getAnalysis<MachineLoopInfo>();
353  MRI = &MF.getRegInfo();
354  MDT = &getAnalysis<MachineDominatorTree>();
355  TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
356
357  for (auto &L : *MLI)
358    if (!L->getParentLoop()) {
359      bool L0Used = false;
360      bool L1Used = false;
361      Changed |= convertToHardwareLoop(L, L0Used, L1Used);
362    }
363
364  return Changed;
365}
366
367/// \brief Return the latch block if it's one of the exiting blocks. Otherwise,
368/// return the exiting block. Return 'null' when multiple exiting blocks are
369/// present.
370static MachineBasicBlock* getExitingBlock(MachineLoop *L) {
371  if (MachineBasicBlock *Latch = L->getLoopLatch()) {
372    if (L->isLoopExiting(Latch))
373      return Latch;
374    else
375      return L->getExitingBlock();
376  }
377  return nullptr;
378}
379
380bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
381                                                 unsigned &Reg,
382                                                 int64_t &IVBump,
383                                                 MachineInstr *&IVOp
384                                                 ) const {
385  MachineBasicBlock *Header = L->getHeader();
386  MachineBasicBlock *Preheader = L->getLoopPreheader();
387  MachineBasicBlock *Latch = L->getLoopLatch();
388  MachineBasicBlock *ExitingBlock = getExitingBlock(L);
389  if (!Header || !Preheader || !Latch || !ExitingBlock)
390    return false;
391
392  // This pair represents an induction register together with an immediate
393  // value that will be added to it in each loop iteration.
394  typedef std::pair<unsigned,int64_t> RegisterBump;
395
396  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
397  // from an induction operation
398  //   R.next = R + bump
399  // where bump is an immediate value.
400  typedef std::map<unsigned,RegisterBump> InductionMap;
401
402  InductionMap IndMap;
403
404  typedef MachineBasicBlock::instr_iterator instr_iterator;
405  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
406       I != E && I->isPHI(); ++I) {
407    MachineInstr *Phi = &*I;
408
409    // Have a PHI instruction.  Get the operand that corresponds to the
410    // latch block, and see if is a result of an addition of form "reg+imm",
411    // where the "reg" is defined by the PHI node we are looking at.
412    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
413      if (Phi->getOperand(i+1).getMBB() != Latch)
414        continue;
415
416      unsigned PhiOpReg = Phi->getOperand(i).getReg();
417      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
418      unsigned UpdOpc = DI->getOpcode();
419      bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
420
421      if (isAdd) {
422        // If the register operand to the add is the PHI we're looking at, this
423        // meets the induction pattern.
424        unsigned IndReg = DI->getOperand(1).getReg();
425        MachineOperand &Opnd2 = DI->getOperand(2);
426        int64_t V;
427        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
428          unsigned UpdReg = DI->getOperand(0).getReg();
429          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
430        }
431      }
432    }  // for (i)
433  }  // for (instr)
434
435  SmallVector<MachineOperand,2> Cond;
436  MachineBasicBlock *TB = nullptr, *FB = nullptr;
437  bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
438  if (NotAnalyzed)
439    return false;
440
441  unsigned PredR, PredPos, PredRegFlags;
442  if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
443    return false;
444
445  MachineInstr *PredI = MRI->getVRegDef(PredR);
446  if (!PredI->isCompare())
447    return false;
448
449  unsigned CmpReg1 = 0, CmpReg2 = 0;
450  int CmpImm = 0, CmpMask = 0;
451  bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
452                                         CmpMask, CmpImm);
453  // Fail if the compare was not analyzed, or it's not comparing a register
454  // with an immediate value.  Not checking the mask here, since we handle
455  // the individual compare opcodes (including A4_cmpb*) later on.
456  if (!CmpAnalyzed)
457    return false;
458
459  // Exactly one of the input registers to the comparison should be among
460  // the induction registers.
461  InductionMap::iterator IndMapEnd = IndMap.end();
462  InductionMap::iterator F = IndMapEnd;
463  if (CmpReg1 != 0) {
464    InductionMap::iterator F1 = IndMap.find(CmpReg1);
465    if (F1 != IndMapEnd)
466      F = F1;
467  }
468  if (CmpReg2 != 0) {
469    InductionMap::iterator F2 = IndMap.find(CmpReg2);
470    if (F2 != IndMapEnd) {
471      if (F != IndMapEnd)
472        return false;
473      F = F2;
474    }
475  }
476  if (F == IndMapEnd)
477    return false;
478
479  Reg = F->second.first;
480  IVBump = F->second.second;
481  IVOp = MRI->getVRegDef(F->first);
482  return true;
483}
484
485// Return the comparison kind for the specified opcode.
486HexagonHardwareLoops::Comparison::Kind
487HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
488                                        MachineOperand *InitialValue,
489                                        const MachineOperand *EndValue,
490                                        int64_t IVBump) const {
491  Comparison::Kind Cmp = (Comparison::Kind)0;
492  switch (CondOpc) {
493  case Hexagon::C2_cmpeqi:
494  case Hexagon::C2_cmpeq:
495  case Hexagon::C2_cmpeqp:
496    Cmp = Comparison::EQ;
497    break;
498  case Hexagon::C4_cmpneq:
499  case Hexagon::C4_cmpneqi:
500    Cmp = Comparison::NE;
501    break;
502  case Hexagon::C4_cmplte:
503    Cmp = Comparison::LEs;
504    break;
505  case Hexagon::C4_cmplteu:
506    Cmp = Comparison::LEu;
507    break;
508  case Hexagon::C2_cmpgtui:
509  case Hexagon::C2_cmpgtu:
510  case Hexagon::C2_cmpgtup:
511    Cmp = Comparison::GTu;
512    break;
513  case Hexagon::C2_cmpgti:
514  case Hexagon::C2_cmpgt:
515  case Hexagon::C2_cmpgtp:
516    Cmp = Comparison::GTs;
517    break;
518  default:
519    return (Comparison::Kind)0;
520  }
521  return Cmp;
522}
523
524/// \brief Analyze the statements in a loop to determine if the loop has
525/// a computable trip count and, if so, return a value that represents
526/// the trip count expression.
527///
528/// This function iterates over the phi nodes in the loop to check for
529/// induction variable patterns that are used in the calculation for
530/// the number of time the loop is executed.
531CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
532    SmallVectorImpl<MachineInstr *> &OldInsts) {
533  MachineBasicBlock *TopMBB = L->getTopBlock();
534  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
535  assert(PI != TopMBB->pred_end() &&
536         "Loop must have more than one incoming edge!");
537  MachineBasicBlock *Backedge = *PI++;
538  if (PI == TopMBB->pred_end())  // dead loop?
539    return nullptr;
540  MachineBasicBlock *Incoming = *PI++;
541  if (PI != TopMBB->pred_end())  // multiple backedges?
542    return nullptr;
543
544  // Make sure there is one incoming and one backedge and determine which
545  // is which.
546  if (L->contains(Incoming)) {
547    if (L->contains(Backedge))
548      return nullptr;
549    std::swap(Incoming, Backedge);
550  } else if (!L->contains(Backedge))
551    return nullptr;
552
553  // Look for the cmp instruction to determine if we can get a useful trip
554  // count.  The trip count can be either a register or an immediate.  The
555  // location of the value depends upon the type (reg or imm).
556  MachineBasicBlock *ExitingBlock = getExitingBlock(L);
557  if (!ExitingBlock)
558    return nullptr;
559
560  unsigned IVReg = 0;
561  int64_t IVBump = 0;
562  MachineInstr *IVOp;
563  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
564  if (!FoundIV)
565    return nullptr;
566
567  MachineBasicBlock *Preheader = L->getLoopPreheader();
568
569  MachineOperand *InitialValue = nullptr;
570  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
571  MachineBasicBlock *Latch = L->getLoopLatch();
572  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
573    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
574    if (MBB == Preheader)
575      InitialValue = &IV_Phi->getOperand(i);
576    else if (MBB == Latch)
577      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
578  }
579  if (!InitialValue)
580    return nullptr;
581
582  SmallVector<MachineOperand,2> Cond;
583  MachineBasicBlock *TB = nullptr, *FB = nullptr;
584  bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
585  if (NotAnalyzed)
586    return nullptr;
587
588  MachineBasicBlock *Header = L->getHeader();
589  // TB must be non-null.  If FB is also non-null, one of them must be
590  // the header.  Otherwise, branch to TB could be exiting the loop, and
591  // the fall through can go to the header.
592  assert (TB && "Exit block without a branch?");
593  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
594    MachineBasicBlock *LTB = 0, *LFB = 0;
595    SmallVector<MachineOperand,2> LCond;
596    bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
597    if (NotAnalyzed)
598      return nullptr;
599    if (TB == Latch)
600      TB = (LTB == Header) ? LTB : LFB;
601    else
602      FB = (LTB == Header) ? LTB: LFB;
603  }
604  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
605  if (!TB || (FB && TB != Header && FB != Header))
606    return nullptr;
607
608  // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
609  // to put imm(0), followed by P in the vector Cond.
610  // If TB is not the header, it means that the "not-taken" path must lead
611  // to the header.
612  bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
613  unsigned PredReg, PredPos, PredRegFlags;
614  if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
615    return nullptr;
616  MachineInstr *CondI = MRI->getVRegDef(PredReg);
617  unsigned CondOpc = CondI->getOpcode();
618
619  unsigned CmpReg1 = 0, CmpReg2 = 0;
620  int Mask = 0, ImmValue = 0;
621  bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
622                                         Mask, ImmValue);
623  if (!AnalyzedCmp)
624    return nullptr;
625
626  // The comparison operator type determines how we compute the loop
627  // trip count.
628  OldInsts.push_back(CondI);
629  OldInsts.push_back(IVOp);
630
631  // Sadly, the following code gets information based on the position
632  // of the operands in the compare instruction.  This has to be done
633  // this way, because the comparisons check for a specific relationship
634  // between the operands (e.g. is-less-than), rather than to find out
635  // what relationship the operands are in (as on PPC).
636  Comparison::Kind Cmp;
637  bool isSwapped = false;
638  const MachineOperand &Op1 = CondI->getOperand(1);
639  const MachineOperand &Op2 = CondI->getOperand(2);
640  const MachineOperand *EndValue = nullptr;
641
642  if (Op1.isReg()) {
643    if (Op2.isImm() || Op1.getReg() == IVReg)
644      EndValue = &Op2;
645    else {
646      EndValue = &Op1;
647      isSwapped = true;
648    }
649  }
650
651  if (!EndValue)
652    return nullptr;
653
654  Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
655  if (!Cmp)
656    return nullptr;
657  if (Negated)
658    Cmp = Comparison::getNegatedComparison(Cmp);
659  if (isSwapped)
660    Cmp = Comparison::getSwappedComparison(Cmp);
661
662  if (InitialValue->isReg()) {
663    unsigned R = InitialValue->getReg();
664    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
665    if (!MDT->properlyDominates(DefBB, Header))
666      return nullptr;
667    OldInsts.push_back(MRI->getVRegDef(R));
668  }
669  if (EndValue->isReg()) {
670    unsigned R = EndValue->getReg();
671    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
672    if (!MDT->properlyDominates(DefBB, Header))
673      return nullptr;
674    OldInsts.push_back(MRI->getVRegDef(R));
675  }
676
677  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
678}
679
680/// \brief Helper function that returns the expression that represents the
681/// number of times a loop iterates.  The function takes the operands that
682/// represent the loop start value, loop end value, and induction value.
683/// Based upon these operands, the function attempts to compute the trip count.
684CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
685                                               const MachineOperand *Start,
686                                               const MachineOperand *End,
687                                               unsigned IVReg,
688                                               int64_t IVBump,
689                                               Comparison::Kind Cmp) const {
690  // Cannot handle comparison EQ, i.e. while (A == B).
691  if (Cmp == Comparison::EQ)
692    return nullptr;
693
694  // Check if either the start or end values are an assignment of an immediate.
695  // If so, use the immediate value rather than the register.
696  if (Start->isReg()) {
697    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
698    if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
699                          StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
700      Start = &StartValInstr->getOperand(1);
701  }
702  if (End->isReg()) {
703    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
704    if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
705                        EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
706      End = &EndValInstr->getOperand(1);
707  }
708
709  if (!Start->isReg() && !Start->isImm())
710    return nullptr;
711  if (!End->isReg() && !End->isImm())
712    return nullptr;
713
714  bool CmpLess =     Cmp & Comparison::L;
715  bool CmpGreater =  Cmp & Comparison::G;
716  bool CmpHasEqual = Cmp & Comparison::EQ;
717
718  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
719  if (CmpLess && IVBump < 0)
720    // Loop going while iv is "less" with the iv value going down.  Must wrap.
721    return nullptr;
722
723  if (CmpGreater && IVBump > 0)
724    // Loop going while iv is "greater" with the iv value going up.  Must wrap.
725    return nullptr;
726
727  // Phis that may feed into the loop.
728  LoopFeederMap LoopFeederPhi;
729
730  // Check if the initial value may be zero and can be decremented in the first
731  // iteration. If the value is zero, the endloop instruction will not decrement
732  // the loop counter, so we shouldn't generate a hardware loop in this case.
733  if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
734                                  LoopFeederPhi))
735      return nullptr;
736
737  if (Start->isImm() && End->isImm()) {
738    // Both, start and end are immediates.
739    int64_t StartV = Start->getImm();
740    int64_t EndV = End->getImm();
741    int64_t Dist = EndV - StartV;
742    if (Dist == 0)
743      return nullptr;
744
745    bool Exact = (Dist % IVBump) == 0;
746
747    if (Cmp == Comparison::NE) {
748      if (!Exact)
749        return nullptr;
750      if ((Dist < 0) ^ (IVBump < 0))
751        return nullptr;
752    }
753
754    // For comparisons that include the final value (i.e. include equality
755    // with the final value), we need to increase the distance by 1.
756    if (CmpHasEqual)
757      Dist = Dist > 0 ? Dist+1 : Dist-1;
758
759    // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
760    // CmpGreater should imply Dist < 0.  These conditions could actually
761    // fail, for example, in unreachable code (which may still appear to be
762    // reachable in the CFG).
763    if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
764      return nullptr;
765
766    // "Normalized" distance, i.e. with the bump set to +-1.
767    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
768                                 : (-Dist + (-IVBump - 1)) / (-IVBump);
769    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
770
771    uint64_t Count = Dist1;
772
773    if (Count > 0xFFFFFFFFULL)
774      return nullptr;
775
776    return new CountValue(CountValue::CV_Immediate, Count);
777  }
778
779  // A general case: Start and End are some values, but the actual
780  // iteration count may not be available.  If it is not, insert
781  // a computation of it into the preheader.
782
783  // If the induction variable bump is not a power of 2, quit.
784  // Othwerise we'd need a general integer division.
785  if (!isPowerOf2_64(std::abs(IVBump)))
786    return nullptr;
787
788  MachineBasicBlock *PH = Loop->getLoopPreheader();
789  assert (PH && "Should have a preheader by now");
790  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
791  DebugLoc DL;
792  if (InsertPos != PH->end())
793    DL = InsertPos->getDebugLoc();
794
795  // If Start is an immediate and End is a register, the trip count
796  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
797  // is actually "reg + -imm".
798
799  // If the loop IV is going downwards, i.e. if the bump is negative,
800  // then the iteration count (computed as End-Start) will need to be
801  // negated.  To avoid the negation, just swap Start and End.
802  if (IVBump < 0) {
803    std::swap(Start, End);
804    IVBump = -IVBump;
805  }
806  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
807  // Signedness, and "including equality" are preserved.
808
809  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
810  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
811
812  int64_t StartV = 0, EndV = 0;
813  if (Start->isImm())
814    StartV = Start->getImm();
815  if (End->isImm())
816    EndV = End->getImm();
817
818  int64_t AdjV = 0;
819  // To compute the iteration count, we would need this computation:
820  //   Count = (End - Start + (IVBump-1)) / IVBump
821  // or, when CmpHasEqual:
822  //   Count = (End - Start + (IVBump-1)+1) / IVBump
823  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
824  // generating an instruction specifically to add it if we can adjust
825  // the immediate values for Start or End.
826
827  if (CmpHasEqual) {
828    // Need to add 1 to the total iteration count.
829    if (Start->isImm())
830      StartV--;
831    else if (End->isImm())
832      EndV++;
833    else
834      AdjV += 1;
835  }
836
837  if (Cmp != Comparison::NE) {
838    if (Start->isImm())
839      StartV -= (IVBump-1);
840    else if (End->isImm())
841      EndV += (IVBump-1);
842    else
843      AdjV += (IVBump-1);
844  }
845
846  unsigned R = 0, SR = 0;
847  if (Start->isReg()) {
848    R = Start->getReg();
849    SR = Start->getSubReg();
850  } else {
851    R = End->getReg();
852    SR = End->getSubReg();
853  }
854  const TargetRegisterClass *RC = MRI->getRegClass(R);
855  // Hardware loops cannot handle 64-bit registers.  If it's a double
856  // register, it has to have a subregister.
857  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
858    return nullptr;
859  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
860
861  // Compute DistR (register with the distance between Start and End).
862  unsigned DistR, DistSR;
863
864  // Avoid special case, where the start value is an imm(0).
865  if (Start->isImm() && StartV == 0) {
866    DistR = End->getReg();
867    DistSR = End->getSubReg();
868  } else {
869    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
870                              (RegToImm ? TII->get(Hexagon::A2_subri) :
871                                          TII->get(Hexagon::A2_addi));
872    if (RegToReg || RegToImm) {
873      unsigned SubR = MRI->createVirtualRegister(IntRC);
874      MachineInstrBuilder SubIB =
875        BuildMI(*PH, InsertPos, DL, SubD, SubR);
876
877      if (RegToReg)
878        SubIB.addReg(End->getReg(), 0, End->getSubReg())
879          .addReg(Start->getReg(), 0, Start->getSubReg());
880      else
881        SubIB.addImm(EndV)
882          .addReg(Start->getReg(), 0, Start->getSubReg());
883      DistR = SubR;
884    } else {
885      // If the loop has been unrolled, we should use the original loop count
886      // instead of recalculating the value. This will avoid additional
887      // 'Add' instruction.
888      const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
889      if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
890          EndValInstr->getOperand(2).getImm() == StartV) {
891        DistR = EndValInstr->getOperand(1).getReg();
892      } else {
893        unsigned SubR = MRI->createVirtualRegister(IntRC);
894        MachineInstrBuilder SubIB =
895          BuildMI(*PH, InsertPos, DL, SubD, SubR);
896        SubIB.addReg(End->getReg(), 0, End->getSubReg())
897             .addImm(-StartV);
898        DistR = SubR;
899      }
900    }
901    DistSR = 0;
902  }
903
904  // From DistR, compute AdjR (register with the adjusted distance).
905  unsigned AdjR, AdjSR;
906
907  if (AdjV == 0) {
908    AdjR = DistR;
909    AdjSR = DistSR;
910  } else {
911    // Generate CountR = ADD DistR, AdjVal
912    unsigned AddR = MRI->createVirtualRegister(IntRC);
913    MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
914    BuildMI(*PH, InsertPos, DL, AddD, AddR)
915      .addReg(DistR, 0, DistSR)
916      .addImm(AdjV);
917
918    AdjR = AddR;
919    AdjSR = 0;
920  }
921
922  // From AdjR, compute CountR (register with the final count).
923  unsigned CountR, CountSR;
924
925  if (IVBump == 1) {
926    CountR = AdjR;
927    CountSR = AdjSR;
928  } else {
929    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
930    unsigned Shift = Log2_32(IVBump);
931
932    // Generate NormR = LSR DistR, Shift.
933    unsigned LsrR = MRI->createVirtualRegister(IntRC);
934    const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
935    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
936      .addReg(AdjR, 0, AdjSR)
937      .addImm(Shift);
938
939    CountR = LsrR;
940    CountSR = 0;
941  }
942
943  return new CountValue(CountValue::CV_Register, CountR, CountSR);
944}
945
946/// \brief Return true if the operation is invalid within hardware loop.
947bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
948                                                  bool IsInnerHWLoop) const {
949
950  // Call is not allowed because the callee may use a hardware loop except for
951  // the case when the call never returns.
952  if (MI->getDesc().isCall() && MI->getOpcode() != Hexagon::CALLv3nr)
953    return true;
954
955  // Check if the instruction defines a hardware loop register.
956  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
957    const MachineOperand &MO = MI->getOperand(i);
958    if (!MO.isReg() || !MO.isDef())
959      continue;
960    unsigned R = MO.getReg();
961    if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 ||
962                          R == Hexagon::LC1 || R == Hexagon::SA1))
963      return true;
964    if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1))
965      return true;
966  }
967  return false;
968}
969
970/// \brief Return true if the loop contains an instruction that inhibits
971/// the use of the hardware loop instruction.
972bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
973    bool IsInnerHWLoop) const {
974  const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
975  DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
976  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
977    MachineBasicBlock *MBB = Blocks[i];
978    for (MachineBasicBlock::iterator
979           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
980      const MachineInstr *MI = &*MII;
981      if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
982        DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump(););
983        return true;
984      }
985    }
986  }
987  return false;
988}
989
990/// \brief Returns true if the instruction is dead.  This was essentially
991/// copied from DeadMachineInstructionElim::isDead, but with special cases
992/// for inline asm, physical registers and instructions with side effects
993/// removed.
994bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
995                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
996  // Examine each operand.
997  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
998    const MachineOperand &MO = MI->getOperand(i);
999    if (!MO.isReg() || !MO.isDef())
1000      continue;
1001
1002    unsigned Reg = MO.getReg();
1003    if (MRI->use_nodbg_empty(Reg))
1004      continue;
1005
1006    typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
1007
1008    // This instruction has users, but if the only user is the phi node for the
1009    // parent block, and the only use of that phi node is this instruction, then
1010    // this instruction is dead: both it (and the phi node) can be removed.
1011    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1012    use_nodbg_iterator End = MRI->use_nodbg_end();
1013    if (std::next(I) != End || !I->getParent()->isPHI())
1014      return false;
1015
1016    MachineInstr *OnePhi = I->getParent();
1017    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
1018      const MachineOperand &OPO = OnePhi->getOperand(j);
1019      if (!OPO.isReg() || !OPO.isDef())
1020        continue;
1021
1022      unsigned OPReg = OPO.getReg();
1023      use_nodbg_iterator nextJ;
1024      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1025           J != End; J = nextJ) {
1026        nextJ = std::next(J);
1027        MachineOperand &Use = *J;
1028        MachineInstr *UseMI = Use.getParent();
1029
1030        // If the phi node has a user that is not MI, bail.
1031        if (MI != UseMI)
1032          return false;
1033      }
1034    }
1035    DeadPhis.push_back(OnePhi);
1036  }
1037
1038  // If there are no defs with uses, the instruction is dead.
1039  return true;
1040}
1041
1042void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1043  // This procedure was essentially copied from DeadMachineInstructionElim.
1044
1045  SmallVector<MachineInstr*, 1> DeadPhis;
1046  if (isDead(MI, DeadPhis)) {
1047    DEBUG(dbgs() << "HW looping will remove: " << *MI);
1048
1049    // It is possible that some DBG_VALUE instructions refer to this
1050    // instruction.  Examine each def operand for such references;
1051    // if found, mark the DBG_VALUE as undef (but don't delete it).
1052    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1053      const MachineOperand &MO = MI->getOperand(i);
1054      if (!MO.isReg() || !MO.isDef())
1055        continue;
1056      unsigned Reg = MO.getReg();
1057      MachineRegisterInfo::use_iterator nextI;
1058      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
1059           E = MRI->use_end(); I != E; I = nextI) {
1060        nextI = std::next(I);  // I is invalidated by the setReg
1061        MachineOperand &Use = *I;
1062        MachineInstr *UseMI = I->getParent();
1063        if (UseMI == MI)
1064          continue;
1065        if (Use.isDebug())
1066          UseMI->getOperand(0).setReg(0U);
1067      }
1068    }
1069
1070    MI->eraseFromParent();
1071    for (unsigned i = 0; i < DeadPhis.size(); ++i)
1072      DeadPhis[i]->eraseFromParent();
1073  }
1074}
1075
1076/// \brief Check if the loop is a candidate for converting to a hardware
1077/// loop.  If so, then perform the transformation.
1078///
1079/// This function works on innermost loops first.  A loop can be converted
1080/// if it is a counting loop; either a register value or an immediate.
1081///
1082/// The code makes several assumptions about the representation of the loop
1083/// in llvm.
1084bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1085                                                 bool &RecL0used,
1086                                                 bool &RecL1used) {
1087  // This is just for sanity.
1088  assert(L->getHeader() && "Loop without a header?");
1089
1090  bool Changed = false;
1091  bool L0Used = false;
1092  bool L1Used = false;
1093
1094  // Process nested loops first.
1095  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
1096    Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
1097    L0Used |= RecL0used;
1098    L1Used |= RecL1used;
1099  }
1100
1101  // If a nested loop has been converted, then we can't convert this loop.
1102  if (Changed && L0Used && L1Used)
1103    return Changed;
1104
1105  unsigned LOOP_i;
1106  unsigned LOOP_r;
1107  unsigned ENDLOOP;
1108
1109  // Flag used to track loopN instruction:
1110  // 1 - Hardware loop is being generated for the inner most loop.
1111  // 0 - Hardware loop is being generated for the outer loop.
1112  unsigned IsInnerHWLoop = 1;
1113
1114  if (L0Used) {
1115    LOOP_i = Hexagon::J2_loop1i;
1116    LOOP_r = Hexagon::J2_loop1r;
1117    ENDLOOP = Hexagon::ENDLOOP1;
1118    IsInnerHWLoop = 0;
1119  } else {
1120    LOOP_i = Hexagon::J2_loop0i;
1121    LOOP_r = Hexagon::J2_loop0r;
1122    ENDLOOP = Hexagon::ENDLOOP0;
1123  }
1124
1125#ifndef NDEBUG
1126  // Stop trying after reaching the limit (if any).
1127  int Limit = HWLoopLimit;
1128  if (Limit >= 0) {
1129    if (Counter >= HWLoopLimit)
1130      return false;
1131    Counter++;
1132  }
1133#endif
1134
1135  // Does the loop contain any invalid instructions?
1136  if (containsInvalidInstruction(L, IsInnerHWLoop))
1137    return false;
1138
1139  MachineBasicBlock *LastMBB = getExitingBlock(L);
1140  // Don't generate hw loop if the loop has more than one exit.
1141  if (!LastMBB)
1142    return false;
1143
1144  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1145  if (LastI == LastMBB->end())
1146    return false;
1147
1148  // Is the induction variable bump feeding the latch condition?
1149  if (!fixupInductionVariable(L))
1150    return false;
1151
1152  // Ensure the loop has a preheader: the loop instruction will be
1153  // placed there.
1154  MachineBasicBlock *Preheader = L->getLoopPreheader();
1155  if (!Preheader) {
1156    Preheader = createPreheaderForLoop(L);
1157    if (!Preheader)
1158      return false;
1159  }
1160
1161  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1162
1163  SmallVector<MachineInstr*, 2> OldInsts;
1164  // Are we able to determine the trip count for the loop?
1165  CountValue *TripCount = getLoopTripCount(L, OldInsts);
1166  if (!TripCount)
1167    return false;
1168
1169  // Is the trip count available in the preheader?
1170  if (TripCount->isReg()) {
1171    // There will be a use of the register inserted into the preheader,
1172    // so make sure that the register is actually defined at that point.
1173    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1174    MachineBasicBlock *BBDef = TCDef->getParent();
1175    if (!MDT->dominates(BBDef, Preheader))
1176      return false;
1177  }
1178
1179  // Determine the loop start.
1180  MachineBasicBlock *TopBlock = L->getTopBlock();
1181  MachineBasicBlock *ExitingBlock = getExitingBlock(L);
1182  MachineBasicBlock *LoopStart = 0;
1183  if (ExitingBlock !=  L->getLoopLatch()) {
1184    MachineBasicBlock *TB = 0, *FB = 0;
1185    SmallVector<MachineOperand, 2> Cond;
1186
1187    if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1188      return false;
1189
1190    if (L->contains(TB))
1191      LoopStart = TB;
1192    else if (L->contains(FB))
1193      LoopStart = FB;
1194    else
1195      return false;
1196  }
1197  else
1198    LoopStart = TopBlock;
1199
1200  // Convert the loop to a hardware loop.
1201  DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1202  DebugLoc DL;
1203  if (InsertPos != Preheader->end())
1204    DL = InsertPos->getDebugLoc();
1205
1206  if (TripCount->isReg()) {
1207    // Create a copy of the loop count register.
1208    unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1209    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1210      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1211    // Add the Loop instruction to the beginning of the loop.
1212    BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1213      .addReg(CountReg);
1214  } else {
1215    assert(TripCount->isImm() && "Expecting immediate value for trip count");
1216    // Add the Loop immediate instruction to the beginning of the loop,
1217    // if the immediate fits in the instructions.  Otherwise, we need to
1218    // create a new virtual register.
1219    int64_t CountImm = TripCount->getImm();
1220    if (!TII->isValidOffset(LOOP_i, CountImm)) {
1221      unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1222      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1223        .addImm(CountImm);
1224      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1225        .addMBB(LoopStart).addReg(CountReg);
1226    } else
1227      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1228        .addMBB(LoopStart).addImm(CountImm);
1229  }
1230
1231  // Make sure the loop start always has a reference in the CFG.  We need
1232  // to create a BlockAddress operand to get this mechanism to work both the
1233  // MachineBasicBlock and BasicBlock objects need the flag set.
1234  LoopStart->setHasAddressTaken();
1235  // This line is needed to set the hasAddressTaken flag on the BasicBlock
1236  // object.
1237  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1238
1239  // Replace the loop branch with an endloop instruction.
1240  DebugLoc LastIDL = LastI->getDebugLoc();
1241  BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1242
1243  // The loop ends with either:
1244  //  - a conditional branch followed by an unconditional branch, or
1245  //  - a conditional branch to the loop start.
1246  if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1247      LastI->getOpcode() == Hexagon::J2_jumpf) {
1248    // Delete one and change/add an uncond. branch to out of the loop.
1249    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1250    LastI = LastMBB->erase(LastI);
1251    if (!L->contains(BranchTarget)) {
1252      if (LastI != LastMBB->end())
1253        LastI = LastMBB->erase(LastI);
1254      SmallVector<MachineOperand, 0> Cond;
1255      TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1256    }
1257  } else {
1258    // Conditional branch to loop start; just delete it.
1259    LastMBB->erase(LastI);
1260  }
1261  delete TripCount;
1262
1263  // The induction operation and the comparison may now be
1264  // unneeded. If these are unneeded, then remove them.
1265  for (unsigned i = 0; i < OldInsts.size(); ++i)
1266    removeIfDead(OldInsts[i]);
1267
1268  ++NumHWLoops;
1269
1270  // Set RecL1used and RecL0used only after hardware loop has been
1271  // successfully generated. Doing it earlier can cause wrong loop instruction
1272  // to be used.
1273  if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1274    RecL1used = true;
1275  else
1276    RecL0used = true;
1277
1278  return true;
1279}
1280
1281bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1282                                            MachineInstr *CmpI) {
1283  assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1284
1285  MachineBasicBlock *BB = BumpI->getParent();
1286  if (CmpI->getParent() != BB)
1287    return false;
1288
1289  typedef MachineBasicBlock::instr_iterator instr_iterator;
1290  // Check if things are in order to begin with.
1291  for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1292    if (&*I == CmpI)
1293      return true;
1294
1295  // Out of order.
1296  unsigned PredR = CmpI->getOperand(0).getReg();
1297  bool FoundBump = false;
1298  instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1299  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1300    MachineInstr *In = &*I;
1301    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1302      MachineOperand &MO = In->getOperand(i);
1303      if (MO.isReg() && MO.isUse()) {
1304        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
1305          return false;
1306      }
1307    }
1308
1309    if (In == BumpI) {
1310      BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1311      FoundBump = true;
1312      break;
1313    }
1314  }
1315  assert (FoundBump && "Cannot determine instruction order");
1316  return FoundBump;
1317}
1318
1319/// This function is required to break recursion. Visiting phis in a loop may
1320/// result in recursion during compilation. We break the recursion by making
1321/// sure that we visit a MachineOperand and its definition in a
1322/// MachineInstruction only once. If we attempt to visit more than once, then
1323/// there is recursion, and will return false.
1324bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1325                                        MachineInstr *MI,
1326                                        const MachineOperand *MO,
1327                                        LoopFeederMap &LoopFeederPhi) const {
1328  if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1329    const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
1330    DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
1331    // Ignore all BBs that form Loop.
1332    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1333      MachineBasicBlock *MBB = Blocks[i];
1334      if (A == MBB)
1335        return false;
1336    }
1337    MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1338    LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1339    return true;
1340  } else
1341    // Already visited node.
1342    return false;
1343}
1344
1345/// Return true if a Phi may generate a value that can underflow.
1346/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1347bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1348    MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1349    MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1350  assert(Phi->isPHI() && "Expecting a Phi.");
1351  // Walk through each Phi, and its used operands. Make sure that
1352  // if there is recursion in Phi, we won't generate hardware loops.
1353  for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1354    if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1355      if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1356                                      Phi->getParent(), L, LoopFeederPhi))
1357        return true;
1358  return false;
1359}
1360
1361/// Return true if the induction variable can underflow in the first iteration.
1362/// An example, is an initial unsigned value that is 0 and is decrement in the
1363/// first itertion of a do-while loop.  In this case, we cannot generate a
1364/// hardware loop because the endloop instruction does not decrement the loop
1365/// counter if it is <= 1. We only need to perform this analysis if the
1366/// initial value is a register.
1367///
1368/// This function assumes the initial value may underfow unless proven
1369/// otherwise. If the type is signed, then we don't care because signed
1370/// underflow is undefined. We attempt to prove the initial value is not
1371/// zero by perfoming a crude analysis of the loop counter. This function
1372/// checks if the initial value is used in any comparison prior to the loop
1373/// and, if so, assumes the comparison is a range check. This is inexact,
1374/// but will catch the simple cases.
1375bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1376    const MachineOperand *InitVal, const MachineOperand *EndVal,
1377    MachineBasicBlock *MBB, MachineLoop *L,
1378    LoopFeederMap &LoopFeederPhi) const {
1379  // Only check register values since they are unknown.
1380  if (!InitVal->isReg())
1381    return false;
1382
1383  if (!EndVal->isImm())
1384    return false;
1385
1386  // A register value that is assigned an immediate is a known value, and it
1387  // won't underflow in the first iteration.
1388  int64_t Imm;
1389  if (checkForImmediate(*InitVal, Imm))
1390    return (EndVal->getImm() == Imm);
1391
1392  unsigned Reg = InitVal->getReg();
1393
1394  // We don't know the value of a physical register.
1395  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1396    return true;
1397
1398  MachineInstr *Def = MRI->getVRegDef(Reg);
1399  if (!Def)
1400    return true;
1401
1402  // If the initial value is a Phi or copy and the operands may not underflow,
1403  // then the definition cannot be underflow either.
1404  if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1405                                             L, LoopFeederPhi))
1406    return false;
1407  if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1408                                                    EndVal, Def->getParent(),
1409                                                    L, LoopFeederPhi))
1410    return false;
1411
1412  // Iterate over the uses of the initial value. If the initial value is used
1413  // in a compare, then we assume this is a range check that ensures the loop
1414  // doesn't underflow. This is not an exact test and should be improved.
1415  for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1416         E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1417    MachineInstr *MI = &*I;
1418    unsigned CmpReg1 = 0, CmpReg2 = 0;
1419    int CmpMask = 0, CmpValue = 0;
1420
1421    if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1422      continue;
1423
1424    MachineBasicBlock *TBB = 0, *FBB = 0;
1425    SmallVector<MachineOperand, 2> Cond;
1426    if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1427      continue;
1428
1429    Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0);
1430    if (Cmp == 0)
1431      continue;
1432    if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1433      Cmp = Comparison::getNegatedComparison(Cmp);
1434    if (CmpReg2 != 0 && CmpReg2 == Reg)
1435      Cmp = Comparison::getSwappedComparison(Cmp);
1436
1437    // Signed underflow is undefined.
1438    if (Comparison::isSigned(Cmp))
1439      return false;
1440
1441    // Check if there is a comparison of the initial value. If the initial value
1442    // is greater than or not equal to another value, then assume this is a
1443    // range check.
1444    if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1445      return false;
1446  }
1447
1448  // OK - this is a hack that needs to be improved. We really need to analyze
1449  // the instructions performed on the initial value. This works on the simplest
1450  // cases only.
1451  if (!Def->isCopy() && !Def->isPHI())
1452    return false;
1453
1454  return true;
1455}
1456
1457bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1458                                             int64_t &Val) const {
1459  if (MO.isImm()) {
1460    Val = MO.getImm();
1461    return true;
1462  }
1463  if (!MO.isReg())
1464    return false;
1465
1466  // MO is a register. Check whether it is defined as an immediate value,
1467  // and if so, get the value of it in TV. That value will then need to be
1468  // processed to handle potential subregisters in MO.
1469  int64_t TV;
1470
1471  unsigned R = MO.getReg();
1472  if (!TargetRegisterInfo::isVirtualRegister(R))
1473    return false;
1474  MachineInstr *DI = MRI->getVRegDef(R);
1475  unsigned DOpc = DI->getOpcode();
1476  switch (DOpc) {
1477    case TargetOpcode::COPY:
1478    case Hexagon::A2_tfrsi:
1479    case Hexagon::A2_tfrpi:
1480    case Hexagon::CONST32_Int_Real:
1481    case Hexagon::CONST64_Int_Real: {
1482      // Call recursively to avoid an extra check whether operand(1) is
1483      // indeed an immediate (it could be a global address, for example),
1484      // plus we can handle COPY at the same time.
1485      if (!checkForImmediate(DI->getOperand(1), TV))
1486        return false;
1487      break;
1488    }
1489    case Hexagon::A2_combineii:
1490    case Hexagon::A4_combineir:
1491    case Hexagon::A4_combineii:
1492    case Hexagon::A4_combineri:
1493    case Hexagon::A2_combinew: {
1494      const MachineOperand &S1 = DI->getOperand(1);
1495      const MachineOperand &S2 = DI->getOperand(2);
1496      int64_t V1, V2;
1497      if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1498        return false;
1499      TV = V2 | (V1 << 32);
1500      break;
1501    }
1502    case TargetOpcode::REG_SEQUENCE: {
1503      const MachineOperand &S1 = DI->getOperand(1);
1504      const MachineOperand &S3 = DI->getOperand(3);
1505      int64_t V1, V3;
1506      if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1507        return false;
1508      unsigned Sub2 = DI->getOperand(2).getImm();
1509      unsigned Sub4 = DI->getOperand(4).getImm();
1510      if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg)
1511        TV = V1 | (V3 << 32);
1512      else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg)
1513        TV = V3 | (V1 << 32);
1514      else
1515        llvm_unreachable("Unexpected form of REG_SEQUENCE");
1516      break;
1517    }
1518
1519    default:
1520      return false;
1521  }
1522
1523  // By now, we should have successfuly obtained the immediate value defining
1524  // the register referenced in MO. Handle a potential use of a subregister.
1525  switch (MO.getSubReg()) {
1526    case Hexagon::subreg_loreg:
1527      Val = TV & 0xFFFFFFFFULL;
1528      break;
1529    case Hexagon::subreg_hireg:
1530      Val = (TV >> 32) & 0xFFFFFFFFULL;
1531      break;
1532    default:
1533      Val = TV;
1534      break;
1535  }
1536  return true;
1537}
1538
1539void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1540  if (MO.isImm()) {
1541    MO.setImm(Val);
1542    return;
1543  }
1544
1545  assert(MO.isReg());
1546  unsigned R = MO.getReg();
1547  MachineInstr *DI = MRI->getVRegDef(R);
1548
1549  const TargetRegisterClass *RC = MRI->getRegClass(R);
1550  unsigned NewR = MRI->createVirtualRegister(RC);
1551  MachineBasicBlock &B = *DI->getParent();
1552  DebugLoc DL = DI->getDebugLoc();
1553  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1554  MO.setReg(NewR);
1555}
1556
1557static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
1558  // These two instructions are not extendable.
1559  if (CmpOpc == Hexagon::A4_cmpbeqi)
1560    return isUInt<8>(Imm);
1561  if (CmpOpc == Hexagon::A4_cmpbgti)
1562    return isInt<8>(Imm);
1563  // The rest of the comparison-with-immediate instructions are extendable.
1564  return true;
1565}
1566
1567bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1568  MachineBasicBlock *Header = L->getHeader();
1569  MachineBasicBlock *Latch = L->getLoopLatch();
1570  MachineBasicBlock *ExitingBlock = getExitingBlock(L);
1571
1572  if (!(Header && Latch && ExitingBlock))
1573    return false;
1574
1575  // These data structures follow the same concept as the corresponding
1576  // ones in findInductionRegister (where some comments are).
1577  typedef std::pair<unsigned,int64_t> RegisterBump;
1578  typedef std::pair<unsigned,RegisterBump> RegisterInduction;
1579  typedef std::set<RegisterInduction> RegisterInductionSet;
1580
1581  // Register candidates for induction variables, with their associated bumps.
1582  RegisterInductionSet IndRegs;
1583
1584  // Look for induction patterns:
1585  //   vreg1 = PHI ..., [ latch, vreg2 ]
1586  //   vreg2 = ADD vreg1, imm
1587  typedef MachineBasicBlock::instr_iterator instr_iterator;
1588  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1589       I != E && I->isPHI(); ++I) {
1590    MachineInstr *Phi = &*I;
1591
1592    // Have a PHI instruction.
1593    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1594      if (Phi->getOperand(i+1).getMBB() != Latch)
1595        continue;
1596
1597      unsigned PhiReg = Phi->getOperand(i).getReg();
1598      MachineInstr *DI = MRI->getVRegDef(PhiReg);
1599      unsigned UpdOpc = DI->getOpcode();
1600      bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
1601
1602      if (isAdd) {
1603        // If the register operand to the add/sub is the PHI we are looking
1604        // at, this meets the induction pattern.
1605        unsigned IndReg = DI->getOperand(1).getReg();
1606        MachineOperand &Opnd2 = DI->getOperand(2);
1607        int64_t V;
1608        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1609          unsigned UpdReg = DI->getOperand(0).getReg();
1610          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1611        }
1612      }
1613    }  // for (i)
1614  }  // for (instr)
1615
1616  if (IndRegs.empty())
1617    return false;
1618
1619  MachineBasicBlock *TB = nullptr, *FB = nullptr;
1620  SmallVector<MachineOperand,2> Cond;
1621  // AnalyzeBranch returns true if it fails to analyze branch.
1622  bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1623  if (NotAnalyzed || Cond.empty())
1624    return false;
1625
1626  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1627    MachineBasicBlock *LTB = 0, *LFB = 0;
1628    SmallVector<MachineOperand,2> LCond;
1629    bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
1630    if (NotAnalyzed)
1631      return false;
1632
1633    // Since latch is not the exiting block, the latch branch should be an
1634    // unconditional branch to the loop header.
1635    if (TB == Latch)
1636      TB = (LTB == Header) ? LTB : LFB;
1637    else
1638      FB = (LTB == Header) ? LTB : LFB;
1639  }
1640  if (TB != Header) {
1641    if (FB != Header) {
1642      // The latch/exit block does not go back to the header.
1643      return false;
1644    }
1645    // FB is the header (i.e., uncond. jump to branch header)
1646    // In this case, the LoopBody -> TB should not be a back edge otherwise
1647    // it could result in an infinite loop after conversion to hw_loop.
1648    // This case can happen when the Latch has two jumps like this:
1649    // Jmp_c OuterLoopHeader <-- TB
1650    // Jmp   InnerLoopHeader <-- FB
1651    if (MDT->dominates(TB, FB))
1652      return false;
1653  }
1654
1655  // Expecting a predicate register as a condition.  It won't be a hardware
1656  // predicate register at this point yet, just a vreg.
1657  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1658  // into Cond, followed by the predicate register.  For non-negated branches
1659  // it's just the register.
1660  unsigned CSz = Cond.size();
1661  if (CSz != 1 && CSz != 2)
1662    return false;
1663
1664  if (!Cond[CSz-1].isReg())
1665    return false;
1666
1667  unsigned P = Cond[CSz-1].getReg();
1668  MachineInstr *PredDef = MRI->getVRegDef(P);
1669
1670  if (!PredDef->isCompare())
1671    return false;
1672
1673  SmallSet<unsigned,2> CmpRegs;
1674  MachineOperand *CmpImmOp = nullptr;
1675
1676  // Go over all operands to the compare and look for immediate and register
1677  // operands.  Assume that if the compare has a single register use and a
1678  // single immediate operand, then the register is being compared with the
1679  // immediate value.
1680  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1681    MachineOperand &MO = PredDef->getOperand(i);
1682    if (MO.isReg()) {
1683      // Skip all implicit references.  In one case there was:
1684      //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
1685      if (MO.isImplicit())
1686        continue;
1687      if (MO.isUse()) {
1688        if (!isImmediate(MO)) {
1689          CmpRegs.insert(MO.getReg());
1690          continue;
1691        }
1692        // Consider the register to be the "immediate" operand.
1693        if (CmpImmOp)
1694          return false;
1695        CmpImmOp = &MO;
1696      }
1697    } else if (MO.isImm()) {
1698      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
1699        return false;
1700      CmpImmOp = &MO;
1701    }
1702  }
1703
1704  if (CmpRegs.empty())
1705    return false;
1706
1707  // Check if the compared register follows the order we want.  Fix if needed.
1708  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1709       I != E; ++I) {
1710    // This is a success.  If the register used in the comparison is one that
1711    // we have identified as a bumped (updated) induction register, there is
1712    // nothing to do.
1713    if (CmpRegs.count(I->first))
1714      return true;
1715
1716    // Otherwise, if the register being compared comes out of a PHI node,
1717    // and has been recognized as following the induction pattern, and is
1718    // compared against an immediate, we can fix it.
1719    const RegisterBump &RB = I->second;
1720    if (CmpRegs.count(RB.first)) {
1721      if (!CmpImmOp) {
1722        // If both operands to the compare instruction are registers, see if
1723        // it can be changed to use induction register as one of the operands.
1724        MachineInstr *IndI = nullptr;
1725        MachineInstr *nonIndI = nullptr;
1726        MachineOperand *IndMO = nullptr;
1727        MachineOperand *nonIndMO = nullptr;
1728
1729        for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1730          MachineOperand &MO = PredDef->getOperand(i);
1731          if (MO.isReg() && MO.getReg() == RB.first) {
1732            DEBUG(dbgs() << "\n DefMI(" << i << ") = "
1733                         << *(MRI->getVRegDef(I->first)));
1734            if (IndI)
1735              return false;
1736
1737            IndI = MRI->getVRegDef(I->first);
1738            IndMO = &MO;
1739          } else if (MO.isReg()) {
1740            DEBUG(dbgs() << "\n DefMI(" << i << ") = "
1741                         << *(MRI->getVRegDef(MO.getReg())));
1742            if (nonIndI)
1743              return false;
1744
1745            nonIndI = MRI->getVRegDef(MO.getReg());
1746            nonIndMO = &MO;
1747          }
1748        }
1749        if (IndI && nonIndI &&
1750            nonIndI->getOpcode() == Hexagon::A2_addi &&
1751            nonIndI->getOperand(2).isImm() &&
1752            nonIndI->getOperand(2).getImm() == - RB.second) {
1753          bool Order = orderBumpCompare(IndI, PredDef);
1754          if (Order) {
1755            IndMO->setReg(I->first);
1756            nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1757            return true;
1758          }
1759        }
1760        return false;
1761      }
1762
1763      // It is not valid to do this transformation on an unsigned comparison
1764      // because it may underflow.
1765      Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0);
1766      if (!Cmp || Comparison::isUnsigned(Cmp))
1767        return false;
1768
1769      // If the register is being compared against an immediate, try changing
1770      // the compare instruction to use induction register and adjust the
1771      // immediate operand.
1772      int64_t CmpImm = getImmediate(*CmpImmOp);
1773      int64_t V = RB.second;
1774      // Handle Overflow (64-bit).
1775      if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
1776          ((V < 0) && (CmpImm < INT64_MIN - V)))
1777        return false;
1778      CmpImm += V;
1779      // Most comparisons of register against an immediate value allow
1780      // the immediate to be constant-extended. There are some exceptions
1781      // though. Make sure the new combination will work.
1782      if (CmpImmOp->isImm())
1783        if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
1784          return false;
1785
1786      // Make sure that the compare happens after the bump.  Otherwise,
1787      // after the fixup, the compare would use a yet-undefined register.
1788      MachineInstr *BumpI = MRI->getVRegDef(I->first);
1789      bool Order = orderBumpCompare(BumpI, PredDef);
1790      if (!Order)
1791        return false;
1792
1793      // Finally, fix the compare instruction.
1794      setImmediate(*CmpImmOp, CmpImm);
1795      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1796        MachineOperand &MO = PredDef->getOperand(i);
1797        if (MO.isReg() && MO.getReg() == RB.first) {
1798          MO.setReg(I->first);
1799          return true;
1800        }
1801      }
1802    }
1803  }
1804
1805  return false;
1806}
1807
1808/// \brief Create a preheader for a given loop.
1809MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1810      MachineLoop *L) {
1811  if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
1812    return TmpPH;
1813
1814  if (!HWCreatePreheader)
1815    return nullptr;
1816
1817  MachineBasicBlock *Header = L->getHeader();
1818  MachineBasicBlock *Latch = L->getLoopLatch();
1819  MachineBasicBlock *ExitingBlock = getExitingBlock(L);
1820  MachineFunction *MF = Header->getParent();
1821  DebugLoc DL;
1822
1823#ifndef NDEBUG
1824  if ((PHFn != "") && (PHFn != MF->getName()))
1825    return nullptr;
1826#endif
1827
1828  if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1829    return nullptr;
1830
1831  typedef MachineBasicBlock::instr_iterator instr_iterator;
1832
1833  // Verify that all existing predecessors have analyzable branches
1834  // (or no branches at all).
1835  typedef std::vector<MachineBasicBlock*> MBBVector;
1836  MBBVector Preds(Header->pred_begin(), Header->pred_end());
1837  SmallVector<MachineOperand,2> Tmp1;
1838  MachineBasicBlock *TB = nullptr, *FB = nullptr;
1839
1840  if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1841    return nullptr;
1842
1843  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1844    MachineBasicBlock *PB = *I;
1845    bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
1846    if (NotAnalyzed)
1847      return nullptr;
1848  }
1849
1850  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1851  MF->insert(Header->getIterator(), NewPH);
1852
1853  if (Header->pred_size() > 2) {
1854    // Ensure that the header has only two predecessors: the preheader and
1855    // the loop latch.  Any additional predecessors of the header should
1856    // join at the newly created preheader. Inspect all PHI nodes from the
1857    // header and create appropriate corresponding PHI nodes in the preheader.
1858
1859    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1860         I != E && I->isPHI(); ++I) {
1861      MachineInstr *PN = &*I;
1862
1863      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1864      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1865      NewPH->insert(NewPH->end(), NewPN);
1866
1867      unsigned PR = PN->getOperand(0).getReg();
1868      const TargetRegisterClass *RC = MRI->getRegClass(PR);
1869      unsigned NewPR = MRI->createVirtualRegister(RC);
1870      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1871
1872      // Copy all non-latch operands of a header's PHI node to the newly
1873      // created PHI node in the preheader.
1874      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1875        unsigned PredR = PN->getOperand(i).getReg();
1876        unsigned PredRSub = PN->getOperand(i).getSubReg();
1877        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1878        if (PredB == Latch)
1879          continue;
1880
1881        MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1882        MO.setSubReg(PredRSub);
1883        NewPN->addOperand(MO);
1884        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1885      }
1886
1887      // Remove copied operands from the old PHI node and add the value
1888      // coming from the preheader's PHI.
1889      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1890        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1891        if (PredB != Latch) {
1892          PN->RemoveOperand(i+1);
1893          PN->RemoveOperand(i);
1894        }
1895      }
1896      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1897      PN->addOperand(MachineOperand::CreateMBB(NewPH));
1898    }
1899
1900  } else {
1901    assert(Header->pred_size() == 2);
1902
1903    // The header has only two predecessors, but the non-latch predecessor
1904    // is not a preheader (e.g. it has other successors, etc.)
1905    // In such a case we don't need any extra PHI nodes in the new preheader,
1906    // all we need is to adjust existing PHIs in the header to now refer to
1907    // the new preheader.
1908    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1909         I != E && I->isPHI(); ++I) {
1910      MachineInstr *PN = &*I;
1911      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1912        MachineOperand &MO = PN->getOperand(i+1);
1913        if (MO.getMBB() != Latch)
1914          MO.setMBB(NewPH);
1915      }
1916    }
1917  }
1918
1919  // "Reroute" the CFG edges to link in the new preheader.
1920  // If any of the predecessors falls through to the header, insert a branch
1921  // to the new preheader in that place.
1922  SmallVector<MachineOperand,1> Tmp2;
1923  SmallVector<MachineOperand,1> EmptyCond;
1924
1925  TB = FB = nullptr;
1926
1927  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1928    MachineBasicBlock *PB = *I;
1929    if (PB != Latch) {
1930      Tmp2.clear();
1931      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
1932      (void)NotAnalyzed; // suppress compiler warning
1933      assert (!NotAnalyzed && "Should be analyzable!");
1934      if (TB != Header && (Tmp2.empty() || FB != Header))
1935        TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1936      PB->ReplaceUsesOfBlockWith(Header, NewPH);
1937    }
1938  }
1939
1940  // It can happen that the latch block will fall through into the header.
1941  // Insert an unconditional branch to the header.
1942  TB = FB = nullptr;
1943  bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
1944  (void)LatchNotAnalyzed; // suppress compiler warning
1945  assert (!LatchNotAnalyzed && "Should be analyzable!");
1946  if (!TB && !FB)
1947    TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1948
1949  // Finally, the branch from the preheader to the header.
1950  TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1951  NewPH->addSuccessor(Header);
1952
1953  MachineLoop *ParentLoop = L->getParentLoop();
1954  if (ParentLoop)
1955    ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
1956
1957  // Update the dominator information with the new preheader.
1958  if (MDT) {
1959    MachineDomTreeNode *HDom = MDT->getNode(Header);
1960    MDT->addNewBlock(NewPH, HDom->getIDom()->getBlock());
1961    MDT->changeImmediateDominator(Header, NewPH);
1962  }
1963
1964  return NewPH;
1965}
1966