1//===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===---------------------------------------------------------------------===//
9//
10// This pass analyzes vector computations and removes unnecessary
11// doubleword swaps (xxswapd instructions).  This pass is performed
12// only for little-endian VSX code generation.
13//
14// For this specific case, loads and stores of v4i32, v4f32, v2i64,
15// and v2f64 vectors are inefficient.  These are implemented using
16// the lxvd2x and stxvd2x instructions, which invert the order of
17// doublewords in a vector register.  Thus code generation inserts
18// an xxswapd after each such load, and prior to each such store.
19//
20// The extra xxswapd instructions reduce performance.  The purpose
21// of this pass is to reduce the number of xxswapd instructions
22// required for correctness.
23//
24// The primary insight is that much code that operates on vectors
25// does not care about the relative order of elements in a register,
26// so long as the correct memory order is preserved.  If we have a
27// computation where all input values are provided by lxvd2x/xxswapd,
28// all outputs are stored using xxswapd/lxvd2x, and all intermediate
29// computations are lane-insensitive (independent of element order),
30// then all the xxswapd instructions associated with the loads and
31// stores may be removed without changing observable semantics.
32//
33// This pass uses standard equivalence class infrastructure to create
34// maximal webs of computations fitting the above description.  Each
35// such web is then optimized by removing its unnecessary xxswapd
36// instructions.
37//
38// There are some lane-sensitive operations for which we can still
39// permit the optimization, provided we modify those operations
40// accordingly.  Such operations are identified as using "special
41// handling" within this module.
42//
43//===---------------------------------------------------------------------===//
44
45#include "PPCInstrInfo.h"
46#include "PPC.h"
47#include "PPCInstrBuilder.h"
48#include "PPCTargetMachine.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/EquivalenceClasses.h"
51#include "llvm/CodeGen/MachineFunctionPass.h"
52#include "llvm/CodeGen/MachineInstrBuilder.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/Format.h"
56#include "llvm/Support/raw_ostream.h"
57
58using namespace llvm;
59
60#define DEBUG_TYPE "ppc-vsx-swaps"
61
62namespace llvm {
63  void initializePPCVSXSwapRemovalPass(PassRegistry&);
64}
65
66namespace {
67
68// A PPCVSXSwapEntry is created for each machine instruction that
69// is relevant to a vector computation.
70struct PPCVSXSwapEntry {
71  // Pointer to the instruction.
72  MachineInstr *VSEMI;
73
74  // Unique ID (position in the swap vector).
75  int VSEId;
76
77  // Attributes of this node.
78  unsigned int IsLoad : 1;
79  unsigned int IsStore : 1;
80  unsigned int IsSwap : 1;
81  unsigned int MentionsPhysVR : 1;
82  unsigned int IsSwappable : 1;
83  unsigned int MentionsPartialVR : 1;
84  unsigned int SpecialHandling : 3;
85  unsigned int WebRejected : 1;
86  unsigned int WillRemove : 1;
87};
88
89enum SHValues {
90  SH_NONE = 0,
91  SH_EXTRACT,
92  SH_INSERT,
93  SH_NOSWAP_LD,
94  SH_NOSWAP_ST,
95  SH_SPLAT,
96  SH_XXPERMDI,
97  SH_COPYWIDEN
98};
99
100struct PPCVSXSwapRemoval : public MachineFunctionPass {
101
102  static char ID;
103  const PPCInstrInfo *TII;
104  MachineFunction *MF;
105  MachineRegisterInfo *MRI;
106
107  // Swap entries are allocated in a vector for better performance.
108  std::vector<PPCVSXSwapEntry> SwapVector;
109
110  // A mapping is maintained between machine instructions and
111  // their swap entries.  The key is the address of the MI.
112  DenseMap<MachineInstr*, int> SwapMap;
113
114  // Equivalence classes are used to gather webs of related computation.
115  // Swap entries are represented by their VSEId fields.
116  EquivalenceClasses<int> *EC;
117
118  PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
119    initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
120  }
121
122private:
123  // Initialize data structures.
124  void initialize(MachineFunction &MFParm);
125
126  // Walk the machine instructions to gather vector usage information.
127  // Return true iff vector mentions are present.
128  bool gatherVectorInstructions();
129
130  // Add an entry to the swap vector and swap map.
131  int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
132
133  // Hunt backwards through COPY and SUBREG_TO_REG chains for a
134  // source register.  VecIdx indicates the swap vector entry to
135  // mark as mentioning a physical register if the search leads
136  // to one.
137  unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
138
139  // Generate equivalence classes for related computations (webs).
140  void formWebs();
141
142  // Analyze webs and determine those that cannot be optimized.
143  void recordUnoptimizableWebs();
144
145  // Record which swap instructions can be safely removed.
146  void markSwapsForRemoval();
147
148  // Remove swaps and update other instructions requiring special
149  // handling.  Return true iff any changes are made.
150  bool removeSwaps();
151
152  // Insert a swap instruction from SrcReg to DstReg at the given
153  // InsertPoint.
154  void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
155                  unsigned DstReg, unsigned SrcReg);
156
157  // Update instructions requiring special handling.
158  void handleSpecialSwappables(int EntryIdx);
159
160  // Dump a description of the entries in the swap vector.
161  void dumpSwapVector();
162
163  // Return true iff the given register is in the given class.
164  bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
165    if (TargetRegisterInfo::isVirtualRegister(Reg))
166      return RC->hasSubClassEq(MRI->getRegClass(Reg));
167    if (RC->contains(Reg))
168      return true;
169    return false;
170  }
171
172  // Return true iff the given register is a full vector register.
173  bool isVecReg(unsigned Reg) {
174    return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
175            isRegInClass(Reg, &PPC::VRRCRegClass));
176  }
177
178  // Return true iff the given register is a partial vector register.
179  bool isScalarVecReg(unsigned Reg) {
180    return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
181            isRegInClass(Reg, &PPC::VSSRCRegClass));
182  }
183
184  // Return true iff the given register mentions all or part of a
185  // vector register.  Also sets Partial to true if the mention
186  // is for just the floating-point register overlap of the register.
187  bool isAnyVecReg(unsigned Reg, bool &Partial) {
188    if (isScalarVecReg(Reg))
189      Partial = true;
190    return isScalarVecReg(Reg) || isVecReg(Reg);
191  }
192
193public:
194  // Main entry point for this pass.
195  bool runOnMachineFunction(MachineFunction &MF) override {
196    // If we don't have VSX on the subtarget, don't do anything.
197    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
198    if (!STI.hasVSX())
199      return false;
200
201    bool Changed = false;
202    initialize(MF);
203
204    if (gatherVectorInstructions()) {
205      formWebs();
206      recordUnoptimizableWebs();
207      markSwapsForRemoval();
208      Changed = removeSwaps();
209    }
210
211    // FIXME: See the allocation of EC in initialize().
212    delete EC;
213    return Changed;
214  }
215};
216
217// Initialize data structures for this pass.  In particular, clear the
218// swap vector and allocate the equivalence class mapping before
219// processing each function.
220void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
221  MF = &MFParm;
222  MRI = &MF->getRegInfo();
223  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
224
225  // An initial vector size of 256 appears to work well in practice.
226  // Small/medium functions with vector content tend not to incur a
227  // reallocation at this size.  Three of the vector tests in
228  // projects/test-suite reallocate, which seems like a reasonable rate.
229  const int InitialVectorSize(256);
230  SwapVector.clear();
231  SwapVector.reserve(InitialVectorSize);
232
233  // FIXME: Currently we allocate EC each time because we don't have
234  // access to the set representation on which to call clear().  Should
235  // consider adding a clear() method to the EquivalenceClasses class.
236  EC = new EquivalenceClasses<int>;
237}
238
239// Create an entry in the swap vector for each instruction that mentions
240// a full vector register, recording various characteristics of the
241// instructions there.
242bool PPCVSXSwapRemoval::gatherVectorInstructions() {
243  bool RelevantFunction = false;
244
245  for (MachineBasicBlock &MBB : *MF) {
246    for (MachineInstr &MI : MBB) {
247
248      if (MI.isDebugValue())
249        continue;
250
251      bool RelevantInstr = false;
252      bool Partial = false;
253
254      for (const MachineOperand &MO : MI.operands()) {
255        if (!MO.isReg())
256          continue;
257        unsigned Reg = MO.getReg();
258        if (isAnyVecReg(Reg, Partial)) {
259          RelevantInstr = true;
260          break;
261        }
262      }
263
264      if (!RelevantInstr)
265        continue;
266
267      RelevantFunction = true;
268
269      // Create a SwapEntry initialized to zeros, then fill in the
270      // instruction and ID fields before pushing it to the back
271      // of the swap vector.
272      PPCVSXSwapEntry SwapEntry{};
273      int VecIdx = addSwapEntry(&MI, SwapEntry);
274
275      switch(MI.getOpcode()) {
276      default:
277        // Unless noted otherwise, an instruction is considered
278        // safe for the optimization.  There are a large number of
279        // such true-SIMD instructions (all vector math, logical,
280        // select, compare, etc.).  However, if the instruction
281        // mentions a partial vector register and does not have
282        // special handling defined, it is not swappable.
283        if (Partial)
284          SwapVector[VecIdx].MentionsPartialVR = 1;
285        else
286          SwapVector[VecIdx].IsSwappable = 1;
287        break;
288      case PPC::XXPERMDI: {
289        // This is a swap if it is of the form XXPERMDI t, s, s, 2.
290        // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
291        // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
292        // for example.  We have to look through chains of COPY and
293        // SUBREG_TO_REG to find the real source value for comparison.
294        // If the real source value is a physical register, then mark the
295        // XXPERMDI as mentioning a physical register.
296        int immed = MI.getOperand(3).getImm();
297        if (immed == 2) {
298          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
299                                               VecIdx);
300          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
301                                               VecIdx);
302          if (trueReg1 == trueReg2)
303            SwapVector[VecIdx].IsSwap = 1;
304          else {
305            // We can still handle these if the two registers are not
306            // identical, by adjusting the form of the XXPERMDI.
307            SwapVector[VecIdx].IsSwappable = 1;
308            SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
309          }
310        // This is a doubleword splat if it is of the form
311        // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we
312        // must look through chains of copy-likes to find the source
313        // register.  We turn off the marking for mention of a physical
314        // register, because splatting it is safe; the optimization
315        // will not swap the value in the physical register.  Whether
316        // or not the two input registers are identical, we can handle
317        // these by adjusting the form of the XXPERMDI.
318        } else if (immed == 0 || immed == 3) {
319
320          SwapVector[VecIdx].IsSwappable = 1;
321          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
322
323          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
324                                               VecIdx);
325          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
326                                               VecIdx);
327          if (trueReg1 == trueReg2)
328            SwapVector[VecIdx].MentionsPhysVR = 0;
329
330        } else {
331          // We can still handle these by adjusting the form of the XXPERMDI.
332          SwapVector[VecIdx].IsSwappable = 1;
333          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
334        }
335        break;
336      }
337      case PPC::LVX:
338        // Non-permuting loads are currently unsafe.  We can use special
339        // handling for this in the future.  By not marking these as
340        // IsSwap, we ensure computations containing them will be rejected
341        // for now.
342        SwapVector[VecIdx].IsLoad = 1;
343        break;
344      case PPC::LXVD2X:
345      case PPC::LXVW4X:
346        // Permuting loads are marked as both load and swap, and are
347        // safe for optimization.
348        SwapVector[VecIdx].IsLoad = 1;
349        SwapVector[VecIdx].IsSwap = 1;
350        break;
351      case PPC::LXSDX:
352      case PPC::LXSSPX:
353        // A load of a floating-point value into the high-order half of
354        // a vector register is safe, provided that we introduce a swap
355        // following the load, which will be done by the SUBREG_TO_REG
356        // support.  So just mark these as safe.
357        SwapVector[VecIdx].IsLoad = 1;
358        SwapVector[VecIdx].IsSwappable = 1;
359        break;
360      case PPC::STVX:
361        // Non-permuting stores are currently unsafe.  We can use special
362        // handling for this in the future.  By not marking these as
363        // IsSwap, we ensure computations containing them will be rejected
364        // for now.
365        SwapVector[VecIdx].IsStore = 1;
366        break;
367      case PPC::STXVD2X:
368      case PPC::STXVW4X:
369        // Permuting stores are marked as both store and swap, and are
370        // safe for optimization.
371        SwapVector[VecIdx].IsStore = 1;
372        SwapVector[VecIdx].IsSwap = 1;
373        break;
374      case PPC::COPY:
375        // These are fine provided they are moving between full vector
376        // register classes.
377        if (isVecReg(MI.getOperand(0).getReg()) &&
378            isVecReg(MI.getOperand(1).getReg()))
379          SwapVector[VecIdx].IsSwappable = 1;
380        // If we have a copy from one scalar floating-point register
381        // to another, we can accept this even if it is a physical
382        // register.  The only way this gets involved is if it feeds
383        // a SUBREG_TO_REG, which is handled by introducing a swap.
384        else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
385                 isScalarVecReg(MI.getOperand(1).getReg()))
386          SwapVector[VecIdx].IsSwappable = 1;
387        break;
388      case PPC::SUBREG_TO_REG: {
389        // These are fine provided they are moving between full vector
390        // register classes.  If they are moving from a scalar
391        // floating-point class to a vector class, we can handle those
392        // as well, provided we introduce a swap.  It is generally the
393        // case that we will introduce fewer swaps than we remove, but
394        // (FIXME) a cost model could be used.  However, introduced
395        // swaps could potentially be CSEd, so this is not trivial.
396        if (isVecReg(MI.getOperand(0).getReg()) &&
397            isVecReg(MI.getOperand(2).getReg()))
398          SwapVector[VecIdx].IsSwappable = 1;
399        else if (isVecReg(MI.getOperand(0).getReg()) &&
400                 isScalarVecReg(MI.getOperand(2).getReg())) {
401          SwapVector[VecIdx].IsSwappable = 1;
402          SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
403        }
404        break;
405      }
406      case PPC::VSPLTB:
407      case PPC::VSPLTH:
408      case PPC::VSPLTW:
409        // Splats are lane-sensitive, but we can use special handling
410        // to adjust the source lane for the splat.  This is not yet
411        // implemented.  When it is, we need to uncomment the following:
412        SwapVector[VecIdx].IsSwappable = 1;
413        SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
414        break;
415      // The presence of the following lane-sensitive operations in a
416      // web will kill the optimization, at least for now.  For these
417      // we do nothing, causing the optimization to fail.
418      // FIXME: Some of these could be permitted with special handling,
419      // and will be phased in as time permits.
420      // FIXME: There is no simple and maintainable way to express a set
421      // of opcodes having a common attribute in TableGen.  Should this
422      // change, this is a prime candidate to use such a mechanism.
423      case PPC::INLINEASM:
424      case PPC::EXTRACT_SUBREG:
425      case PPC::INSERT_SUBREG:
426      case PPC::COPY_TO_REGCLASS:
427      case PPC::LVEBX:
428      case PPC::LVEHX:
429      case PPC::LVEWX:
430      case PPC::LVSL:
431      case PPC::LVSR:
432      case PPC::LVXL:
433      case PPC::STVEBX:
434      case PPC::STVEHX:
435      case PPC::STVEWX:
436      case PPC::STVXL:
437        // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
438        // by adding special handling for narrowing copies as well as
439        // widening ones.  However, I've experimented with this, and in
440        // practice we currently do not appear to use STXSDX fed by
441        // a narrowing copy from a full vector register.  Since I can't
442        // generate any useful test cases, I've left this alone for now.
443      case PPC::STXSDX:
444      case PPC::STXSSPX:
445      case PPC::VCIPHER:
446      case PPC::VCIPHERLAST:
447      case PPC::VMRGHB:
448      case PPC::VMRGHH:
449      case PPC::VMRGHW:
450      case PPC::VMRGLB:
451      case PPC::VMRGLH:
452      case PPC::VMRGLW:
453      case PPC::VMULESB:
454      case PPC::VMULESH:
455      case PPC::VMULESW:
456      case PPC::VMULEUB:
457      case PPC::VMULEUH:
458      case PPC::VMULEUW:
459      case PPC::VMULOSB:
460      case PPC::VMULOSH:
461      case PPC::VMULOSW:
462      case PPC::VMULOUB:
463      case PPC::VMULOUH:
464      case PPC::VMULOUW:
465      case PPC::VNCIPHER:
466      case PPC::VNCIPHERLAST:
467      case PPC::VPERM:
468      case PPC::VPERMXOR:
469      case PPC::VPKPX:
470      case PPC::VPKSHSS:
471      case PPC::VPKSHUS:
472      case PPC::VPKSDSS:
473      case PPC::VPKSDUS:
474      case PPC::VPKSWSS:
475      case PPC::VPKSWUS:
476      case PPC::VPKUDUM:
477      case PPC::VPKUDUS:
478      case PPC::VPKUHUM:
479      case PPC::VPKUHUS:
480      case PPC::VPKUWUM:
481      case PPC::VPKUWUS:
482      case PPC::VPMSUMB:
483      case PPC::VPMSUMD:
484      case PPC::VPMSUMH:
485      case PPC::VPMSUMW:
486      case PPC::VRLB:
487      case PPC::VRLD:
488      case PPC::VRLH:
489      case PPC::VRLW:
490      case PPC::VSBOX:
491      case PPC::VSHASIGMAD:
492      case PPC::VSHASIGMAW:
493      case PPC::VSL:
494      case PPC::VSLDOI:
495      case PPC::VSLO:
496      case PPC::VSR:
497      case PPC::VSRO:
498      case PPC::VSUM2SWS:
499      case PPC::VSUM4SBS:
500      case PPC::VSUM4SHS:
501      case PPC::VSUM4UBS:
502      case PPC::VSUMSWS:
503      case PPC::VUPKHPX:
504      case PPC::VUPKHSB:
505      case PPC::VUPKHSH:
506      case PPC::VUPKHSW:
507      case PPC::VUPKLPX:
508      case PPC::VUPKLSB:
509      case PPC::VUPKLSH:
510      case PPC::VUPKLSW:
511      case PPC::XXMRGHW:
512      case PPC::XXMRGLW:
513      // XXSLDWI could be replaced by a general permute with one of three
514      // permute control vectors (for shift values 1, 2, 3).  However,
515      // VPERM has a more restrictive register class.
516      case PPC::XXSLDWI:
517      case PPC::XXSPLTW:
518        break;
519      }
520    }
521  }
522
523  if (RelevantFunction) {
524    DEBUG(dbgs() << "Swap vector when first built\n\n");
525    dumpSwapVector();
526  }
527
528  return RelevantFunction;
529}
530
531// Add an entry to the swap vector and swap map, and make a
532// singleton equivalence class for the entry.
533int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
534                                  PPCVSXSwapEntry& SwapEntry) {
535  SwapEntry.VSEMI = MI;
536  SwapEntry.VSEId = SwapVector.size();
537  SwapVector.push_back(SwapEntry);
538  EC->insert(SwapEntry.VSEId);
539  SwapMap[MI] = SwapEntry.VSEId;
540  return SwapEntry.VSEId;
541}
542
543// This is used to find the "true" source register for an
544// XXPERMDI instruction, since MachineCSE does not handle the
545// "copy-like" operations (Copy and SubregToReg).  Returns
546// the original SrcReg unless it is the target of a copy-like
547// operation, in which case we chain backwards through all
548// such operations to the ultimate source register.  If a
549// physical register is encountered, we stop the search and
550// flag the swap entry indicated by VecIdx (the original
551// XXPERMDI) as mentioning a physical register.
552unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
553                                             unsigned VecIdx) {
554  MachineInstr *MI = MRI->getVRegDef(SrcReg);
555  if (!MI->isCopyLike())
556    return SrcReg;
557
558  unsigned CopySrcReg;
559  if (MI->isCopy())
560    CopySrcReg = MI->getOperand(1).getReg();
561  else {
562    assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
563    CopySrcReg = MI->getOperand(2).getReg();
564  }
565
566  if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
567    if (!isScalarVecReg(CopySrcReg))
568      SwapVector[VecIdx].MentionsPhysVR = 1;
569    return CopySrcReg;
570  }
571
572  return lookThruCopyLike(CopySrcReg, VecIdx);
573}
574
575// Generate equivalence classes for related computations (webs) by
576// def-use relationships of virtual registers.  Mention of a physical
577// register terminates the generation of equivalence classes as this
578// indicates a use of a parameter, definition of a return value, use
579// of a value returned from a call, or definition of a parameter to a
580// call.  Computations with physical register mentions are flagged
581// as such so their containing webs will not be optimized.
582void PPCVSXSwapRemoval::formWebs() {
583
584  DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
585
586  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
587
588    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
589
590    DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
591    DEBUG(MI->dump());
592
593    // It's sufficient to walk vector uses and join them to their unique
594    // definitions.  In addition, check full vector register operands
595    // for physical regs.  We exclude partial-vector register operands
596    // because we can handle them if copied to a full vector.
597    for (const MachineOperand &MO : MI->operands()) {
598      if (!MO.isReg())
599        continue;
600
601      unsigned Reg = MO.getReg();
602      if (!isVecReg(Reg) && !isScalarVecReg(Reg))
603        continue;
604
605      if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
606        if (!(MI->isCopy() && isScalarVecReg(Reg)))
607          SwapVector[EntryIdx].MentionsPhysVR = 1;
608        continue;
609      }
610
611      if (!MO.isUse())
612        continue;
613
614      MachineInstr* DefMI = MRI->getVRegDef(Reg);
615      assert(SwapMap.find(DefMI) != SwapMap.end() &&
616             "Inconsistency: def of vector reg not found in swap map!");
617      int DefIdx = SwapMap[DefMI];
618      (void)EC->unionSets(SwapVector[DefIdx].VSEId,
619                          SwapVector[EntryIdx].VSEId);
620
621      DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId,
622                             SwapVector[EntryIdx].VSEId));
623      DEBUG(dbgs() << "  Def: ");
624      DEBUG(DefMI->dump());
625    }
626  }
627}
628
629// Walk the swap vector entries looking for conditions that prevent their
630// containing computations from being optimized.  When such conditions are
631// found, mark the representative of the computation's equivalence class
632// as rejected.
633void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
634
635  DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
636
637  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
638    int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
639
640    // If representative is already rejected, don't waste further time.
641    if (SwapVector[Repr].WebRejected)
642      continue;
643
644    // Reject webs containing mentions of physical or partial registers, or
645    // containing operations that we don't know how to handle in a lane-
646    // permuted region.
647    if (SwapVector[EntryIdx].MentionsPhysVR ||
648        SwapVector[EntryIdx].MentionsPartialVR ||
649        !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
650
651      SwapVector[Repr].WebRejected = 1;
652
653      DEBUG(dbgs() <<
654            format("Web %d rejected for physreg, partial reg, or not "
655                   "swap[pable]\n", Repr));
656      DEBUG(dbgs() << "  in " << EntryIdx << ": ");
657      DEBUG(SwapVector[EntryIdx].VSEMI->dump());
658      DEBUG(dbgs() << "\n");
659    }
660
661    // Reject webs than contain swapping loads that feed something other
662    // than a swap instruction.
663    else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
664      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
665      unsigned DefReg = MI->getOperand(0).getReg();
666
667      // We skip debug instructions in the analysis.  (Note that debug
668      // location information is still maintained by this optimization
669      // because it remains on the LXVD2X and STXVD2X instructions after
670      // the XXPERMDIs are removed.)
671      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
672        int UseIdx = SwapMap[&UseMI];
673
674        if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
675            SwapVector[UseIdx].IsStore) {
676
677          SwapVector[Repr].WebRejected = 1;
678
679          DEBUG(dbgs() <<
680                format("Web %d rejected for load not feeding swap\n", Repr));
681          DEBUG(dbgs() << "  def " << EntryIdx << ": ");
682          DEBUG(MI->dump());
683          DEBUG(dbgs() << "  use " << UseIdx << ": ");
684          DEBUG(UseMI.dump());
685          DEBUG(dbgs() << "\n");
686        }
687      }
688
689    // Reject webs that contain swapping stores that are fed by something
690    // other than a swap instruction.
691    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
692      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
693      unsigned UseReg = MI->getOperand(0).getReg();
694      MachineInstr *DefMI = MRI->getVRegDef(UseReg);
695      int DefIdx = SwapMap[DefMI];
696
697      if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
698          SwapVector[DefIdx].IsStore) {
699
700        SwapVector[Repr].WebRejected = 1;
701
702        DEBUG(dbgs() <<
703              format("Web %d rejected for store not fed by swap\n", Repr));
704        DEBUG(dbgs() << "  def " << DefIdx << ": ");
705        DEBUG(DefMI->dump());
706        DEBUG(dbgs() << "  use " << EntryIdx << ": ");
707        DEBUG(MI->dump());
708        DEBUG(dbgs() << "\n");
709      }
710    }
711  }
712
713  DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
714  dumpSwapVector();
715}
716
717// Walk the swap vector entries looking for swaps fed by permuting loads
718// and swaps that feed permuting stores.  If the containing computation
719// has not been marked rejected, mark each such swap for removal.
720// (Removal is delayed in case optimization has disturbed the pattern,
721// such that multiple loads feed the same swap, etc.)
722void PPCVSXSwapRemoval::markSwapsForRemoval() {
723
724  DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
725
726  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
727
728    if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
729      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
730
731      if (!SwapVector[Repr].WebRejected) {
732        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
733        unsigned DefReg = MI->getOperand(0).getReg();
734
735        for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
736          int UseIdx = SwapMap[&UseMI];
737          SwapVector[UseIdx].WillRemove = 1;
738
739          DEBUG(dbgs() << "Marking swap fed by load for removal: ");
740          DEBUG(UseMI.dump());
741        }
742      }
743
744    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
745      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
746
747      if (!SwapVector[Repr].WebRejected) {
748        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
749        unsigned UseReg = MI->getOperand(0).getReg();
750        MachineInstr *DefMI = MRI->getVRegDef(UseReg);
751        int DefIdx = SwapMap[DefMI];
752        SwapVector[DefIdx].WillRemove = 1;
753
754        DEBUG(dbgs() << "Marking swap feeding store for removal: ");
755        DEBUG(DefMI->dump());
756      }
757
758    } else if (SwapVector[EntryIdx].IsSwappable &&
759               SwapVector[EntryIdx].SpecialHandling != 0) {
760      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
761
762      if (!SwapVector[Repr].WebRejected)
763        handleSpecialSwappables(EntryIdx);
764    }
765  }
766}
767
768// Create an xxswapd instruction and insert it prior to the given point.
769// MI is used to determine basic block and debug loc information.
770// FIXME: When inserting a swap, we should check whether SrcReg is
771// defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so,
772// then instead we should generate a copy from Reg to DstReg.
773void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
774                                   MachineBasicBlock::iterator InsertPoint,
775                                   unsigned DstReg, unsigned SrcReg) {
776  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
777          TII->get(PPC::XXPERMDI), DstReg)
778    .addReg(SrcReg)
779    .addReg(SrcReg)
780    .addImm(2);
781}
782
783// The identified swap entry requires special handling to allow its
784// containing computation to be optimized.  Perform that handling
785// here.
786// FIXME: Additional opportunities will be phased in with subsequent
787// patches.
788void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
789  switch (SwapVector[EntryIdx].SpecialHandling) {
790
791  default:
792    llvm_unreachable("Unexpected special handling type");
793
794  // For splats based on an index into a vector, add N/2 modulo N
795  // to the index, where N is the number of vector elements.
796  case SHValues::SH_SPLAT: {
797    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
798    unsigned NElts;
799
800    DEBUG(dbgs() << "Changing splat: ");
801    DEBUG(MI->dump());
802
803    switch (MI->getOpcode()) {
804    default:
805      llvm_unreachable("Unexpected splat opcode");
806    case PPC::VSPLTB: NElts = 16; break;
807    case PPC::VSPLTH: NElts = 8;  break;
808    case PPC::VSPLTW: NElts = 4;  break;
809    }
810
811    unsigned EltNo = MI->getOperand(1).getImm();
812    EltNo = (EltNo + NElts / 2) % NElts;
813    MI->getOperand(1).setImm(EltNo);
814
815    DEBUG(dbgs() << "  Into: ");
816    DEBUG(MI->dump());
817    break;
818  }
819
820  // For an XXPERMDI that isn't handled otherwise, we need to
821  // reverse the order of the operands.  If the selector operand
822  // has a value of 0 or 3, we need to change it to 3 or 0,
823  // respectively.  Otherwise we should leave it alone.  (This
824  // is equivalent to reversing the two bits of the selector
825  // operand and complementing the result.)
826  case SHValues::SH_XXPERMDI: {
827    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
828
829    DEBUG(dbgs() << "Changing XXPERMDI: ");
830    DEBUG(MI->dump());
831
832    unsigned Selector = MI->getOperand(3).getImm();
833    if (Selector == 0 || Selector == 3)
834      Selector = 3 - Selector;
835    MI->getOperand(3).setImm(Selector);
836
837    unsigned Reg1 = MI->getOperand(1).getReg();
838    unsigned Reg2 = MI->getOperand(2).getReg();
839    MI->getOperand(1).setReg(Reg2);
840    MI->getOperand(2).setReg(Reg1);
841
842    DEBUG(dbgs() << "  Into: ");
843    DEBUG(MI->dump());
844    break;
845  }
846
847  // For a copy from a scalar floating-point register to a vector
848  // register, removing swaps will leave the copied value in the
849  // wrong lane.  Insert a swap following the copy to fix this.
850  case SHValues::SH_COPYWIDEN: {
851    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
852
853    DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
854    DEBUG(MI->dump());
855
856    unsigned DstReg = MI->getOperand(0).getReg();
857    const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
858    unsigned NewVReg = MRI->createVirtualRegister(DstRC);
859
860    MI->getOperand(0).setReg(NewVReg);
861    DEBUG(dbgs() << "  Into: ");
862    DEBUG(MI->dump());
863
864    auto InsertPoint = ++MachineBasicBlock::iterator(MI);
865
866    // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
867    // is copying to a VRRC, we need to be careful to avoid a register
868    // assignment problem.  In this case we must copy from VRRC to VSRC
869    // prior to the swap, and from VSRC to VRRC following the swap.
870    // Coalescing will usually remove all this mess.
871    if (DstRC == &PPC::VRRCRegClass) {
872      unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
873      unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
874
875      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
876              TII->get(PPC::COPY), VSRCTmp1)
877        .addReg(NewVReg);
878      DEBUG(std::prev(InsertPoint)->dump());
879
880      insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
881      DEBUG(std::prev(InsertPoint)->dump());
882
883      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
884              TII->get(PPC::COPY), DstReg)
885        .addReg(VSRCTmp2);
886      DEBUG(std::prev(InsertPoint)->dump());
887
888    } else {
889      insertSwap(MI, InsertPoint, DstReg, NewVReg);
890      DEBUG(std::prev(InsertPoint)->dump());
891    }
892    break;
893  }
894  }
895}
896
897// Walk the swap vector and replace each entry marked for removal with
898// a copy operation.
899bool PPCVSXSwapRemoval::removeSwaps() {
900
901  DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
902
903  bool Changed = false;
904
905  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
906    if (SwapVector[EntryIdx].WillRemove) {
907      Changed = true;
908      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
909      MachineBasicBlock *MBB = MI->getParent();
910      BuildMI(*MBB, MI, MI->getDebugLoc(),
911              TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
912        .addOperand(MI->getOperand(1));
913
914      DEBUG(dbgs() << format("Replaced %d with copy: ",
915                             SwapVector[EntryIdx].VSEId));
916      DEBUG(MI->dump());
917
918      MI->eraseFromParent();
919    }
920  }
921
922  return Changed;
923}
924
925// For debug purposes, dump the contents of the swap vector.
926void PPCVSXSwapRemoval::dumpSwapVector() {
927
928  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
929
930    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
931    int ID = SwapVector[EntryIdx].VSEId;
932
933    DEBUG(dbgs() << format("%6d", ID));
934    DEBUG(dbgs() << format("%6d", EC->getLeaderValue(ID)));
935    DEBUG(dbgs() << format(" BB#%3d", MI->getParent()->getNumber()));
936    DEBUG(dbgs() << format("  %14s  ", TII->getName(MI->getOpcode())));
937
938    if (SwapVector[EntryIdx].IsLoad)
939      DEBUG(dbgs() << "load ");
940    if (SwapVector[EntryIdx].IsStore)
941      DEBUG(dbgs() << "store ");
942    if (SwapVector[EntryIdx].IsSwap)
943      DEBUG(dbgs() << "swap ");
944    if (SwapVector[EntryIdx].MentionsPhysVR)
945      DEBUG(dbgs() << "physreg ");
946    if (SwapVector[EntryIdx].MentionsPartialVR)
947      DEBUG(dbgs() << "partialreg ");
948
949    if (SwapVector[EntryIdx].IsSwappable) {
950      DEBUG(dbgs() << "swappable ");
951      switch(SwapVector[EntryIdx].SpecialHandling) {
952      default:
953        DEBUG(dbgs() << "special:**unknown**");
954        break;
955      case SH_NONE:
956        break;
957      case SH_EXTRACT:
958        DEBUG(dbgs() << "special:extract ");
959        break;
960      case SH_INSERT:
961        DEBUG(dbgs() << "special:insert ");
962        break;
963      case SH_NOSWAP_LD:
964        DEBUG(dbgs() << "special:load ");
965        break;
966      case SH_NOSWAP_ST:
967        DEBUG(dbgs() << "special:store ");
968        break;
969      case SH_SPLAT:
970        DEBUG(dbgs() << "special:splat ");
971        break;
972      case SH_XXPERMDI:
973        DEBUG(dbgs() << "special:xxpermdi ");
974        break;
975      case SH_COPYWIDEN:
976        DEBUG(dbgs() << "special:copywiden ");
977        break;
978      }
979    }
980
981    if (SwapVector[EntryIdx].WebRejected)
982      DEBUG(dbgs() << "rejected ");
983    if (SwapVector[EntryIdx].WillRemove)
984      DEBUG(dbgs() << "remove ");
985
986    DEBUG(dbgs() << "\n");
987
988    // For no-asserts builds.
989    (void)MI;
990    (void)ID;
991  }
992
993  DEBUG(dbgs() << "\n");
994}
995
996} // end default namespace
997
998INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
999                      "PowerPC VSX Swap Removal", false, false)
1000INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1001                    "PowerPC VSX Swap Removal", false, false)
1002
1003char PPCVSXSwapRemoval::ID = 0;
1004FunctionPass*
1005llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
1006