• Home
  • History
  • Annotate
  • only in /external/llvm/lib/Target/PowerPC/
NameDateSize

..23-Aug-20164 KiB

AsmParser/23-Aug-20164 KiB

CMakeLists.txt23-Aug-20161.4 KiB

Disassembler/23-Aug-20164 KiB

InstPrinter/23-Aug-20164 KiB

LLVMBuild.txt23-Aug-20161.1 KiB

Makefile23-Aug-2016873

MCTargetDesc/23-Aug-20164 KiB

PPC.h23-Aug-20163.5 KiB

PPC.td23-Aug-201621.8 KiB

PPCAsmPrinter.cpp23-Aug-201659.7 KiB

PPCBoolRetToInt.cpp23-Aug-20168.8 KiB

PPCBranchSelector.cpp23-Aug-20168.3 KiB

PPCCallingConv.h23-Aug-20161.1 KiB

PPCCallingConv.td23-Aug-201611.8 KiB

PPCCTRLoops.cpp23-Aug-201622.7 KiB

PPCEarlyReturn.cpp23-Aug-20166.9 KiB

PPCFastISel.cpp23-Aug-201680.6 KiB

PPCFrameLowering.cpp23-Aug-201662 KiB

PPCFrameLowering.h23-Aug-20165.4 KiB

PPCHazardRecognizers.cpp23-Aug-201613.8 KiB

PPCHazardRecognizers.h23-Aug-20163.8 KiB

PPCInstr64Bit.td23-Aug-201656.9 KiB

PPCInstrAltivec.td23-Aug-201659.2 KiB

PPCInstrBuilder.h23-Aug-20161.5 KiB

PPCInstrFormats.td23-Aug-201642.7 KiB

PPCInstrHTM.td23-Aug-20165.1 KiB

PPCInstrInfo.cpp23-Aug-201668.3 KiB

PPCInstrInfo.h23-Aug-201611.4 KiB

PPCInstrInfo.td23-Aug-2016183.7 KiB

PPCInstrQPX.td23-Aug-201657.4 KiB

PPCInstrSPE.td23-Aug-201626.5 KiB

PPCInstrVSX.td23-Aug-201681.8 KiB

PPCISelDAGToDAG.cpp23-Aug-2016161.3 KiB

PPCISelLowering.cpp23-Aug-2016456.5 KiB

PPCISelLowering.h23-Aug-201639.6 KiB

PPCLoopDataPrefetch.cpp23-Aug-20168.1 KiB

PPCLoopPreIncPrep.cpp23-Aug-201614.9 KiB

PPCMachineFunctionInfo.cpp23-Aug-2016896

PPCMachineFunctionInfo.h23-Aug-20167.4 KiB

PPCMCInstLower.cpp23-Aug-20167.1 KiB

PPCMIPeephole.cpp23-Aug-20167.6 KiB

PPCPerfectShuffle.h23-Aug-2016397.5 KiB

PPCRegisterInfo.cpp23-Aug-201638.6 KiB

PPCRegisterInfo.h23-Aug-20165.4 KiB

PPCRegisterInfo.td23-Aug-201613.1 KiB

PPCSchedule.td23-Aug-20164.7 KiB

PPCSchedule440.td23-Aug-201635 KiB

PPCScheduleA2.td23-Aug-20168 KiB

PPCScheduleE500mc.td23-Aug-201619.3 KiB

PPCScheduleE5500.td23-Aug-201623.8 KiB

PPCScheduleG3.td23-Aug-20164.4 KiB

PPCScheduleG4.td23-Aug-20165.3 KiB

PPCScheduleG4Plus.td23-Aug-20166.5 KiB

PPCScheduleG5.td23-Aug-20167.2 KiB

PPCScheduleP7.td23-Aug-201621.8 KiB

PPCScheduleP8.td23-Aug-201623.4 KiB

PPCSubtarget.cpp23-Aug-20167.8 KiB

PPCSubtarget.h23-Aug-20169.9 KiB

PPCTargetMachine.cpp23-Aug-201614.4 KiB

PPCTargetMachine.h23-Aug-20162.7 KiB

PPCTargetObjectFile.cpp23-Aug-20162.5 KiB

PPCTargetObjectFile.h23-Aug-20161.2 KiB

PPCTargetStreamer.h23-Aug-2016866

PPCTargetTransformInfo.cpp23-Aug-201614 KiB

PPCTargetTransformInfo.h23-Aug-20163.6 KiB

PPCTLSDynamicCall.cpp23-Aug-20165.5 KiB

PPCTOCRegDeps.cpp23-Aug-20165.2 KiB

PPCVSXCopy.cpp23-Aug-20166.4 KiB

PPCVSXFMAMutate.cpp23-Aug-201614.2 KiB

PPCVSXSwapRemoval.cpp23-Aug-201635.1 KiB

README.txt23-Aug-201617.8 KiB

README_ALTIVEC.txt23-Aug-201611.7 KiB

TargetInfo/23-Aug-20164 KiB

README.txt

1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3TODO:
4* lmw/stmw pass a la arm load store optimizer for prolog/epilog
5
6===-------------------------------------------------------------------------===
7
8This code:
9
10unsigned add32carry(unsigned sum, unsigned x) {
11 unsigned z = sum + x;
12 if (sum + x < x)
13     z++;
14 return z;
15}
16
17Should compile to something like:
18
19	addc r3,r3,r4
20	addze r3,r3
21
22instead we get:
23
24	add r3, r4, r3
25	cmplw cr7, r3, r4
26	mfcr r4 ; 1
27	rlwinm r4, r4, 29, 31, 31
28	add r3, r3, r4
29
30Ick.
31
32===-------------------------------------------------------------------------===
33
34We compile the hottest inner loop of viterbi to:
35
36        li r6, 0
37        b LBB1_84       ;bb432.i
38LBB1_83:        ;bb420.i
39        lbzx r8, r5, r7
40        addi r6, r7, 1
41        stbx r8, r4, r7
42LBB1_84:        ;bb432.i
43        mr r7, r6
44        cmplwi cr0, r7, 143
45        bne cr0, LBB1_83        ;bb420.i
46
47The CBE manages to produce:
48
49	li r0, 143
50	mtctr r0
51loop:
52	lbzx r2, r2, r11
53	stbx r0, r2, r9
54	addi r2, r2, 1
55	bdz later
56	b loop
57
58This could be much better (bdnz instead of bdz) but it still beats us.  If we
59produced this with bdnz, the loop would be a single dispatch group.
60
61===-------------------------------------------------------------------------===
62
63Lump the constant pool for each function into ONE pic object, and reference
64pieces of it as offsets from the start.  For functions like this (contrived
65to have lots of constants obviously):
66
67double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
68
69We generate:
70
71_X:
72        lis r2, ha16(.CPI_X_0)
73        lfd f0, lo16(.CPI_X_0)(r2)
74        lis r2, ha16(.CPI_X_1)
75        lfd f2, lo16(.CPI_X_1)(r2)
76        fmadd f0, f1, f0, f2
77        lis r2, ha16(.CPI_X_2)
78        lfd f1, lo16(.CPI_X_2)(r2)
79        lis r2, ha16(.CPI_X_3)
80        lfd f2, lo16(.CPI_X_3)(r2)
81        fmadd f1, f0, f1, f2
82        blr
83
84It would be better to materialize .CPI_X into a register, then use immediates
85off of the register to avoid the lis's.  This is even more important in PIC 
86mode.
87
88Note that this (and the static variable version) is discussed here for GCC:
89http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
90
91Here's another example (the sgn function):
92double testf(double a) {
93       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
94}
95
96it produces a BB like this:
97LBB1_1: ; cond_true
98        lis r2, ha16(LCPI1_0)
99        lfs f0, lo16(LCPI1_0)(r2)
100        lis r2, ha16(LCPI1_1)
101        lis r3, ha16(LCPI1_2)
102        lfs f2, lo16(LCPI1_2)(r3)
103        lfs f3, lo16(LCPI1_1)(r2)
104        fsub f0, f0, f1
105        fsel f1, f0, f2, f3
106        blr 
107
108===-------------------------------------------------------------------------===
109
110PIC Code Gen IPO optimization:
111
112Squish small scalar globals together into a single global struct, allowing the 
113address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
114of the GOT on targets with one).
115
116Note that this is discussed here for GCC:
117http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
118
119===-------------------------------------------------------------------------===
120
121Darwin Stub removal:
122
123We still generate calls to foo$stub, and stubs, on Darwin.  This is not
124necessary when building with the Leopard (10.5) or later linker, as stubs are
125generated by ld when necessary.  Parameterizing this based on the deployment
126target (-mmacosx-version-min) is probably enough.  x86-32 does this right, see
127its logic.
128
129===-------------------------------------------------------------------------===
130
131Darwin Stub LICM optimization:
132
133Loops like this:
134  
135  for (...)  bar();
136
137Have to go through an indirect stub if bar is external or linkonce.  It would 
138be better to compile it as:
139
140     fp = &bar;
141     for (...)  fp();
142
143which only computes the address of bar once (instead of each time through the 
144stub).  This is Darwin specific and would have to be done in the code generator.
145Probably not a win on x86.
146
147===-------------------------------------------------------------------------===
148
149Simple IPO for argument passing, change:
150  void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
151
152the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
153of arguments get assigned to r3 through r10. That is, if you have a function
154foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
155argument bytes for r4 and r5. The trick then would be to shuffle the argument
156order for functions we can internalize so that the maximum number of 
157integers/pointers get passed in regs before you see any of the fp arguments.
158
159Instead of implementing this, it would actually probably be easier to just 
160implement a PPC fastcc, where we could do whatever we wanted to the CC, 
161including having this work sanely.
162
163===-------------------------------------------------------------------------===
164
165Fix Darwin FP-In-Integer Registers ABI
166
167Darwin passes doubles in structures in integer registers, which is very very 
168bad.  Add something like a BITCAST to LLVM, then do an i-p transformation that
169percolates these things out of functions.
170
171Check out how horrible this is:
172http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
173
174This is an extension of "interprocedural CC unmunging" that can't be done with
175just fastcc.
176
177===-------------------------------------------------------------------------===
178
179Fold add and sub with constant into non-extern, non-weak addresses so this:
180
181static int a;
182void bar(int b) { a = b; }
183void foo(unsigned char *c) {
184  *c = a;
185}
186
187So that 
188
189_foo:
190        lis r2, ha16(_a)
191        la r2, lo16(_a)(r2)
192        lbz r2, 3(r2)
193        stb r2, 0(r3)
194        blr
195
196Becomes
197
198_foo:
199        lis r2, ha16(_a+3)
200        lbz r2, lo16(_a+3)(r2)
201        stb r2, 0(r3)
202        blr
203
204===-------------------------------------------------------------------------===
205
206We should compile these two functions to the same thing:
207
208#include <stdlib.h>
209void f(int a, int b, int *P) {
210  *P = (a-b)>=0?(a-b):(b-a);
211}
212void g(int a, int b, int *P) {
213  *P = abs(a-b);
214}
215
216Further, they should compile to something better than:
217
218_g:
219        subf r2, r4, r3
220        subfic r3, r2, 0
221        cmpwi cr0, r2, -1
222        bgt cr0, LBB2_2 ; entry
223LBB2_1: ; entry
224        mr r2, r3
225LBB2_2: ; entry
226        stw r2, 0(r5)
227        blr
228
229GCC produces:
230
231_g:
232        subf r4,r4,r3
233        srawi r2,r4,31
234        xor r0,r2,r4
235        subf r0,r2,r0
236        stw r0,0(r5)
237        blr
238
239... which is much nicer.
240
241This theoretically may help improve twolf slightly (used in dimbox.c:142?).
242
243===-------------------------------------------------------------------------===
244
245PR5945: This: 
246define i32 @clamp0g(i32 %a) {
247entry:
248        %cmp = icmp slt i32 %a, 0
249        %sel = select i1 %cmp, i32 0, i32 %a
250        ret i32 %sel
251}
252
253Is compile to this with the PowerPC (32-bit) backend:
254
255_clamp0g:
256        cmpwi cr0, r3, 0
257        li r2, 0
258        blt cr0, LBB1_2
259; BB#1:                                                     ; %entry
260        mr r2, r3
261LBB1_2:                                                     ; %entry
262        mr r3, r2
263        blr
264
265This could be reduced to the much simpler:
266
267_clamp0g:
268        srawi r2, r3, 31
269        andc r3, r3, r2
270        blr
271
272===-------------------------------------------------------------------------===
273
274int foo(int N, int ***W, int **TK, int X) {
275  int t, i;
276  
277  for (t = 0; t < N; ++t)
278    for (i = 0; i < 4; ++i)
279      W[t / X][i][t % X] = TK[i][t];
280      
281  return 5;
282}
283
284We generate relatively atrocious code for this loop compared to gcc.
285
286We could also strength reduce the rem and the div:
287http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
288
289===-------------------------------------------------------------------------===
290
291We generate ugly code for this:
292
293void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
294  unsigned code = 0;
295  if(dx < -dw) code |= 1;
296  if(dx > dw)  code |= 2;
297  if(dy < -dw) code |= 4;
298  if(dy > dw)  code |= 8;
299  if(dz < -dw) code |= 16;
300  if(dz > dw)  code |= 32;
301  *ret = code;
302}
303
304===-------------------------------------------------------------------------===
305
306%struct.B = type { i8, [3 x i8] }
307
308define void @bar(%struct.B* %b) {
309entry:
310        %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
311        %tmp = load i32* %tmp          ; <uint> [#uses=1]
312        %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
313        %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
314        %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
315        %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
316        %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
317        %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
318        %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
319        %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
320        %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
321        %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
322        store i32 %tmp13, i32* %tmp8
323        ret void
324}
325
326We emit:
327
328_foo:
329        lwz r2, 0(r3)
330        slwi r4, r2, 1
331        or r4, r4, r2
332        rlwimi r2, r4, 0, 0, 0
333        stw r2, 0(r3)
334        blr
335
336We could collapse a bunch of those ORs and ANDs and generate the following
337equivalent code:
338
339_foo:
340        lwz r2, 0(r3)
341        rlwinm r4, r2, 1, 0, 0
342        or r2, r2, r4
343        stw r2, 0(r3)
344        blr
345
346===-------------------------------------------------------------------------===
347
348Consider a function like this:
349
350float foo(float X) { return X + 1234.4123f; }
351
352The FP constant ends up in the constant pool, so we need to get the LR register.
353 This ends up producing code like this:
354
355_foo:
356.LBB_foo_0:     ; entry
357        mflr r11
358***     stw r11, 8(r1)
359        bl "L00000$pb"
360"L00000$pb":
361        mflr r2
362        addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
363        lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
364        fadds f1, f1, f0
365***     lwz r11, 8(r1)
366        mtlr r11
367        blr
368
369This is functional, but there is no reason to spill the LR register all the way
370to the stack (the two marked instrs): spilling it to a GPR is quite enough.
371
372Implementing this will require some codegen improvements.  Nate writes:
373
374"So basically what we need to support the "no stack frame save and restore" is a
375generalization of the LR optimization to "callee-save regs".
376
377Currently, we have LR marked as a callee-save reg.  The register allocator sees
378that it's callee save, and spills it directly to the stack.
379
380Ideally, something like this would happen:
381
382LR would be in a separate register class from the GPRs. The class of LR would be
383marked "unspillable".  When the register allocator came across an unspillable
384reg, it would ask "what is the best class to copy this into that I *can* spill"
385If it gets a class back, which it will in this case (the gprs), it grabs a free
386register of that class.  If it is then later necessary to spill that reg, so be
387it.
388
389===-------------------------------------------------------------------------===
390
391We compile this:
392int test(_Bool X) {
393  return X ? 524288 : 0;
394}
395
396to: 
397_test:
398        cmplwi cr0, r3, 0
399        lis r2, 8
400        li r3, 0
401        beq cr0, LBB1_2 ;entry
402LBB1_1: ;entry
403        mr r3, r2
404LBB1_2: ;entry
405        blr 
406
407instead of:
408_test:
409        addic r2,r3,-1
410        subfe r0,r2,r3
411        slwi r3,r0,19
412        blr
413
414This sort of thing occurs a lot due to globalopt.
415
416===-------------------------------------------------------------------------===
417
418We compile:
419
420define i32 @bar(i32 %x) nounwind readnone ssp {
421entry:
422  %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
423  %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
424  ret i32 %neg
425}
426
427to:
428
429_bar:
430	cntlzw r2, r3
431	slwi r2, r2, 26
432	srawi r3, r2, 31
433	blr 
434
435it would be better to produce:
436
437_bar: 
438        addic r3,r3,-1
439        subfe r3,r3,r3
440        blr
441
442===-------------------------------------------------------------------------===
443
444We generate horrible ppc code for this:
445
446#define N  2000000
447double   a[N],c[N];
448void simpleloop() {
449   int j;
450   for (j=0; j<N; j++)
451     c[j] = a[j];
452}
453
454LBB1_1: ;bb
455        lfdx f0, r3, r4
456        addi r5, r5, 1                 ;; Extra IV for the exit value compare.
457        stfdx f0, r2, r4
458        addi r4, r4, 8
459
460        xoris r6, r5, 30               ;; This is due to a large immediate.
461        cmplwi cr0, r6, 33920
462        bne cr0, LBB1_1
463
464//===---------------------------------------------------------------------===//
465
466This:
467        #include <algorithm>
468        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
469        { return std::make_pair(a + b, a + b < a); }
470        bool no_overflow(unsigned a, unsigned b)
471        { return !full_add(a, b).second; }
472
473Should compile to:
474
475__Z11no_overflowjj:
476        add r4,r3,r4
477        subfc r3,r3,r4
478        li r3,0
479        adde r3,r3,r3
480        blr
481
482(or better) not:
483
484__Z11no_overflowjj:
485        add r2, r4, r3
486        cmplw cr7, r2, r3
487        mfcr r2
488        rlwinm r2, r2, 29, 31, 31
489        xori r3, r2, 1
490        blr 
491
492//===---------------------------------------------------------------------===//
493
494We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
495example:
496#include <math.h>
497int test(double x, double y) { return islessequal(x, y);}
498int test2(double x, double y) {  return islessgreater(x, y);}
499int test3(double x, double y) {  return !islessequal(x, y);}
500
501Compiles into (all three are similar, but the bits differ):
502
503_test:
504	fcmpu cr7, f1, f2
505	mfcr r2
506	rlwinm r3, r2, 29, 31, 31
507	rlwinm r2, r2, 31, 31, 31
508	or r3, r2, r3
509	blr 
510
511GCC compiles this into:
512
513 _test:
514	fcmpu cr7,f1,f2
515	cror 30,28,30
516	mfcr r3
517	rlwinm r3,r3,31,1
518	blr
519        
520which is more efficient and can use mfocr.  See PR642 for some more context.
521
522//===---------------------------------------------------------------------===//
523
524void foo(float *data, float d) {
525   long i;
526   for (i = 0; i < 8000; i++)
527      data[i] = d;
528}
529void foo2(float *data, float d) {
530   long i;
531   data--;
532   for (i = 0; i < 8000; i++) {
533      data[1] = d;
534      data++;
535   }
536}
537
538These compile to:
539
540_foo:
541	li r2, 0
542LBB1_1:	; bb
543	addi r4, r2, 4
544	stfsx f1, r3, r2
545	cmplwi cr0, r4, 32000
546	mr r2, r4
547	bne cr0, LBB1_1	; bb
548	blr 
549_foo2:
550	li r2, 0
551LBB2_1:	; bb
552	addi r4, r2, 4
553	stfsx f1, r3, r2
554	cmplwi cr0, r4, 32000
555	mr r2, r4
556	bne cr0, LBB2_1	; bb
557	blr 
558
559The 'mr' could be eliminated to folding the add into the cmp better.
560
561//===---------------------------------------------------------------------===//
562Codegen for the following (low-probability) case deteriorated considerably 
563when the correctness fixes for unordered comparisons went in (PR 642, 58871).
564It should be possible to recover the code quality described in the comments.
565
566; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
567; This should produce one 'or' or 'cror' instruction per function.
568
569; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
570; PR2964
571
572define i32 @test(double %x, double %y) nounwind  {
573entry:
574	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
575	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
576	ret i32 %tmp345
577}
578
579define i32 @test2(double %x, double %y) nounwind  {
580entry:
581	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
582	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
583	ret i32 %tmp345
584}
585
586define i32 @test3(double %x, double %y) nounwind  {
587entry:
588	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
589	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
590	ret i32 %tmp34
591}
592//===----------------------------------------------------------------------===//
593; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
594
595; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and 
596; should not be generated except with -enable-finite-only-fp-math or the like).
597; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
598; recognize a more elaborate tree than a simple SETxx.
599
600define double @test_FNEG_sel(double %A, double %B, double %C) {
601        %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
602        %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
603        %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
604        ret double %E
605}
606
607//===----------------------------------------------------------------------===//
608The save/restore sequence for CR in prolog/epilog is terrible:
609- Each CR subreg is saved individually, rather than doing one save as a unit.
610- On Darwin, the save is done after the decrement of SP, which means the offset
611from SP of the save slot can be too big for a store instruction, which means we
612need an additional register (currently hacked in 96015+96020; the solution there
613is correct, but poor).
614- On SVR4 the same thing can happen, and I don't think saving before the SP
615decrement is safe on that target, as there is no red zone.  This is currently
616broken AFAIK, although it's not a target I can exercise.
617The following demonstrates the problem:
618extern void bar(char *p);
619void foo() {
620  char x[100000];
621  bar(x);
622  __asm__("" ::: "cr2");
623}
624
625//===-------------------------------------------------------------------------===
626Naming convention for instruction formats is very haphazard.
627We have agreed on a naming scheme as follows:
628
629<INST_form>{_<OP_type><OP_len>}+
630
631Where:
632INST_form is the instruction format (X-form, etc.)
633OP_type is the operand type - one of OPC (opcode), RD (register destination),
634                              RS (register source),
635                              RDp (destination register pair),
636                              RSp (source register pair), IM (immediate),
637                              XO (extended opcode)
638OP_len is the length of the operand in bits
639
640VSX register operands would be of length 6 (split across two fields),
641condition register fields of length 3.
642We would not need denote reserved fields in names of instruction formats.
643
644//===----------------------------------------------------------------------===//
645
646Instruction fusion was introduced in ISA 2.06 and more opportunities added in
647ISA 2.07.  LLVM needs to add infrastructure to recognize fusion opportunities
648and force instruction pairs to be scheduled together.
649
650

README_ALTIVEC.txt

1//===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===//
2
3Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector
4registers, to generate better spill code.
5
6//===----------------------------------------------------------------------===//
7
8The first should be a single lvx from the constant pool, the second should be 
9a xor/stvx:
10
11void foo(void) {
12  int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 };
13  bar (x);
14}
15
16#include <string.h>
17void foo(void) {
18  int x[8] __attribute__((aligned(128)));
19  memset (x, 0, sizeof (x));
20  bar (x);
21}
22
23//===----------------------------------------------------------------------===//
24
25Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0:
26http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763
27
28When -ffast-math is on, we can use 0.0.
29
30//===----------------------------------------------------------------------===//
31
32  Consider this:
33  v4f32 Vector;
34  v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X };
35
36Since we know that "Vector" is 16-byte aligned and we know the element offset 
37of ".X", we should change the load into a lve*x instruction, instead of doing
38a load/store/lve*x sequence.
39
40//===----------------------------------------------------------------------===//
41
42For functions that use altivec AND have calls, we are VRSAVE'ing all call
43clobbered regs.
44
45//===----------------------------------------------------------------------===//
46
47Implement passing vectors by value into calls and receiving them as arguments.
48
49//===----------------------------------------------------------------------===//
50
51GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load
52of C1/C2/C3, then a load and vperm of Variable.
53
54//===----------------------------------------------------------------------===//
55
56We need a way to teach tblgen that some operands of an intrinsic are required to
57be constants.  The verifier should enforce this constraint.
58
59//===----------------------------------------------------------------------===//
60
61We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte
62aligned stack slot, followed by a load/vperm.  We should probably just store it
63to a scalar stack slot, then use lvsl/vperm to load it.  If the value is already
64in memory this is a big win.
65
66//===----------------------------------------------------------------------===//
67
68extract_vector_elt of an arbitrary constant vector can be done with the 
69following instructions:
70
71vTemp = vec_splat(v0,2);    // 2 is the element the src is in.
72vec_ste(&destloc,0,vTemp);
73
74We can do an arbitrary non-constant value by using lvsr/perm/ste.
75
76//===----------------------------------------------------------------------===//
77
78If we want to tie instruction selection into the scheduler, we can do some
79constant formation with different instructions.  For example, we can generate
80"vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with
81"vsplti 0" or "vxor", each of which use different execution units, thus could
82help scheduling.
83
84This is probably only reasonable for a post-pass scheduler.
85
86//===----------------------------------------------------------------------===//
87
88For this function:
89
90void test(vector float *A, vector float *B) {
91  vector float C = (vector float)vec_cmpeq(*A, *B);
92  if (!vec_any_eq(*A, *B))
93    *B = (vector float){0,0,0,0};
94  *A = C;
95}
96
97we get the following basic block:
98
99	...
100        lvx v2, 0, r4
101        lvx v3, 0, r3
102        vcmpeqfp v4, v3, v2
103        vcmpeqfp. v2, v3, v2
104        bne cr6, LBB1_2 ; cond_next
105
106The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the
107vcmpeqfp. result is used by a branch.  This can be improved.
108
109//===----------------------------------------------------------------------===//
110
111The code generated for this is truly aweful:
112
113vector float test(float a, float b) {
114 return (vector float){ 0.0, a, 0.0, 0.0}; 
115}
116
117LCPI1_0:                                        ;  float
118        .space  4
119        .text
120        .globl  _test
121        .align  4
122_test:
123        mfspr r2, 256
124        oris r3, r2, 4096
125        mtspr 256, r3
126        lis r3, ha16(LCPI1_0)
127        addi r4, r1, -32
128        stfs f1, -16(r1)
129        addi r5, r1, -16
130        lfs f0, lo16(LCPI1_0)(r3)
131        stfs f0, -32(r1)
132        lvx v2, 0, r4
133        lvx v3, 0, r5
134        vmrghw v3, v3, v2
135        vspltw v2, v2, 0
136        vmrghw v2, v2, v3
137        mtspr 256, r2
138        blr
139
140//===----------------------------------------------------------------------===//
141
142int foo(vector float *x, vector float *y) {
143        if (vec_all_eq(*x,*y)) return 3245; 
144        else return 12;
145}
146
147A predicate compare being used in a select_cc should have the same peephole
148applied to it as a predicate compare used by a br_cc.  There should be no
149mfcr here:
150
151_foo:
152        mfspr r2, 256
153        oris r5, r2, 12288
154        mtspr 256, r5
155        li r5, 12
156        li r6, 3245
157        lvx v2, 0, r4
158        lvx v3, 0, r3
159        vcmpeqfp. v2, v3, v2
160        mfcr r3, 2
161        rlwinm r3, r3, 25, 31, 31
162        cmpwi cr0, r3, 0
163        bne cr0, LBB1_2 ; entry
164LBB1_1: ; entry
165        mr r6, r5
166LBB1_2: ; entry
167        mr r3, r6
168        mtspr 256, r2
169        blr
170
171//===----------------------------------------------------------------------===//
172
173CodeGen/PowerPC/vec_constants.ll has an and operation that should be
174codegen'd to andc.  The issue is that the 'all ones' build vector is
175SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected
176which prevents the vnot pattern from matching.
177
178
179//===----------------------------------------------------------------------===//
180
181An alternative to the store/store/load approach for illegal insert element 
182lowering would be:
183
1841. store element to any ol' slot
1852. lvx the slot
1863. lvsl 0; splat index; vcmpeq to generate a select mask
1874. lvsl slot + x; vperm to rotate result into correct slot
1885. vsel result together.
189
190//===----------------------------------------------------------------------===//
191
192Should codegen branches on vec_any/vec_all to avoid mfcr.  Two examples:
193
194#include <altivec.h>
195 int f(vector float a, vector float b)
196 {
197  int aa = 0;
198  if (vec_all_ge(a, b))
199    aa |= 0x1;
200  if (vec_any_ge(a,b))
201    aa |= 0x2;
202  return aa;
203}
204
205vector float f(vector float a, vector float b) { 
206  if (vec_any_eq(a, b)) 
207    return a; 
208  else 
209    return b; 
210}
211
212//===----------------------------------------------------------------------===//
213
214We should do a little better with eliminating dead stores.
215The stores to the stack are dead since %a and %b are not needed
216
217; Function Attrs: nounwind
218define <16 x i8> @test_vpmsumb() #0 {
219  entry:
220  %a = alloca <16 x i8>, align 16
221  %b = alloca <16 x i8>, align 16
222  store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16
223  store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16
224  %0 = load <16 x i8>* %a, align 16
225  %1 = load <16 x i8>* %b, align 16
226  %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1)
227  ret <16 x i8> %2
228}
229
230
231; Function Attrs: nounwind readnone
232declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1
233
234
235Produces the following code with -mtriple=powerpc64-unknown-linux-gnu:
236# BB#0:                                 # %entry
237    addis 3, 2, .LCPI0_0@toc@ha
238    addis 4, 2, .LCPI0_1@toc@ha
239    addi 3, 3, .LCPI0_0@toc@l
240    addi 4, 4, .LCPI0_1@toc@l
241    lxvw4x 0, 0, 3
242    addi 3, 1, -16
243    lxvw4x 35, 0, 4
244    stxvw4x 0, 0, 3
245    ori 2, 2, 0
246    lxvw4x 34, 0, 3
247    addi 3, 1, -32
248    stxvw4x 35, 0, 3
249    vpmsumb 2, 2, 3
250    blr
251    .long   0
252    .quad   0
253
254The two stxvw4x instructions are not needed.
255With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes
256are present too.
257
258//===----------------------------------------------------------------------===//
259
260The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll:
261
262define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind {
263       %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0
264       %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1
265       %result = add <2 x i64> %x, %tmpvec2
266       ret <2 x i64> %result
267
268This will generate the following instruction sequence:
269        std 5, -8(1)
270        std 5, -16(1)
271        addi 3, 1, -16
272        ori 2, 2, 0
273        lxvd2x 35, 0, 3
274        vaddudm 2, 2, 3
275        blr
276
277This will almost certainly cause a load-hit-store hazard.  
278Since val is a value parameter, it should not need to be saved onto
279the stack, unless it's being done set up the vector register. Instead,
280it would be better to splat the value into a vector register, and then
281remove the (dead) stores to the stack.
282
283//===----------------------------------------------------------------------===//
284
285At the moment we always generate a lxsdx in preference to lfd, or stxsdx in
286preference to stfd.  When we have a reg-immediate addressing mode, this is a
287poor choice, since we have to load the address into an index register.  This
288should be fixed for P7/P8. 
289
290//===----------------------------------------------------------------------===//
291
292Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE.
293However, we could actually support both kinds on either endianness, if we check
294for the appropriate shufflevector pattern for each case ...  this would cause
295some additional shufflevectors to be recognized and implemented via the
296"swapped" form.
297
298//===----------------------------------------------------------------------===//
299
300There is a utility program called PerfectShuffle that generates a table of the
301shortest instruction sequence for implementing a shufflevector operation on
302PowerPC.  However, this was designed for big-endian code generation.  We could
303modify this program to create a little endian version of the table.  The table
304is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE().
305
306//===----------------------------------------------------------------------===//
307
308Opportunies to use instructions from PPCInstrVSX.td during code gen
309  - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07)
310  - Scalar comparisons (xscmpodp and xscmpudp)
311  - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp)
312
313Related to this: we currently do not generate the lxvw4x instruction for either
314v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires
315a single target type.  This should probably be addressed in the PPCISelDAGToDAG logic.
316
317//===----------------------------------------------------------------------===//
318
319Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only
320for v2f64 with VSX available.  We should create custom lowering
321support for the other vector types.  Without this support, we generate
322sequences with load-hit-store hazards.
323
324v4f32 can be supported with VSX by shifting the correct element into
325big-endian lane 0, using xscvspdpn to produce a double-precision
326representation of the single-precision value in big-endian
327double-precision lane 0, and reinterpreting lane 0 as an FPR or
328vector-scalar register.
329
330v2i64 can be supported with VSX and P8Vector in the same manner as
331v2f64, followed by a direct move to a GPR.
332
333v4i32 can be supported with VSX and P8Vector by shifting the correct
334element into big-endian lane 1, using a direct move to a GPR, and
335sign-extending the 32-bit result to 64 bits.
336
337v8i16 can be supported with VSX and P8Vector by shifting the correct
338element into big-endian lane 3, using a direct move to a GPR, and
339sign-extending the 16-bit result to 64 bits.
340
341v16i8 can be supported with VSX and P8Vector by shifting the correct
342element into big-endian lane 7, using a direct move to a GPR, and
343sign-extending the 8-bit result to 64 bits.
344