1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCInstrInfo.h"
20#include "PPCRegisterInfo.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Target/TargetLowering.h"
24
25namespace llvm {
26  namespace PPCISD {
27    enum NodeType : unsigned {
28      // Start the numbering where the builtin ops and target ops leave off.
29      FIRST_NUMBER = ISD::BUILTIN_OP_END,
30
31      /// FSEL - Traditional three-operand fsel node.
32      ///
33      FSEL,
34
35      /// FCFID - The FCFID instruction, taking an f64 operand and producing
36      /// and f64 value containing the FP representation of the integer that
37      /// was temporarily in the f64 operand.
38      FCFID,
39
40      /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41      /// unsigned integers and single-precision outputs.
42      FCFIDU, FCFIDS, FCFIDUS,
43
44      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45      /// operand, producing an f64 value containing the integer representation
46      /// of that FP value.
47      FCTIDZ, FCTIWZ,
48
49      /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50      /// unsigned integers.
51      FCTIDUZ, FCTIWUZ,
52
53      /// Reciprocal estimate instructions (unary FP ops).
54      FRE, FRSQRTE,
55
56      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57      // three v4f32 operands and producing a v4f32 result.
58      VMADDFP, VNMSUBFP,
59
60      /// VPERM - The PPC VPERM Instruction.
61      ///
62      VPERM,
63
64      /// The CMPB instruction (takes two operands of i32 or i64).
65      CMPB,
66
67      /// Hi/Lo - These represent the high and low 16-bit parts of a global
68      /// address respectively.  These nodes have two operands, the first of
69      /// which must be a TargetGlobalAddress, and the second of which must be a
70      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
71      /// though these are usually folded into other nodes.
72      Hi, Lo,
73
74      /// The following two target-specific nodes are used for calls through
75      /// function pointers in the 64-bit SVR4 ABI.
76
77      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
78      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
79      /// compute an allocation on the stack.
80      DYNALLOC,
81
82      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
83      /// compute an offset from native SP to the address  of the most recent
84      /// dynamic alloca.
85      DYNAREAOFFSET,
86
87      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
88      /// at function entry, used for PIC code.
89      GlobalBaseReg,
90
91      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
92      /// shift amounts.  These nodes are generated by the multi-precision shift
93      /// code.
94      SRL, SRA, SHL,
95
96      /// The combination of sra[wd]i and addze used to implemented signed
97      /// integer division by a power of 2. The first operand is the dividend,
98      /// and the second is the constant shift amount (representing the
99      /// divisor).
100      SRA_ADDZE,
101
102      /// CALL - A direct function call.
103      /// CALL_NOP is a call with the special NOP which follows 64-bit
104      /// SVR4 calls.
105      CALL, CALL_NOP,
106
107      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
108      /// MTCTR instruction.
109      MTCTR,
110
111      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
112      /// BCTRL instruction.
113      BCTRL,
114
115      /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
116      /// instruction and the TOC reload required on SVR4 PPC64.
117      BCTRL_LOAD_TOC,
118
119      /// Return with a flag operand, matched by 'blr'
120      RET_FLAG,
121
122      /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
123      /// This copies the bits corresponding to the specified CRREG into the
124      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
125      MFOCRF,
126
127      /// Direct move from a VSX register to a GPR
128      MFVSR,
129
130      /// Direct move from a GPR to a VSX register (algebraic)
131      MTVSRA,
132
133      /// Direct move from a GPR to a VSX register (zero)
134      MTVSRZ,
135
136      // FIXME: Remove these once the ANDI glue bug is fixed:
137      /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
138      /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
139      /// implement truncation of i32 or i64 to i1.
140      ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
141
142      // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
143      // target (returns (Lo, Hi)). It takes a chain operand.
144      READ_TIME_BASE,
145
146      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
147      EH_SJLJ_SETJMP,
148
149      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
150      EH_SJLJ_LONGJMP,
151
152      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
153      /// instructions.  For lack of better number, we use the opcode number
154      /// encoding for the OPC field to identify the compare.  For example, 838
155      /// is VCMPGTSH.
156      VCMP,
157
158      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
159      /// altivec VCMP*o instructions.  For lack of better number, we use the
160      /// opcode number encoding for the OPC field to identify the compare.  For
161      /// example, 838 is VCMPGTSH.
162      VCMPo,
163
164      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
165      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
166      /// condition register to branch on, OPC is the branch opcode to use (e.g.
167      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
168      /// an optional input flag argument.
169      COND_BRANCH,
170
171      /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
172      /// loops.
173      BDNZ, BDZ,
174
175      /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
176      /// towards zero.  Used only as part of the long double-to-int
177      /// conversion sequence.
178      FADDRTZ,
179
180      /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
181      MFFS,
182
183      /// TC_RETURN - A tail call return.
184      ///   operand #0 chain
185      ///   operand #1 callee (register or absolute)
186      ///   operand #2 stack adjustment
187      ///   operand #3 optional in flag
188      TC_RETURN,
189
190      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
191      CR6SET,
192      CR6UNSET,
193
194      /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
195      /// on PPC32.
196      PPC32_GOT,
197
198      /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
199      /// local dynamic TLS on PPC32.
200      PPC32_PICGOT,
201
202      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
203      /// TLS model, produces an ADDIS8 instruction that adds the GOT
204      /// base to sym\@got\@tprel\@ha.
205      ADDIS_GOT_TPREL_HA,
206
207      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
208      /// TLS model, produces a LD instruction with base register G8RReg
209      /// and offset sym\@got\@tprel\@l.  This completes the addition that
210      /// finds the offset of "sym" relative to the thread pointer.
211      LD_GOT_TPREL_L,
212
213      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
214      /// model, produces an ADD instruction that adds the contents of
215      /// G8RReg to the thread pointer.  Symbol contains a relocation
216      /// sym\@tls which is to be replaced by the thread pointer and
217      /// identifies to the linker that the instruction is part of a
218      /// TLS sequence.
219      ADD_TLS,
220
221      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
222      /// model, produces an ADDIS8 instruction that adds the GOT base
223      /// register to sym\@got\@tlsgd\@ha.
224      ADDIS_TLSGD_HA,
225
226      /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
227      /// model, produces an ADDI8 instruction that adds G8RReg to
228      /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
229      /// ADDIS_TLSGD_L_ADDR until after register assignment.
230      ADDI_TLSGD_L,
231
232      /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
233      /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
234      /// ADDIS_TLSGD_L_ADDR until after register assignment.
235      GET_TLS_ADDR,
236
237      /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
238      /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
239      /// register assignment.
240      ADDI_TLSGD_L_ADDR,
241
242      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
243      /// model, produces an ADDIS8 instruction that adds the GOT base
244      /// register to sym\@got\@tlsld\@ha.
245      ADDIS_TLSLD_HA,
246
247      /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
248      /// model, produces an ADDI8 instruction that adds G8RReg to
249      /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
250      /// ADDIS_TLSLD_L_ADDR until after register assignment.
251      ADDI_TLSLD_L,
252
253      /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
254      /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
255      /// ADDIS_TLSLD_L_ADDR until after register assignment.
256      GET_TLSLD_ADDR,
257
258      /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
259      /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
260      /// following register assignment.
261      ADDI_TLSLD_L_ADDR,
262
263      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
264      /// model, produces an ADDIS8 instruction that adds X3 to
265      /// sym\@dtprel\@ha.
266      ADDIS_DTPREL_HA,
267
268      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
269      /// model, produces an ADDI8 instruction that adds G8RReg to
270      /// sym\@got\@dtprel\@l.
271      ADDI_DTPREL_L,
272
273      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
274      /// during instruction selection to optimize a BUILD_VECTOR into
275      /// operations on splats.  This is necessary to avoid losing these
276      /// optimizations due to constant folding.
277      VADD_SPLAT,
278
279      /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
280      /// operand identifies the operating system entry point.
281      SC,
282
283      /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
284      CLRBHRB,
285
286      /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
287      /// history rolling buffer entry.
288      MFBHRBE,
289
290      /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
291      RFEBB,
292
293      /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
294      /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
295      /// or stxvd2x instruction.  The chain is necessary because the
296      /// sequence replaces a load and needs to provide the same number
297      /// of outputs.
298      XXSWAPD,
299
300      /// QVFPERM = This corresponds to the QPX qvfperm instruction.
301      QVFPERM,
302
303      /// QVGPCI = This corresponds to the QPX qvgpci instruction.
304      QVGPCI,
305
306      /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
307      QVALIGNI,
308
309      /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
310      QVESPLATI,
311
312      /// QBFLT = Access the underlying QPX floating-point boolean
313      /// representation.
314      QBFLT,
315
316      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
317      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
318      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
319      /// i32.
320      STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
321
322      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
323      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
324      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
325      /// or i32.
326      LBRX,
327
328      /// STFIWX - The STFIWX instruction.  The first operand is an input token
329      /// chain, then an f64 value to store, then an address to store it to.
330      STFIWX,
331
332      /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
333      /// load which sign-extends from a 32-bit integer value into the
334      /// destination 64-bit register.
335      LFIWAX,
336
337      /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
338      /// load which zero-extends from a 32-bit integer value into the
339      /// destination 64-bit register.
340      LFIWZX,
341
342      /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
343      /// Maps directly to an lxvd2x instruction that will be followed by
344      /// an xxswapd.
345      LXVD2X,
346
347      /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
348      /// Maps directly to an stxvd2x instruction that will be preceded by
349      /// an xxswapd.
350      STXVD2X,
351
352      /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
353      /// The 4xf32 load used for v4i1 constants.
354      QVLFSb,
355
356      /// GPRC = TOC_ENTRY GA, TOC
357      /// Loads the entry for GA from the TOC, where the TOC base is given by
358      /// the last operand.
359      TOC_ENTRY
360    };
361  }
362
363  /// Define some predicates that are used for node matching.
364  namespace PPC {
365    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
366    /// VPKUHUM instruction.
367    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
368                              SelectionDAG &DAG);
369
370    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
371    /// VPKUWUM instruction.
372    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
373                              SelectionDAG &DAG);
374
375    /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
376    /// VPKUDUM instruction.
377    bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
378                              SelectionDAG &DAG);
379
380    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
381    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
382    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
383                            unsigned ShuffleKind, SelectionDAG &DAG);
384
385    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
386    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
387    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
388                            unsigned ShuffleKind, SelectionDAG &DAG);
389
390    /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
391    /// a VMRGEW or VMRGOW instruction
392    bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
393                             unsigned ShuffleKind, SelectionDAG &DAG);
394
395    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
396    /// shift amount, otherwise return -1.
397    int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
398                            SelectionDAG &DAG);
399
400    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
401    /// specifies a splat of a single element that is suitable for input to
402    /// VSPLTB/VSPLTH/VSPLTW.
403    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
404
405    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
406    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
407    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
408
409    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
410    /// formed by using a vspltis[bhw] instruction of the specified element
411    /// size, return the constant being splatted.  The ByteSize field indicates
412    /// the number of bytes of each element [124] -> [bhw].
413    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
414
415    /// If this is a qvaligni shuffle mask, return the shift
416    /// amount, otherwise return -1.
417    int isQVALIGNIShuffleMask(SDNode *N);
418  }
419
420  class PPCTargetLowering : public TargetLowering {
421    const PPCSubtarget &Subtarget;
422
423  public:
424    explicit PPCTargetLowering(const PPCTargetMachine &TM,
425                               const PPCSubtarget &STI);
426
427    /// getTargetNodeName() - This method returns the name of a target specific
428    /// DAG node.
429    const char *getTargetNodeName(unsigned Opcode) const override;
430
431    bool useSoftFloat() const override;
432
433    MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
434      return MVT::i32;
435    }
436
437    bool isCheapToSpeculateCttz() const override {
438      return true;
439    }
440
441    bool isCheapToSpeculateCtlz() const override {
442      return true;
443    }
444
445    /// getSetCCResultType - Return the ISD::SETCC ValueType
446    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
447                           EVT VT) const override;
448
449    /// Return true if target always beneficiates from combining into FMA for a
450    /// given value type. This must typically return false on targets where FMA
451    /// takes more cycles to execute than FADD.
452    bool enableAggressiveFMAFusion(EVT VT) const override;
453
454    /// getPreIndexedAddressParts - returns true by value, base pointer and
455    /// offset pointer and addressing mode by reference if the node's address
456    /// can be legally represented as pre-indexed load / store address.
457    bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
458                                   SDValue &Offset,
459                                   ISD::MemIndexedMode &AM,
460                                   SelectionDAG &DAG) const override;
461
462    /// SelectAddressRegReg - Given the specified addressed, check to see if it
463    /// can be represented as an indexed [r+r] operation.  Returns false if it
464    /// can be more efficiently represented with [r+imm].
465    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
466                             SelectionDAG &DAG) const;
467
468    /// SelectAddressRegImm - Returns true if the address N can be represented
469    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
470    /// is not better represented as reg+reg.  If Aligned is true, only accept
471    /// displacements suitable for STD and friends, i.e. multiples of 4.
472    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
473                             SelectionDAG &DAG, bool Aligned) const;
474
475    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
476    /// represented as an indexed [r+r] operation.
477    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
478                                 SelectionDAG &DAG) const;
479
480    Sched::Preference getSchedulingPreference(SDNode *N) const override;
481
482    /// LowerOperation - Provide custom lowering hooks for some operations.
483    ///
484    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
485
486    /// ReplaceNodeResults - Replace the results of node with an illegal result
487    /// type with new values built out of custom code.
488    ///
489    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
490                            SelectionDAG &DAG) const override;
491
492    SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
493    SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
494
495    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
496
497    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
498                          std::vector<SDNode *> *Created) const override;
499
500    unsigned getRegisterByName(const char* RegName, EVT VT,
501                               SelectionDAG &DAG) const override;
502
503    void computeKnownBitsForTargetNode(const SDValue Op,
504                                       APInt &KnownZero,
505                                       APInt &KnownOne,
506                                       const SelectionDAG &DAG,
507                                       unsigned Depth = 0) const override;
508
509    unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
510
511    Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
512                                  bool IsStore, bool IsLoad) const override;
513    Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
514                                   bool IsStore, bool IsLoad) const override;
515
516    MachineBasicBlock *
517      EmitInstrWithCustomInserter(MachineInstr *MI,
518                                  MachineBasicBlock *MBB) const override;
519    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
520                                        MachineBasicBlock *MBB,
521                                        unsigned AtomicSize,
522                                        unsigned BinOpcode) const;
523    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
524                                                MachineBasicBlock *MBB,
525                                            bool is8bit, unsigned Opcode) const;
526
527    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
528                                        MachineBasicBlock *MBB) const;
529
530    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
531                                         MachineBasicBlock *MBB) const;
532
533    ConstraintType getConstraintType(StringRef Constraint) const override;
534
535    /// Examine constraint string and operand type and determine a weight value.
536    /// The operand object must already have been set up with the operand type.
537    ConstraintWeight getSingleConstraintMatchWeight(
538      AsmOperandInfo &info, const char *constraint) const override;
539
540    std::pair<unsigned, const TargetRegisterClass *>
541    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
542                                 StringRef Constraint, MVT VT) const override;
543
544    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
545    /// function arguments in the caller parameter area.  This is the actual
546    /// alignment, not its logarithm.
547    unsigned getByValTypeAlignment(Type *Ty,
548                                   const DataLayout &DL) const override;
549
550    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
551    /// vector.  If it is invalid, don't add anything to Ops.
552    void LowerAsmOperandForConstraint(SDValue Op,
553                                      std::string &Constraint,
554                                      std::vector<SDValue> &Ops,
555                                      SelectionDAG &DAG) const override;
556
557    unsigned
558    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
559      if (ConstraintCode == "es")
560        return InlineAsm::Constraint_es;
561      else if (ConstraintCode == "o")
562        return InlineAsm::Constraint_o;
563      else if (ConstraintCode == "Q")
564        return InlineAsm::Constraint_Q;
565      else if (ConstraintCode == "Z")
566        return InlineAsm::Constraint_Z;
567      else if (ConstraintCode == "Zy")
568        return InlineAsm::Constraint_Zy;
569      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
570    }
571
572    /// isLegalAddressingMode - Return true if the addressing mode represented
573    /// by AM is legal for this target, for a load/store of the specified type.
574    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
575                               Type *Ty, unsigned AS) const override;
576
577    /// isLegalICmpImmediate - Return true if the specified immediate is legal
578    /// icmp immediate, that is the target has icmp instructions which can
579    /// compare a register against the immediate without having to materialize
580    /// the immediate into a register.
581    bool isLegalICmpImmediate(int64_t Imm) const override;
582
583    /// isLegalAddImmediate - Return true if the specified immediate is legal
584    /// add immediate, that is the target has add instructions which can
585    /// add a register and the immediate without having to materialize
586    /// the immediate into a register.
587    bool isLegalAddImmediate(int64_t Imm) const override;
588
589    /// isTruncateFree - Return true if it's free to truncate a value of
590    /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
591    /// register X1 to i32 by referencing its sub-register R1.
592    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
593    bool isTruncateFree(EVT VT1, EVT VT2) const override;
594
595    bool isZExtFree(SDValue Val, EVT VT2) const override;
596
597    bool isFPExtFree(EVT VT) const override;
598
599    /// \brief Returns true if it is beneficial to convert a load of a constant
600    /// to just the constant itself.
601    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
602                                           Type *Ty) const override;
603
604    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
605
606    bool getTgtMemIntrinsic(IntrinsicInfo &Info,
607                            const CallInst &I,
608                            unsigned Intrinsic) const override;
609
610    /// getOptimalMemOpType - Returns the target specific optimal type for load
611    /// and store operations as a result of memset, memcpy, and memmove
612    /// lowering. If DstAlign is zero that means it's safe to destination
613    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
614    /// means there isn't a need to check it against alignment requirement,
615    /// probably because the source does not need to be loaded. If 'IsMemset' is
616    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
617    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
618    /// source is constant so it does not need to be loaded.
619    /// It returns EVT::Other if the type should be determined using generic
620    /// target-independent logic.
621    EVT
622    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
623                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
624                        MachineFunction &MF) const override;
625
626    /// Is unaligned memory access allowed for the given type, and is it fast
627    /// relative to software emulation.
628    bool allowsMisalignedMemoryAccesses(EVT VT,
629                                        unsigned AddrSpace,
630                                        unsigned Align = 1,
631                                        bool *Fast = nullptr) const override;
632
633    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
634    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
635    /// expanded to FMAs when this method returns true, otherwise fmuladd is
636    /// expanded to fmul + fadd.
637    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
638
639    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
640
641    // Should we expand the build vector with shuffles?
642    bool
643    shouldExpandBuildVectorWithShuffles(EVT VT,
644                                        unsigned DefinedValues) const override;
645
646    /// createFastISel - This method returns a target-specific FastISel object,
647    /// or null if the target does not support "fast" instruction selection.
648    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
649                             const TargetLibraryInfo *LibInfo) const override;
650
651    /// \brief Returns true if an argument of type Ty needs to be passed in a
652    /// contiguous block of registers in calling convention CallConv.
653    bool functionArgumentNeedsConsecutiveRegisters(
654      Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
655      // We support any array type as "consecutive" block in the parameter
656      // save area.  The element type defines the alignment requirement and
657      // whether the argument should go in GPRs, FPRs, or VRs if available.
658      //
659      // Note that clang uses this capability both to implement the ELFv2
660      // homogeneous float/vector aggregate ABI, and to avoid having to use
661      // "byval" when passing aggregates that might fully fit in registers.
662      return Ty->isArrayTy();
663    }
664
665    /// If a physical register, this returns the register that receives the
666    /// exception address on entry to an EH pad.
667    unsigned
668    getExceptionPointerRegister(const Constant *PersonalityFn) const override;
669
670    /// If a physical register, this returns the register that receives the
671    /// exception typeid on entry to a landing pad.
672    unsigned
673    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
674
675  private:
676    struct ReuseLoadInfo {
677      SDValue Ptr;
678      SDValue Chain;
679      SDValue ResChain;
680      MachinePointerInfo MPI;
681      bool IsInvariant;
682      unsigned Alignment;
683      AAMDNodes AAInfo;
684      const MDNode *Ranges;
685
686      ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
687    };
688
689    bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
690                             SelectionDAG &DAG,
691                             ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
692    void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
693                         SelectionDAG &DAG) const;
694
695    void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
696                                SelectionDAG &DAG, SDLoc dl) const;
697    SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
698                                     SDLoc dl) const;
699    SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
700                                     SDLoc dl) const;
701
702    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
703    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
704
705    bool
706    IsEligibleForTailCallOptimization(SDValue Callee,
707                                      CallingConv::ID CalleeCC,
708                                      bool isVarArg,
709                                      const SmallVectorImpl<ISD::InputArg> &Ins,
710                                      SelectionDAG& DAG) const;
711
712    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
713                                         int SPDiff,
714                                         SDValue Chain,
715                                         SDValue &LROpOut,
716                                         SDValue &FPOpOut,
717                                         bool isDarwinABI,
718                                         SDLoc dl) const;
719
720    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
721    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
722    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
723    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
724    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
725    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
726    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
727    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
728    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
729    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
730    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
731                         const PPCSubtarget &Subtarget) const;
732    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
733                       const PPCSubtarget &Subtarget) const;
734    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
735                        const PPCSubtarget &Subtarget) const;
736    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
737                                const PPCSubtarget &Subtarget) const;
738    SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG,
739                                         const PPCSubtarget &Subtarget) const;
740    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
741                                      const PPCSubtarget &Subtarget) const;
742    SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
743    SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
744    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
745    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
746    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
747    SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
748    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
749    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
750    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
751    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
752    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
753    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
754    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
755    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
756    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
757    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
758    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
759
760    SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
761    SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
762
763    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
764                            CallingConv::ID CallConv, bool isVarArg,
765                            const SmallVectorImpl<ISD::InputArg> &Ins,
766                            SDLoc dl, SelectionDAG &DAG,
767                            SmallVectorImpl<SDValue> &InVals) const;
768    SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
769                       bool isVarArg, bool IsPatchPoint, bool hasNest,
770                       SelectionDAG &DAG,
771                       SmallVector<std::pair<unsigned, SDValue>, 8>
772                         &RegsToPass,
773                       SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
774                       SDValue &Callee,
775                       int SPDiff, unsigned NumBytes,
776                       const SmallVectorImpl<ISD::InputArg> &Ins,
777                       SmallVectorImpl<SDValue> &InVals,
778                       ImmutableCallSite *CS) const;
779
780    SDValue
781      LowerFormalArguments(SDValue Chain,
782                           CallingConv::ID CallConv, bool isVarArg,
783                           const SmallVectorImpl<ISD::InputArg> &Ins,
784                           SDLoc dl, SelectionDAG &DAG,
785                           SmallVectorImpl<SDValue> &InVals) const override;
786
787    SDValue
788      LowerCall(TargetLowering::CallLoweringInfo &CLI,
789                SmallVectorImpl<SDValue> &InVals) const override;
790
791    bool
792      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
793                   bool isVarArg,
794                   const SmallVectorImpl<ISD::OutputArg> &Outs,
795                   LLVMContext &Context) const override;
796
797    SDValue
798      LowerReturn(SDValue Chain,
799                  CallingConv::ID CallConv, bool isVarArg,
800                  const SmallVectorImpl<ISD::OutputArg> &Outs,
801                  const SmallVectorImpl<SDValue> &OutVals,
802                  SDLoc dl, SelectionDAG &DAG) const override;
803
804    SDValue
805      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
806                        SDValue ArgVal, SDLoc dl) const;
807
808    SDValue
809      LowerFormalArguments_Darwin(SDValue Chain,
810                                  CallingConv::ID CallConv, bool isVarArg,
811                                  const SmallVectorImpl<ISD::InputArg> &Ins,
812                                  SDLoc dl, SelectionDAG &DAG,
813                                  SmallVectorImpl<SDValue> &InVals) const;
814    SDValue
815      LowerFormalArguments_64SVR4(SDValue Chain,
816                                  CallingConv::ID CallConv, bool isVarArg,
817                                  const SmallVectorImpl<ISD::InputArg> &Ins,
818                                  SDLoc dl, SelectionDAG &DAG,
819                                  SmallVectorImpl<SDValue> &InVals) const;
820    SDValue
821      LowerFormalArguments_32SVR4(SDValue Chain,
822                                  CallingConv::ID CallConv, bool isVarArg,
823                                  const SmallVectorImpl<ISD::InputArg> &Ins,
824                                  SDLoc dl, SelectionDAG &DAG,
825                                  SmallVectorImpl<SDValue> &InVals) const;
826
827    SDValue
828      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
829                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
830                                 SelectionDAG &DAG, SDLoc dl) const;
831
832    SDValue
833      LowerCall_Darwin(SDValue Chain, SDValue Callee,
834                       CallingConv::ID CallConv,
835                       bool isVarArg, bool isTailCall, bool IsPatchPoint,
836                       const SmallVectorImpl<ISD::OutputArg> &Outs,
837                       const SmallVectorImpl<SDValue> &OutVals,
838                       const SmallVectorImpl<ISD::InputArg> &Ins,
839                       SDLoc dl, SelectionDAG &DAG,
840                       SmallVectorImpl<SDValue> &InVals,
841                       ImmutableCallSite *CS) const;
842    SDValue
843      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
844                       CallingConv::ID CallConv,
845                       bool isVarArg, bool isTailCall, bool IsPatchPoint,
846                       const SmallVectorImpl<ISD::OutputArg> &Outs,
847                       const SmallVectorImpl<SDValue> &OutVals,
848                       const SmallVectorImpl<ISD::InputArg> &Ins,
849                       SDLoc dl, SelectionDAG &DAG,
850                       SmallVectorImpl<SDValue> &InVals,
851                       ImmutableCallSite *CS) const;
852    SDValue
853    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
854                     bool isVarArg, bool isTailCall, bool IsPatchPoint,
855                     const SmallVectorImpl<ISD::OutputArg> &Outs,
856                     const SmallVectorImpl<SDValue> &OutVals,
857                     const SmallVectorImpl<ISD::InputArg> &Ins,
858                     SDLoc dl, SelectionDAG &DAG,
859                     SmallVectorImpl<SDValue> &InVals,
860                     ImmutableCallSite *CS) const;
861
862    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
863    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
864
865    SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
866    SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
867    SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
868
869    SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
870                             unsigned &RefinementSteps,
871                             bool &UseOneConstNR) const override;
872    SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
873                             unsigned &RefinementSteps) const override;
874    unsigned combineRepeatedFPDivisors() const override;
875
876    CCAssignFn *useFastISelCCs(unsigned Flag) const;
877  };
878
879  namespace PPC {
880    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
881                             const TargetLibraryInfo *LibInfo);
882  }
883
884  bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
885                                  CCValAssign::LocInfo &LocInfo,
886                                  ISD::ArgFlagsTy &ArgFlags,
887                                  CCState &State);
888
889  bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
890                                         MVT &LocVT,
891                                         CCValAssign::LocInfo &LocInfo,
892                                         ISD::ArgFlagsTy &ArgFlags,
893                                         CCState &State);
894
895  bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
896                                           MVT &LocVT,
897                                           CCValAssign::LocInfo &LocInfo,
898                                           ISD::ArgFlagsTy &ArgFlags,
899                                           CCState &State);
900}
901
902#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
903