1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/MC/MCAsmInfo.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Target/TargetOptions.h"
44using namespace llvm;
45
46namespace {
47
48class X86FastISel final : public FastISel {
49  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50  /// make the right decision when generating code for different targets.
51  const X86Subtarget *Subtarget;
52
53  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54  /// floating point ops.
55  /// When SSE is available, use it for f32 operations.
56  /// When SSE2 is available, use it for f64 operations.
57  bool X86ScalarSSEf64;
58  bool X86ScalarSSEf32;
59
60public:
61  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62                       const TargetLibraryInfo *libInfo)
63      : FastISel(funcInfo, libInfo) {
64    Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
65    X86ScalarSSEf64 = Subtarget->hasSSE2();
66    X86ScalarSSEf32 = Subtarget->hasSSE1();
67  }
68
69  bool fastSelectInstruction(const Instruction *I) override;
70
71  /// \brief The specified machine instr operand is a vreg, and that
72  /// vreg is being provided by the specified load instruction.  If possible,
73  /// try to fold the load as an operand to the instruction, returning true if
74  /// possible.
75  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76                           const LoadInst *LI) override;
77
78  bool fastLowerArguments() override;
79  bool fastLowerCall(CallLoweringInfo &CLI) override;
80  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82#include "X86GenFastISel.inc"
83
84private:
85  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
86
87  bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
88                       unsigned &ResultReg, unsigned Alignment = 1);
89
90  bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
91                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
92  bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
93                        X86AddressMode &AM,
94                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
95
96  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97                         unsigned &ResultReg);
98
99  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
101
102  bool X86SelectLoad(const Instruction *I);
103
104  bool X86SelectStore(const Instruction *I);
105
106  bool X86SelectRet(const Instruction *I);
107
108  bool X86SelectCmp(const Instruction *I);
109
110  bool X86SelectZExt(const Instruction *I);
111
112  bool X86SelectBranch(const Instruction *I);
113
114  bool X86SelectShift(const Instruction *I);
115
116  bool X86SelectDivRem(const Instruction *I);
117
118  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
119
120  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
121
122  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
123
124  bool X86SelectSelect(const Instruction *I);
125
126  bool X86SelectTrunc(const Instruction *I);
127
128  bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
129                               const TargetRegisterClass *RC);
130
131  bool X86SelectFPExt(const Instruction *I);
132  bool X86SelectFPTrunc(const Instruction *I);
133  bool X86SelectSIToFP(const Instruction *I);
134
135  const X86InstrInfo *getInstrInfo() const {
136    return Subtarget->getInstrInfo();
137  }
138  const X86TargetMachine *getTargetMachine() const {
139    return static_cast<const X86TargetMachine *>(&TM);
140  }
141
142  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
143
144  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
145  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
146  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
147  unsigned fastMaterializeConstant(const Constant *C) override;
148
149  unsigned fastMaterializeAlloca(const AllocaInst *C) override;
150
151  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
152
153  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
154  /// computed in an SSE register, not on the X87 floating point stack.
155  bool isScalarFPTypeInSSEReg(EVT VT) const {
156    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
157      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
158  }
159
160  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
161
162  bool IsMemcpySmall(uint64_t Len);
163
164  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
165                          X86AddressMode SrcAM, uint64_t Len);
166
167  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
168                            const Value *Cond);
169
170  const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
171                                            X86AddressMode &AM);
172};
173
174} // end anonymous namespace.
175
176static std::pair<X86::CondCode, bool>
177getX86ConditionCode(CmpInst::Predicate Predicate) {
178  X86::CondCode CC = X86::COND_INVALID;
179  bool NeedSwap = false;
180  switch (Predicate) {
181  default: break;
182  // Floating-point Predicates
183  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
184  case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
185  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
186  case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
187  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
188  case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
189  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
190  case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
191  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
192  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
193  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
194  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
195  case CmpInst::FCMP_OEQ: // fall-through
196  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
197
198  // Integer Predicates
199  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
200  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
201  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
202  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
203  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
204  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
205  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
206  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
207  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
208  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
209  }
210
211  return std::make_pair(CC, NeedSwap);
212}
213
214static std::pair<unsigned, bool>
215getX86SSEConditionCode(CmpInst::Predicate Predicate) {
216  unsigned CC;
217  bool NeedSwap = false;
218
219  // SSE Condition code mapping:
220  //  0 - EQ
221  //  1 - LT
222  //  2 - LE
223  //  3 - UNORD
224  //  4 - NEQ
225  //  5 - NLT
226  //  6 - NLE
227  //  7 - ORD
228  switch (Predicate) {
229  default: llvm_unreachable("Unexpected predicate");
230  case CmpInst::FCMP_OEQ: CC = 0;          break;
231  case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
232  case CmpInst::FCMP_OLT: CC = 1;          break;
233  case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
234  case CmpInst::FCMP_OLE: CC = 2;          break;
235  case CmpInst::FCMP_UNO: CC = 3;          break;
236  case CmpInst::FCMP_UNE: CC = 4;          break;
237  case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
238  case CmpInst::FCMP_UGE: CC = 5;          break;
239  case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
240  case CmpInst::FCMP_UGT: CC = 6;          break;
241  case CmpInst::FCMP_ORD: CC = 7;          break;
242  case CmpInst::FCMP_UEQ:
243  case CmpInst::FCMP_ONE: CC = 8;          break;
244  }
245
246  return std::make_pair(CC, NeedSwap);
247}
248
249/// \brief Adds a complex addressing mode to the given machine instr builder.
250/// Note, this will constrain the index register.  If its not possible to
251/// constrain the given index register, then a new one will be created.  The
252/// IndexReg field of the addressing mode will be updated to match in this case.
253const MachineInstrBuilder &
254X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
255                            X86AddressMode &AM) {
256  // First constrain the index register.  It needs to be a GR64_NOSP.
257  AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
258                                         MIB->getNumOperands() +
259                                         X86::AddrIndexReg);
260  return ::addFullAddress(MIB, AM);
261}
262
263/// \brief Check if it is possible to fold the condition from the XALU intrinsic
264/// into the user. The condition code will only be updated on success.
265bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
266                                       const Value *Cond) {
267  if (!isa<ExtractValueInst>(Cond))
268    return false;
269
270  const auto *EV = cast<ExtractValueInst>(Cond);
271  if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
272    return false;
273
274  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
275  MVT RetVT;
276  const Function *Callee = II->getCalledFunction();
277  Type *RetTy =
278    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
279  if (!isTypeLegal(RetTy, RetVT))
280    return false;
281
282  if (RetVT != MVT::i32 && RetVT != MVT::i64)
283    return false;
284
285  X86::CondCode TmpCC;
286  switch (II->getIntrinsicID()) {
287  default: return false;
288  case Intrinsic::sadd_with_overflow:
289  case Intrinsic::ssub_with_overflow:
290  case Intrinsic::smul_with_overflow:
291  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
292  case Intrinsic::uadd_with_overflow:
293  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
294  }
295
296  // Check if both instructions are in the same basic block.
297  if (II->getParent() != I->getParent())
298    return false;
299
300  // Make sure nothing is in the way
301  BasicBlock::const_iterator Start(I);
302  BasicBlock::const_iterator End(II);
303  for (auto Itr = std::prev(Start); Itr != End; --Itr) {
304    // We only expect extractvalue instructions between the intrinsic and the
305    // instruction to be selected.
306    if (!isa<ExtractValueInst>(Itr))
307      return false;
308
309    // Check that the extractvalue operand comes from the intrinsic.
310    const auto *EVI = cast<ExtractValueInst>(Itr);
311    if (EVI->getAggregateOperand() != II)
312      return false;
313  }
314
315  CC = TmpCC;
316  return true;
317}
318
319bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
320  EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
321  if (evt == MVT::Other || !evt.isSimple())
322    // Unhandled type. Halt "fast" selection and bail.
323    return false;
324
325  VT = evt.getSimpleVT();
326  // For now, require SSE/SSE2 for performing floating-point operations,
327  // since x87 requires additional work.
328  if (VT == MVT::f64 && !X86ScalarSSEf64)
329    return false;
330  if (VT == MVT::f32 && !X86ScalarSSEf32)
331    return false;
332  // Similarly, no f80 support yet.
333  if (VT == MVT::f80)
334    return false;
335  // We only handle legal types. For example, on x86-32 the instruction
336  // selector contains all of the 64-bit instructions from x86-64,
337  // under the assumption that i64 won't be used if the target doesn't
338  // support it.
339  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
340}
341
342#include "X86GenCallingConv.inc"
343
344/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
345/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
346/// Return true and the result register by reference if it is possible.
347bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
348                                  MachineMemOperand *MMO, unsigned &ResultReg,
349                                  unsigned Alignment) {
350  // Get opcode and regclass of the output for the given load instruction.
351  unsigned Opc = 0;
352  const TargetRegisterClass *RC = nullptr;
353  switch (VT.getSimpleVT().SimpleTy) {
354  default: return false;
355  case MVT::i1:
356  case MVT::i8:
357    Opc = X86::MOV8rm;
358    RC  = &X86::GR8RegClass;
359    break;
360  case MVT::i16:
361    Opc = X86::MOV16rm;
362    RC  = &X86::GR16RegClass;
363    break;
364  case MVT::i32:
365    Opc = X86::MOV32rm;
366    RC  = &X86::GR32RegClass;
367    break;
368  case MVT::i64:
369    // Must be in x86-64 mode.
370    Opc = X86::MOV64rm;
371    RC  = &X86::GR64RegClass;
372    break;
373  case MVT::f32:
374    if (X86ScalarSSEf32) {
375      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
376      RC  = &X86::FR32RegClass;
377    } else {
378      Opc = X86::LD_Fp32m;
379      RC  = &X86::RFP32RegClass;
380    }
381    break;
382  case MVT::f64:
383    if (X86ScalarSSEf64) {
384      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
385      RC  = &X86::FR64RegClass;
386    } else {
387      Opc = X86::LD_Fp64m;
388      RC  = &X86::RFP64RegClass;
389    }
390    break;
391  case MVT::f80:
392    // No f80 support yet.
393    return false;
394  case MVT::v4f32:
395    if (Alignment >= 16)
396      Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
397    else
398      Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
399    RC  = &X86::VR128RegClass;
400    break;
401  case MVT::v2f64:
402    if (Alignment >= 16)
403      Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
404    else
405      Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
406    RC  = &X86::VR128RegClass;
407    break;
408  case MVT::v4i32:
409  case MVT::v2i64:
410  case MVT::v8i16:
411  case MVT::v16i8:
412    if (Alignment >= 16)
413      Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
414    else
415      Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
416    RC  = &X86::VR128RegClass;
417    break;
418  }
419
420  ResultReg = createResultReg(RC);
421  MachineInstrBuilder MIB =
422    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
423  addFullAddress(MIB, AM);
424  if (MMO)
425    MIB->addMemOperand(*FuncInfo.MF, MMO);
426  return true;
427}
428
429/// X86FastEmitStore - Emit a machine instruction to store a value Val of
430/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
431/// and a displacement offset, or a GlobalAddress,
432/// i.e. V. Return true if it is possible.
433bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
434                                   X86AddressMode &AM,
435                                   MachineMemOperand *MMO, bool Aligned) {
436  bool HasSSE2 = Subtarget->hasSSE2();
437  bool HasSSE4A = Subtarget->hasSSE4A();
438  bool HasAVX = Subtarget->hasAVX();
439  bool IsNonTemporal = MMO && MMO->isNonTemporal();
440
441  // Get opcode and regclass of the output for the given store instruction.
442  unsigned Opc = 0;
443  switch (VT.getSimpleVT().SimpleTy) {
444  case MVT::f80: // No f80 support yet.
445  default: return false;
446  case MVT::i1: {
447    // Mask out all but lowest bit.
448    unsigned AndResult = createResultReg(&X86::GR8RegClass);
449    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
450            TII.get(X86::AND8ri), AndResult)
451      .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
452    ValReg = AndResult;
453  }
454  // FALLTHROUGH, handling i1 as i8.
455  case MVT::i8:  Opc = X86::MOV8mr;  break;
456  case MVT::i16: Opc = X86::MOV16mr; break;
457  case MVT::i32:
458    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
459    break;
460  case MVT::i64:
461    // Must be in x86-64 mode.
462    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
463    break;
464  case MVT::f32:
465    if (X86ScalarSSEf32) {
466      if (IsNonTemporal && HasSSE4A)
467        Opc = X86::MOVNTSS;
468      else
469        Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
470    } else
471      Opc = X86::ST_Fp32m;
472    break;
473  case MVT::f64:
474    if (X86ScalarSSEf32) {
475      if (IsNonTemporal && HasSSE4A)
476        Opc = X86::MOVNTSD;
477      else
478        Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
479    } else
480      Opc = X86::ST_Fp64m;
481    break;
482  case MVT::v4f32:
483    if (Aligned) {
484      if (IsNonTemporal)
485        Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
486      else
487        Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
488    } else
489      Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
490    break;
491  case MVT::v2f64:
492    if (Aligned) {
493      if (IsNonTemporal)
494        Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
495      else
496        Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
497    } else
498      Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
499    break;
500  case MVT::v4i32:
501  case MVT::v2i64:
502  case MVT::v8i16:
503  case MVT::v16i8:
504    if (Aligned) {
505      if (IsNonTemporal)
506        Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
507      else
508        Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
509    } else
510      Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
511    break;
512  }
513
514  MachineInstrBuilder MIB =
515    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
516  addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
517  if (MMO)
518    MIB->addMemOperand(*FuncInfo.MF, MMO);
519
520  return true;
521}
522
523bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
524                                   X86AddressMode &AM,
525                                   MachineMemOperand *MMO, bool Aligned) {
526  // Handle 'null' like i32/i64 0.
527  if (isa<ConstantPointerNull>(Val))
528    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
529
530  // If this is a store of a simple constant, fold the constant into the store.
531  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
532    unsigned Opc = 0;
533    bool Signed = true;
534    switch (VT.getSimpleVT().SimpleTy) {
535    default: break;
536    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
537    case MVT::i8:  Opc = X86::MOV8mi;  break;
538    case MVT::i16: Opc = X86::MOV16mi; break;
539    case MVT::i32: Opc = X86::MOV32mi; break;
540    case MVT::i64:
541      // Must be a 32-bit sign extended value.
542      if (isInt<32>(CI->getSExtValue()))
543        Opc = X86::MOV64mi32;
544      break;
545    }
546
547    if (Opc) {
548      MachineInstrBuilder MIB =
549        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
550      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
551                                            : CI->getZExtValue());
552      if (MMO)
553        MIB->addMemOperand(*FuncInfo.MF, MMO);
554      return true;
555    }
556  }
557
558  unsigned ValReg = getRegForValue(Val);
559  if (ValReg == 0)
560    return false;
561
562  bool ValKill = hasTrivialKill(Val);
563  return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
564}
565
566/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
567/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
568/// ISD::SIGN_EXTEND).
569bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
570                                    unsigned Src, EVT SrcVT,
571                                    unsigned &ResultReg) {
572  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
573                           Src, /*TODO: Kill=*/false);
574  if (RR == 0)
575    return false;
576
577  ResultReg = RR;
578  return true;
579}
580
581bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
582  // Handle constant address.
583  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
584    // Can't handle alternate code models yet.
585    if (TM.getCodeModel() != CodeModel::Small)
586      return false;
587
588    // Can't handle TLS yet.
589    if (GV->isThreadLocal())
590      return false;
591
592    // RIP-relative addresses can't have additional register operands, so if
593    // we've already folded stuff into the addressing mode, just force the
594    // global value into its own register, which we can use as the basereg.
595    if (!Subtarget->isPICStyleRIPRel() ||
596        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
597      // Okay, we've committed to selecting this global. Set up the address.
598      AM.GV = GV;
599
600      // Allow the subtarget to classify the global.
601      unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
602
603      // If this reference is relative to the pic base, set it now.
604      if (isGlobalRelativeToPICBase(GVFlags)) {
605        // FIXME: How do we know Base.Reg is free??
606        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
607      }
608
609      // Unless the ABI requires an extra load, return a direct reference to
610      // the global.
611      if (!isGlobalStubReference(GVFlags)) {
612        if (Subtarget->isPICStyleRIPRel()) {
613          // Use rip-relative addressing if we can.  Above we verified that the
614          // base and index registers are unused.
615          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
616          AM.Base.Reg = X86::RIP;
617        }
618        AM.GVOpFlags = GVFlags;
619        return true;
620      }
621
622      // Ok, we need to do a load from a stub.  If we've already loaded from
623      // this stub, reuse the loaded pointer, otherwise emit the load now.
624      DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
625      unsigned LoadReg;
626      if (I != LocalValueMap.end() && I->second != 0) {
627        LoadReg = I->second;
628      } else {
629        // Issue load from stub.
630        unsigned Opc = 0;
631        const TargetRegisterClass *RC = nullptr;
632        X86AddressMode StubAM;
633        StubAM.Base.Reg = AM.Base.Reg;
634        StubAM.GV = GV;
635        StubAM.GVOpFlags = GVFlags;
636
637        // Prepare for inserting code in the local-value area.
638        SavePoint SaveInsertPt = enterLocalValueArea();
639
640        if (TLI.getPointerTy(DL) == MVT::i64) {
641          Opc = X86::MOV64rm;
642          RC  = &X86::GR64RegClass;
643
644          if (Subtarget->isPICStyleRIPRel())
645            StubAM.Base.Reg = X86::RIP;
646        } else {
647          Opc = X86::MOV32rm;
648          RC  = &X86::GR32RegClass;
649        }
650
651        LoadReg = createResultReg(RC);
652        MachineInstrBuilder LoadMI =
653          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
654        addFullAddress(LoadMI, StubAM);
655
656        // Ok, back to normal mode.
657        leaveLocalValueArea(SaveInsertPt);
658
659        // Prevent loading GV stub multiple times in same MBB.
660        LocalValueMap[V] = LoadReg;
661      }
662
663      // Now construct the final address. Note that the Disp, Scale,
664      // and Index values may already be set here.
665      AM.Base.Reg = LoadReg;
666      AM.GV = nullptr;
667      return true;
668    }
669  }
670
671  // If all else fails, try to materialize the value in a register.
672  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
673    if (AM.Base.Reg == 0) {
674      AM.Base.Reg = getRegForValue(V);
675      return AM.Base.Reg != 0;
676    }
677    if (AM.IndexReg == 0) {
678      assert(AM.Scale == 1 && "Scale with no index!");
679      AM.IndexReg = getRegForValue(V);
680      return AM.IndexReg != 0;
681    }
682  }
683
684  return false;
685}
686
687/// X86SelectAddress - Attempt to fill in an address from the given value.
688///
689bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
690  SmallVector<const Value *, 32> GEPs;
691redo_gep:
692  const User *U = nullptr;
693  unsigned Opcode = Instruction::UserOp1;
694  if (const Instruction *I = dyn_cast<Instruction>(V)) {
695    // Don't walk into other basic blocks; it's possible we haven't
696    // visited them yet, so the instructions may not yet be assigned
697    // virtual registers.
698    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
699        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
700      Opcode = I->getOpcode();
701      U = I;
702    }
703  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
704    Opcode = C->getOpcode();
705    U = C;
706  }
707
708  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
709    if (Ty->getAddressSpace() > 255)
710      // Fast instruction selection doesn't support the special
711      // address spaces.
712      return false;
713
714  switch (Opcode) {
715  default: break;
716  case Instruction::BitCast:
717    // Look past bitcasts.
718    return X86SelectAddress(U->getOperand(0), AM);
719
720  case Instruction::IntToPtr:
721    // Look past no-op inttoptrs.
722    if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
723        TLI.getPointerTy(DL))
724      return X86SelectAddress(U->getOperand(0), AM);
725    break;
726
727  case Instruction::PtrToInt:
728    // Look past no-op ptrtoints.
729    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
730      return X86SelectAddress(U->getOperand(0), AM);
731    break;
732
733  case Instruction::Alloca: {
734    // Do static allocas.
735    const AllocaInst *A = cast<AllocaInst>(V);
736    DenseMap<const AllocaInst *, int>::iterator SI =
737      FuncInfo.StaticAllocaMap.find(A);
738    if (SI != FuncInfo.StaticAllocaMap.end()) {
739      AM.BaseType = X86AddressMode::FrameIndexBase;
740      AM.Base.FrameIndex = SI->second;
741      return true;
742    }
743    break;
744  }
745
746  case Instruction::Add: {
747    // Adds of constants are common and easy enough.
748    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
749      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
750      // They have to fit in the 32-bit signed displacement field though.
751      if (isInt<32>(Disp)) {
752        AM.Disp = (uint32_t)Disp;
753        return X86SelectAddress(U->getOperand(0), AM);
754      }
755    }
756    break;
757  }
758
759  case Instruction::GetElementPtr: {
760    X86AddressMode SavedAM = AM;
761
762    // Pattern-match simple GEPs.
763    uint64_t Disp = (int32_t)AM.Disp;
764    unsigned IndexReg = AM.IndexReg;
765    unsigned Scale = AM.Scale;
766    gep_type_iterator GTI = gep_type_begin(U);
767    // Iterate through the indices, folding what we can. Constants can be
768    // folded, and one dynamic index can be handled, if the scale is supported.
769    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
770         i != e; ++i, ++GTI) {
771      const Value *Op = *i;
772      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
773        const StructLayout *SL = DL.getStructLayout(STy);
774        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
775        continue;
776      }
777
778      // A array/variable index is always of the form i*S where S is the
779      // constant scale size.  See if we can push the scale into immediates.
780      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
781      for (;;) {
782        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
783          // Constant-offset addressing.
784          Disp += CI->getSExtValue() * S;
785          break;
786        }
787        if (canFoldAddIntoGEP(U, Op)) {
788          // A compatible add with a constant operand. Fold the constant.
789          ConstantInt *CI =
790            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
791          Disp += CI->getSExtValue() * S;
792          // Iterate on the other operand.
793          Op = cast<AddOperator>(Op)->getOperand(0);
794          continue;
795        }
796        if (IndexReg == 0 &&
797            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
798            (S == 1 || S == 2 || S == 4 || S == 8)) {
799          // Scaled-index addressing.
800          Scale = S;
801          IndexReg = getRegForGEPIndex(Op).first;
802          if (IndexReg == 0)
803            return false;
804          break;
805        }
806        // Unsupported.
807        goto unsupported_gep;
808      }
809    }
810
811    // Check for displacement overflow.
812    if (!isInt<32>(Disp))
813      break;
814
815    AM.IndexReg = IndexReg;
816    AM.Scale = Scale;
817    AM.Disp = (uint32_t)Disp;
818    GEPs.push_back(V);
819
820    if (const GetElementPtrInst *GEP =
821          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
822      // Ok, the GEP indices were covered by constant-offset and scaled-index
823      // addressing. Update the address state and move on to examining the base.
824      V = GEP;
825      goto redo_gep;
826    } else if (X86SelectAddress(U->getOperand(0), AM)) {
827      return true;
828    }
829
830    // If we couldn't merge the gep value into this addr mode, revert back to
831    // our address and just match the value instead of completely failing.
832    AM = SavedAM;
833
834    for (SmallVectorImpl<const Value *>::reverse_iterator
835           I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
836      if (handleConstantAddresses(*I, AM))
837        return true;
838
839    return false;
840  unsupported_gep:
841    // Ok, the GEP indices weren't all covered.
842    break;
843  }
844  }
845
846  return handleConstantAddresses(V, AM);
847}
848
849/// X86SelectCallAddress - Attempt to fill in an address from the given value.
850///
851bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
852  const User *U = nullptr;
853  unsigned Opcode = Instruction::UserOp1;
854  const Instruction *I = dyn_cast<Instruction>(V);
855  // Record if the value is defined in the same basic block.
856  //
857  // This information is crucial to know whether or not folding an
858  // operand is valid.
859  // Indeed, FastISel generates or reuses a virtual register for all
860  // operands of all instructions it selects. Obviously, the definition and
861  // its uses must use the same virtual register otherwise the produced
862  // code is incorrect.
863  // Before instruction selection, FunctionLoweringInfo::set sets the virtual
864  // registers for values that are alive across basic blocks. This ensures
865  // that the values are consistently set between across basic block, even
866  // if different instruction selection mechanisms are used (e.g., a mix of
867  // SDISel and FastISel).
868  // For values local to a basic block, the instruction selection process
869  // generates these virtual registers with whatever method is appropriate
870  // for its needs. In particular, FastISel and SDISel do not share the way
871  // local virtual registers are set.
872  // Therefore, this is impossible (or at least unsafe) to share values
873  // between basic blocks unless they use the same instruction selection
874  // method, which is not guarantee for X86.
875  // Moreover, things like hasOneUse could not be used accurately, if we
876  // allow to reference values across basic blocks whereas they are not
877  // alive across basic blocks initially.
878  bool InMBB = true;
879  if (I) {
880    Opcode = I->getOpcode();
881    U = I;
882    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
883  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
884    Opcode = C->getOpcode();
885    U = C;
886  }
887
888  switch (Opcode) {
889  default: break;
890  case Instruction::BitCast:
891    // Look past bitcasts if its operand is in the same BB.
892    if (InMBB)
893      return X86SelectCallAddress(U->getOperand(0), AM);
894    break;
895
896  case Instruction::IntToPtr:
897    // Look past no-op inttoptrs if its operand is in the same BB.
898    if (InMBB &&
899        TLI.getValueType(DL, U->getOperand(0)->getType()) ==
900            TLI.getPointerTy(DL))
901      return X86SelectCallAddress(U->getOperand(0), AM);
902    break;
903
904  case Instruction::PtrToInt:
905    // Look past no-op ptrtoints if its operand is in the same BB.
906    if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
907      return X86SelectCallAddress(U->getOperand(0), AM);
908    break;
909  }
910
911  // Handle constant address.
912  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
913    // Can't handle alternate code models yet.
914    if (TM.getCodeModel() != CodeModel::Small)
915      return false;
916
917    // RIP-relative addresses can't have additional register operands.
918    if (Subtarget->isPICStyleRIPRel() &&
919        (AM.Base.Reg != 0 || AM.IndexReg != 0))
920      return false;
921
922    // Can't handle DLL Import.
923    if (GV->hasDLLImportStorageClass())
924      return false;
925
926    // Can't handle TLS.
927    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
928      if (GVar->isThreadLocal())
929        return false;
930
931    // Okay, we've committed to selecting this global. Set up the basic address.
932    AM.GV = GV;
933
934    // No ABI requires an extra load for anything other than DLLImport, which
935    // we rejected above. Return a direct reference to the global.
936    if (Subtarget->isPICStyleRIPRel()) {
937      // Use rip-relative addressing if we can.  Above we verified that the
938      // base and index registers are unused.
939      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
940      AM.Base.Reg = X86::RIP;
941    } else if (Subtarget->isPICStyleStubPIC()) {
942      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
943    } else if (Subtarget->isPICStyleGOT()) {
944      AM.GVOpFlags = X86II::MO_GOTOFF;
945    }
946
947    return true;
948  }
949
950  // If all else fails, try to materialize the value in a register.
951  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
952    if (AM.Base.Reg == 0) {
953      AM.Base.Reg = getRegForValue(V);
954      return AM.Base.Reg != 0;
955    }
956    if (AM.IndexReg == 0) {
957      assert(AM.Scale == 1 && "Scale with no index!");
958      AM.IndexReg = getRegForValue(V);
959      return AM.IndexReg != 0;
960    }
961  }
962
963  return false;
964}
965
966
967/// X86SelectStore - Select and emit code to implement store instructions.
968bool X86FastISel::X86SelectStore(const Instruction *I) {
969  // Atomic stores need special handling.
970  const StoreInst *S = cast<StoreInst>(I);
971
972  if (S->isAtomic())
973    return false;
974
975  const Value *Val = S->getValueOperand();
976  const Value *Ptr = S->getPointerOperand();
977
978  MVT VT;
979  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
980    return false;
981
982  unsigned Alignment = S->getAlignment();
983  unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
984  if (Alignment == 0) // Ensure that codegen never sees alignment 0
985    Alignment = ABIAlignment;
986  bool Aligned = Alignment >= ABIAlignment;
987
988  X86AddressMode AM;
989  if (!X86SelectAddress(Ptr, AM))
990    return false;
991
992  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
993}
994
995/// X86SelectRet - Select and emit code to implement ret instructions.
996bool X86FastISel::X86SelectRet(const Instruction *I) {
997  const ReturnInst *Ret = cast<ReturnInst>(I);
998  const Function &F = *I->getParent()->getParent();
999  const X86MachineFunctionInfo *X86MFInfo =
1000      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1001
1002  if (!FuncInfo.CanLowerReturn)
1003    return false;
1004
1005  CallingConv::ID CC = F.getCallingConv();
1006  if (CC != CallingConv::C &&
1007      CC != CallingConv::Fast &&
1008      CC != CallingConv::X86_FastCall &&
1009      CC != CallingConv::X86_64_SysV)
1010    return false;
1011
1012  if (Subtarget->isCallingConvWin64(CC))
1013    return false;
1014
1015  // Don't handle popping bytes on return for now.
1016  if (X86MFInfo->getBytesToPopOnReturn() != 0)
1017    return false;
1018
1019  // fastcc with -tailcallopt is intended to provide a guaranteed
1020  // tail call optimization. Fastisel doesn't know how to do that.
1021  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1022    return false;
1023
1024  // Let SDISel handle vararg functions.
1025  if (F.isVarArg())
1026    return false;
1027
1028  // Build a list of return value registers.
1029  SmallVector<unsigned, 4> RetRegs;
1030
1031  if (Ret->getNumOperands() > 0) {
1032    SmallVector<ISD::OutputArg, 4> Outs;
1033    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1034
1035    // Analyze operands of the call, assigning locations to each operand.
1036    SmallVector<CCValAssign, 16> ValLocs;
1037    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1038    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1039
1040    const Value *RV = Ret->getOperand(0);
1041    unsigned Reg = getRegForValue(RV);
1042    if (Reg == 0)
1043      return false;
1044
1045    // Only handle a single return value for now.
1046    if (ValLocs.size() != 1)
1047      return false;
1048
1049    CCValAssign &VA = ValLocs[0];
1050
1051    // Don't bother handling odd stuff for now.
1052    if (VA.getLocInfo() != CCValAssign::Full)
1053      return false;
1054    // Only handle register returns for now.
1055    if (!VA.isRegLoc())
1056      return false;
1057
1058    // The calling-convention tables for x87 returns don't tell
1059    // the whole story.
1060    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1061      return false;
1062
1063    unsigned SrcReg = Reg + VA.getValNo();
1064    EVT SrcVT = TLI.getValueType(DL, RV->getType());
1065    EVT DstVT = VA.getValVT();
1066    // Special handling for extended integers.
1067    if (SrcVT != DstVT) {
1068      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1069        return false;
1070
1071      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1072        return false;
1073
1074      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1075
1076      if (SrcVT == MVT::i1) {
1077        if (Outs[0].Flags.isSExt())
1078          return false;
1079        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1080        SrcVT = MVT::i8;
1081      }
1082      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1083                                             ISD::SIGN_EXTEND;
1084      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1085                          SrcReg, /*TODO: Kill=*/false);
1086    }
1087
1088    // Make the copy.
1089    unsigned DstReg = VA.getLocReg();
1090    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1091    // Avoid a cross-class copy. This is very unlikely.
1092    if (!SrcRC->contains(DstReg))
1093      return false;
1094    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1095            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1096
1097    // Add register to return instruction.
1098    RetRegs.push_back(VA.getLocReg());
1099  }
1100
1101  // The x86-64 ABI for returning structs by value requires that we copy
1102  // the sret argument into %rax for the return. We saved the argument into
1103  // a virtual register in the entry block, so now we copy the value out
1104  // and into %rax. We also do the same with %eax for Win32.
1105  if (F.hasStructRetAttr() &&
1106      (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
1107    unsigned Reg = X86MFInfo->getSRetReturnReg();
1108    assert(Reg &&
1109           "SRetReturnReg should have been set in LowerFormalArguments()!");
1110    unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1111    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1112            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1113    RetRegs.push_back(RetReg);
1114  }
1115
1116  // Now emit the RET.
1117  MachineInstrBuilder MIB =
1118    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1119            TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1120  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1121    MIB.addReg(RetRegs[i], RegState::Implicit);
1122  return true;
1123}
1124
1125/// X86SelectLoad - Select and emit code to implement load instructions.
1126///
1127bool X86FastISel::X86SelectLoad(const Instruction *I) {
1128  const LoadInst *LI = cast<LoadInst>(I);
1129
1130  // Atomic loads need special handling.
1131  if (LI->isAtomic())
1132    return false;
1133
1134  MVT VT;
1135  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1136    return false;
1137
1138  const Value *Ptr = LI->getPointerOperand();
1139
1140  X86AddressMode AM;
1141  if (!X86SelectAddress(Ptr, AM))
1142    return false;
1143
1144  unsigned Alignment = LI->getAlignment();
1145  unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1146  if (Alignment == 0) // Ensure that codegen never sees alignment 0
1147    Alignment = ABIAlignment;
1148
1149  unsigned ResultReg = 0;
1150  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1151                       Alignment))
1152    return false;
1153
1154  updateValueMap(I, ResultReg);
1155  return true;
1156}
1157
1158static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1159  bool HasAVX = Subtarget->hasAVX();
1160  bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1161  bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1162
1163  switch (VT.getSimpleVT().SimpleTy) {
1164  default:       return 0;
1165  case MVT::i8:  return X86::CMP8rr;
1166  case MVT::i16: return X86::CMP16rr;
1167  case MVT::i32: return X86::CMP32rr;
1168  case MVT::i64: return X86::CMP64rr;
1169  case MVT::f32:
1170    return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1171  case MVT::f64:
1172    return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1173  }
1174}
1175
1176/// If we have a comparison with RHS as the RHS  of the comparison, return an
1177/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1178static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1179  int64_t Val = RHSC->getSExtValue();
1180  switch (VT.getSimpleVT().SimpleTy) {
1181  // Otherwise, we can't fold the immediate into this comparison.
1182  default:
1183    return 0;
1184  case MVT::i8:
1185    return X86::CMP8ri;
1186  case MVT::i16:
1187    if (isInt<8>(Val))
1188      return X86::CMP16ri8;
1189    return X86::CMP16ri;
1190  case MVT::i32:
1191    if (isInt<8>(Val))
1192      return X86::CMP32ri8;
1193    return X86::CMP32ri;
1194  case MVT::i64:
1195    if (isInt<8>(Val))
1196      return X86::CMP64ri8;
1197    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1198    // field.
1199    if (isInt<32>(Val))
1200      return X86::CMP64ri32;
1201    return 0;
1202  }
1203}
1204
1205bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1206                                     EVT VT, DebugLoc CurDbgLoc) {
1207  unsigned Op0Reg = getRegForValue(Op0);
1208  if (Op0Reg == 0) return false;
1209
1210  // Handle 'null' like i32/i64 0.
1211  if (isa<ConstantPointerNull>(Op1))
1212    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1213
1214  // We have two options: compare with register or immediate.  If the RHS of
1215  // the compare is an immediate that we can fold into this compare, use
1216  // CMPri, otherwise use CMPrr.
1217  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1218    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1219      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1220        .addReg(Op0Reg)
1221        .addImm(Op1C->getSExtValue());
1222      return true;
1223    }
1224  }
1225
1226  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1227  if (CompareOpc == 0) return false;
1228
1229  unsigned Op1Reg = getRegForValue(Op1);
1230  if (Op1Reg == 0) return false;
1231  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1232    .addReg(Op0Reg)
1233    .addReg(Op1Reg);
1234
1235  return true;
1236}
1237
1238bool X86FastISel::X86SelectCmp(const Instruction *I) {
1239  const CmpInst *CI = cast<CmpInst>(I);
1240
1241  MVT VT;
1242  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1243    return false;
1244
1245  // Try to optimize or fold the cmp.
1246  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1247  unsigned ResultReg = 0;
1248  switch (Predicate) {
1249  default: break;
1250  case CmpInst::FCMP_FALSE: {
1251    ResultReg = createResultReg(&X86::GR32RegClass);
1252    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1253            ResultReg);
1254    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1255                                           X86::sub_8bit);
1256    if (!ResultReg)
1257      return false;
1258    break;
1259  }
1260  case CmpInst::FCMP_TRUE: {
1261    ResultReg = createResultReg(&X86::GR8RegClass);
1262    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1263            ResultReg).addImm(1);
1264    break;
1265  }
1266  }
1267
1268  if (ResultReg) {
1269    updateValueMap(I, ResultReg);
1270    return true;
1271  }
1272
1273  const Value *LHS = CI->getOperand(0);
1274  const Value *RHS = CI->getOperand(1);
1275
1276  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1277  // We don't have to materialize a zero constant for this case and can just use
1278  // %x again on the RHS.
1279  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1280    const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1281    if (RHSC && RHSC->isNullValue())
1282      RHS = LHS;
1283  }
1284
1285  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1286  static unsigned SETFOpcTable[2][3] = {
1287    { X86::SETEr,  X86::SETNPr, X86::AND8rr },
1288    { X86::SETNEr, X86::SETPr,  X86::OR8rr  }
1289  };
1290  unsigned *SETFOpc = nullptr;
1291  switch (Predicate) {
1292  default: break;
1293  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1294  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1295  }
1296
1297  ResultReg = createResultReg(&X86::GR8RegClass);
1298  if (SETFOpc) {
1299    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1300      return false;
1301
1302    unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1303    unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1304    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1305            FlagReg1);
1306    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1307            FlagReg2);
1308    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1309            ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1310    updateValueMap(I, ResultReg);
1311    return true;
1312  }
1313
1314  X86::CondCode CC;
1315  bool SwapArgs;
1316  std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1317  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1318  unsigned Opc = X86::getSETFromCond(CC);
1319
1320  if (SwapArgs)
1321    std::swap(LHS, RHS);
1322
1323  // Emit a compare of LHS/RHS.
1324  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1325    return false;
1326
1327  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1328  updateValueMap(I, ResultReg);
1329  return true;
1330}
1331
1332bool X86FastISel::X86SelectZExt(const Instruction *I) {
1333  EVT DstVT = TLI.getValueType(DL, I->getType());
1334  if (!TLI.isTypeLegal(DstVT))
1335    return false;
1336
1337  unsigned ResultReg = getRegForValue(I->getOperand(0));
1338  if (ResultReg == 0)
1339    return false;
1340
1341  // Handle zero-extension from i1 to i8, which is common.
1342  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1343  if (SrcVT.SimpleTy == MVT::i1) {
1344    // Set the high bits to zero.
1345    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1346    SrcVT = MVT::i8;
1347
1348    if (ResultReg == 0)
1349      return false;
1350  }
1351
1352  if (DstVT == MVT::i64) {
1353    // Handle extension to 64-bits via sub-register shenanigans.
1354    unsigned MovInst;
1355
1356    switch (SrcVT.SimpleTy) {
1357    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1358    case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1359    case MVT::i32: MovInst = X86::MOV32rr;     break;
1360    default: llvm_unreachable("Unexpected zext to i64 source type");
1361    }
1362
1363    unsigned Result32 = createResultReg(&X86::GR32RegClass);
1364    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1365      .addReg(ResultReg);
1366
1367    ResultReg = createResultReg(&X86::GR64RegClass);
1368    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1369            ResultReg)
1370      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1371  } else if (DstVT != MVT::i8) {
1372    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1373                           ResultReg, /*Kill=*/true);
1374    if (ResultReg == 0)
1375      return false;
1376  }
1377
1378  updateValueMap(I, ResultReg);
1379  return true;
1380}
1381
1382bool X86FastISel::X86SelectBranch(const Instruction *I) {
1383  // Unconditional branches are selected by tablegen-generated code.
1384  // Handle a conditional branch.
1385  const BranchInst *BI = cast<BranchInst>(I);
1386  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1387  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1388
1389  // Fold the common case of a conditional branch with a comparison
1390  // in the same block (values defined on other blocks may not have
1391  // initialized registers).
1392  X86::CondCode CC;
1393  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1394    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1395      EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1396
1397      // Try to optimize or fold the cmp.
1398      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1399      switch (Predicate) {
1400      default: break;
1401      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1402      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1403      }
1404
1405      const Value *CmpLHS = CI->getOperand(0);
1406      const Value *CmpRHS = CI->getOperand(1);
1407
1408      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1409      // 0.0.
1410      // We don't have to materialize a zero constant for this case and can just
1411      // use %x again on the RHS.
1412      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1413        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1414        if (CmpRHSC && CmpRHSC->isNullValue())
1415          CmpRHS = CmpLHS;
1416      }
1417
1418      // Try to take advantage of fallthrough opportunities.
1419      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1420        std::swap(TrueMBB, FalseMBB);
1421        Predicate = CmpInst::getInversePredicate(Predicate);
1422      }
1423
1424      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1425      // code check. Instead two branch instructions are required to check all
1426      // the flags. First we change the predicate to a supported condition code,
1427      // which will be the first branch. Later one we will emit the second
1428      // branch.
1429      bool NeedExtraBranch = false;
1430      switch (Predicate) {
1431      default: break;
1432      case CmpInst::FCMP_OEQ:
1433        std::swap(TrueMBB, FalseMBB); // fall-through
1434      case CmpInst::FCMP_UNE:
1435        NeedExtraBranch = true;
1436        Predicate = CmpInst::FCMP_ONE;
1437        break;
1438      }
1439
1440      bool SwapArgs;
1441      unsigned BranchOpc;
1442      std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1443      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1444
1445      BranchOpc = X86::GetCondBranchFromCond(CC);
1446      if (SwapArgs)
1447        std::swap(CmpLHS, CmpRHS);
1448
1449      // Emit a compare of the LHS and RHS, setting the flags.
1450      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1451        return false;
1452
1453      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1454        .addMBB(TrueMBB);
1455
1456      // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1457      // to UNE above).
1458      if (NeedExtraBranch) {
1459        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1460          .addMBB(TrueMBB);
1461      }
1462
1463      finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1464      return true;
1465    }
1466  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1467    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1468    // typically happen for _Bool and C++ bools.
1469    MVT SourceVT;
1470    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1471        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1472      unsigned TestOpc = 0;
1473      switch (SourceVT.SimpleTy) {
1474      default: break;
1475      case MVT::i8:  TestOpc = X86::TEST8ri; break;
1476      case MVT::i16: TestOpc = X86::TEST16ri; break;
1477      case MVT::i32: TestOpc = X86::TEST32ri; break;
1478      case MVT::i64: TestOpc = X86::TEST64ri32; break;
1479      }
1480      if (TestOpc) {
1481        unsigned OpReg = getRegForValue(TI->getOperand(0));
1482        if (OpReg == 0) return false;
1483        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1484          .addReg(OpReg).addImm(1);
1485
1486        unsigned JmpOpc = X86::JNE_1;
1487        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1488          std::swap(TrueMBB, FalseMBB);
1489          JmpOpc = X86::JE_1;
1490        }
1491
1492        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1493          .addMBB(TrueMBB);
1494
1495        finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1496        return true;
1497      }
1498    }
1499  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1500    // Fake request the condition, otherwise the intrinsic might be completely
1501    // optimized away.
1502    unsigned TmpReg = getRegForValue(BI->getCondition());
1503    if (TmpReg == 0)
1504      return false;
1505
1506    unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1507
1508    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1509      .addMBB(TrueMBB);
1510    finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1511    return true;
1512  }
1513
1514  // Otherwise do a clumsy setcc and re-test it.
1515  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1516  // in an explicit cast, so make sure to handle that correctly.
1517  unsigned OpReg = getRegForValue(BI->getCondition());
1518  if (OpReg == 0) return false;
1519
1520  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1521    .addReg(OpReg).addImm(1);
1522  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1523    .addMBB(TrueMBB);
1524  finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1525  return true;
1526}
1527
1528bool X86FastISel::X86SelectShift(const Instruction *I) {
1529  unsigned CReg = 0, OpReg = 0;
1530  const TargetRegisterClass *RC = nullptr;
1531  if (I->getType()->isIntegerTy(8)) {
1532    CReg = X86::CL;
1533    RC = &X86::GR8RegClass;
1534    switch (I->getOpcode()) {
1535    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1536    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1537    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1538    default: return false;
1539    }
1540  } else if (I->getType()->isIntegerTy(16)) {
1541    CReg = X86::CX;
1542    RC = &X86::GR16RegClass;
1543    switch (I->getOpcode()) {
1544    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1545    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1546    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1547    default: return false;
1548    }
1549  } else if (I->getType()->isIntegerTy(32)) {
1550    CReg = X86::ECX;
1551    RC = &X86::GR32RegClass;
1552    switch (I->getOpcode()) {
1553    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1554    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1555    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1556    default: return false;
1557    }
1558  } else if (I->getType()->isIntegerTy(64)) {
1559    CReg = X86::RCX;
1560    RC = &X86::GR64RegClass;
1561    switch (I->getOpcode()) {
1562    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1563    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1564    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1565    default: return false;
1566    }
1567  } else {
1568    return false;
1569  }
1570
1571  MVT VT;
1572  if (!isTypeLegal(I->getType(), VT))
1573    return false;
1574
1575  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1576  if (Op0Reg == 0) return false;
1577
1578  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1579  if (Op1Reg == 0) return false;
1580  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1581          CReg).addReg(Op1Reg);
1582
1583  // The shift instruction uses X86::CL. If we defined a super-register
1584  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1585  if (CReg != X86::CL)
1586    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1587            TII.get(TargetOpcode::KILL), X86::CL)
1588      .addReg(CReg, RegState::Kill);
1589
1590  unsigned ResultReg = createResultReg(RC);
1591  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1592    .addReg(Op0Reg);
1593  updateValueMap(I, ResultReg);
1594  return true;
1595}
1596
1597bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1598  const static unsigned NumTypes = 4; // i8, i16, i32, i64
1599  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1600  const static bool S = true;  // IsSigned
1601  const static bool U = false; // !IsSigned
1602  const static unsigned Copy = TargetOpcode::COPY;
1603  // For the X86 DIV/IDIV instruction, in most cases the dividend
1604  // (numerator) must be in a specific register pair highreg:lowreg,
1605  // producing the quotient in lowreg and the remainder in highreg.
1606  // For most data types, to set up the instruction, the dividend is
1607  // copied into lowreg, and lowreg is sign-extended or zero-extended
1608  // into highreg.  The exception is i8, where the dividend is defined
1609  // as a single register rather than a register pair, and we
1610  // therefore directly sign-extend or zero-extend the dividend into
1611  // lowreg, instead of copying, and ignore the highreg.
1612  const static struct DivRemEntry {
1613    // The following portion depends only on the data type.
1614    const TargetRegisterClass *RC;
1615    unsigned LowInReg;  // low part of the register pair
1616    unsigned HighInReg; // high part of the register pair
1617    // The following portion depends on both the data type and the operation.
1618    struct DivRemResult {
1619    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1620    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1621                              // highreg, or copying a zero into highreg.
1622    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1623                              // zero/sign-extending into lowreg for i8.
1624    unsigned DivRemResultReg; // Register containing the desired result.
1625    bool IsOpSigned;          // Whether to use signed or unsigned form.
1626    } ResultTable[NumOps];
1627  } OpTable[NumTypes] = {
1628    { &X86::GR8RegClass,  X86::AX,  0, {
1629        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1630        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1631        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1632        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1633      }
1634    }, // i8
1635    { &X86::GR16RegClass, X86::AX,  X86::DX, {
1636        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1637        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1638        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1639        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1640      }
1641    }, // i16
1642    { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1643        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1644        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1645        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1646        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1647      }
1648    }, // i32
1649    { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1650        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1651        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1652        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1653        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1654      }
1655    }, // i64
1656  };
1657
1658  MVT VT;
1659  if (!isTypeLegal(I->getType(), VT))
1660    return false;
1661
1662  unsigned TypeIndex, OpIndex;
1663  switch (VT.SimpleTy) {
1664  default: return false;
1665  case MVT::i8:  TypeIndex = 0; break;
1666  case MVT::i16: TypeIndex = 1; break;
1667  case MVT::i32: TypeIndex = 2; break;
1668  case MVT::i64: TypeIndex = 3;
1669    if (!Subtarget->is64Bit())
1670      return false;
1671    break;
1672  }
1673
1674  switch (I->getOpcode()) {
1675  default: llvm_unreachable("Unexpected div/rem opcode");
1676  case Instruction::SDiv: OpIndex = 0; break;
1677  case Instruction::SRem: OpIndex = 1; break;
1678  case Instruction::UDiv: OpIndex = 2; break;
1679  case Instruction::URem: OpIndex = 3; break;
1680  }
1681
1682  const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1683  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1684  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1685  if (Op0Reg == 0)
1686    return false;
1687  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1688  if (Op1Reg == 0)
1689    return false;
1690
1691  // Move op0 into low-order input register.
1692  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1693          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1694  // Zero-extend or sign-extend into high-order input register.
1695  if (OpEntry.OpSignExtend) {
1696    if (OpEntry.IsOpSigned)
1697      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1698              TII.get(OpEntry.OpSignExtend));
1699    else {
1700      unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1701      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1702              TII.get(X86::MOV32r0), Zero32);
1703
1704      // Copy the zero into the appropriate sub/super/identical physical
1705      // register. Unfortunately the operations needed are not uniform enough
1706      // to fit neatly into the table above.
1707      if (VT.SimpleTy == MVT::i16) {
1708        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1709                TII.get(Copy), TypeEntry.HighInReg)
1710          .addReg(Zero32, 0, X86::sub_16bit);
1711      } else if (VT.SimpleTy == MVT::i32) {
1712        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1713                TII.get(Copy), TypeEntry.HighInReg)
1714            .addReg(Zero32);
1715      } else if (VT.SimpleTy == MVT::i64) {
1716        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1717                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1718            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1719      }
1720    }
1721  }
1722  // Generate the DIV/IDIV instruction.
1723  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1724          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1725  // For i8 remainder, we can't reference AH directly, as we'll end
1726  // up with bogus copies like %R9B = COPY %AH. Reference AX
1727  // instead to prevent AH references in a REX instruction.
1728  //
1729  // The current assumption of the fast register allocator is that isel
1730  // won't generate explicit references to the GPR8_NOREX registers. If
1731  // the allocator and/or the backend get enhanced to be more robust in
1732  // that regard, this can be, and should be, removed.
1733  unsigned ResultReg = 0;
1734  if ((I->getOpcode() == Instruction::SRem ||
1735       I->getOpcode() == Instruction::URem) &&
1736      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1737    unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1738    unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1739    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1740            TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1741
1742    // Shift AX right by 8 bits instead of using AH.
1743    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1744            ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1745
1746    // Now reference the 8-bit subreg of the result.
1747    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1748                                           /*Kill=*/true, X86::sub_8bit);
1749  }
1750  // Copy the result out of the physreg if we haven't already.
1751  if (!ResultReg) {
1752    ResultReg = createResultReg(TypeEntry.RC);
1753    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1754        .addReg(OpEntry.DivRemResultReg);
1755  }
1756  updateValueMap(I, ResultReg);
1757
1758  return true;
1759}
1760
1761/// \brief Emit a conditional move instruction (if the are supported) to lower
1762/// the select.
1763bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1764  // Check if the subtarget supports these instructions.
1765  if (!Subtarget->hasCMov())
1766    return false;
1767
1768  // FIXME: Add support for i8.
1769  if (RetVT < MVT::i16 || RetVT > MVT::i64)
1770    return false;
1771
1772  const Value *Cond = I->getOperand(0);
1773  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1774  bool NeedTest = true;
1775  X86::CondCode CC = X86::COND_NE;
1776
1777  // Optimize conditions coming from a compare if both instructions are in the
1778  // same basic block (values defined in other basic blocks may not have
1779  // initialized registers).
1780  const auto *CI = dyn_cast<CmpInst>(Cond);
1781  if (CI && (CI->getParent() == I->getParent())) {
1782    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1783
1784    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1785    static unsigned SETFOpcTable[2][3] = {
1786      { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1787      { X86::SETPr,  X86::SETNEr, X86::OR8rr   }
1788    };
1789    unsigned *SETFOpc = nullptr;
1790    switch (Predicate) {
1791    default: break;
1792    case CmpInst::FCMP_OEQ:
1793      SETFOpc = &SETFOpcTable[0][0];
1794      Predicate = CmpInst::ICMP_NE;
1795      break;
1796    case CmpInst::FCMP_UNE:
1797      SETFOpc = &SETFOpcTable[1][0];
1798      Predicate = CmpInst::ICMP_NE;
1799      break;
1800    }
1801
1802    bool NeedSwap;
1803    std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1804    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1805
1806    const Value *CmpLHS = CI->getOperand(0);
1807    const Value *CmpRHS = CI->getOperand(1);
1808    if (NeedSwap)
1809      std::swap(CmpLHS, CmpRHS);
1810
1811    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
1812    // Emit a compare of the LHS and RHS, setting the flags.
1813    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1814      return false;
1815
1816    if (SETFOpc) {
1817      unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1818      unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1819      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1820              FlagReg1);
1821      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1822              FlagReg2);
1823      auto const &II = TII.get(SETFOpc[2]);
1824      if (II.getNumDefs()) {
1825        unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1826        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1827          .addReg(FlagReg2).addReg(FlagReg1);
1828      } else {
1829        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1830          .addReg(FlagReg2).addReg(FlagReg1);
1831      }
1832    }
1833    NeedTest = false;
1834  } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1835    // Fake request the condition, otherwise the intrinsic might be completely
1836    // optimized away.
1837    unsigned TmpReg = getRegForValue(Cond);
1838    if (TmpReg == 0)
1839      return false;
1840
1841    NeedTest = false;
1842  }
1843
1844  if (NeedTest) {
1845    // Selects operate on i1, however, CondReg is 8 bits width and may contain
1846    // garbage. Indeed, only the less significant bit is supposed to be
1847    // accurate. If we read more than the lsb, we may see non-zero values
1848    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1849    // the select. This is achieved by performing TEST against 1.
1850    unsigned CondReg = getRegForValue(Cond);
1851    if (CondReg == 0)
1852      return false;
1853    bool CondIsKill = hasTrivialKill(Cond);
1854
1855    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1856      .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1857  }
1858
1859  const Value *LHS = I->getOperand(1);
1860  const Value *RHS = I->getOperand(2);
1861
1862  unsigned RHSReg = getRegForValue(RHS);
1863  bool RHSIsKill = hasTrivialKill(RHS);
1864
1865  unsigned LHSReg = getRegForValue(LHS);
1866  bool LHSIsKill = hasTrivialKill(LHS);
1867
1868  if (!LHSReg || !RHSReg)
1869    return false;
1870
1871  unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
1872  unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
1873                                       LHSReg, LHSIsKill);
1874  updateValueMap(I, ResultReg);
1875  return true;
1876}
1877
1878/// \brief Emit SSE or AVX instructions to lower the select.
1879///
1880/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
1881/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
1882/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
1883bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
1884  // Optimize conditions coming from a compare if both instructions are in the
1885  // same basic block (values defined in other basic blocks may not have
1886  // initialized registers).
1887  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
1888  if (!CI || (CI->getParent() != I->getParent()))
1889    return false;
1890
1891  if (I->getType() != CI->getOperand(0)->getType() ||
1892      !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
1893        (Subtarget->hasSSE2() && RetVT == MVT::f64)))
1894    return false;
1895
1896  const Value *CmpLHS = CI->getOperand(0);
1897  const Value *CmpRHS = CI->getOperand(1);
1898  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1899
1900  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1901  // We don't have to materialize a zero constant for this case and can just use
1902  // %x again on the RHS.
1903  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1904    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1905    if (CmpRHSC && CmpRHSC->isNullValue())
1906      CmpRHS = CmpLHS;
1907  }
1908
1909  unsigned CC;
1910  bool NeedSwap;
1911  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
1912  if (CC > 7)
1913    return false;
1914
1915  if (NeedSwap)
1916    std::swap(CmpLHS, CmpRHS);
1917
1918  // Choose the SSE instruction sequence based on data type (float or double).
1919  static unsigned OpcTable[2][4] = {
1920    { X86::CMPSSrr,  X86::FsANDPSrr,  X86::FsANDNPSrr,  X86::FsORPSrr  },
1921    { X86::CMPSDrr,  X86::FsANDPDrr,  X86::FsANDNPDrr,  X86::FsORPDrr  }
1922  };
1923
1924  unsigned *Opc = nullptr;
1925  switch (RetVT.SimpleTy) {
1926  default: return false;
1927  case MVT::f32: Opc = &OpcTable[0][0]; break;
1928  case MVT::f64: Opc = &OpcTable[1][0]; break;
1929  }
1930
1931  const Value *LHS = I->getOperand(1);
1932  const Value *RHS = I->getOperand(2);
1933
1934  unsigned LHSReg = getRegForValue(LHS);
1935  bool LHSIsKill = hasTrivialKill(LHS);
1936
1937  unsigned RHSReg = getRegForValue(RHS);
1938  bool RHSIsKill = hasTrivialKill(RHS);
1939
1940  unsigned CmpLHSReg = getRegForValue(CmpLHS);
1941  bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
1942
1943  unsigned CmpRHSReg = getRegForValue(CmpRHS);
1944  bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
1945
1946  if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
1947    return false;
1948
1949  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1950  unsigned ResultReg;
1951
1952  if (Subtarget->hasAVX()) {
1953    const TargetRegisterClass *FR32 = &X86::FR32RegClass;
1954    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
1955
1956    // If we have AVX, create 1 blendv instead of 3 logic instructions.
1957    // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
1958    // uses XMM0 as the selection register. That may need just as many
1959    // instructions as the AND/ANDN/OR sequence due to register moves, so
1960    // don't bother.
1961    unsigned CmpOpcode =
1962      (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
1963    unsigned BlendOpcode =
1964      (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
1965
1966    unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
1967                                       CmpRHSReg, CmpRHSIsKill, CC);
1968    unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
1969                                          LHSReg, LHSIsKill, CmpReg, true);
1970    ResultReg = createResultReg(RC);
1971    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1972            TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
1973  } else {
1974    unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
1975                                       CmpRHSReg, CmpRHSIsKill, CC);
1976    unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
1977                                      LHSReg, LHSIsKill);
1978    unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
1979                                       RHSReg, RHSIsKill);
1980    ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
1981                                         AndReg, /*IsKill=*/true);
1982  }
1983  updateValueMap(I, ResultReg);
1984  return true;
1985}
1986
1987bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
1988  // These are pseudo CMOV instructions and will be later expanded into control-
1989  // flow.
1990  unsigned Opc;
1991  switch (RetVT.SimpleTy) {
1992  default: return false;
1993  case MVT::i8:  Opc = X86::CMOV_GR8;  break;
1994  case MVT::i16: Opc = X86::CMOV_GR16; break;
1995  case MVT::i32: Opc = X86::CMOV_GR32; break;
1996  case MVT::f32: Opc = X86::CMOV_FR32; break;
1997  case MVT::f64: Opc = X86::CMOV_FR64; break;
1998  }
1999
2000  const Value *Cond = I->getOperand(0);
2001  X86::CondCode CC = X86::COND_NE;
2002
2003  // Optimize conditions coming from a compare if both instructions are in the
2004  // same basic block (values defined in other basic blocks may not have
2005  // initialized registers).
2006  const auto *CI = dyn_cast<CmpInst>(Cond);
2007  if (CI && (CI->getParent() == I->getParent())) {
2008    bool NeedSwap;
2009    std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2010    if (CC > X86::LAST_VALID_COND)
2011      return false;
2012
2013    const Value *CmpLHS = CI->getOperand(0);
2014    const Value *CmpRHS = CI->getOperand(1);
2015
2016    if (NeedSwap)
2017      std::swap(CmpLHS, CmpRHS);
2018
2019    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2020    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2021      return false;
2022  } else {
2023    unsigned CondReg = getRegForValue(Cond);
2024    if (CondReg == 0)
2025      return false;
2026    bool CondIsKill = hasTrivialKill(Cond);
2027    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2028      .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2029  }
2030
2031  const Value *LHS = I->getOperand(1);
2032  const Value *RHS = I->getOperand(2);
2033
2034  unsigned LHSReg = getRegForValue(LHS);
2035  bool LHSIsKill = hasTrivialKill(LHS);
2036
2037  unsigned RHSReg = getRegForValue(RHS);
2038  bool RHSIsKill = hasTrivialKill(RHS);
2039
2040  if (!LHSReg || !RHSReg)
2041    return false;
2042
2043  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2044
2045  unsigned ResultReg =
2046    fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2047  updateValueMap(I, ResultReg);
2048  return true;
2049}
2050
2051bool X86FastISel::X86SelectSelect(const Instruction *I) {
2052  MVT RetVT;
2053  if (!isTypeLegal(I->getType(), RetVT))
2054    return false;
2055
2056  // Check if we can fold the select.
2057  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2058    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2059    const Value *Opnd = nullptr;
2060    switch (Predicate) {
2061    default:                              break;
2062    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2063    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2064    }
2065    // No need for a select anymore - this is an unconditional move.
2066    if (Opnd) {
2067      unsigned OpReg = getRegForValue(Opnd);
2068      if (OpReg == 0)
2069        return false;
2070      bool OpIsKill = hasTrivialKill(Opnd);
2071      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2072      unsigned ResultReg = createResultReg(RC);
2073      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2074              TII.get(TargetOpcode::COPY), ResultReg)
2075        .addReg(OpReg, getKillRegState(OpIsKill));
2076      updateValueMap(I, ResultReg);
2077      return true;
2078    }
2079  }
2080
2081  // First try to use real conditional move instructions.
2082  if (X86FastEmitCMoveSelect(RetVT, I))
2083    return true;
2084
2085  // Try to use a sequence of SSE instructions to simulate a conditional move.
2086  if (X86FastEmitSSESelect(RetVT, I))
2087    return true;
2088
2089  // Fall-back to pseudo conditional move instructions, which will be later
2090  // converted to control-flow.
2091  if (X86FastEmitPseudoSelect(RetVT, I))
2092    return true;
2093
2094  return false;
2095}
2096
2097bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2098  // The target-independent selection algorithm in FastISel already knows how
2099  // to select a SINT_TO_FP if the target is SSE but not AVX.
2100  // Early exit if the subtarget doesn't have AVX.
2101  if (!Subtarget->hasAVX())
2102    return false;
2103
2104  if (!I->getOperand(0)->getType()->isIntegerTy(32))
2105    return false;
2106
2107  // Select integer to float/double conversion.
2108  unsigned OpReg = getRegForValue(I->getOperand(0));
2109  if (OpReg == 0)
2110    return false;
2111
2112  const TargetRegisterClass *RC = nullptr;
2113  unsigned Opcode;
2114
2115  if (I->getType()->isDoubleTy()) {
2116    // sitofp int -> double
2117    Opcode = X86::VCVTSI2SDrr;
2118    RC = &X86::FR64RegClass;
2119  } else if (I->getType()->isFloatTy()) {
2120    // sitofp int -> float
2121    Opcode = X86::VCVTSI2SSrr;
2122    RC = &X86::FR32RegClass;
2123  } else
2124    return false;
2125
2126  unsigned ImplicitDefReg = createResultReg(RC);
2127  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2128          TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2129  unsigned ResultReg =
2130      fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2131  updateValueMap(I, ResultReg);
2132  return true;
2133}
2134
2135// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2136bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2137                                          unsigned TargetOpc,
2138                                          const TargetRegisterClass *RC) {
2139  assert((I->getOpcode() == Instruction::FPExt ||
2140          I->getOpcode() == Instruction::FPTrunc) &&
2141         "Instruction must be an FPExt or FPTrunc!");
2142
2143  unsigned OpReg = getRegForValue(I->getOperand(0));
2144  if (OpReg == 0)
2145    return false;
2146
2147  unsigned ResultReg = createResultReg(RC);
2148  MachineInstrBuilder MIB;
2149  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2150                ResultReg);
2151  if (Subtarget->hasAVX())
2152    MIB.addReg(OpReg);
2153  MIB.addReg(OpReg);
2154  updateValueMap(I, ResultReg);
2155  return true;
2156}
2157
2158bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2159  if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2160      I->getOperand(0)->getType()->isFloatTy()) {
2161    // fpext from float to double.
2162    unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2163    return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
2164  }
2165
2166  return false;
2167}
2168
2169bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2170  if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2171      I->getOperand(0)->getType()->isDoubleTy()) {
2172    // fptrunc from double to float.
2173    unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2174    return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
2175  }
2176
2177  return false;
2178}
2179
2180bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2181  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2182  EVT DstVT = TLI.getValueType(DL, I->getType());
2183
2184  // This code only handles truncation to byte.
2185  if (DstVT != MVT::i8 && DstVT != MVT::i1)
2186    return false;
2187  if (!TLI.isTypeLegal(SrcVT))
2188    return false;
2189
2190  unsigned InputReg = getRegForValue(I->getOperand(0));
2191  if (!InputReg)
2192    // Unhandled operand.  Halt "fast" selection and bail.
2193    return false;
2194
2195  if (SrcVT == MVT::i8) {
2196    // Truncate from i8 to i1; no code needed.
2197    updateValueMap(I, InputReg);
2198    return true;
2199  }
2200
2201  bool KillInputReg = false;
2202  if (!Subtarget->is64Bit()) {
2203    // If we're on x86-32; we can't extract an i8 from a general register.
2204    // First issue a copy to GR16_ABCD or GR32_ABCD.
2205    const TargetRegisterClass *CopyRC =
2206      (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2207    unsigned CopyReg = createResultReg(CopyRC);
2208    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2209            TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2210    InputReg = CopyReg;
2211    KillInputReg = true;
2212  }
2213
2214  // Issue an extract_subreg.
2215  unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2216                                                  InputReg, KillInputReg,
2217                                                  X86::sub_8bit);
2218  if (!ResultReg)
2219    return false;
2220
2221  updateValueMap(I, ResultReg);
2222  return true;
2223}
2224
2225bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2226  return Len <= (Subtarget->is64Bit() ? 32 : 16);
2227}
2228
2229bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2230                                     X86AddressMode SrcAM, uint64_t Len) {
2231
2232  // Make sure we don't bloat code by inlining very large memcpy's.
2233  if (!IsMemcpySmall(Len))
2234    return false;
2235
2236  bool i64Legal = Subtarget->is64Bit();
2237
2238  // We don't care about alignment here since we just emit integer accesses.
2239  while (Len) {
2240    MVT VT;
2241    if (Len >= 8 && i64Legal)
2242      VT = MVT::i64;
2243    else if (Len >= 4)
2244      VT = MVT::i32;
2245    else if (Len >= 2)
2246      VT = MVT::i16;
2247    else
2248      VT = MVT::i8;
2249
2250    unsigned Reg;
2251    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2252    RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2253    assert(RV && "Failed to emit load or store??");
2254
2255    unsigned Size = VT.getSizeInBits()/8;
2256    Len -= Size;
2257    DestAM.Disp += Size;
2258    SrcAM.Disp += Size;
2259  }
2260
2261  return true;
2262}
2263
2264bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2265  // FIXME: Handle more intrinsics.
2266  switch (II->getIntrinsicID()) {
2267  default: return false;
2268  case Intrinsic::convert_from_fp16:
2269  case Intrinsic::convert_to_fp16: {
2270    if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2271      return false;
2272
2273    const Value *Op = II->getArgOperand(0);
2274    unsigned InputReg = getRegForValue(Op);
2275    if (InputReg == 0)
2276      return false;
2277
2278    // F16C only allows converting from float to half and from half to float.
2279    bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2280    if (IsFloatToHalf) {
2281      if (!Op->getType()->isFloatTy())
2282        return false;
2283    } else {
2284      if (!II->getType()->isFloatTy())
2285        return false;
2286    }
2287
2288    unsigned ResultReg = 0;
2289    const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2290    if (IsFloatToHalf) {
2291      // 'InputReg' is implicitly promoted from register class FR32 to
2292      // register class VR128 by method 'constrainOperandRegClass' which is
2293      // directly called by 'fastEmitInst_ri'.
2294      // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2295      // used to provide rounding control.
2296      InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 0);
2297
2298      // Move the lower 32-bits of ResultReg to another register of class GR32.
2299      ResultReg = createResultReg(&X86::GR32RegClass);
2300      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2301              TII.get(X86::VMOVPDI2DIrr), ResultReg)
2302          .addReg(InputReg, RegState::Kill);
2303
2304      // The result value is in the lower 16-bits of ResultReg.
2305      unsigned RegIdx = X86::sub_16bit;
2306      ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2307    } else {
2308      assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2309      // Explicitly sign-extend the input to 32-bit.
2310      InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2311                            /*Kill=*/false);
2312
2313      // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2314      InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2315                            InputReg, /*Kill=*/true);
2316
2317      InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2318
2319      // The result value is in the lower 32-bits of ResultReg.
2320      // Emit an explicit copy from register class VR128 to register class FR32.
2321      ResultReg = createResultReg(&X86::FR32RegClass);
2322      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2323              TII.get(TargetOpcode::COPY), ResultReg)
2324          .addReg(InputReg, RegState::Kill);
2325    }
2326
2327    updateValueMap(II, ResultReg);
2328    return true;
2329  }
2330  case Intrinsic::frameaddress: {
2331    MachineFunction *MF = FuncInfo.MF;
2332    if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2333      return false;
2334
2335    Type *RetTy = II->getCalledFunction()->getReturnType();
2336
2337    MVT VT;
2338    if (!isTypeLegal(RetTy, VT))
2339      return false;
2340
2341    unsigned Opc;
2342    const TargetRegisterClass *RC = nullptr;
2343
2344    switch (VT.SimpleTy) {
2345    default: llvm_unreachable("Invalid result type for frameaddress.");
2346    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2347    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2348    }
2349
2350    // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2351    // we get the wrong frame register.
2352    MachineFrameInfo *MFI = MF->getFrameInfo();
2353    MFI->setFrameAddressIsTaken(true);
2354
2355    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2356    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2357    assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2358            (FrameReg == X86::EBP && VT == MVT::i32)) &&
2359           "Invalid Frame Register!");
2360
2361    // Always make a copy of the frame register to to a vreg first, so that we
2362    // never directly reference the frame register (the TwoAddressInstruction-
2363    // Pass doesn't like that).
2364    unsigned SrcReg = createResultReg(RC);
2365    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2366            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2367
2368    // Now recursively load from the frame address.
2369    // movq (%rbp), %rax
2370    // movq (%rax), %rax
2371    // movq (%rax), %rax
2372    // ...
2373    unsigned DestReg;
2374    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2375    while (Depth--) {
2376      DestReg = createResultReg(RC);
2377      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2378                           TII.get(Opc), DestReg), SrcReg);
2379      SrcReg = DestReg;
2380    }
2381
2382    updateValueMap(II, SrcReg);
2383    return true;
2384  }
2385  case Intrinsic::memcpy: {
2386    const MemCpyInst *MCI = cast<MemCpyInst>(II);
2387    // Don't handle volatile or variable length memcpys.
2388    if (MCI->isVolatile())
2389      return false;
2390
2391    if (isa<ConstantInt>(MCI->getLength())) {
2392      // Small memcpy's are common enough that we want to do them
2393      // without a call if possible.
2394      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2395      if (IsMemcpySmall(Len)) {
2396        X86AddressMode DestAM, SrcAM;
2397        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2398            !X86SelectAddress(MCI->getRawSource(), SrcAM))
2399          return false;
2400        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2401        return true;
2402      }
2403    }
2404
2405    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2406    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2407      return false;
2408
2409    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2410      return false;
2411
2412    return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
2413  }
2414  case Intrinsic::memset: {
2415    const MemSetInst *MSI = cast<MemSetInst>(II);
2416
2417    if (MSI->isVolatile())
2418      return false;
2419
2420    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2421    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2422      return false;
2423
2424    if (MSI->getDestAddressSpace() > 255)
2425      return false;
2426
2427    return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
2428  }
2429  case Intrinsic::stackprotector: {
2430    // Emit code to store the stack guard onto the stack.
2431    EVT PtrTy = TLI.getPointerTy(DL);
2432
2433    const Value *Op1 = II->getArgOperand(0); // The guard's value.
2434    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2435
2436    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2437
2438    // Grab the frame index.
2439    X86AddressMode AM;
2440    if (!X86SelectAddress(Slot, AM)) return false;
2441    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2442    return true;
2443  }
2444  case Intrinsic::dbg_declare: {
2445    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2446    X86AddressMode AM;
2447    assert(DI->getAddress() && "Null address should be checked earlier!");
2448    if (!X86SelectAddress(DI->getAddress(), AM))
2449      return false;
2450    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2451    // FIXME may need to add RegState::Debug to any registers produced,
2452    // although ESP/EBP should be the only ones at the moment.
2453    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2454           "Expected inlined-at fields to agree");
2455    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2456        .addImm(0)
2457        .addMetadata(DI->getVariable())
2458        .addMetadata(DI->getExpression());
2459    return true;
2460  }
2461  case Intrinsic::trap: {
2462    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2463    return true;
2464  }
2465  case Intrinsic::sqrt: {
2466    if (!Subtarget->hasSSE1())
2467      return false;
2468
2469    Type *RetTy = II->getCalledFunction()->getReturnType();
2470
2471    MVT VT;
2472    if (!isTypeLegal(RetTy, VT))
2473      return false;
2474
2475    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2476    // is not generated by FastISel yet.
2477    // FIXME: Update this code once tablegen can handle it.
2478    static const unsigned SqrtOpc[2][2] = {
2479      {X86::SQRTSSr, X86::VSQRTSSr},
2480      {X86::SQRTSDr, X86::VSQRTSDr}
2481    };
2482    bool HasAVX = Subtarget->hasAVX();
2483    unsigned Opc;
2484    const TargetRegisterClass *RC;
2485    switch (VT.SimpleTy) {
2486    default: return false;
2487    case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2488    case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2489    }
2490
2491    const Value *SrcVal = II->getArgOperand(0);
2492    unsigned SrcReg = getRegForValue(SrcVal);
2493
2494    if (SrcReg == 0)
2495      return false;
2496
2497    unsigned ImplicitDefReg = 0;
2498    if (HasAVX) {
2499      ImplicitDefReg = createResultReg(RC);
2500      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2501              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2502    }
2503
2504    unsigned ResultReg = createResultReg(RC);
2505    MachineInstrBuilder MIB;
2506    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2507                  ResultReg);
2508
2509    if (ImplicitDefReg)
2510      MIB.addReg(ImplicitDefReg);
2511
2512    MIB.addReg(SrcReg);
2513
2514    updateValueMap(II, ResultReg);
2515    return true;
2516  }
2517  case Intrinsic::sadd_with_overflow:
2518  case Intrinsic::uadd_with_overflow:
2519  case Intrinsic::ssub_with_overflow:
2520  case Intrinsic::usub_with_overflow:
2521  case Intrinsic::smul_with_overflow:
2522  case Intrinsic::umul_with_overflow: {
2523    // This implements the basic lowering of the xalu with overflow intrinsics
2524    // into add/sub/mul followed by either seto or setb.
2525    const Function *Callee = II->getCalledFunction();
2526    auto *Ty = cast<StructType>(Callee->getReturnType());
2527    Type *RetTy = Ty->getTypeAtIndex(0U);
2528    Type *CondTy = Ty->getTypeAtIndex(1);
2529
2530    MVT VT;
2531    if (!isTypeLegal(RetTy, VT))
2532      return false;
2533
2534    if (VT < MVT::i8 || VT > MVT::i64)
2535      return false;
2536
2537    const Value *LHS = II->getArgOperand(0);
2538    const Value *RHS = II->getArgOperand(1);
2539
2540    // Canonicalize immediate to the RHS.
2541    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2542        isCommutativeIntrinsic(II))
2543      std::swap(LHS, RHS);
2544
2545    bool UseIncDec = false;
2546    if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2547      UseIncDec = true;
2548
2549    unsigned BaseOpc, CondOpc;
2550    switch (II->getIntrinsicID()) {
2551    default: llvm_unreachable("Unexpected intrinsic!");
2552    case Intrinsic::sadd_with_overflow:
2553      BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2554      CondOpc = X86::SETOr;
2555      break;
2556    case Intrinsic::uadd_with_overflow:
2557      BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2558    case Intrinsic::ssub_with_overflow:
2559      BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2560      CondOpc = X86::SETOr;
2561      break;
2562    case Intrinsic::usub_with_overflow:
2563      BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2564    case Intrinsic::smul_with_overflow:
2565      BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2566    case Intrinsic::umul_with_overflow:
2567      BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2568    }
2569
2570    unsigned LHSReg = getRegForValue(LHS);
2571    if (LHSReg == 0)
2572      return false;
2573    bool LHSIsKill = hasTrivialKill(LHS);
2574
2575    unsigned ResultReg = 0;
2576    // Check if we have an immediate version.
2577    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2578      static const unsigned Opc[2][4] = {
2579        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2580        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2581      };
2582
2583      if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2584        ResultReg = createResultReg(TLI.getRegClassFor(VT));
2585        bool IsDec = BaseOpc == X86ISD::DEC;
2586        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2587                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2588          .addReg(LHSReg, getKillRegState(LHSIsKill));
2589      } else
2590        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2591                                CI->getZExtValue());
2592    }
2593
2594    unsigned RHSReg;
2595    bool RHSIsKill;
2596    if (!ResultReg) {
2597      RHSReg = getRegForValue(RHS);
2598      if (RHSReg == 0)
2599        return false;
2600      RHSIsKill = hasTrivialKill(RHS);
2601      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2602                              RHSIsKill);
2603    }
2604
2605    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2606    // it manually.
2607    if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2608      static const unsigned MULOpc[] =
2609        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2610      static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2611      // First copy the first operand into RAX, which is an implicit input to
2612      // the X86::MUL*r instruction.
2613      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2614              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2615        .addReg(LHSReg, getKillRegState(LHSIsKill));
2616      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2617                                 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2618    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2619      static const unsigned MULOpc[] =
2620        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2621      if (VT == MVT::i8) {
2622        // Copy the first operand into AL, which is an implicit input to the
2623        // X86::IMUL8r instruction.
2624        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2625               TII.get(TargetOpcode::COPY), X86::AL)
2626          .addReg(LHSReg, getKillRegState(LHSIsKill));
2627        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2628                                   RHSIsKill);
2629      } else
2630        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2631                                    TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2632                                    RHSReg, RHSIsKill);
2633    }
2634
2635    if (!ResultReg)
2636      return false;
2637
2638    unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2639    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2640    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2641            ResultReg2);
2642
2643    updateValueMap(II, ResultReg, 2);
2644    return true;
2645  }
2646  case Intrinsic::x86_sse_cvttss2si:
2647  case Intrinsic::x86_sse_cvttss2si64:
2648  case Intrinsic::x86_sse2_cvttsd2si:
2649  case Intrinsic::x86_sse2_cvttsd2si64: {
2650    bool IsInputDouble;
2651    switch (II->getIntrinsicID()) {
2652    default: llvm_unreachable("Unexpected intrinsic.");
2653    case Intrinsic::x86_sse_cvttss2si:
2654    case Intrinsic::x86_sse_cvttss2si64:
2655      if (!Subtarget->hasSSE1())
2656        return false;
2657      IsInputDouble = false;
2658      break;
2659    case Intrinsic::x86_sse2_cvttsd2si:
2660    case Intrinsic::x86_sse2_cvttsd2si64:
2661      if (!Subtarget->hasSSE2())
2662        return false;
2663      IsInputDouble = true;
2664      break;
2665    }
2666
2667    Type *RetTy = II->getCalledFunction()->getReturnType();
2668    MVT VT;
2669    if (!isTypeLegal(RetTy, VT))
2670      return false;
2671
2672    static const unsigned CvtOpc[2][2][2] = {
2673      { { X86::CVTTSS2SIrr,   X86::VCVTTSS2SIrr   },
2674        { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr }  },
2675      { { X86::CVTTSD2SIrr,   X86::VCVTTSD2SIrr   },
2676        { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr }  }
2677    };
2678    bool HasAVX = Subtarget->hasAVX();
2679    unsigned Opc;
2680    switch (VT.SimpleTy) {
2681    default: llvm_unreachable("Unexpected result type.");
2682    case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2683    case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2684    }
2685
2686    // Check if we can fold insertelement instructions into the convert.
2687    const Value *Op = II->getArgOperand(0);
2688    while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2689      const Value *Index = IE->getOperand(2);
2690      if (!isa<ConstantInt>(Index))
2691        break;
2692      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2693
2694      if (Idx == 0) {
2695        Op = IE->getOperand(1);
2696        break;
2697      }
2698      Op = IE->getOperand(0);
2699    }
2700
2701    unsigned Reg = getRegForValue(Op);
2702    if (Reg == 0)
2703      return false;
2704
2705    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2706    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2707      .addReg(Reg);
2708
2709    updateValueMap(II, ResultReg);
2710    return true;
2711  }
2712  }
2713}
2714
2715bool X86FastISel::fastLowerArguments() {
2716  if (!FuncInfo.CanLowerReturn)
2717    return false;
2718
2719  const Function *F = FuncInfo.Fn;
2720  if (F->isVarArg())
2721    return false;
2722
2723  CallingConv::ID CC = F->getCallingConv();
2724  if (CC != CallingConv::C)
2725    return false;
2726
2727  if (Subtarget->isCallingConvWin64(CC))
2728    return false;
2729
2730  if (!Subtarget->is64Bit())
2731    return false;
2732
2733  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2734  unsigned GPRCnt = 0;
2735  unsigned FPRCnt = 0;
2736  unsigned Idx = 0;
2737  for (auto const &Arg : F->args()) {
2738    // The first argument is at index 1.
2739    ++Idx;
2740    if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2741        F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2742        F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2743        F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2744      return false;
2745
2746    Type *ArgTy = Arg.getType();
2747    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2748      return false;
2749
2750    EVT ArgVT = TLI.getValueType(DL, ArgTy);
2751    if (!ArgVT.isSimple()) return false;
2752    switch (ArgVT.getSimpleVT().SimpleTy) {
2753    default: return false;
2754    case MVT::i32:
2755    case MVT::i64:
2756      ++GPRCnt;
2757      break;
2758    case MVT::f32:
2759    case MVT::f64:
2760      if (!Subtarget->hasSSE1())
2761        return false;
2762      ++FPRCnt;
2763      break;
2764    }
2765
2766    if (GPRCnt > 6)
2767      return false;
2768
2769    if (FPRCnt > 8)
2770      return false;
2771  }
2772
2773  static const MCPhysReg GPR32ArgRegs[] = {
2774    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2775  };
2776  static const MCPhysReg GPR64ArgRegs[] = {
2777    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2778  };
2779  static const MCPhysReg XMMArgRegs[] = {
2780    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2781    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2782  };
2783
2784  unsigned GPRIdx = 0;
2785  unsigned FPRIdx = 0;
2786  for (auto const &Arg : F->args()) {
2787    MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
2788    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2789    unsigned SrcReg;
2790    switch (VT.SimpleTy) {
2791    default: llvm_unreachable("Unexpected value type.");
2792    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2793    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2794    case MVT::f32: // fall-through
2795    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2796    }
2797    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2798    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2799    // Without this, EmitLiveInCopies may eliminate the livein if its only
2800    // use is a bitcast (which isn't turned into an instruction).
2801    unsigned ResultReg = createResultReg(RC);
2802    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2803            TII.get(TargetOpcode::COPY), ResultReg)
2804      .addReg(DstReg, getKillRegState(true));
2805    updateValueMap(&Arg, ResultReg);
2806  }
2807  return true;
2808}
2809
2810static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2811                                           CallingConv::ID CC,
2812                                           ImmutableCallSite *CS) {
2813  if (Subtarget->is64Bit())
2814    return 0;
2815  if (Subtarget->getTargetTriple().isOSMSVCRT())
2816    return 0;
2817  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2818      CC == CallingConv::HiPE)
2819    return 0;
2820
2821  if (CS)
2822    if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
2823        CS->paramHasAttr(1, Attribute::InReg))
2824      return 0;
2825
2826  return 4;
2827}
2828
2829bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2830  auto &OutVals       = CLI.OutVals;
2831  auto &OutFlags      = CLI.OutFlags;
2832  auto &OutRegs       = CLI.OutRegs;
2833  auto &Ins           = CLI.Ins;
2834  auto &InRegs        = CLI.InRegs;
2835  CallingConv::ID CC  = CLI.CallConv;
2836  bool &IsTailCall    = CLI.IsTailCall;
2837  bool IsVarArg       = CLI.IsVarArg;
2838  const Value *Callee = CLI.Callee;
2839  MCSymbol *Symbol = CLI.Symbol;
2840
2841  bool Is64Bit        = Subtarget->is64Bit();
2842  bool IsWin64        = Subtarget->isCallingConvWin64(CC);
2843
2844  // Handle only C, fastcc, and webkit_js calling conventions for now.
2845  switch (CC) {
2846  default: return false;
2847  case CallingConv::C:
2848  case CallingConv::Fast:
2849  case CallingConv::WebKit_JS:
2850  case CallingConv::X86_FastCall:
2851  case CallingConv::X86_64_Win64:
2852  case CallingConv::X86_64_SysV:
2853    break;
2854  }
2855
2856  // Allow SelectionDAG isel to handle tail calls.
2857  if (IsTailCall)
2858    return false;
2859
2860  // fastcc with -tailcallopt is intended to provide a guaranteed
2861  // tail call optimization. Fastisel doesn't know how to do that.
2862  if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
2863    return false;
2864
2865  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
2866  // x86-32. Special handling for x86-64 is implemented.
2867  if (IsVarArg && IsWin64)
2868    return false;
2869
2870  // Don't know about inalloca yet.
2871  if (CLI.CS && CLI.CS->hasInAllocaArgument())
2872    return false;
2873
2874  // Fast-isel doesn't know about callee-pop yet.
2875  if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
2876                       TM.Options.GuaranteedTailCallOpt))
2877    return false;
2878
2879  SmallVector<MVT, 16> OutVTs;
2880  SmallVector<unsigned, 16> ArgRegs;
2881
2882  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
2883  // instruction. This is safe because it is common to all FastISel supported
2884  // calling conventions on x86.
2885  for (int i = 0, e = OutVals.size(); i != e; ++i) {
2886    Value *&Val = OutVals[i];
2887    ISD::ArgFlagsTy Flags = OutFlags[i];
2888    if (auto *CI = dyn_cast<ConstantInt>(Val)) {
2889      if (CI->getBitWidth() < 32) {
2890        if (Flags.isSExt())
2891          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
2892        else
2893          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
2894      }
2895    }
2896
2897    // Passing bools around ends up doing a trunc to i1 and passing it.
2898    // Codegen this as an argument + "and 1".
2899    MVT VT;
2900    auto *TI = dyn_cast<TruncInst>(Val);
2901    unsigned ResultReg;
2902    if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
2903              (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
2904              TI->hasOneUse()) {
2905      Value *PrevVal = TI->getOperand(0);
2906      ResultReg = getRegForValue(PrevVal);
2907
2908      if (!ResultReg)
2909        return false;
2910
2911      if (!isTypeLegal(PrevVal->getType(), VT))
2912        return false;
2913
2914      ResultReg =
2915        fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
2916    } else {
2917      if (!isTypeLegal(Val->getType(), VT))
2918        return false;
2919      ResultReg = getRegForValue(Val);
2920    }
2921
2922    if (!ResultReg)
2923      return false;
2924
2925    ArgRegs.push_back(ResultReg);
2926    OutVTs.push_back(VT);
2927  }
2928
2929  // Analyze operands of the call, assigning locations to each operand.
2930  SmallVector<CCValAssign, 16> ArgLocs;
2931  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
2932
2933  // Allocate shadow area for Win64
2934  if (IsWin64)
2935    CCInfo.AllocateStack(32, 8);
2936
2937  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
2938
2939  // Get a count of how many bytes are to be pushed on the stack.
2940  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
2941
2942  // Issue CALLSEQ_START
2943  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2944  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
2945    .addImm(NumBytes).addImm(0);
2946
2947  // Walk the register/memloc assignments, inserting copies/loads.
2948  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2949  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2950    CCValAssign const &VA = ArgLocs[i];
2951    const Value *ArgVal = OutVals[VA.getValNo()];
2952    MVT ArgVT = OutVTs[VA.getValNo()];
2953
2954    if (ArgVT == MVT::x86mmx)
2955      return false;
2956
2957    unsigned ArgReg = ArgRegs[VA.getValNo()];
2958
2959    // Promote the value if needed.
2960    switch (VA.getLocInfo()) {
2961    case CCValAssign::Full: break;
2962    case CCValAssign::SExt: {
2963      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2964             "Unexpected extend");
2965      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2966                                       ArgVT, ArgReg);
2967      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
2968      ArgVT = VA.getLocVT();
2969      break;
2970    }
2971    case CCValAssign::ZExt: {
2972      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2973             "Unexpected extend");
2974      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2975                                       ArgVT, ArgReg);
2976      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
2977      ArgVT = VA.getLocVT();
2978      break;
2979    }
2980    case CCValAssign::AExt: {
2981      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2982             "Unexpected extend");
2983      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
2984                                       ArgVT, ArgReg);
2985      if (!Emitted)
2986        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2987                                    ArgVT, ArgReg);
2988      if (!Emitted)
2989        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2990                                    ArgVT, ArgReg);
2991
2992      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
2993      ArgVT = VA.getLocVT();
2994      break;
2995    }
2996    case CCValAssign::BCvt: {
2997      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
2998                          /*TODO: Kill=*/false);
2999      assert(ArgReg && "Failed to emit a bitcast!");
3000      ArgVT = VA.getLocVT();
3001      break;
3002    }
3003    case CCValAssign::VExt:
3004      // VExt has not been implemented, so this should be impossible to reach
3005      // for now.  However, fallback to Selection DAG isel once implemented.
3006      return false;
3007    case CCValAssign::AExtUpper:
3008    case CCValAssign::SExtUpper:
3009    case CCValAssign::ZExtUpper:
3010    case CCValAssign::FPExt:
3011      llvm_unreachable("Unexpected loc info!");
3012    case CCValAssign::Indirect:
3013      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3014      // support this.
3015      return false;
3016    }
3017
3018    if (VA.isRegLoc()) {
3019      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3020              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3021      OutRegs.push_back(VA.getLocReg());
3022    } else {
3023      assert(VA.isMemLoc());
3024
3025      // Don't emit stores for undef values.
3026      if (isa<UndefValue>(ArgVal))
3027        continue;
3028
3029      unsigned LocMemOffset = VA.getLocMemOffset();
3030      X86AddressMode AM;
3031      AM.Base.Reg = RegInfo->getStackRegister();
3032      AM.Disp = LocMemOffset;
3033      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3034      unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3035      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3036          MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3037          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3038      if (Flags.isByVal()) {
3039        X86AddressMode SrcAM;
3040        SrcAM.Base.Reg = ArgReg;
3041        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3042          return false;
3043      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3044        // If this is a really simple value, emit this with the Value* version
3045        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3046        // as it can cause us to reevaluate the argument.
3047        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3048          return false;
3049      } else {
3050        bool ValIsKill = hasTrivialKill(ArgVal);
3051        if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3052          return false;
3053      }
3054    }
3055  }
3056
3057  // ELF / PIC requires GOT in the EBX register before function calls via PLT
3058  // GOT pointer.
3059  if (Subtarget->isPICStyleGOT()) {
3060    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3061    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3062            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3063  }
3064
3065  if (Is64Bit && IsVarArg && !IsWin64) {
3066    // From AMD64 ABI document:
3067    // For calls that may call functions that use varargs or stdargs
3068    // (prototype-less calls or calls to functions containing ellipsis (...) in
3069    // the declaration) %al is used as hidden argument to specify the number
3070    // of SSE registers used. The contents of %al do not need to match exactly
3071    // the number of registers, but must be an ubound on the number of SSE
3072    // registers used and is in the range 0 - 8 inclusive.
3073
3074    // Count the number of XMM registers allocated.
3075    static const MCPhysReg XMMArgRegs[] = {
3076      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3077      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3078    };
3079    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3080    assert((Subtarget->hasSSE1() || !NumXMMRegs)
3081           && "SSE registers cannot be used when SSE is disabled");
3082    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3083            X86::AL).addImm(NumXMMRegs);
3084  }
3085
3086  // Materialize callee address in a register. FIXME: GV address can be
3087  // handled with a CALLpcrel32 instead.
3088  X86AddressMode CalleeAM;
3089  if (!X86SelectCallAddress(Callee, CalleeAM))
3090    return false;
3091
3092  unsigned CalleeOp = 0;
3093  const GlobalValue *GV = nullptr;
3094  if (CalleeAM.GV != nullptr) {
3095    GV = CalleeAM.GV;
3096  } else if (CalleeAM.Base.Reg != 0) {
3097    CalleeOp = CalleeAM.Base.Reg;
3098  } else
3099    return false;
3100
3101  // Issue the call.
3102  MachineInstrBuilder MIB;
3103  if (CalleeOp) {
3104    // Register-indirect call.
3105    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3106    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3107      .addReg(CalleeOp);
3108  } else {
3109    // Direct call.
3110    assert(GV && "Not a direct call");
3111    unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3112
3113    // See if we need any target-specific flags on the GV operand.
3114    unsigned char OpFlags = 0;
3115
3116    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3117    // external symbols most go through the PLT in PIC mode.  If the symbol
3118    // has hidden or protected visibility, or if it is static or local, then
3119    // we don't need to use the PLT - we can directly call it.
3120    if (Subtarget->isTargetELF() &&
3121        TM.getRelocationModel() == Reloc::PIC_ &&
3122        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3123      OpFlags = X86II::MO_PLT;
3124    } else if (Subtarget->isPICStyleStubAny() &&
3125               !GV->isStrongDefinitionForLinker() &&
3126               (!Subtarget->getTargetTriple().isMacOSX() ||
3127                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3128      // PC-relative references to external symbols should go through $stub,
3129      // unless we're building with the leopard linker or later, which
3130      // automatically synthesizes these stubs.
3131      OpFlags = X86II::MO_DARWIN_STUB;
3132    }
3133
3134    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3135    if (Symbol)
3136      MIB.addSym(Symbol, OpFlags);
3137    else
3138      MIB.addGlobalAddress(GV, 0, OpFlags);
3139  }
3140
3141  // Add a register mask operand representing the call-preserved registers.
3142  // Proper defs for return values will be added by setPhysRegsDeadExcept().
3143  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3144
3145  // Add an implicit use GOT pointer in EBX.
3146  if (Subtarget->isPICStyleGOT())
3147    MIB.addReg(X86::EBX, RegState::Implicit);
3148
3149  if (Is64Bit && IsVarArg && !IsWin64)
3150    MIB.addReg(X86::AL, RegState::Implicit);
3151
3152  // Add implicit physical register uses to the call.
3153  for (auto Reg : OutRegs)
3154    MIB.addReg(Reg, RegState::Implicit);
3155
3156  // Issue CALLSEQ_END
3157  unsigned NumBytesForCalleeToPop =
3158    computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3159  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3160  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3161    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3162
3163  // Now handle call return values.
3164  SmallVector<CCValAssign, 16> RVLocs;
3165  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3166                    CLI.RetTy->getContext());
3167  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3168
3169  // Copy all of the result registers out of their specified physreg.
3170  unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3171  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3172    CCValAssign &VA = RVLocs[i];
3173    EVT CopyVT = VA.getValVT();
3174    unsigned CopyReg = ResultReg + i;
3175
3176    // If this is x86-64, and we disabled SSE, we can't return FP values
3177    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3178        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3179      report_fatal_error("SSE register return with SSE disabled");
3180    }
3181
3182    // If we prefer to use the value in xmm registers, copy it out as f80 and
3183    // use a truncate to move it from fp stack reg to xmm reg.
3184    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3185        isScalarFPTypeInSSEReg(VA.getValVT())) {
3186      CopyVT = MVT::f80;
3187      CopyReg = createResultReg(&X86::RFP80RegClass);
3188    }
3189
3190    // Copy out the result.
3191    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3192            TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3193    InRegs.push_back(VA.getLocReg());
3194
3195    // Round the f80 to the right size, which also moves it to the appropriate
3196    // xmm register. This is accomplished by storing the f80 value in memory
3197    // and then loading it back.
3198    if (CopyVT != VA.getValVT()) {
3199      EVT ResVT = VA.getValVT();
3200      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3201      unsigned MemSize = ResVT.getSizeInBits()/8;
3202      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3203      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3204                                TII.get(Opc)), FI)
3205        .addReg(CopyReg);
3206      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3207      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3208                                TII.get(Opc), ResultReg + i), FI);
3209    }
3210  }
3211
3212  CLI.ResultReg = ResultReg;
3213  CLI.NumResultRegs = RVLocs.size();
3214  CLI.Call = MIB;
3215
3216  return true;
3217}
3218
3219bool
3220X86FastISel::fastSelectInstruction(const Instruction *I)  {
3221  switch (I->getOpcode()) {
3222  default: break;
3223  case Instruction::Load:
3224    return X86SelectLoad(I);
3225  case Instruction::Store:
3226    return X86SelectStore(I);
3227  case Instruction::Ret:
3228    return X86SelectRet(I);
3229  case Instruction::ICmp:
3230  case Instruction::FCmp:
3231    return X86SelectCmp(I);
3232  case Instruction::ZExt:
3233    return X86SelectZExt(I);
3234  case Instruction::Br:
3235    return X86SelectBranch(I);
3236  case Instruction::LShr:
3237  case Instruction::AShr:
3238  case Instruction::Shl:
3239    return X86SelectShift(I);
3240  case Instruction::SDiv:
3241  case Instruction::UDiv:
3242  case Instruction::SRem:
3243  case Instruction::URem:
3244    return X86SelectDivRem(I);
3245  case Instruction::Select:
3246    return X86SelectSelect(I);
3247  case Instruction::Trunc:
3248    return X86SelectTrunc(I);
3249  case Instruction::FPExt:
3250    return X86SelectFPExt(I);
3251  case Instruction::FPTrunc:
3252    return X86SelectFPTrunc(I);
3253  case Instruction::SIToFP:
3254    return X86SelectSIToFP(I);
3255  case Instruction::IntToPtr: // Deliberate fall-through.
3256  case Instruction::PtrToInt: {
3257    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3258    EVT DstVT = TLI.getValueType(DL, I->getType());
3259    if (DstVT.bitsGT(SrcVT))
3260      return X86SelectZExt(I);
3261    if (DstVT.bitsLT(SrcVT))
3262      return X86SelectTrunc(I);
3263    unsigned Reg = getRegForValue(I->getOperand(0));
3264    if (Reg == 0) return false;
3265    updateValueMap(I, Reg);
3266    return true;
3267  }
3268  case Instruction::BitCast: {
3269    // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3270    if (!Subtarget->hasSSE2())
3271      return false;
3272
3273    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3274    EVT DstVT = TLI.getValueType(DL, I->getType());
3275
3276    if (!SrcVT.isSimple() || !DstVT.isSimple())
3277      return false;
3278
3279    if (!SrcVT.is128BitVector() &&
3280        !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3281      return false;
3282
3283    unsigned Reg = getRegForValue(I->getOperand(0));
3284    if (Reg == 0)
3285      return false;
3286
3287    // No instruction is needed for conversion. Reuse the register used by
3288    // the fist operand.
3289    updateValueMap(I, Reg);
3290    return true;
3291  }
3292  }
3293
3294  return false;
3295}
3296
3297unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3298  if (VT > MVT::i64)
3299    return 0;
3300
3301  uint64_t Imm = CI->getZExtValue();
3302  if (Imm == 0) {
3303    unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3304    switch (VT.SimpleTy) {
3305    default: llvm_unreachable("Unexpected value type");
3306    case MVT::i1:
3307    case MVT::i8:
3308      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3309                                        X86::sub_8bit);
3310    case MVT::i16:
3311      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3312                                        X86::sub_16bit);
3313    case MVT::i32:
3314      return SrcReg;
3315    case MVT::i64: {
3316      unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3317      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3318              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3319        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3320      return ResultReg;
3321    }
3322    }
3323  }
3324
3325  unsigned Opc = 0;
3326  switch (VT.SimpleTy) {
3327  default: llvm_unreachable("Unexpected value type");
3328  case MVT::i1:  VT = MVT::i8; // fall-through
3329  case MVT::i8:  Opc = X86::MOV8ri;  break;
3330  case MVT::i16: Opc = X86::MOV16ri; break;
3331  case MVT::i32: Opc = X86::MOV32ri; break;
3332  case MVT::i64: {
3333    if (isUInt<32>(Imm))
3334      Opc = X86::MOV32ri;
3335    else if (isInt<32>(Imm))
3336      Opc = X86::MOV64ri32;
3337    else
3338      Opc = X86::MOV64ri;
3339    break;
3340  }
3341  }
3342  if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3343    unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3344    unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3345    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3346            TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3347      .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3348    return ResultReg;
3349  }
3350  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3351}
3352
3353unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3354  if (CFP->isNullValue())
3355    return fastMaterializeFloatZero(CFP);
3356
3357  // Can't handle alternate code models yet.
3358  CodeModel::Model CM = TM.getCodeModel();
3359  if (CM != CodeModel::Small && CM != CodeModel::Large)
3360    return 0;
3361
3362  // Get opcode and regclass of the output for the given load instruction.
3363  unsigned Opc = 0;
3364  const TargetRegisterClass *RC = nullptr;
3365  switch (VT.SimpleTy) {
3366  default: return 0;
3367  case MVT::f32:
3368    if (X86ScalarSSEf32) {
3369      Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3370      RC  = &X86::FR32RegClass;
3371    } else {
3372      Opc = X86::LD_Fp32m;
3373      RC  = &X86::RFP32RegClass;
3374    }
3375    break;
3376  case MVT::f64:
3377    if (X86ScalarSSEf64) {
3378      Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3379      RC  = &X86::FR64RegClass;
3380    } else {
3381      Opc = X86::LD_Fp64m;
3382      RC  = &X86::RFP64RegClass;
3383    }
3384    break;
3385  case MVT::f80:
3386    // No f80 support yet.
3387    return 0;
3388  }
3389
3390  // MachineConstantPool wants an explicit alignment.
3391  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3392  if (Align == 0) {
3393    // Alignment of vector types. FIXME!
3394    Align = DL.getTypeAllocSize(CFP->getType());
3395  }
3396
3397  // x86-32 PIC requires a PIC base register for constant pools.
3398  unsigned PICBase = 0;
3399  unsigned char OpFlag = 0;
3400  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
3401    OpFlag = X86II::MO_PIC_BASE_OFFSET;
3402    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3403  } else if (Subtarget->isPICStyleGOT()) {
3404    OpFlag = X86II::MO_GOTOFF;
3405    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3406  } else if (Subtarget->isPICStyleRIPRel() &&
3407             TM.getCodeModel() == CodeModel::Small) {
3408    PICBase = X86::RIP;
3409  }
3410
3411  // Create the load from the constant pool.
3412  unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3413  unsigned ResultReg = createResultReg(RC);
3414
3415  if (CM == CodeModel::Large) {
3416    unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3417    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3418            AddrReg)
3419      .addConstantPoolIndex(CPI, 0, OpFlag);
3420    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3421                                      TII.get(Opc), ResultReg);
3422    addDirectMem(MIB, AddrReg);
3423    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3424        MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3425        MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3426    MIB->addMemOperand(*FuncInfo.MF, MMO);
3427    return ResultReg;
3428  }
3429
3430  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3431                                   TII.get(Opc), ResultReg),
3432                           CPI, PICBase, OpFlag);
3433  return ResultReg;
3434}
3435
3436unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3437  // Can't handle alternate code models yet.
3438  if (TM.getCodeModel() != CodeModel::Small)
3439    return 0;
3440
3441  // Materialize addresses with LEA/MOV instructions.
3442  X86AddressMode AM;
3443  if (X86SelectAddress(GV, AM)) {
3444    // If the expression is just a basereg, then we're done, otherwise we need
3445    // to emit an LEA.
3446    if (AM.BaseType == X86AddressMode::RegBase &&
3447        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3448      return AM.Base.Reg;
3449
3450    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3451    if (TM.getRelocationModel() == Reloc::Static &&
3452        TLI.getPointerTy(DL) == MVT::i64) {
3453      // The displacement code could be more than 32 bits away so we need to use
3454      // an instruction with a 64 bit immediate
3455      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3456              ResultReg)
3457        .addGlobalAddress(GV);
3458    } else {
3459      unsigned Opc =
3460          TLI.getPointerTy(DL) == MVT::i32
3461              ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3462              : X86::LEA64r;
3463      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3464                             TII.get(Opc), ResultReg), AM);
3465    }
3466    return ResultReg;
3467  }
3468  return 0;
3469}
3470
3471unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3472  EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3473
3474  // Only handle simple types.
3475  if (!CEVT.isSimple())
3476    return 0;
3477  MVT VT = CEVT.getSimpleVT();
3478
3479  if (const auto *CI = dyn_cast<ConstantInt>(C))
3480    return X86MaterializeInt(CI, VT);
3481  else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3482    return X86MaterializeFP(CFP, VT);
3483  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3484    return X86MaterializeGV(GV, VT);
3485
3486  return 0;
3487}
3488
3489unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3490  // Fail on dynamic allocas. At this point, getRegForValue has already
3491  // checked its CSE maps, so if we're here trying to handle a dynamic
3492  // alloca, we're not going to succeed. X86SelectAddress has a
3493  // check for dynamic allocas, because it's called directly from
3494  // various places, but targetMaterializeAlloca also needs a check
3495  // in order to avoid recursion between getRegForValue,
3496  // X86SelectAddrss, and targetMaterializeAlloca.
3497  if (!FuncInfo.StaticAllocaMap.count(C))
3498    return 0;
3499  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3500
3501  X86AddressMode AM;
3502  if (!X86SelectAddress(C, AM))
3503    return 0;
3504  unsigned Opc =
3505      TLI.getPointerTy(DL) == MVT::i32
3506          ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3507          : X86::LEA64r;
3508  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3509  unsigned ResultReg = createResultReg(RC);
3510  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3511                         TII.get(Opc), ResultReg), AM);
3512  return ResultReg;
3513}
3514
3515unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3516  MVT VT;
3517  if (!isTypeLegal(CF->getType(), VT))
3518    return 0;
3519
3520  // Get opcode and regclass for the given zero.
3521  unsigned Opc = 0;
3522  const TargetRegisterClass *RC = nullptr;
3523  switch (VT.SimpleTy) {
3524  default: return 0;
3525  case MVT::f32:
3526    if (X86ScalarSSEf32) {
3527      Opc = X86::FsFLD0SS;
3528      RC  = &X86::FR32RegClass;
3529    } else {
3530      Opc = X86::LD_Fp032;
3531      RC  = &X86::RFP32RegClass;
3532    }
3533    break;
3534  case MVT::f64:
3535    if (X86ScalarSSEf64) {
3536      Opc = X86::FsFLD0SD;
3537      RC  = &X86::FR64RegClass;
3538    } else {
3539      Opc = X86::LD_Fp064;
3540      RC  = &X86::RFP64RegClass;
3541    }
3542    break;
3543  case MVT::f80:
3544    // No f80 support yet.
3545    return 0;
3546  }
3547
3548  unsigned ResultReg = createResultReg(RC);
3549  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3550  return ResultReg;
3551}
3552
3553
3554bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3555                                      const LoadInst *LI) {
3556  const Value *Ptr = LI->getPointerOperand();
3557  X86AddressMode AM;
3558  if (!X86SelectAddress(Ptr, AM))
3559    return false;
3560
3561  const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3562
3563  unsigned Size = DL.getTypeAllocSize(LI->getType());
3564  unsigned Alignment = LI->getAlignment();
3565
3566  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3567    Alignment = DL.getABITypeAlignment(LI->getType());
3568
3569  SmallVector<MachineOperand, 8> AddrOps;
3570  AM.getFullAddress(AddrOps);
3571
3572  MachineInstr *Result = XII.foldMemoryOperandImpl(
3573      *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3574      /*AllowCommute=*/true);
3575  if (!Result)
3576    return false;
3577
3578  // The index register could be in the wrong register class.  Unfortunately,
3579  // foldMemoryOperandImpl could have commuted the instruction so its not enough
3580  // to just look at OpNo + the offset to the index reg.  We actually need to
3581  // scan the instruction to find the index reg and see if its the correct reg
3582  // class.
3583  unsigned OperandNo = 0;
3584  for (MachineInstr::mop_iterator I = Result->operands_begin(),
3585       E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3586    MachineOperand &MO = *I;
3587    if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3588      continue;
3589    // Found the index reg, now try to rewrite it.
3590    unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3591                                                 MO.getReg(), OperandNo);
3592    if (IndexReg == MO.getReg())
3593      continue;
3594    MO.setReg(IndexReg);
3595  }
3596
3597  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3598  MI->eraseFromParent();
3599  return true;
3600}
3601
3602
3603namespace llvm {
3604  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3605                                const TargetLibraryInfo *libInfo) {
3606    return new X86FastISel(funcInfo, libInfo);
3607  }
3608}
3609