1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/GlobalsModRef.h"
21#include "llvm/Analysis/LoopPass.h"
22#include "llvm/Analysis/ScalarEvolution.h"
23#include "llvm/IR/Dominators.h"
24using namespace llvm;
25
26#define DEBUG_TYPE "loop-delete"
27
28STATISTIC(NumDeleted, "Number of loops deleted");
29
30namespace {
31  class LoopDeletion : public LoopPass {
32  public:
33    static char ID; // Pass ID, replacement for typeid
34    LoopDeletion() : LoopPass(ID) {
35      initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
36    }
37
38    // Possibly eliminate loop L if it is dead.
39    bool runOnLoop(Loop *L, LPPassManager &) override;
40
41    void getAnalysisUsage(AnalysisUsage &AU) const override {
42      AU.addRequired<DominatorTreeWrapperPass>();
43      AU.addRequired<LoopInfoWrapperPass>();
44      AU.addRequired<ScalarEvolutionWrapperPass>();
45      AU.addRequiredID(LoopSimplifyID);
46      AU.addRequiredID(LCSSAID);
47
48      AU.addPreserved<ScalarEvolutionWrapperPass>();
49      AU.addPreserved<DominatorTreeWrapperPass>();
50      AU.addPreserved<LoopInfoWrapperPass>();
51      AU.addPreserved<GlobalsAAWrapperPass>();
52      AU.addPreservedID(LoopSimplifyID);
53      AU.addPreservedID(LCSSAID);
54    }
55
56  private:
57    bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
58                    SmallVectorImpl<BasicBlock *> &exitBlocks,
59                    bool &Changed, BasicBlock *Preheader);
60
61  };
62}
63
64char LoopDeletion::ID = 0;
65INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
66                "Delete dead loops", false, false)
67INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
69INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
70INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
71INITIALIZE_PASS_DEPENDENCY(LCSSA)
72INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
73                "Delete dead loops", false, false)
74
75Pass *llvm::createLoopDeletionPass() {
76  return new LoopDeletion();
77}
78
79/// isLoopDead - Determined if a loop is dead.  This assumes that we've already
80/// checked for unique exit and exiting blocks, and that the code is in LCSSA
81/// form.
82bool LoopDeletion::isLoopDead(Loop *L,
83                              SmallVectorImpl<BasicBlock *> &exitingBlocks,
84                              SmallVectorImpl<BasicBlock *> &exitBlocks,
85                              bool &Changed, BasicBlock *Preheader) {
86  BasicBlock *exitBlock = exitBlocks[0];
87
88  // Make sure that all PHI entries coming from the loop are loop invariant.
89  // Because the code is in LCSSA form, any values used outside of the loop
90  // must pass through a PHI in the exit block, meaning that this check is
91  // sufficient to guarantee that no loop-variant values are used outside
92  // of the loop.
93  BasicBlock::iterator BI = exitBlock->begin();
94  while (PHINode *P = dyn_cast<PHINode>(BI)) {
95    Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
96
97    // Make sure all exiting blocks produce the same incoming value for the exit
98    // block.  If there are different incoming values for different exiting
99    // blocks, then it is impossible to statically determine which value should
100    // be used.
101    for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
102      if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
103        return false;
104    }
105
106    if (Instruction *I = dyn_cast<Instruction>(incoming))
107      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
108        return false;
109
110    ++BI;
111  }
112
113  // Make sure that no instructions in the block have potential side-effects.
114  // This includes instructions that could write to memory, and loads that are
115  // marked volatile.  This could be made more aggressive by using aliasing
116  // information to identify readonly and readnone calls.
117  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
118       LI != LE; ++LI) {
119    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
120         BI != BE; ++BI) {
121      if (BI->mayHaveSideEffects())
122        return false;
123    }
124  }
125
126  return true;
127}
128
129/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
130/// observable behavior of the program other than finite running time.  Note
131/// we do ensure that this never remove a loop that might be infinite, as doing
132/// so could change the halting/non-halting nature of a program.
133/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
134/// in order to make various safety checks work.
135bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &) {
136  if (skipOptnoneFunction(L))
137    return false;
138
139  // We can only remove the loop if there is a preheader that we can
140  // branch from after removing it.
141  BasicBlock *preheader = L->getLoopPreheader();
142  if (!preheader)
143    return false;
144
145  // If LoopSimplify form is not available, stay out of trouble.
146  if (!L->hasDedicatedExits())
147    return false;
148
149  // We can't remove loops that contain subloops.  If the subloops were dead,
150  // they would already have been removed in earlier executions of this pass.
151  if (L->begin() != L->end())
152    return false;
153
154  SmallVector<BasicBlock*, 4> exitingBlocks;
155  L->getExitingBlocks(exitingBlocks);
156
157  SmallVector<BasicBlock*, 4> exitBlocks;
158  L->getUniqueExitBlocks(exitBlocks);
159
160  // We require that the loop only have a single exit block.  Otherwise, we'd
161  // be in the situation of needing to be able to solve statically which exit
162  // block will be branched to, or trying to preserve the branching logic in
163  // a loop invariant manner.
164  if (exitBlocks.size() != 1)
165    return false;
166
167  // Finally, we have to check that the loop really is dead.
168  bool Changed = false;
169  if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
170    return Changed;
171
172  // Don't remove loops for which we can't solve the trip count.
173  // They could be infinite, in which case we'd be changing program behavior.
174  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
175  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
176  if (isa<SCEVCouldNotCompute>(S))
177    return Changed;
178
179  // Now that we know the removal is safe, remove the loop by changing the
180  // branch from the preheader to go to the single exit block.
181  BasicBlock *exitBlock = exitBlocks[0];
182
183  // Because we're deleting a large chunk of code at once, the sequence in which
184  // we remove things is very important to avoid invalidation issues.  Don't
185  // mess with this unless you have good reason and know what you're doing.
186
187  // Tell ScalarEvolution that the loop is deleted. Do this before
188  // deleting the loop so that ScalarEvolution can look at the loop
189  // to determine what it needs to clean up.
190  SE.forgetLoop(L);
191
192  // Connect the preheader directly to the exit block.
193  TerminatorInst *TI = preheader->getTerminator();
194  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
195
196  // Rewrite phis in the exit block to get their inputs from
197  // the preheader instead of the exiting block.
198  BasicBlock *exitingBlock = exitingBlocks[0];
199  BasicBlock::iterator BI = exitBlock->begin();
200  while (PHINode *P = dyn_cast<PHINode>(BI)) {
201    int j = P->getBasicBlockIndex(exitingBlock);
202    assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
203    P->setIncomingBlock(j, preheader);
204    for (unsigned i = 1; i < exitingBlocks.size(); ++i)
205      P->removeIncomingValue(exitingBlocks[i]);
206    ++BI;
207  }
208
209  // Update the dominator tree and remove the instructions and blocks that will
210  // be deleted from the reference counting scheme.
211  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
212  SmallVector<DomTreeNode*, 8> ChildNodes;
213  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
214       LI != LE; ++LI) {
215    // Move all of the block's children to be children of the preheader, which
216    // allows us to remove the domtree entry for the block.
217    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
218    for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
219         DE = ChildNodes.end(); DI != DE; ++DI) {
220      DT.changeImmediateDominator(*DI, DT[preheader]);
221    }
222
223    ChildNodes.clear();
224    DT.eraseNode(*LI);
225
226    // Remove the block from the reference counting scheme, so that we can
227    // delete it freely later.
228    (*LI)->dropAllReferences();
229  }
230
231  // Erase the instructions and the blocks without having to worry
232  // about ordering because we already dropped the references.
233  // NOTE: This iteration is safe because erasing the block does not remove its
234  // entry from the loop's block list.  We do that in the next section.
235  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
236       LI != LE; ++LI)
237    (*LI)->eraseFromParent();
238
239  // Finally, the blocks from loopinfo.  This has to happen late because
240  // otherwise our loop iterators won't work.
241  LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
242  SmallPtrSet<BasicBlock*, 8> blocks;
243  blocks.insert(L->block_begin(), L->block_end());
244  for (BasicBlock *BB : blocks)
245    loopInfo.removeBlock(BB);
246
247  // The last step is to update LoopInfo now that we've eliminated this loop.
248  loopInfo.updateUnloop(L);
249  Changed = true;
250
251  ++NumDeleted;
252
253  return Changed;
254}
255