1//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/TargetTransformInfo.h"
19#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/MapVector.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstIterator.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/IR/Statepoint.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/Cloning.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/PromoteMemToReg.h"
46
47#define DEBUG_TYPE "rewrite-statepoints-for-gc"
48
49using namespace llvm;
50
51// Print the liveset found at the insert location
52static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53                                  cl::init(false));
54static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55                                      cl::init(false));
56// Print out the base pointers for debugging
57static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58                                       cl::init(false));
59
60// Cost threshold measuring when it is profitable to rematerialize value instead
61// of relocating it
62static cl::opt<unsigned>
63RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64                           cl::init(6));
65
66#ifdef XDEBUG
67static bool ClobberNonLive = true;
68#else
69static bool ClobberNonLive = false;
70#endif
71static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72                                                  cl::location(ClobberNonLive),
73                                                  cl::Hidden);
74
75static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
76                                     cl::init(false));
77static cl::opt<bool>
78    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79                                   cl::Hidden, cl::init(true));
80
81namespace {
82struct RewriteStatepointsForGC : public ModulePass {
83  static char ID; // Pass identification, replacement for typeid
84
85  RewriteStatepointsForGC() : ModulePass(ID) {
86    initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
87  }
88  bool runOnFunction(Function &F);
89  bool runOnModule(Module &M) override {
90    bool Changed = false;
91    for (Function &F : M)
92      Changed |= runOnFunction(F);
93
94    if (Changed) {
95      // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
96      // returns true for at least one function in the module.  Since at least
97      // one function changed, we know that the precondition is satisfied.
98      stripNonValidAttributes(M);
99    }
100
101    return Changed;
102  }
103
104  void getAnalysisUsage(AnalysisUsage &AU) const override {
105    // We add and rewrite a bunch of instructions, but don't really do much
106    // else.  We could in theory preserve a lot more analyses here.
107    AU.addRequired<DominatorTreeWrapperPass>();
108    AU.addRequired<TargetTransformInfoWrapperPass>();
109  }
110
111  /// The IR fed into RewriteStatepointsForGC may have had attributes implying
112  /// dereferenceability that are no longer valid/correct after
113  /// RewriteStatepointsForGC has run.  This is because semantically, after
114  /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
115  /// heap.  stripNonValidAttributes (conservatively) restores correctness
116  /// by erasing all attributes in the module that externally imply
117  /// dereferenceability.
118  /// Similar reasoning also applies to the noalias attributes. gc.statepoint
119  /// can touch the entire heap including noalias objects.
120  void stripNonValidAttributes(Module &M);
121
122  // Helpers for stripNonValidAttributes
123  void stripNonValidAttributesFromBody(Function &F);
124  void stripNonValidAttributesFromPrototype(Function &F);
125};
126} // namespace
127
128char RewriteStatepointsForGC::ID = 0;
129
130ModulePass *llvm::createRewriteStatepointsForGCPass() {
131  return new RewriteStatepointsForGC();
132}
133
134INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
135                      "Make relocations explicit at statepoints", false, false)
136INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
137INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
138                    "Make relocations explicit at statepoints", false, false)
139
140namespace {
141struct GCPtrLivenessData {
142  /// Values defined in this block.
143  DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
144  /// Values used in this block (and thus live); does not included values
145  /// killed within this block.
146  DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
147
148  /// Values live into this basic block (i.e. used by any
149  /// instruction in this basic block or ones reachable from here)
150  DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
151
152  /// Values live out of this basic block (i.e. live into
153  /// any successor block)
154  DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
155};
156
157// The type of the internal cache used inside the findBasePointers family
158// of functions.  From the callers perspective, this is an opaque type and
159// should not be inspected.
160//
161// In the actual implementation this caches two relations:
162// - The base relation itself (i.e. this pointer is based on that one)
163// - The base defining value relation (i.e. before base_phi insertion)
164// Generally, after the execution of a full findBasePointer call, only the
165// base relation will remain.  Internally, we add a mixture of the two
166// types, then update all the second type to the first type
167typedef DenseMap<Value *, Value *> DefiningValueMapTy;
168typedef DenseSet<Value *> StatepointLiveSetTy;
169typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
170  RematerializedValueMapTy;
171
172struct PartiallyConstructedSafepointRecord {
173  /// The set of values known to be live across this safepoint
174  StatepointLiveSetTy LiveSet;
175
176  /// Mapping from live pointers to a base-defining-value
177  DenseMap<Value *, Value *> PointerToBase;
178
179  /// The *new* gc.statepoint instruction itself.  This produces the token
180  /// that normal path gc.relocates and the gc.result are tied to.
181  Instruction *StatepointToken;
182
183  /// Instruction to which exceptional gc relocates are attached
184  /// Makes it easier to iterate through them during relocationViaAlloca.
185  Instruction *UnwindToken;
186
187  /// Record live values we are rematerialized instead of relocating.
188  /// They are not included into 'LiveSet' field.
189  /// Maps rematerialized copy to it's original value.
190  RematerializedValueMapTy RematerializedValues;
191};
192}
193
194static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
195  assert(UseDeoptBundles && "Should not be called otherwise!");
196
197  Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
198
199  if (!DeoptBundle.hasValue()) {
200    assert(AllowStatepointWithNoDeoptInfo &&
201           "Found non-leaf call without deopt info!");
202    return None;
203  }
204
205  return DeoptBundle.getValue().Inputs;
206}
207
208/// Compute the live-in set for every basic block in the function
209static void computeLiveInValues(DominatorTree &DT, Function &F,
210                                GCPtrLivenessData &Data);
211
212/// Given results from the dataflow liveness computation, find the set of live
213/// Values at a particular instruction.
214static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
215                              StatepointLiveSetTy &out);
216
217// TODO: Once we can get to the GCStrategy, this becomes
218// Optional<bool> isGCManagedPointer(const Value *V) const override {
219
220static bool isGCPointerType(Type *T) {
221  if (auto *PT = dyn_cast<PointerType>(T))
222    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
223    // GC managed heap.  We know that a pointer into this heap needs to be
224    // updated and that no other pointer does.
225    return (1 == PT->getAddressSpace());
226  return false;
227}
228
229// Return true if this type is one which a) is a gc pointer or contains a GC
230// pointer and b) is of a type this code expects to encounter as a live value.
231// (The insertion code will assert that a type which matches (a) and not (b)
232// is not encountered.)
233static bool isHandledGCPointerType(Type *T) {
234  // We fully support gc pointers
235  if (isGCPointerType(T))
236    return true;
237  // We partially support vectors of gc pointers. The code will assert if it
238  // can't handle something.
239  if (auto VT = dyn_cast<VectorType>(T))
240    if (isGCPointerType(VT->getElementType()))
241      return true;
242  return false;
243}
244
245#ifndef NDEBUG
246/// Returns true if this type contains a gc pointer whether we know how to
247/// handle that type or not.
248static bool containsGCPtrType(Type *Ty) {
249  if (isGCPointerType(Ty))
250    return true;
251  if (VectorType *VT = dyn_cast<VectorType>(Ty))
252    return isGCPointerType(VT->getScalarType());
253  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
254    return containsGCPtrType(AT->getElementType());
255  if (StructType *ST = dyn_cast<StructType>(Ty))
256    return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
257                       containsGCPtrType);
258  return false;
259}
260
261// Returns true if this is a type which a) is a gc pointer or contains a GC
262// pointer and b) is of a type which the code doesn't expect (i.e. first class
263// aggregates).  Used to trip assertions.
264static bool isUnhandledGCPointerType(Type *Ty) {
265  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
266}
267#endif
268
269static bool order_by_name(Value *a, Value *b) {
270  if (a->hasName() && b->hasName()) {
271    return -1 == a->getName().compare(b->getName());
272  } else if (a->hasName() && !b->hasName()) {
273    return true;
274  } else if (!a->hasName() && b->hasName()) {
275    return false;
276  } else {
277    // Better than nothing, but not stable
278    return a < b;
279  }
280}
281
282// Return the name of the value suffixed with the provided value, or if the
283// value didn't have a name, the default value specified.
284static std::string suffixed_name_or(Value *V, StringRef Suffix,
285                                    StringRef DefaultName) {
286  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
287}
288
289// Conservatively identifies any definitions which might be live at the
290// given instruction. The  analysis is performed immediately before the
291// given instruction. Values defined by that instruction are not considered
292// live.  Values used by that instruction are considered live.
293static void analyzeParsePointLiveness(
294    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
295    const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
296  Instruction *inst = CS.getInstruction();
297
298  StatepointLiveSetTy LiveSet;
299  findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
300
301  if (PrintLiveSet) {
302    // Note: This output is used by several of the test cases
303    // The order of elements in a set is not stable, put them in a vec and sort
304    // by name
305    SmallVector<Value *, 64> Temp;
306    Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
307    std::sort(Temp.begin(), Temp.end(), order_by_name);
308    errs() << "Live Variables:\n";
309    for (Value *V : Temp)
310      dbgs() << " " << V->getName() << " " << *V << "\n";
311  }
312  if (PrintLiveSetSize) {
313    errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
314    errs() << "Number live values: " << LiveSet.size() << "\n";
315  }
316  result.LiveSet = LiveSet;
317}
318
319static bool isKnownBaseResult(Value *V);
320namespace {
321/// A single base defining value - An immediate base defining value for an
322/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
323/// For instructions which have multiple pointer [vector] inputs or that
324/// transition between vector and scalar types, there is no immediate base
325/// defining value.  The 'base defining value' for 'Def' is the transitive
326/// closure of this relation stopping at the first instruction which has no
327/// immediate base defining value.  The b.d.v. might itself be a base pointer,
328/// but it can also be an arbitrary derived pointer.
329struct BaseDefiningValueResult {
330  /// Contains the value which is the base defining value.
331  Value * const BDV;
332  /// True if the base defining value is also known to be an actual base
333  /// pointer.
334  const bool IsKnownBase;
335  BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
336    : BDV(BDV), IsKnownBase(IsKnownBase) {
337#ifndef NDEBUG
338    // Check consistency between new and old means of checking whether a BDV is
339    // a base.
340    bool MustBeBase = isKnownBaseResult(BDV);
341    assert(!MustBeBase || MustBeBase == IsKnownBase);
342#endif
343  }
344};
345}
346
347static BaseDefiningValueResult findBaseDefiningValue(Value *I);
348
349/// Return a base defining value for the 'Index' element of the given vector
350/// instruction 'I'.  If Index is null, returns a BDV for the entire vector
351/// 'I'.  As an optimization, this method will try to determine when the
352/// element is known to already be a base pointer.  If this can be established,
353/// the second value in the returned pair will be true.  Note that either a
354/// vector or a pointer typed value can be returned.  For the former, the
355/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
356/// If the later, the return pointer is a BDV (or possibly a base) for the
357/// particular element in 'I'.
358static BaseDefiningValueResult
359findBaseDefiningValueOfVector(Value *I) {
360  assert(I->getType()->isVectorTy() &&
361         cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
362         "Illegal to ask for the base pointer of a non-pointer type");
363
364  // Each case parallels findBaseDefiningValue below, see that code for
365  // detailed motivation.
366
367  if (isa<Argument>(I))
368    // An incoming argument to the function is a base pointer
369    return BaseDefiningValueResult(I, true);
370
371  // We shouldn't see the address of a global as a vector value?
372  assert(!isa<GlobalVariable>(I) &&
373         "unexpected global variable found in base of vector");
374
375  // inlining could possibly introduce phi node that contains
376  // undef if callee has multiple returns
377  if (isa<UndefValue>(I))
378    // utterly meaningless, but useful for dealing with partially optimized
379    // code.
380    return BaseDefiningValueResult(I, true);
381
382  // Due to inheritance, this must be _after_ the global variable and undef
383  // checks
384  if (Constant *Con = dyn_cast<Constant>(I)) {
385    assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
386           "order of checks wrong!");
387    assert(Con->isNullValue() && "null is the only case which makes sense");
388    return BaseDefiningValueResult(Con, true);
389  }
390
391  if (isa<LoadInst>(I))
392    return BaseDefiningValueResult(I, true);
393
394  if (isa<InsertElementInst>(I))
395    // We don't know whether this vector contains entirely base pointers or
396    // not.  To be conservatively correct, we treat it as a BDV and will
397    // duplicate code as needed to construct a parallel vector of bases.
398    return BaseDefiningValueResult(I, false);
399
400  if (isa<ShuffleVectorInst>(I))
401    // We don't know whether this vector contains entirely base pointers or
402    // not.  To be conservatively correct, we treat it as a BDV and will
403    // duplicate code as needed to construct a parallel vector of bases.
404    // TODO: There a number of local optimizations which could be applied here
405    // for particular sufflevector patterns.
406    return BaseDefiningValueResult(I, false);
407
408  // A PHI or Select is a base defining value.  The outer findBasePointer
409  // algorithm is responsible for constructing a base value for this BDV.
410  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
411         "unknown vector instruction - no base found for vector element");
412  return BaseDefiningValueResult(I, false);
413}
414
415/// Helper function for findBasePointer - Will return a value which either a)
416/// defines the base pointer for the input, b) blocks the simple search
417/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
418/// from pointer to vector type or back.
419static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
420  if (I->getType()->isVectorTy())
421    return findBaseDefiningValueOfVector(I);
422
423  assert(I->getType()->isPointerTy() &&
424         "Illegal to ask for the base pointer of a non-pointer type");
425
426  if (isa<Argument>(I))
427    // An incoming argument to the function is a base pointer
428    // We should have never reached here if this argument isn't an gc value
429    return BaseDefiningValueResult(I, true);
430
431  if (isa<GlobalVariable>(I))
432    // base case
433    return BaseDefiningValueResult(I, true);
434
435  // inlining could possibly introduce phi node that contains
436  // undef if callee has multiple returns
437  if (isa<UndefValue>(I))
438    // utterly meaningless, but useful for dealing with
439    // partially optimized code.
440    return BaseDefiningValueResult(I, true);
441
442  // Due to inheritance, this must be _after_ the global variable and undef
443  // checks
444  if (isa<Constant>(I)) {
445    assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
446           "order of checks wrong!");
447    // Note: Even for frontends which don't have constant references, we can
448    // see constants appearing after optimizations.  A simple example is
449    // specialization of an address computation on null feeding into a merge
450    // point where the actual use of the now-constant input is protected by
451    // another null check.  (e.g. test4 in constants.ll)
452    return BaseDefiningValueResult(I, true);
453  }
454
455  if (CastInst *CI = dyn_cast<CastInst>(I)) {
456    Value *Def = CI->stripPointerCasts();
457    // If stripping pointer casts changes the address space there is an
458    // addrspacecast in between.
459    assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
460               cast<PointerType>(CI->getType())->getAddressSpace() &&
461           "unsupported addrspacecast");
462    // If we find a cast instruction here, it means we've found a cast which is
463    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
464    // handle int->ptr conversion.
465    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
466    return findBaseDefiningValue(Def);
467  }
468
469  if (isa<LoadInst>(I))
470    // The value loaded is an gc base itself
471    return BaseDefiningValueResult(I, true);
472
473
474  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
475    // The base of this GEP is the base
476    return findBaseDefiningValue(GEP->getPointerOperand());
477
478  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
479    switch (II->getIntrinsicID()) {
480    case Intrinsic::experimental_gc_result_ptr:
481    default:
482      // fall through to general call handling
483      break;
484    case Intrinsic::experimental_gc_statepoint:
485    case Intrinsic::experimental_gc_result_float:
486    case Intrinsic::experimental_gc_result_int:
487      llvm_unreachable("these don't produce pointers");
488    case Intrinsic::experimental_gc_relocate: {
489      // Rerunning safepoint insertion after safepoints are already
490      // inserted is not supported.  It could probably be made to work,
491      // but why are you doing this?  There's no good reason.
492      llvm_unreachable("repeat safepoint insertion is not supported");
493    }
494    case Intrinsic::gcroot:
495      // Currently, this mechanism hasn't been extended to work with gcroot.
496      // There's no reason it couldn't be, but I haven't thought about the
497      // implications much.
498      llvm_unreachable(
499          "interaction with the gcroot mechanism is not supported");
500    }
501  }
502  // We assume that functions in the source language only return base
503  // pointers.  This should probably be generalized via attributes to support
504  // both source language and internal functions.
505  if (isa<CallInst>(I) || isa<InvokeInst>(I))
506    return BaseDefiningValueResult(I, true);
507
508  // I have absolutely no idea how to implement this part yet.  It's not
509  // necessarily hard, I just haven't really looked at it yet.
510  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
511
512  if (isa<AtomicCmpXchgInst>(I))
513    // A CAS is effectively a atomic store and load combined under a
514    // predicate.  From the perspective of base pointers, we just treat it
515    // like a load.
516    return BaseDefiningValueResult(I, true);
517
518  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
519                                   "binary ops which don't apply to pointers");
520
521  // The aggregate ops.  Aggregates can either be in the heap or on the
522  // stack, but in either case, this is simply a field load.  As a result,
523  // this is a defining definition of the base just like a load is.
524  if (isa<ExtractValueInst>(I))
525    return BaseDefiningValueResult(I, true);
526
527  // We should never see an insert vector since that would require we be
528  // tracing back a struct value not a pointer value.
529  assert(!isa<InsertValueInst>(I) &&
530         "Base pointer for a struct is meaningless");
531
532  // An extractelement produces a base result exactly when it's input does.
533  // We may need to insert a parallel instruction to extract the appropriate
534  // element out of the base vector corresponding to the input. Given this,
535  // it's analogous to the phi and select case even though it's not a merge.
536  if (isa<ExtractElementInst>(I))
537    // Note: There a lot of obvious peephole cases here.  This are deliberately
538    // handled after the main base pointer inference algorithm to make writing
539    // test cases to exercise that code easier.
540    return BaseDefiningValueResult(I, false);
541
542  // The last two cases here don't return a base pointer.  Instead, they
543  // return a value which dynamically selects from among several base
544  // derived pointers (each with it's own base potentially).  It's the job of
545  // the caller to resolve these.
546  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
547         "missing instruction case in findBaseDefiningValing");
548  return BaseDefiningValueResult(I, false);
549}
550
551/// Returns the base defining value for this value.
552static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
553  Value *&Cached = Cache[I];
554  if (!Cached) {
555    Cached = findBaseDefiningValue(I).BDV;
556    DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
557                 << Cached->getName() << "\n");
558  }
559  assert(Cache[I] != nullptr);
560  return Cached;
561}
562
563/// Return a base pointer for this value if known.  Otherwise, return it's
564/// base defining value.
565static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
566  Value *Def = findBaseDefiningValueCached(I, Cache);
567  auto Found = Cache.find(Def);
568  if (Found != Cache.end()) {
569    // Either a base-of relation, or a self reference.  Caller must check.
570    return Found->second;
571  }
572  // Only a BDV available
573  return Def;
574}
575
576/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
577/// is it known to be a base pointer?  Or do we need to continue searching.
578static bool isKnownBaseResult(Value *V) {
579  if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
580      !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
581      !isa<ShuffleVectorInst>(V)) {
582    // no recursion possible
583    return true;
584  }
585  if (isa<Instruction>(V) &&
586      cast<Instruction>(V)->getMetadata("is_base_value")) {
587    // This is a previously inserted base phi or select.  We know
588    // that this is a base value.
589    return true;
590  }
591
592  // We need to keep searching
593  return false;
594}
595
596namespace {
597/// Models the state of a single base defining value in the findBasePointer
598/// algorithm for determining where a new instruction is needed to propagate
599/// the base of this BDV.
600class BDVState {
601public:
602  enum Status { Unknown, Base, Conflict };
603
604  BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
605    assert(status != Base || b);
606  }
607  explicit BDVState(Value *b) : status(Base), base(b) {}
608  BDVState() : status(Unknown), base(nullptr) {}
609
610  Status getStatus() const { return status; }
611  Value *getBase() const { return base; }
612
613  bool isBase() const { return getStatus() == Base; }
614  bool isUnknown() const { return getStatus() == Unknown; }
615  bool isConflict() const { return getStatus() == Conflict; }
616
617  bool operator==(const BDVState &other) const {
618    return base == other.base && status == other.status;
619  }
620
621  bool operator!=(const BDVState &other) const { return !(*this == other); }
622
623  LLVM_DUMP_METHOD
624  void dump() const { print(dbgs()); dbgs() << '\n'; }
625
626  void print(raw_ostream &OS) const {
627    switch (status) {
628    case Unknown:
629      OS << "U";
630      break;
631    case Base:
632      OS << "B";
633      break;
634    case Conflict:
635      OS << "C";
636      break;
637    };
638    OS << " (" << base << " - "
639       << (base ? base->getName() : "nullptr") << "): ";
640  }
641
642private:
643  Status status;
644  AssertingVH<Value> base; // non null only if status == base
645};
646}
647
648#ifndef NDEBUG
649static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
650  State.print(OS);
651  return OS;
652}
653#endif
654
655namespace {
656// Values of type BDVState form a lattice, and this is a helper
657// class that implementes the meet operation.  The meat of the meet
658// operation is implemented in MeetBDVStates::pureMeet
659class MeetBDVStates {
660public:
661  /// Initializes the currentResult to the TOP state so that if can be met with
662  /// any other state to produce that state.
663  MeetBDVStates() {}
664
665  // Destructively meet the current result with the given BDVState
666  void meetWith(BDVState otherState) {
667    currentResult = meet(otherState, currentResult);
668  }
669
670  BDVState getResult() const { return currentResult; }
671
672private:
673  BDVState currentResult;
674
675  /// Perform a meet operation on two elements of the BDVState lattice.
676  static BDVState meet(BDVState LHS, BDVState RHS) {
677    assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
678           "math is wrong: meet does not commute!");
679    BDVState Result = pureMeet(LHS, RHS);
680    DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
681                 << " produced " << Result << "\n");
682    return Result;
683  }
684
685  static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
686    switch (stateA.getStatus()) {
687    case BDVState::Unknown:
688      return stateB;
689
690    case BDVState::Base:
691      assert(stateA.getBase() && "can't be null");
692      if (stateB.isUnknown())
693        return stateA;
694
695      if (stateB.isBase()) {
696        if (stateA.getBase() == stateB.getBase()) {
697          assert(stateA == stateB && "equality broken!");
698          return stateA;
699        }
700        return BDVState(BDVState::Conflict);
701      }
702      assert(stateB.isConflict() && "only three states!");
703      return BDVState(BDVState::Conflict);
704
705    case BDVState::Conflict:
706      return stateA;
707    }
708    llvm_unreachable("only three states!");
709  }
710};
711}
712
713
714/// For a given value or instruction, figure out what base ptr it's derived
715/// from.  For gc objects, this is simply itself.  On success, returns a value
716/// which is the base pointer.  (This is reliable and can be used for
717/// relocation.)  On failure, returns nullptr.
718static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
719  Value *def = findBaseOrBDV(I, cache);
720
721  if (isKnownBaseResult(def)) {
722    return def;
723  }
724
725  // Here's the rough algorithm:
726  // - For every SSA value, construct a mapping to either an actual base
727  //   pointer or a PHI which obscures the base pointer.
728  // - Construct a mapping from PHI to unknown TOP state.  Use an
729  //   optimistic algorithm to propagate base pointer information.  Lattice
730  //   looks like:
731  //   UNKNOWN
732  //   b1 b2 b3 b4
733  //   CONFLICT
734  //   When algorithm terminates, all PHIs will either have a single concrete
735  //   base or be in a conflict state.
736  // - For every conflict, insert a dummy PHI node without arguments.  Add
737  //   these to the base[Instruction] = BasePtr mapping.  For every
738  //   non-conflict, add the actual base.
739  //  - For every conflict, add arguments for the base[a] of each input
740  //   arguments.
741  //
742  // Note: A simpler form of this would be to add the conflict form of all
743  // PHIs without running the optimistic algorithm.  This would be
744  // analogous to pessimistic data flow and would likely lead to an
745  // overall worse solution.
746
747#ifndef NDEBUG
748  auto isExpectedBDVType = [](Value *BDV) {
749    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
750           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
751  };
752#endif
753
754  // Once populated, will contain a mapping from each potentially non-base BDV
755  // to a lattice value (described above) which corresponds to that BDV.
756  // We use the order of insertion (DFS over the def/use graph) to provide a
757  // stable deterministic ordering for visiting DenseMaps (which are unordered)
758  // below.  This is important for deterministic compilation.
759  MapVector<Value *, BDVState> States;
760
761  // Recursively fill in all base defining values reachable from the initial
762  // one for which we don't already know a definite base value for
763  /* scope */ {
764    SmallVector<Value*, 16> Worklist;
765    Worklist.push_back(def);
766    States.insert(std::make_pair(def, BDVState()));
767    while (!Worklist.empty()) {
768      Value *Current = Worklist.pop_back_val();
769      assert(!isKnownBaseResult(Current) && "why did it get added?");
770
771      auto visitIncomingValue = [&](Value *InVal) {
772        Value *Base = findBaseOrBDV(InVal, cache);
773        if (isKnownBaseResult(Base))
774          // Known bases won't need new instructions introduced and can be
775          // ignored safely
776          return;
777        assert(isExpectedBDVType(Base) && "the only non-base values "
778               "we see should be base defining values");
779        if (States.insert(std::make_pair(Base, BDVState())).second)
780          Worklist.push_back(Base);
781      };
782      if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
783        for (Value *InVal : Phi->incoming_values())
784          visitIncomingValue(InVal);
785      } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
786        visitIncomingValue(Sel->getTrueValue());
787        visitIncomingValue(Sel->getFalseValue());
788      } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
789        visitIncomingValue(EE->getVectorOperand());
790      } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
791        visitIncomingValue(IE->getOperand(0)); // vector operand
792        visitIncomingValue(IE->getOperand(1)); // scalar operand
793      } else {
794        // There is one known class of instructions we know we don't handle.
795        assert(isa<ShuffleVectorInst>(Current));
796        llvm_unreachable("unimplemented instruction case");
797      }
798    }
799  }
800
801#ifndef NDEBUG
802  DEBUG(dbgs() << "States after initialization:\n");
803  for (auto Pair : States) {
804    DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
805  }
806#endif
807
808  // Return a phi state for a base defining value.  We'll generate a new
809  // base state for known bases and expect to find a cached state otherwise.
810  auto getStateForBDV = [&](Value *baseValue) {
811    if (isKnownBaseResult(baseValue))
812      return BDVState(baseValue);
813    auto I = States.find(baseValue);
814    assert(I != States.end() && "lookup failed!");
815    return I->second;
816  };
817
818  bool progress = true;
819  while (progress) {
820#ifndef NDEBUG
821    const size_t oldSize = States.size();
822#endif
823    progress = false;
824    // We're only changing values in this loop, thus safe to keep iterators.
825    // Since this is computing a fixed point, the order of visit does not
826    // effect the result.  TODO: We could use a worklist here and make this run
827    // much faster.
828    for (auto Pair : States) {
829      Value *BDV = Pair.first;
830      assert(!isKnownBaseResult(BDV) && "why did it get added?");
831
832      // Given an input value for the current instruction, return a BDVState
833      // instance which represents the BDV of that value.
834      auto getStateForInput = [&](Value *V) mutable {
835        Value *BDV = findBaseOrBDV(V, cache);
836        return getStateForBDV(BDV);
837      };
838
839      MeetBDVStates calculateMeet;
840      if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
841        calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
842        calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
843      } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
844        for (Value *Val : Phi->incoming_values())
845          calculateMeet.meetWith(getStateForInput(Val));
846      } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
847        // The 'meet' for an extractelement is slightly trivial, but it's still
848        // useful in that it drives us to conflict if our input is.
849        calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
850      } else {
851        // Given there's a inherent type mismatch between the operands, will
852        // *always* produce Conflict.
853        auto *IE = cast<InsertElementInst>(BDV);
854        calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
855        calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
856      }
857
858      BDVState oldState = States[BDV];
859      BDVState newState = calculateMeet.getResult();
860      if (oldState != newState) {
861        progress = true;
862        States[BDV] = newState;
863      }
864    }
865
866    assert(oldSize == States.size() &&
867           "fixed point shouldn't be adding any new nodes to state");
868  }
869
870#ifndef NDEBUG
871  DEBUG(dbgs() << "States after meet iteration:\n");
872  for (auto Pair : States) {
873    DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
874  }
875#endif
876
877  // Insert Phis for all conflicts
878  // TODO: adjust naming patterns to avoid this order of iteration dependency
879  for (auto Pair : States) {
880    Instruction *I = cast<Instruction>(Pair.first);
881    BDVState State = Pair.second;
882    assert(!isKnownBaseResult(I) && "why did it get added?");
883    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
884
885    // extractelement instructions are a bit special in that we may need to
886    // insert an extract even when we know an exact base for the instruction.
887    // The problem is that we need to convert from a vector base to a scalar
888    // base for the particular indice we're interested in.
889    if (State.isBase() && isa<ExtractElementInst>(I) &&
890        isa<VectorType>(State.getBase()->getType())) {
891      auto *EE = cast<ExtractElementInst>(I);
892      // TODO: In many cases, the new instruction is just EE itself.  We should
893      // exploit this, but can't do it here since it would break the invariant
894      // about the BDV not being known to be a base.
895      auto *BaseInst = ExtractElementInst::Create(State.getBase(),
896                                                  EE->getIndexOperand(),
897                                                  "base_ee", EE);
898      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
899      States[I] = BDVState(BDVState::Base, BaseInst);
900    }
901
902    // Since we're joining a vector and scalar base, they can never be the
903    // same.  As a result, we should always see insert element having reached
904    // the conflict state.
905    if (isa<InsertElementInst>(I)) {
906      assert(State.isConflict());
907    }
908
909    if (!State.isConflict())
910      continue;
911
912    /// Create and insert a new instruction which will represent the base of
913    /// the given instruction 'I'.
914    auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
915      if (isa<PHINode>(I)) {
916        BasicBlock *BB = I->getParent();
917        int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
918        assert(NumPreds > 0 && "how did we reach here");
919        std::string Name = suffixed_name_or(I, ".base", "base_phi");
920        return PHINode::Create(I->getType(), NumPreds, Name, I);
921      } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
922        // The undef will be replaced later
923        UndefValue *Undef = UndefValue::get(Sel->getType());
924        std::string Name = suffixed_name_or(I, ".base", "base_select");
925        return SelectInst::Create(Sel->getCondition(), Undef,
926                                  Undef, Name, Sel);
927      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
928        UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
929        std::string Name = suffixed_name_or(I, ".base", "base_ee");
930        return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
931                                          EE);
932      } else {
933        auto *IE = cast<InsertElementInst>(I);
934        UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
935        UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
936        std::string Name = suffixed_name_or(I, ".base", "base_ie");
937        return InsertElementInst::Create(VecUndef, ScalarUndef,
938                                         IE->getOperand(2), Name, IE);
939      }
940
941    };
942    Instruction *BaseInst = MakeBaseInstPlaceholder(I);
943    // Add metadata marking this as a base value
944    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
945    States[I] = BDVState(BDVState::Conflict, BaseInst);
946  }
947
948  // Returns a instruction which produces the base pointer for a given
949  // instruction.  The instruction is assumed to be an input to one of the BDVs
950  // seen in the inference algorithm above.  As such, we must either already
951  // know it's base defining value is a base, or have inserted a new
952  // instruction to propagate the base of it's BDV and have entered that newly
953  // introduced instruction into the state table.  In either case, we are
954  // assured to be able to determine an instruction which produces it's base
955  // pointer.
956  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
957    Value *BDV = findBaseOrBDV(Input, cache);
958    Value *Base = nullptr;
959    if (isKnownBaseResult(BDV)) {
960      Base = BDV;
961    } else {
962      // Either conflict or base.
963      assert(States.count(BDV));
964      Base = States[BDV].getBase();
965    }
966    assert(Base && "can't be null");
967    // The cast is needed since base traversal may strip away bitcasts
968    if (Base->getType() != Input->getType() &&
969        InsertPt) {
970      Base = new BitCastInst(Base, Input->getType(), "cast",
971                             InsertPt);
972    }
973    return Base;
974  };
975
976  // Fixup all the inputs of the new PHIs.  Visit order needs to be
977  // deterministic and predictable because we're naming newly created
978  // instructions.
979  for (auto Pair : States) {
980    Instruction *BDV = cast<Instruction>(Pair.first);
981    BDVState State = Pair.second;
982
983    assert(!isKnownBaseResult(BDV) && "why did it get added?");
984    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
985    if (!State.isConflict())
986      continue;
987
988    if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
989      PHINode *phi = cast<PHINode>(BDV);
990      unsigned NumPHIValues = phi->getNumIncomingValues();
991      for (unsigned i = 0; i < NumPHIValues; i++) {
992        Value *InVal = phi->getIncomingValue(i);
993        BasicBlock *InBB = phi->getIncomingBlock(i);
994
995        // If we've already seen InBB, add the same incoming value
996        // we added for it earlier.  The IR verifier requires phi
997        // nodes with multiple entries from the same basic block
998        // to have the same incoming value for each of those
999        // entries.  If we don't do this check here and basephi
1000        // has a different type than base, we'll end up adding two
1001        // bitcasts (and hence two distinct values) as incoming
1002        // values for the same basic block.
1003
1004        int blockIndex = basephi->getBasicBlockIndex(InBB);
1005        if (blockIndex != -1) {
1006          Value *oldBase = basephi->getIncomingValue(blockIndex);
1007          basephi->addIncoming(oldBase, InBB);
1008
1009#ifndef NDEBUG
1010          Value *Base = getBaseForInput(InVal, nullptr);
1011          // In essence this assert states: the only way two
1012          // values incoming from the same basic block may be
1013          // different is by being different bitcasts of the same
1014          // value.  A cleanup that remains TODO is changing
1015          // findBaseOrBDV to return an llvm::Value of the correct
1016          // type (and still remain pure).  This will remove the
1017          // need to add bitcasts.
1018          assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
1019                 "sanity -- findBaseOrBDV should be pure!");
1020#endif
1021          continue;
1022        }
1023
1024        // Find the instruction which produces the base for each input.  We may
1025        // need to insert a bitcast in the incoming block.
1026        // TODO: Need to split critical edges if insertion is needed
1027        Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1028        basephi->addIncoming(Base, InBB);
1029      }
1030      assert(basephi->getNumIncomingValues() == NumPHIValues);
1031    } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
1032      SelectInst *Sel = cast<SelectInst>(BDV);
1033      // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1034      // something more safe and less hacky.
1035      for (int i = 1; i <= 2; i++) {
1036        Value *InVal = Sel->getOperand(i);
1037        // Find the instruction which produces the base for each input.  We may
1038        // need to insert a bitcast.
1039        Value *Base = getBaseForInput(InVal, BaseSel);
1040        BaseSel->setOperand(i, Base);
1041      }
1042    } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
1043      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1044      // Find the instruction which produces the base for each input.  We may
1045      // need to insert a bitcast.
1046      Value *Base = getBaseForInput(InVal, BaseEE);
1047      BaseEE->setOperand(0, Base);
1048    } else {
1049      auto *BaseIE = cast<InsertElementInst>(State.getBase());
1050      auto *BdvIE = cast<InsertElementInst>(BDV);
1051      auto UpdateOperand = [&](int OperandIdx) {
1052        Value *InVal = BdvIE->getOperand(OperandIdx);
1053        Value *Base = getBaseForInput(InVal, BaseIE);
1054        BaseIE->setOperand(OperandIdx, Base);
1055      };
1056      UpdateOperand(0); // vector operand
1057      UpdateOperand(1); // scalar operand
1058    }
1059
1060  }
1061
1062  // Now that we're done with the algorithm, see if we can optimize the
1063  // results slightly by reducing the number of new instructions needed.
1064  // Arguably, this should be integrated into the algorithm above, but
1065  // doing as a post process step is easier to reason about for the moment.
1066  DenseMap<Value *, Value *> ReverseMap;
1067  SmallPtrSet<Instruction *, 16> NewInsts;
1068  SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
1069  // Note: We need to visit the states in a deterministic order.  We uses the
1070  // Keys we sorted above for this purpose.  Note that we are papering over a
1071  // bigger problem with the algorithm above - it's visit order is not
1072  // deterministic.  A larger change is needed to fix this.
1073  for (auto Pair : States) {
1074    auto *BDV = Pair.first;
1075    auto State = Pair.second;
1076    Value *Base = State.getBase();
1077    assert(BDV && Base);
1078    assert(!isKnownBaseResult(BDV) && "why did it get added?");
1079    assert(isKnownBaseResult(Base) &&
1080           "must be something we 'know' is a base pointer");
1081    if (!State.isConflict())
1082      continue;
1083
1084    ReverseMap[Base] = BDV;
1085    if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1086      NewInsts.insert(BaseI);
1087      Worklist.insert(BaseI);
1088    }
1089  }
1090  auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1091                                 Value *Replacement) {
1092    // Add users which are new instructions (excluding self references)
1093    for (User *U : BaseI->users())
1094      if (auto *UI = dyn_cast<Instruction>(U))
1095        if (NewInsts.count(UI) && UI != BaseI)
1096          Worklist.insert(UI);
1097    // Then do the actual replacement
1098    NewInsts.erase(BaseI);
1099    ReverseMap.erase(BaseI);
1100    BaseI->replaceAllUsesWith(Replacement);
1101    assert(States.count(BDV));
1102    assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1103    States[BDV] = BDVState(BDVState::Conflict, Replacement);
1104    BaseI->eraseFromParent();
1105  };
1106  const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1107  while (!Worklist.empty()) {
1108    Instruction *BaseI = Worklist.pop_back_val();
1109    assert(NewInsts.count(BaseI));
1110    Value *Bdv = ReverseMap[BaseI];
1111    if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1112      if (BaseI->isIdenticalTo(BdvI)) {
1113        DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
1114        ReplaceBaseInstWith(Bdv, BaseI, Bdv);
1115        continue;
1116      }
1117    if (Value *V = SimplifyInstruction(BaseI, DL)) {
1118      DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
1119      ReplaceBaseInstWith(Bdv, BaseI, V);
1120      continue;
1121    }
1122  }
1123
1124  // Cache all of our results so we can cheaply reuse them
1125  // NOTE: This is actually two caches: one of the base defining value
1126  // relation and one of the base pointer relation!  FIXME
1127  for (auto Pair : States) {
1128    auto *BDV = Pair.first;
1129    Value *base = Pair.second.getBase();
1130    assert(BDV && base);
1131
1132    std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1133    DEBUG(dbgs() << "Updating base value cache"
1134          << " for: " << BDV->getName()
1135          << " from: " << fromstr
1136          << " to: " << base->getName() << "\n");
1137
1138    if (cache.count(BDV)) {
1139      // Once we transition from the BDV relation being store in the cache to
1140      // the base relation being stored, it must be stable
1141      assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1142             "base relation should be stable");
1143    }
1144    cache[BDV] = base;
1145  }
1146  assert(cache.find(def) != cache.end());
1147  return cache[def];
1148}
1149
1150// For a set of live pointers (base and/or derived), identify the base
1151// pointer of the object which they are derived from.  This routine will
1152// mutate the IR graph as needed to make the 'base' pointer live at the
1153// definition site of 'derived'.  This ensures that any use of 'derived' can
1154// also use 'base'.  This may involve the insertion of a number of
1155// additional PHI nodes.
1156//
1157// preconditions: live is a set of pointer type Values
1158//
1159// side effects: may insert PHI nodes into the existing CFG, will preserve
1160// CFG, will not remove or mutate any existing nodes
1161//
1162// post condition: PointerToBase contains one (derived, base) pair for every
1163// pointer in live.  Note that derived can be equal to base if the original
1164// pointer was a base pointer.
1165static void
1166findBasePointers(const StatepointLiveSetTy &live,
1167                 DenseMap<Value *, Value *> &PointerToBase,
1168                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1169  // For the naming of values inserted to be deterministic - which makes for
1170  // much cleaner and more stable tests - we need to assign an order to the
1171  // live values.  DenseSets do not provide a deterministic order across runs.
1172  SmallVector<Value *, 64> Temp;
1173  Temp.insert(Temp.end(), live.begin(), live.end());
1174  std::sort(Temp.begin(), Temp.end(), order_by_name);
1175  for (Value *ptr : Temp) {
1176    Value *base = findBasePointer(ptr, DVCache);
1177    assert(base && "failed to find base pointer");
1178    PointerToBase[ptr] = base;
1179    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1180            DT->dominates(cast<Instruction>(base)->getParent(),
1181                          cast<Instruction>(ptr)->getParent())) &&
1182           "The base we found better dominate the derived pointer");
1183
1184    // If you see this trip and like to live really dangerously, the code should
1185    // be correct, just with idioms the verifier can't handle.  You can try
1186    // disabling the verifier at your own substantial risk.
1187    assert(!isa<ConstantPointerNull>(base) &&
1188           "the relocation code needs adjustment to handle the relocation of "
1189           "a null pointer constant without causing false positives in the "
1190           "safepoint ir verifier.");
1191  }
1192}
1193
1194/// Find the required based pointers (and adjust the live set) for the given
1195/// parse point.
1196static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1197                             const CallSite &CS,
1198                             PartiallyConstructedSafepointRecord &result) {
1199  DenseMap<Value *, Value *> PointerToBase;
1200  findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1201
1202  if (PrintBasePointers) {
1203    // Note: Need to print these in a stable order since this is checked in
1204    // some tests.
1205    errs() << "Base Pairs (w/o Relocation):\n";
1206    SmallVector<Value *, 64> Temp;
1207    Temp.reserve(PointerToBase.size());
1208    for (auto Pair : PointerToBase) {
1209      Temp.push_back(Pair.first);
1210    }
1211    std::sort(Temp.begin(), Temp.end(), order_by_name);
1212    for (Value *Ptr : Temp) {
1213      Value *Base = PointerToBase[Ptr];
1214      errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
1215             << "\n";
1216    }
1217  }
1218
1219  result.PointerToBase = PointerToBase;
1220}
1221
1222/// Given an updated version of the dataflow liveness results, update the
1223/// liveset and base pointer maps for the call site CS.
1224static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1225                                  const CallSite &CS,
1226                                  PartiallyConstructedSafepointRecord &result);
1227
1228static void recomputeLiveInValues(
1229    Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1230    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1231  // TODO-PERF: reuse the original liveness, then simply run the dataflow
1232  // again.  The old values are still live and will help it stabilize quickly.
1233  GCPtrLivenessData RevisedLivenessData;
1234  computeLiveInValues(DT, F, RevisedLivenessData);
1235  for (size_t i = 0; i < records.size(); i++) {
1236    struct PartiallyConstructedSafepointRecord &info = records[i];
1237    const CallSite &CS = toUpdate[i];
1238    recomputeLiveInValues(RevisedLivenessData, CS, info);
1239  }
1240}
1241
1242// When inserting gc.relocate and gc.result calls, we need to ensure there are
1243// no uses of the original value / return value between the gc.statepoint and
1244// the gc.relocate / gc.result call.  One case which can arise is a phi node
1245// starting one of the successor blocks.  We also need to be able to insert the
1246// gc.relocates only on the path which goes through the statepoint.  We might
1247// need to split an edge to make this possible.
1248static BasicBlock *
1249normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1250                            DominatorTree &DT) {
1251  BasicBlock *Ret = BB;
1252  if (!BB->getUniquePredecessor())
1253    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1254
1255  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1256  // from it
1257  FoldSingleEntryPHINodes(Ret);
1258  assert(!isa<PHINode>(Ret->begin()) &&
1259         "All PHI nodes should have been removed!");
1260
1261  // At this point, we can safely insert a gc.relocate or gc.result as the first
1262  // instruction in Ret if needed.
1263  return Ret;
1264}
1265
1266// Create new attribute set containing only attributes which can be transferred
1267// from original call to the safepoint.
1268static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1269  AttributeSet Ret;
1270
1271  for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1272    unsigned Index = AS.getSlotIndex(Slot);
1273
1274    if (Index == AttributeSet::ReturnIndex ||
1275        Index == AttributeSet::FunctionIndex) {
1276
1277      for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1278
1279        // Do not allow certain attributes - just skip them
1280        // Safepoint can not be read only or read none.
1281        if (Attr.hasAttribute(Attribute::ReadNone) ||
1282            Attr.hasAttribute(Attribute::ReadOnly))
1283          continue;
1284
1285        // These attributes control the generation of the gc.statepoint call /
1286        // invoke itself; and once the gc.statepoint is in place, they're of no
1287        // use.
1288        if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1289            Attr.hasAttribute("statepoint-id"))
1290          continue;
1291
1292        Ret = Ret.addAttributes(
1293            AS.getContext(), Index,
1294            AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1295      }
1296    }
1297
1298    // Just skip parameter attributes for now
1299  }
1300
1301  return Ret;
1302}
1303
1304/// Helper function to place all gc relocates necessary for the given
1305/// statepoint.
1306/// Inputs:
1307///   liveVariables - list of variables to be relocated.
1308///   liveStart - index of the first live variable.
1309///   basePtrs - base pointers.
1310///   statepointToken - statepoint instruction to which relocates should be
1311///   bound.
1312///   Builder - Llvm IR builder to be used to construct new calls.
1313static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1314                              const int LiveStart,
1315                              ArrayRef<Value *> BasePtrs,
1316                              Instruction *StatepointToken,
1317                              IRBuilder<> Builder) {
1318  if (LiveVariables.empty())
1319    return;
1320
1321  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1322    auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1323    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1324    size_t Index = std::distance(LiveVec.begin(), ValIt);
1325    assert(Index < LiveVec.size() && "Bug in std::find?");
1326    return Index;
1327  };
1328
1329  // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
1330  // unique declarations for each pointer type, but this proved problematic
1331  // because the intrinsic mangling code is incomplete and fragile.  Since
1332  // we're moving towards a single unified pointer type anyways, we can just
1333  // cast everything to an i8* of the right address space.  A bitcast is added
1334  // later to convert gc_relocate to the actual value's type.
1335  Module *M = StatepointToken->getModule();
1336  auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
1337  Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
1338  Value *GCRelocateDecl =
1339    Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
1340
1341  for (unsigned i = 0; i < LiveVariables.size(); i++) {
1342    // Generate the gc.relocate call and save the result
1343    Value *BaseIdx =
1344      Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1345    Value *LiveIdx = Builder.getInt32(LiveStart + i);
1346
1347    // only specify a debug name if we can give a useful one
1348    CallInst *Reloc = Builder.CreateCall(
1349        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1350        suffixed_name_or(LiveVariables[i], ".relocated", ""));
1351    // Trick CodeGen into thinking there are lots of free registers at this
1352    // fake call.
1353    Reloc->setCallingConv(CallingConv::Cold);
1354  }
1355}
1356
1357namespace {
1358
1359/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1360/// avoids having to worry about keeping around dangling pointers to Values.
1361class DeferredReplacement {
1362  AssertingVH<Instruction> Old;
1363  AssertingVH<Instruction> New;
1364
1365public:
1366  explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1367    Old(Old), New(New) {
1368    assert(Old != New && "Not allowed!");
1369  }
1370
1371  /// Does the task represented by this instance.
1372  void doReplacement() {
1373    Instruction *OldI = Old;
1374    Instruction *NewI = New;
1375
1376    assert(OldI != NewI && "Disallowed at construction?!");
1377
1378    Old = nullptr;
1379    New = nullptr;
1380
1381    if (NewI)
1382      OldI->replaceAllUsesWith(NewI);
1383    OldI->eraseFromParent();
1384  }
1385};
1386}
1387
1388static void
1389makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1390                           const SmallVectorImpl<Value *> &BasePtrs,
1391                           const SmallVectorImpl<Value *> &LiveVariables,
1392                           PartiallyConstructedSafepointRecord &Result,
1393                           std::vector<DeferredReplacement> &Replacements) {
1394  assert(BasePtrs.size() == LiveVariables.size());
1395  assert((UseDeoptBundles || isStatepoint(CS)) &&
1396         "This method expects to be rewriting a statepoint");
1397
1398  // Then go ahead and use the builder do actually do the inserts.  We insert
1399  // immediately before the previous instruction under the assumption that all
1400  // arguments will be available here.  We can't insert afterwards since we may
1401  // be replacing a terminator.
1402  Instruction *InsertBefore = CS.getInstruction();
1403  IRBuilder<> Builder(InsertBefore);
1404
1405  ArrayRef<Value *> GCArgs(LiveVariables);
1406  uint64_t StatepointID = 0xABCDEF00;
1407  uint32_t NumPatchBytes = 0;
1408  uint32_t Flags = uint32_t(StatepointFlags::None);
1409
1410  ArrayRef<Use> CallArgs;
1411  ArrayRef<Use> DeoptArgs;
1412  ArrayRef<Use> TransitionArgs;
1413
1414  Value *CallTarget = nullptr;
1415
1416  if (UseDeoptBundles) {
1417    CallArgs = {CS.arg_begin(), CS.arg_end()};
1418    DeoptArgs = GetDeoptBundleOperands(CS);
1419    // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
1420    // could have an operand bundle for that too.
1421    AttributeSet OriginalAttrs = CS.getAttributes();
1422
1423    Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1424                                                  "statepoint-id");
1425    if (AttrID.isStringAttribute())
1426      AttrID.getValueAsString().getAsInteger(10, StatepointID);
1427
1428    Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1429        AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1430    if (AttrNumPatchBytes.isStringAttribute())
1431      AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1432
1433    CallTarget = CS.getCalledValue();
1434  } else {
1435    // This branch will be gone soon, and we will soon only support the
1436    // UseDeoptBundles == true configuration.
1437    Statepoint OldSP(CS);
1438    StatepointID = OldSP.getID();
1439    NumPatchBytes = OldSP.getNumPatchBytes();
1440    Flags = OldSP.getFlags();
1441
1442    CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1443    DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1444    TransitionArgs = {OldSP.gc_transition_args_begin(),
1445                      OldSP.gc_transition_args_end()};
1446    CallTarget = OldSP.getCalledValue();
1447  }
1448
1449  // Create the statepoint given all the arguments
1450  Instruction *Token = nullptr;
1451  AttributeSet ReturnAttrs;
1452  if (CS.isCall()) {
1453    CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1454    CallInst *Call = Builder.CreateGCStatepointCall(
1455        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1456        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1457
1458    Call->setTailCall(ToReplace->isTailCall());
1459    Call->setCallingConv(ToReplace->getCallingConv());
1460
1461    // Currently we will fail on parameter attributes and on certain
1462    // function attributes.
1463    AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1464    // In case if we can handle this set of attributes - set up function attrs
1465    // directly on statepoint and return attrs later for gc_result intrinsic.
1466    Call->setAttributes(NewAttrs.getFnAttributes());
1467    ReturnAttrs = NewAttrs.getRetAttributes();
1468
1469    Token = Call;
1470
1471    // Put the following gc_result and gc_relocate calls immediately after the
1472    // the old call (which we're about to delete)
1473    assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1474    Builder.SetInsertPoint(ToReplace->getNextNode());
1475    Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1476  } else {
1477    InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1478
1479    // Insert the new invoke into the old block.  We'll remove the old one in a
1480    // moment at which point this will become the new terminator for the
1481    // original block.
1482    InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1483        StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1484        ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1485        GCArgs, "statepoint_token");
1486
1487    Invoke->setCallingConv(ToReplace->getCallingConv());
1488
1489    // Currently we will fail on parameter attributes and on certain
1490    // function attributes.
1491    AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1492    // In case if we can handle this set of attributes - set up function attrs
1493    // directly on statepoint and return attrs later for gc_result intrinsic.
1494    Invoke->setAttributes(NewAttrs.getFnAttributes());
1495    ReturnAttrs = NewAttrs.getRetAttributes();
1496
1497    Token = Invoke;
1498
1499    // Generate gc relocates in exceptional path
1500    BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1501    assert(!isa<PHINode>(UnwindBlock->begin()) &&
1502           UnwindBlock->getUniquePredecessor() &&
1503           "can't safely insert in this block!");
1504
1505    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1506    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1507
1508    // Extract second element from landingpad return value. We will attach
1509    // exceptional gc relocates to it.
1510    Instruction *ExceptionalToken =
1511        cast<Instruction>(Builder.CreateExtractValue(
1512            UnwindBlock->getLandingPadInst(), 1, "relocate_token"));
1513    Result.UnwindToken = ExceptionalToken;
1514
1515    const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1516    CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1517                      Builder);
1518
1519    // Generate gc relocates and returns for normal block
1520    BasicBlock *NormalDest = ToReplace->getNormalDest();
1521    assert(!isa<PHINode>(NormalDest->begin()) &&
1522           NormalDest->getUniquePredecessor() &&
1523           "can't safely insert in this block!");
1524
1525    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1526
1527    // gc relocates will be generated later as if it were regular call
1528    // statepoint
1529  }
1530  assert(Token && "Should be set in one of the above branches!");
1531
1532  if (UseDeoptBundles) {
1533    Token->setName("statepoint_token");
1534    if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1535      StringRef Name =
1536          CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1537      CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1538      GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1539
1540      // We cannot RAUW or delete CS.getInstruction() because it could be in the
1541      // live set of some other safepoint, in which case that safepoint's
1542      // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1543      // llvm::Instruction.  Instead, we defer the replacement and deletion to
1544      // after the live sets have been made explicit in the IR, and we no longer
1545      // have raw pointers to worry about.
1546      Replacements.emplace_back(CS.getInstruction(), GCResult);
1547    } else {
1548      Replacements.emplace_back(CS.getInstruction(), nullptr);
1549    }
1550  } else {
1551    assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1552           "only valid use before rewrite is gc.result");
1553    assert(!CS.getInstruction()->hasOneUse() ||
1554           isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
1555
1556    // Take the name of the original statepoint token if there was one.
1557    Token->takeName(CS.getInstruction());
1558
1559    // Update the gc.result of the original statepoint (if any) to use the newly
1560    // inserted statepoint.  This is safe to do here since the token can't be
1561    // considered a live reference.
1562    CS.getInstruction()->replaceAllUsesWith(Token);
1563    CS.getInstruction()->eraseFromParent();
1564  }
1565
1566  Result.StatepointToken = Token;
1567
1568  // Second, create a gc.relocate for every live variable
1569  const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1570  CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1571}
1572
1573namespace {
1574struct NameOrdering {
1575  Value *Base;
1576  Value *Derived;
1577
1578  bool operator()(NameOrdering const &a, NameOrdering const &b) {
1579    return -1 == a.Derived->getName().compare(b.Derived->getName());
1580  }
1581};
1582}
1583
1584static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1585                           SmallVectorImpl<Value *> &LiveVec) {
1586  assert(BaseVec.size() == LiveVec.size());
1587
1588  SmallVector<NameOrdering, 64> Temp;
1589  for (size_t i = 0; i < BaseVec.size(); i++) {
1590    NameOrdering v;
1591    v.Base = BaseVec[i];
1592    v.Derived = LiveVec[i];
1593    Temp.push_back(v);
1594  }
1595
1596  std::sort(Temp.begin(), Temp.end(), NameOrdering());
1597  for (size_t i = 0; i < BaseVec.size(); i++) {
1598    BaseVec[i] = Temp[i].Base;
1599    LiveVec[i] = Temp[i].Derived;
1600  }
1601}
1602
1603// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1604// which make the relocations happening at this safepoint explicit.
1605//
1606// WARNING: Does not do any fixup to adjust users of the original live
1607// values.  That's the callers responsibility.
1608static void
1609makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1610                       PartiallyConstructedSafepointRecord &Result,
1611                       std::vector<DeferredReplacement> &Replacements) {
1612  const auto &LiveSet = Result.LiveSet;
1613  const auto &PointerToBase = Result.PointerToBase;
1614
1615  // Convert to vector for efficient cross referencing.
1616  SmallVector<Value *, 64> BaseVec, LiveVec;
1617  LiveVec.reserve(LiveSet.size());
1618  BaseVec.reserve(LiveSet.size());
1619  for (Value *L : LiveSet) {
1620    LiveVec.push_back(L);
1621    assert(PointerToBase.count(L));
1622    Value *Base = PointerToBase.find(L)->second;
1623    BaseVec.push_back(Base);
1624  }
1625  assert(LiveVec.size() == BaseVec.size());
1626
1627  // To make the output IR slightly more stable (for use in diffs), ensure a
1628  // fixed order of the values in the safepoint (by sorting the value name).
1629  // The order is otherwise meaningless.
1630  StabilizeOrder(BaseVec, LiveVec);
1631
1632  // Do the actual rewriting and delete the old statepoint
1633  makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1634}
1635
1636// Helper function for the relocationViaAlloca.
1637//
1638// It receives iterator to the statepoint gc relocates and emits a store to the
1639// assigned location (via allocaMap) for the each one of them.  It adds the
1640// visited values into the visitedLiveValues set, which we will later use them
1641// for sanity checking.
1642static void
1643insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1644                       DenseMap<Value *, Value *> &AllocaMap,
1645                       DenseSet<Value *> &VisitedLiveValues) {
1646
1647  for (User *U : GCRelocs) {
1648    if (!isa<IntrinsicInst>(U))
1649      continue;
1650
1651    IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
1652
1653    // We only care about relocates
1654    if (RelocatedValue->getIntrinsicID() !=
1655        Intrinsic::experimental_gc_relocate) {
1656      continue;
1657    }
1658
1659    GCRelocateOperands RelocateOperands(RelocatedValue);
1660    Value *OriginalValue =
1661        const_cast<Value *>(RelocateOperands.getDerivedPtr());
1662    assert(AllocaMap.count(OriginalValue));
1663    Value *Alloca = AllocaMap[OriginalValue];
1664
1665    // Emit store into the related alloca
1666    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1667    // the correct type according to alloca.
1668    assert(RelocatedValue->getNextNode() &&
1669           "Should always have one since it's not a terminator");
1670    IRBuilder<> Builder(RelocatedValue->getNextNode());
1671    Value *CastedRelocatedValue =
1672      Builder.CreateBitCast(RelocatedValue,
1673                            cast<AllocaInst>(Alloca)->getAllocatedType(),
1674                            suffixed_name_or(RelocatedValue, ".casted", ""));
1675
1676    StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1677    Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1678
1679#ifndef NDEBUG
1680    VisitedLiveValues.insert(OriginalValue);
1681#endif
1682  }
1683}
1684
1685// Helper function for the "relocationViaAlloca". Similar to the
1686// "insertRelocationStores" but works for rematerialized values.
1687static void
1688insertRematerializationStores(
1689  RematerializedValueMapTy RematerializedValues,
1690  DenseMap<Value *, Value *> &AllocaMap,
1691  DenseSet<Value *> &VisitedLiveValues) {
1692
1693  for (auto RematerializedValuePair: RematerializedValues) {
1694    Instruction *RematerializedValue = RematerializedValuePair.first;
1695    Value *OriginalValue = RematerializedValuePair.second;
1696
1697    assert(AllocaMap.count(OriginalValue) &&
1698           "Can not find alloca for rematerialized value");
1699    Value *Alloca = AllocaMap[OriginalValue];
1700
1701    StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1702    Store->insertAfter(RematerializedValue);
1703
1704#ifndef NDEBUG
1705    VisitedLiveValues.insert(OriginalValue);
1706#endif
1707  }
1708}
1709
1710/// Do all the relocation update via allocas and mem2reg
1711static void relocationViaAlloca(
1712    Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1713    ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1714#ifndef NDEBUG
1715  // record initial number of (static) allocas; we'll check we have the same
1716  // number when we get done.
1717  int InitialAllocaNum = 0;
1718  for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1719       I++)
1720    if (isa<AllocaInst>(*I))
1721      InitialAllocaNum++;
1722#endif
1723
1724  // TODO-PERF: change data structures, reserve
1725  DenseMap<Value *, Value *> AllocaMap;
1726  SmallVector<AllocaInst *, 200> PromotableAllocas;
1727  // Used later to chack that we have enough allocas to store all values
1728  std::size_t NumRematerializedValues = 0;
1729  PromotableAllocas.reserve(Live.size());
1730
1731  // Emit alloca for "LiveValue" and record it in "allocaMap" and
1732  // "PromotableAllocas"
1733  auto emitAllocaFor = [&](Value *LiveValue) {
1734    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1735                                        F.getEntryBlock().getFirstNonPHI());
1736    AllocaMap[LiveValue] = Alloca;
1737    PromotableAllocas.push_back(Alloca);
1738  };
1739
1740  // Emit alloca for each live gc pointer
1741  for (Value *V : Live)
1742    emitAllocaFor(V);
1743
1744  // Emit allocas for rematerialized values
1745  for (const auto &Info : Records)
1746    for (auto RematerializedValuePair : Info.RematerializedValues) {
1747      Value *OriginalValue = RematerializedValuePair.second;
1748      if (AllocaMap.count(OriginalValue) != 0)
1749        continue;
1750
1751      emitAllocaFor(OriginalValue);
1752      ++NumRematerializedValues;
1753    }
1754
1755  // The next two loops are part of the same conceptual operation.  We need to
1756  // insert a store to the alloca after the original def and at each
1757  // redefinition.  We need to insert a load before each use.  These are split
1758  // into distinct loops for performance reasons.
1759
1760  // Update gc pointer after each statepoint: either store a relocated value or
1761  // null (if no relocated value was found for this gc pointer and it is not a
1762  // gc_result).  This must happen before we update the statepoint with load of
1763  // alloca otherwise we lose the link between statepoint and old def.
1764  for (const auto &Info : Records) {
1765    Value *Statepoint = Info.StatepointToken;
1766
1767    // This will be used for consistency check
1768    DenseSet<Value *> VisitedLiveValues;
1769
1770    // Insert stores for normal statepoint gc relocates
1771    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1772
1773    // In case if it was invoke statepoint
1774    // we will insert stores for exceptional path gc relocates.
1775    if (isa<InvokeInst>(Statepoint)) {
1776      insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1777                             VisitedLiveValues);
1778    }
1779
1780    // Do similar thing with rematerialized values
1781    insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1782                                  VisitedLiveValues);
1783
1784    if (ClobberNonLive) {
1785      // As a debugging aid, pretend that an unrelocated pointer becomes null at
1786      // the gc.statepoint.  This will turn some subtle GC problems into
1787      // slightly easier to debug SEGVs.  Note that on large IR files with
1788      // lots of gc.statepoints this is extremely costly both memory and time
1789      // wise.
1790      SmallVector<AllocaInst *, 64> ToClobber;
1791      for (auto Pair : AllocaMap) {
1792        Value *Def = Pair.first;
1793        AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1794
1795        // This value was relocated
1796        if (VisitedLiveValues.count(Def)) {
1797          continue;
1798        }
1799        ToClobber.push_back(Alloca);
1800      }
1801
1802      auto InsertClobbersAt = [&](Instruction *IP) {
1803        for (auto *AI : ToClobber) {
1804          auto AIType = cast<PointerType>(AI->getType());
1805          auto PT = cast<PointerType>(AIType->getElementType());
1806          Constant *CPN = ConstantPointerNull::get(PT);
1807          StoreInst *Store = new StoreInst(CPN, AI);
1808          Store->insertBefore(IP);
1809        }
1810      };
1811
1812      // Insert the clobbering stores.  These may get intermixed with the
1813      // gc.results and gc.relocates, but that's fine.
1814      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1815        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1816        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1817      } else {
1818        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1819      }
1820    }
1821  }
1822
1823  // Update use with load allocas and add store for gc_relocated.
1824  for (auto Pair : AllocaMap) {
1825    Value *Def = Pair.first;
1826    Value *Alloca = Pair.second;
1827
1828    // We pre-record the uses of allocas so that we dont have to worry about
1829    // later update that changes the user information..
1830
1831    SmallVector<Instruction *, 20> Uses;
1832    // PERF: trade a linear scan for repeated reallocation
1833    Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1834    for (User *U : Def->users()) {
1835      if (!isa<ConstantExpr>(U)) {
1836        // If the def has a ConstantExpr use, then the def is either a
1837        // ConstantExpr use itself or null.  In either case
1838        // (recursively in the first, directly in the second), the oop
1839        // it is ultimately dependent on is null and this particular
1840        // use does not need to be fixed up.
1841        Uses.push_back(cast<Instruction>(U));
1842      }
1843    }
1844
1845    std::sort(Uses.begin(), Uses.end());
1846    auto Last = std::unique(Uses.begin(), Uses.end());
1847    Uses.erase(Last, Uses.end());
1848
1849    for (Instruction *Use : Uses) {
1850      if (isa<PHINode>(Use)) {
1851        PHINode *Phi = cast<PHINode>(Use);
1852        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1853          if (Def == Phi->getIncomingValue(i)) {
1854            LoadInst *Load = new LoadInst(
1855                Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1856            Phi->setIncomingValue(i, Load);
1857          }
1858        }
1859      } else {
1860        LoadInst *Load = new LoadInst(Alloca, "", Use);
1861        Use->replaceUsesOfWith(Def, Load);
1862      }
1863    }
1864
1865    // Emit store for the initial gc value.  Store must be inserted after load,
1866    // otherwise store will be in alloca's use list and an extra load will be
1867    // inserted before it.
1868    StoreInst *Store = new StoreInst(Def, Alloca);
1869    if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1870      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1871        // InvokeInst is a TerminatorInst so the store need to be inserted
1872        // into its normal destination block.
1873        BasicBlock *NormalDest = Invoke->getNormalDest();
1874        Store->insertBefore(NormalDest->getFirstNonPHI());
1875      } else {
1876        assert(!Inst->isTerminator() &&
1877               "The only TerminatorInst that can produce a value is "
1878               "InvokeInst which is handled above.");
1879        Store->insertAfter(Inst);
1880      }
1881    } else {
1882      assert(isa<Argument>(Def));
1883      Store->insertAfter(cast<Instruction>(Alloca));
1884    }
1885  }
1886
1887  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1888         "we must have the same allocas with lives");
1889  if (!PromotableAllocas.empty()) {
1890    // Apply mem2reg to promote alloca to SSA
1891    PromoteMemToReg(PromotableAllocas, DT);
1892  }
1893
1894#ifndef NDEBUG
1895  for (auto &I : F.getEntryBlock())
1896    if (isa<AllocaInst>(I))
1897      InitialAllocaNum--;
1898  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1899#endif
1900}
1901
1902/// Implement a unique function which doesn't require we sort the input
1903/// vector.  Doing so has the effect of changing the output of a couple of
1904/// tests in ways which make them less useful in testing fused safepoints.
1905template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1906  SmallSet<T, 8> Seen;
1907  Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1908              return !Seen.insert(V).second;
1909            }), Vec.end());
1910}
1911
1912/// Insert holders so that each Value is obviously live through the entire
1913/// lifetime of the call.
1914static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1915                                 SmallVectorImpl<CallInst *> &Holders) {
1916  if (Values.empty())
1917    // No values to hold live, might as well not insert the empty holder
1918    return;
1919
1920  Module *M = CS.getInstruction()->getModule();
1921  // Use a dummy vararg function to actually hold the values live
1922  Function *Func = cast<Function>(M->getOrInsertFunction(
1923      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1924  if (CS.isCall()) {
1925    // For call safepoints insert dummy calls right after safepoint
1926    Holders.push_back(CallInst::Create(Func, Values, "",
1927                                       &*++CS.getInstruction()->getIterator()));
1928    return;
1929  }
1930  // For invoke safepooints insert dummy calls both in normal and
1931  // exceptional destination blocks
1932  auto *II = cast<InvokeInst>(CS.getInstruction());
1933  Holders.push_back(CallInst::Create(
1934      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1935  Holders.push_back(CallInst::Create(
1936      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1937}
1938
1939static void findLiveReferences(
1940    Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1941    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1942  GCPtrLivenessData OriginalLivenessData;
1943  computeLiveInValues(DT, F, OriginalLivenessData);
1944  for (size_t i = 0; i < records.size(); i++) {
1945    struct PartiallyConstructedSafepointRecord &info = records[i];
1946    const CallSite &CS = toUpdate[i];
1947    analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1948  }
1949}
1950
1951/// Remove any vector of pointers from the live set by scalarizing them over the
1952/// statepoint instruction.  Adds the scalarized pieces to the live set.  It
1953/// would be preferable to include the vector in the statepoint itself, but
1954/// the lowering code currently does not handle that.  Extending it would be
1955/// slightly non-trivial since it requires a format change.  Given how rare
1956/// such cases are (for the moment?) scalarizing is an acceptable compromise.
1957static void splitVectorValues(Instruction *StatepointInst,
1958                              StatepointLiveSetTy &LiveSet,
1959                              DenseMap<Value *, Value *>& PointerToBase,
1960                              DominatorTree &DT) {
1961  SmallVector<Value *, 16> ToSplit;
1962  for (Value *V : LiveSet)
1963    if (isa<VectorType>(V->getType()))
1964      ToSplit.push_back(V);
1965
1966  if (ToSplit.empty())
1967    return;
1968
1969  DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1970
1971  Function &F = *(StatepointInst->getParent()->getParent());
1972
1973  DenseMap<Value *, AllocaInst *> AllocaMap;
1974  // First is normal return, second is exceptional return (invoke only)
1975  DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
1976  for (Value *V : ToSplit) {
1977    AllocaInst *Alloca =
1978        new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
1979    AllocaMap[V] = Alloca;
1980
1981    VectorType *VT = cast<VectorType>(V->getType());
1982    IRBuilder<> Builder(StatepointInst);
1983    SmallVector<Value *, 16> Elements;
1984    for (unsigned i = 0; i < VT->getNumElements(); i++)
1985      Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1986    ElementMapping[V] = Elements;
1987
1988    auto InsertVectorReform = [&](Instruction *IP) {
1989      Builder.SetInsertPoint(IP);
1990      Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1991      Value *ResultVec = UndefValue::get(VT);
1992      for (unsigned i = 0; i < VT->getNumElements(); i++)
1993        ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1994                                                Builder.getInt32(i));
1995      return ResultVec;
1996    };
1997
1998    if (isa<CallInst>(StatepointInst)) {
1999      BasicBlock::iterator Next(StatepointInst);
2000      Next++;
2001      Instruction *IP = &*(Next);
2002      Replacements[V].first = InsertVectorReform(IP);
2003      Replacements[V].second = nullptr;
2004    } else {
2005      InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
2006      // We've already normalized - check that we don't have shared destination
2007      // blocks
2008      BasicBlock *NormalDest = Invoke->getNormalDest();
2009      assert(!isa<PHINode>(NormalDest->begin()));
2010      BasicBlock *UnwindDest = Invoke->getUnwindDest();
2011      assert(!isa<PHINode>(UnwindDest->begin()));
2012      // Insert insert element sequences in both successors
2013      Instruction *IP = &*(NormalDest->getFirstInsertionPt());
2014      Replacements[V].first = InsertVectorReform(IP);
2015      IP = &*(UnwindDest->getFirstInsertionPt());
2016      Replacements[V].second = InsertVectorReform(IP);
2017    }
2018  }
2019
2020  for (Value *V : ToSplit) {
2021    AllocaInst *Alloca = AllocaMap[V];
2022
2023    // Capture all users before we start mutating use lists
2024    SmallVector<Instruction *, 16> Users;
2025    for (User *U : V->users())
2026      Users.push_back(cast<Instruction>(U));
2027
2028    for (Instruction *I : Users) {
2029      if (auto Phi = dyn_cast<PHINode>(I)) {
2030        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2031          if (V == Phi->getIncomingValue(i)) {
2032            LoadInst *Load = new LoadInst(
2033                Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
2034            Phi->setIncomingValue(i, Load);
2035          }
2036      } else {
2037        LoadInst *Load = new LoadInst(Alloca, "", I);
2038        I->replaceUsesOfWith(V, Load);
2039      }
2040    }
2041
2042    // Store the original value and the replacement value into the alloca
2043    StoreInst *Store = new StoreInst(V, Alloca);
2044    if (auto I = dyn_cast<Instruction>(V))
2045      Store->insertAfter(I);
2046    else
2047      Store->insertAfter(Alloca);
2048
2049    // Normal return for invoke, or call return
2050    Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2051    (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2052    // Unwind return for invoke only
2053    Replacement = cast_or_null<Instruction>(Replacements[V].second);
2054    if (Replacement)
2055      (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2056  }
2057
2058  // apply mem2reg to promote alloca to SSA
2059  SmallVector<AllocaInst *, 16> Allocas;
2060  for (Value *V : ToSplit)
2061    Allocas.push_back(AllocaMap[V]);
2062  PromoteMemToReg(Allocas, DT);
2063
2064  // Update our tracking of live pointers and base mappings to account for the
2065  // changes we just made.
2066  for (Value *V : ToSplit) {
2067    auto &Elements = ElementMapping[V];
2068
2069    LiveSet.erase(V);
2070    LiveSet.insert(Elements.begin(), Elements.end());
2071    // We need to update the base mapping as well.
2072    assert(PointerToBase.count(V));
2073    Value *OldBase = PointerToBase[V];
2074    auto &BaseElements = ElementMapping[OldBase];
2075    PointerToBase.erase(V);
2076    assert(Elements.size() == BaseElements.size());
2077    for (unsigned i = 0; i < Elements.size(); i++) {
2078      Value *Elem = Elements[i];
2079      PointerToBase[Elem] = BaseElements[i];
2080    }
2081  }
2082}
2083
2084// Helper function for the "rematerializeLiveValues". It walks use chain
2085// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2086// values are visited (currently it is GEP's and casts). Returns true if it
2087// successfully reached "BaseValue" and false otherwise.
2088// Fills "ChainToBase" array with all visited values. "BaseValue" is not
2089// recorded.
2090static bool findRematerializableChainToBasePointer(
2091  SmallVectorImpl<Instruction*> &ChainToBase,
2092  Value *CurrentValue, Value *BaseValue) {
2093
2094  // We have found a base value
2095  if (CurrentValue == BaseValue) {
2096    return true;
2097  }
2098
2099  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2100    ChainToBase.push_back(GEP);
2101    return findRematerializableChainToBasePointer(ChainToBase,
2102                                                  GEP->getPointerOperand(),
2103                                                  BaseValue);
2104  }
2105
2106  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2107    Value *Def = CI->stripPointerCasts();
2108
2109    // This two checks are basically similar. First one is here for the
2110    // consistency with findBasePointers logic.
2111    assert(!isa<CastInst>(Def) && "not a pointer cast found");
2112    if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2113      return false;
2114
2115    ChainToBase.push_back(CI);
2116    return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
2117  }
2118
2119  // Not supported instruction in the chain
2120  return false;
2121}
2122
2123// Helper function for the "rematerializeLiveValues". Compute cost of the use
2124// chain we are going to rematerialize.
2125static unsigned
2126chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2127                       TargetTransformInfo &TTI) {
2128  unsigned Cost = 0;
2129
2130  for (Instruction *Instr : Chain) {
2131    if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2132      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2133             "non noop cast is found during rematerialization");
2134
2135      Type *SrcTy = CI->getOperand(0)->getType();
2136      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2137
2138    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2139      // Cost of the address calculation
2140      Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2141      Cost += TTI.getAddressComputationCost(ValTy);
2142
2143      // And cost of the GEP itself
2144      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2145      //       allowed for the external usage)
2146      if (!GEP->hasAllConstantIndices())
2147        Cost += 2;
2148
2149    } else {
2150      llvm_unreachable("unsupported instruciton type during rematerialization");
2151    }
2152  }
2153
2154  return Cost;
2155}
2156
2157// From the statepoint live set pick values that are cheaper to recompute then
2158// to relocate. Remove this values from the live set, rematerialize them after
2159// statepoint and record them in "Info" structure. Note that similar to
2160// relocated values we don't do any user adjustments here.
2161static void rematerializeLiveValues(CallSite CS,
2162                                    PartiallyConstructedSafepointRecord &Info,
2163                                    TargetTransformInfo &TTI) {
2164  const unsigned int ChainLengthThreshold = 10;
2165
2166  // Record values we are going to delete from this statepoint live set.
2167  // We can not di this in following loop due to iterator invalidation.
2168  SmallVector<Value *, 32> LiveValuesToBeDeleted;
2169
2170  for (Value *LiveValue: Info.LiveSet) {
2171    // For each live pointer find it's defining chain
2172    SmallVector<Instruction *, 3> ChainToBase;
2173    assert(Info.PointerToBase.count(LiveValue));
2174    bool FoundChain =
2175      findRematerializableChainToBasePointer(ChainToBase,
2176                                             LiveValue,
2177                                             Info.PointerToBase[LiveValue]);
2178    // Nothing to do, or chain is too long
2179    if (!FoundChain ||
2180        ChainToBase.size() == 0 ||
2181        ChainToBase.size() > ChainLengthThreshold)
2182      continue;
2183
2184    // Compute cost of this chain
2185    unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2186    // TODO: We can also account for cases when we will be able to remove some
2187    //       of the rematerialized values by later optimization passes. I.e if
2188    //       we rematerialized several intersecting chains. Or if original values
2189    //       don't have any uses besides this statepoint.
2190
2191    // For invokes we need to rematerialize each chain twice - for normal and
2192    // for unwind basic blocks. Model this by multiplying cost by two.
2193    if (CS.isInvoke()) {
2194      Cost *= 2;
2195    }
2196    // If it's too expensive - skip it
2197    if (Cost >= RematerializationThreshold)
2198      continue;
2199
2200    // Remove value from the live set
2201    LiveValuesToBeDeleted.push_back(LiveValue);
2202
2203    // Clone instructions and record them inside "Info" structure
2204
2205    // Walk backwards to visit top-most instructions first
2206    std::reverse(ChainToBase.begin(), ChainToBase.end());
2207
2208    // Utility function which clones all instructions from "ChainToBase"
2209    // and inserts them before "InsertBefore". Returns rematerialized value
2210    // which should be used after statepoint.
2211    auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2212      Instruction *LastClonedValue = nullptr;
2213      Instruction *LastValue = nullptr;
2214      for (Instruction *Instr: ChainToBase) {
2215        // Only GEP's and casts are suported as we need to be careful to not
2216        // introduce any new uses of pointers not in the liveset.
2217        // Note that it's fine to introduce new uses of pointers which were
2218        // otherwise not used after this statepoint.
2219        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2220
2221        Instruction *ClonedValue = Instr->clone();
2222        ClonedValue->insertBefore(InsertBefore);
2223        ClonedValue->setName(Instr->getName() + ".remat");
2224
2225        // If it is not first instruction in the chain then it uses previously
2226        // cloned value. We should update it to use cloned value.
2227        if (LastClonedValue) {
2228          assert(LastValue);
2229          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2230#ifndef NDEBUG
2231          // Assert that cloned instruction does not use any instructions from
2232          // this chain other than LastClonedValue
2233          for (auto OpValue : ClonedValue->operand_values()) {
2234            assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2235                       ChainToBase.end() &&
2236                   "incorrect use in rematerialization chain");
2237          }
2238#endif
2239        }
2240
2241        LastClonedValue = ClonedValue;
2242        LastValue = Instr;
2243      }
2244      assert(LastClonedValue);
2245      return LastClonedValue;
2246    };
2247
2248    // Different cases for calls and invokes. For invokes we need to clone
2249    // instructions both on normal and unwind path.
2250    if (CS.isCall()) {
2251      Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2252      assert(InsertBefore);
2253      Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2254      Info.RematerializedValues[RematerializedValue] = LiveValue;
2255    } else {
2256      InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2257
2258      Instruction *NormalInsertBefore =
2259          &*Invoke->getNormalDest()->getFirstInsertionPt();
2260      Instruction *UnwindInsertBefore =
2261          &*Invoke->getUnwindDest()->getFirstInsertionPt();
2262
2263      Instruction *NormalRematerializedValue =
2264          rematerializeChain(NormalInsertBefore);
2265      Instruction *UnwindRematerializedValue =
2266          rematerializeChain(UnwindInsertBefore);
2267
2268      Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2269      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2270    }
2271  }
2272
2273  // Remove rematerializaed values from the live set
2274  for (auto LiveValue: LiveValuesToBeDeleted) {
2275    Info.LiveSet.erase(LiveValue);
2276  }
2277}
2278
2279static bool insertParsePoints(Function &F, DominatorTree &DT,
2280                              TargetTransformInfo &TTI,
2281                              SmallVectorImpl<CallSite> &ToUpdate) {
2282#ifndef NDEBUG
2283  // sanity check the input
2284  std::set<CallSite> Uniqued;
2285  Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2286  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2287
2288  for (CallSite CS : ToUpdate) {
2289    assert(CS.getInstruction()->getParent()->getParent() == &F);
2290    assert((UseDeoptBundles || isStatepoint(CS)) &&
2291           "expected to already be a deopt statepoint");
2292  }
2293#endif
2294
2295  // When inserting gc.relocates for invokes, we need to be able to insert at
2296  // the top of the successor blocks.  See the comment on
2297  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2298  // may restructure the CFG.
2299  for (CallSite CS : ToUpdate) {
2300    if (!CS.isInvoke())
2301      continue;
2302    auto *II = cast<InvokeInst>(CS.getInstruction());
2303    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2304    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2305  }
2306
2307  // A list of dummy calls added to the IR to keep various values obviously
2308  // live in the IR.  We'll remove all of these when done.
2309  SmallVector<CallInst *, 64> Holders;
2310
2311  // Insert a dummy call with all of the arguments to the vm_state we'll need
2312  // for the actual safepoint insertion.  This ensures reference arguments in
2313  // the deopt argument list are considered live through the safepoint (and
2314  // thus makes sure they get relocated.)
2315  for (CallSite CS : ToUpdate) {
2316    SmallVector<Value *, 64> DeoptValues;
2317
2318    iterator_range<const Use *> DeoptStateRange =
2319        UseDeoptBundles
2320            ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2321            : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2322
2323    for (Value *Arg : DeoptStateRange) {
2324      assert(!isUnhandledGCPointerType(Arg->getType()) &&
2325             "support for FCA unimplemented");
2326      if (isHandledGCPointerType(Arg->getType()))
2327        DeoptValues.push_back(Arg);
2328    }
2329
2330    insertUseHolderAfter(CS, DeoptValues, Holders);
2331  }
2332
2333  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2334
2335  // A) Identify all gc pointers which are statically live at the given call
2336  // site.
2337  findLiveReferences(F, DT, ToUpdate, Records);
2338
2339  // B) Find the base pointers for each live pointer
2340  /* scope for caching */ {
2341    // Cache the 'defining value' relation used in the computation and
2342    // insertion of base phis and selects.  This ensures that we don't insert
2343    // large numbers of duplicate base_phis.
2344    DefiningValueMapTy DVCache;
2345
2346    for (size_t i = 0; i < Records.size(); i++) {
2347      PartiallyConstructedSafepointRecord &info = Records[i];
2348      findBasePointers(DT, DVCache, ToUpdate[i], info);
2349    }
2350  } // end of cache scope
2351
2352  // The base phi insertion logic (for any safepoint) may have inserted new
2353  // instructions which are now live at some safepoint.  The simplest such
2354  // example is:
2355  // loop:
2356  //   phi a  <-- will be a new base_phi here
2357  //   safepoint 1 <-- that needs to be live here
2358  //   gep a + 1
2359  //   safepoint 2
2360  //   br loop
2361  // We insert some dummy calls after each safepoint to definitely hold live
2362  // the base pointers which were identified for that safepoint.  We'll then
2363  // ask liveness for _every_ base inserted to see what is now live.  Then we
2364  // remove the dummy calls.
2365  Holders.reserve(Holders.size() + Records.size());
2366  for (size_t i = 0; i < Records.size(); i++) {
2367    PartiallyConstructedSafepointRecord &Info = Records[i];
2368
2369    SmallVector<Value *, 128> Bases;
2370    for (auto Pair : Info.PointerToBase)
2371      Bases.push_back(Pair.second);
2372
2373    insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2374  }
2375
2376  // By selecting base pointers, we've effectively inserted new uses. Thus, we
2377  // need to rerun liveness.  We may *also* have inserted new defs, but that's
2378  // not the key issue.
2379  recomputeLiveInValues(F, DT, ToUpdate, Records);
2380
2381  if (PrintBasePointers) {
2382    for (auto &Info : Records) {
2383      errs() << "Base Pairs: (w/Relocation)\n";
2384      for (auto Pair : Info.PointerToBase)
2385        errs() << " derived %" << Pair.first->getName() << " base %"
2386               << Pair.second->getName() << "\n";
2387    }
2388  }
2389
2390  for (CallInst *CI : Holders)
2391    CI->eraseFromParent();
2392
2393  Holders.clear();
2394
2395  // Do a limited scalarization of any live at safepoint vector values which
2396  // contain pointers.  This enables this pass to run after vectorization at
2397  // the cost of some possible performance loss.  TODO: it would be nice to
2398  // natively support vectors all the way through the backend so we don't need
2399  // to scalarize here.
2400  for (size_t i = 0; i < Records.size(); i++) {
2401    PartiallyConstructedSafepointRecord &Info = Records[i];
2402    Instruction *Statepoint = ToUpdate[i].getInstruction();
2403    splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2404                      Info.PointerToBase, DT);
2405  }
2406
2407  // In order to reduce live set of statepoint we might choose to rematerialize
2408  // some values instead of relocating them. This is purely an optimization and
2409  // does not influence correctness.
2410  for (size_t i = 0; i < Records.size(); i++)
2411    rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2412
2413  // We need this to safely RAUW and delete call or invoke return values that
2414  // may themselves be live over a statepoint.  For details, please see usage in
2415  // makeStatepointExplicitImpl.
2416  std::vector<DeferredReplacement> Replacements;
2417
2418  // Now run through and replace the existing statepoints with new ones with
2419  // the live variables listed.  We do not yet update uses of the values being
2420  // relocated. We have references to live variables that need to
2421  // survive to the last iteration of this loop.  (By construction, the
2422  // previous statepoint can not be a live variable, thus we can and remove
2423  // the old statepoint calls as we go.)
2424  for (size_t i = 0; i < Records.size(); i++)
2425    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2426
2427  ToUpdate.clear(); // prevent accident use of invalid CallSites
2428
2429  for (auto &PR : Replacements)
2430    PR.doReplacement();
2431
2432  Replacements.clear();
2433
2434  for (auto &Info : Records) {
2435    // These live sets may contain state Value pointers, since we replaced calls
2436    // with operand bundles with calls wrapped in gc.statepoint, and some of
2437    // those calls may have been def'ing live gc pointers.  Clear these out to
2438    // avoid accidentally using them.
2439    //
2440    // TODO: We should create a separate data structure that does not contain
2441    // these live sets, and migrate to using that data structure from this point
2442    // onward.
2443    Info.LiveSet.clear();
2444    Info.PointerToBase.clear();
2445  }
2446
2447  // Do all the fixups of the original live variables to their relocated selves
2448  SmallVector<Value *, 128> Live;
2449  for (size_t i = 0; i < Records.size(); i++) {
2450    PartiallyConstructedSafepointRecord &Info = Records[i];
2451
2452    // We can't simply save the live set from the original insertion.  One of
2453    // the live values might be the result of a call which needs a safepoint.
2454    // That Value* no longer exists and we need to use the new gc_result.
2455    // Thankfully, the live set is embedded in the statepoint (and updated), so
2456    // we just grab that.
2457    Statepoint Statepoint(Info.StatepointToken);
2458    Live.insert(Live.end(), Statepoint.gc_args_begin(),
2459                Statepoint.gc_args_end());
2460#ifndef NDEBUG
2461    // Do some basic sanity checks on our liveness results before performing
2462    // relocation.  Relocation can and will turn mistakes in liveness results
2463    // into non-sensical code which is must harder to debug.
2464    // TODO: It would be nice to test consistency as well
2465    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2466           "statepoint must be reachable or liveness is meaningless");
2467    for (Value *V : Statepoint.gc_args()) {
2468      if (!isa<Instruction>(V))
2469        // Non-instruction values trivial dominate all possible uses
2470        continue;
2471      auto *LiveInst = cast<Instruction>(V);
2472      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2473             "unreachable values should never be live");
2474      assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2475             "basic SSA liveness expectation violated by liveness analysis");
2476    }
2477#endif
2478  }
2479  unique_unsorted(Live);
2480
2481#ifndef NDEBUG
2482  // sanity check
2483  for (auto *Ptr : Live)
2484    assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type");
2485#endif
2486
2487  relocationViaAlloca(F, DT, Live, Records);
2488  return !Records.empty();
2489}
2490
2491// Handles both return values and arguments for Functions and CallSites.
2492template <typename AttrHolder>
2493static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2494                                      unsigned Index) {
2495  AttrBuilder R;
2496  if (AH.getDereferenceableBytes(Index))
2497    R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2498                                  AH.getDereferenceableBytes(Index)));
2499  if (AH.getDereferenceableOrNullBytes(Index))
2500    R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2501                                  AH.getDereferenceableOrNullBytes(Index)));
2502  if (AH.doesNotAlias(Index))
2503    R.addAttribute(Attribute::NoAlias);
2504
2505  if (!R.empty())
2506    AH.setAttributes(AH.getAttributes().removeAttributes(
2507        Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2508}
2509
2510void
2511RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2512  LLVMContext &Ctx = F.getContext();
2513
2514  for (Argument &A : F.args())
2515    if (isa<PointerType>(A.getType()))
2516      RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2517
2518  if (isa<PointerType>(F.getReturnType()))
2519    RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2520}
2521
2522void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2523  if (F.empty())
2524    return;
2525
2526  LLVMContext &Ctx = F.getContext();
2527  MDBuilder Builder(Ctx);
2528
2529  for (Instruction &I : instructions(F)) {
2530    if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2531      assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2532      bool IsImmutableTBAA =
2533          MD->getNumOperands() == 4 &&
2534          mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2535
2536      if (!IsImmutableTBAA)
2537        continue; // no work to do, MD_tbaa is already marked mutable
2538
2539      MDNode *Base = cast<MDNode>(MD->getOperand(0));
2540      MDNode *Access = cast<MDNode>(MD->getOperand(1));
2541      uint64_t Offset =
2542          mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2543
2544      MDNode *MutableTBAA =
2545          Builder.createTBAAStructTagNode(Base, Access, Offset);
2546      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2547    }
2548
2549    if (CallSite CS = CallSite(&I)) {
2550      for (int i = 0, e = CS.arg_size(); i != e; i++)
2551        if (isa<PointerType>(CS.getArgument(i)->getType()))
2552          RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2553      if (isa<PointerType>(CS.getType()))
2554        RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2555    }
2556  }
2557}
2558
2559/// Returns true if this function should be rewritten by this pass.  The main
2560/// point of this function is as an extension point for custom logic.
2561static bool shouldRewriteStatepointsIn(Function &F) {
2562  // TODO: This should check the GCStrategy
2563  if (F.hasGC()) {
2564    const char *FunctionGCName = F.getGC();
2565    const StringRef StatepointExampleName("statepoint-example");
2566    const StringRef CoreCLRName("coreclr");
2567    return (StatepointExampleName == FunctionGCName) ||
2568           (CoreCLRName == FunctionGCName);
2569  } else
2570    return false;
2571}
2572
2573void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2574#ifndef NDEBUG
2575  assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2576         "precondition!");
2577#endif
2578
2579  for (Function &F : M)
2580    stripNonValidAttributesFromPrototype(F);
2581
2582  for (Function &F : M)
2583    stripNonValidAttributesFromBody(F);
2584}
2585
2586bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2587  // Nothing to do for declarations.
2588  if (F.isDeclaration() || F.empty())
2589    return false;
2590
2591  // Policy choice says not to rewrite - the most common reason is that we're
2592  // compiling code without a GCStrategy.
2593  if (!shouldRewriteStatepointsIn(F))
2594    return false;
2595
2596  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2597  TargetTransformInfo &TTI =
2598      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2599
2600  auto NeedsRewrite = [](Instruction &I) {
2601    if (UseDeoptBundles) {
2602      if (ImmutableCallSite CS = ImmutableCallSite(&I))
2603        return !callsGCLeafFunction(CS);
2604      return false;
2605    }
2606
2607    return isStatepoint(I);
2608  };
2609
2610  // Gather all the statepoints which need rewritten.  Be careful to only
2611  // consider those in reachable code since we need to ask dominance queries
2612  // when rewriting.  We'll delete the unreachable ones in a moment.
2613  SmallVector<CallSite, 64> ParsePointNeeded;
2614  bool HasUnreachableStatepoint = false;
2615  for (Instruction &I : instructions(F)) {
2616    // TODO: only the ones with the flag set!
2617    if (NeedsRewrite(I)) {
2618      if (DT.isReachableFromEntry(I.getParent()))
2619        ParsePointNeeded.push_back(CallSite(&I));
2620      else
2621        HasUnreachableStatepoint = true;
2622    }
2623  }
2624
2625  bool MadeChange = false;
2626
2627  // Delete any unreachable statepoints so that we don't have unrewritten
2628  // statepoints surviving this pass.  This makes testing easier and the
2629  // resulting IR less confusing to human readers.  Rather than be fancy, we
2630  // just reuse a utility function which removes the unreachable blocks.
2631  if (HasUnreachableStatepoint)
2632    MadeChange |= removeUnreachableBlocks(F);
2633
2634  // Return early if no work to do.
2635  if (ParsePointNeeded.empty())
2636    return MadeChange;
2637
2638  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2639  // These are created by LCSSA.  They have the effect of increasing the size
2640  // of liveness sets for no good reason.  It may be harder to do this post
2641  // insertion since relocations and base phis can confuse things.
2642  for (BasicBlock &BB : F)
2643    if (BB.getUniquePredecessor()) {
2644      MadeChange = true;
2645      FoldSingleEntryPHINodes(&BB);
2646    }
2647
2648  // Before we start introducing relocations, we want to tweak the IR a bit to
2649  // avoid unfortunate code generation effects.  The main example is that we
2650  // want to try to make sure the comparison feeding a branch is after any
2651  // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2652  // values feeding a branch after relocation.  This is semantically correct,
2653  // but results in extra register pressure since both the pre-relocation and
2654  // post-relocation copies must be available in registers.  For code without
2655  // relocations this is handled elsewhere, but teaching the scheduler to
2656  // reverse the transform we're about to do would be slightly complex.
2657  // Note: This may extend the live range of the inputs to the icmp and thus
2658  // increase the liveset of any statepoint we move over.  This is profitable
2659  // as long as all statepoints are in rare blocks.  If we had in-register
2660  // lowering for live values this would be a much safer transform.
2661  auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2662    if (auto *BI = dyn_cast<BranchInst>(TI))
2663      if (BI->isConditional())
2664        return dyn_cast<Instruction>(BI->getCondition());
2665    // TODO: Extend this to handle switches
2666    return nullptr;
2667  };
2668  for (BasicBlock &BB : F) {
2669    TerminatorInst *TI = BB.getTerminator();
2670    if (auto *Cond = getConditionInst(TI))
2671      // TODO: Handle more than just ICmps here.  We should be able to move
2672      // most instructions without side effects or memory access.
2673      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2674        MadeChange = true;
2675        Cond->moveBefore(TI);
2676      }
2677  }
2678
2679  MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2680  return MadeChange;
2681}
2682
2683// liveness computation via standard dataflow
2684// -------------------------------------------------------------------
2685
2686// TODO: Consider using bitvectors for liveness, the set of potentially
2687// interesting values should be small and easy to pre-compute.
2688
2689/// Compute the live-in set for the location rbegin starting from
2690/// the live-out set of the basic block
2691static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2692                                BasicBlock::reverse_iterator rend,
2693                                DenseSet<Value *> &LiveTmp) {
2694
2695  for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2696    Instruction *I = &*ritr;
2697
2698    // KILL/Def - Remove this definition from LiveIn
2699    LiveTmp.erase(I);
2700
2701    // Don't consider *uses* in PHI nodes, we handle their contribution to
2702    // predecessor blocks when we seed the LiveOut sets
2703    if (isa<PHINode>(I))
2704      continue;
2705
2706    // USE - Add to the LiveIn set for this instruction
2707    for (Value *V : I->operands()) {
2708      assert(!isUnhandledGCPointerType(V->getType()) &&
2709             "support for FCA unimplemented");
2710      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2711        // The choice to exclude all things constant here is slightly subtle.
2712        // There are two independent reasons:
2713        // - We assume that things which are constant (from LLVM's definition)
2714        // do not move at runtime.  For example, the address of a global
2715        // variable is fixed, even though it's contents may not be.
2716        // - Second, we can't disallow arbitrary inttoptr constants even
2717        // if the language frontend does.  Optimization passes are free to
2718        // locally exploit facts without respect to global reachability.  This
2719        // can create sections of code which are dynamically unreachable and
2720        // contain just about anything.  (see constants.ll in tests)
2721        LiveTmp.insert(V);
2722      }
2723    }
2724  }
2725}
2726
2727static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2728
2729  for (BasicBlock *Succ : successors(BB)) {
2730    const BasicBlock::iterator E(Succ->getFirstNonPHI());
2731    for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2732      PHINode *Phi = cast<PHINode>(&*I);
2733      Value *V = Phi->getIncomingValueForBlock(BB);
2734      assert(!isUnhandledGCPointerType(V->getType()) &&
2735             "support for FCA unimplemented");
2736      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2737        LiveTmp.insert(V);
2738      }
2739    }
2740  }
2741}
2742
2743static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2744  DenseSet<Value *> KillSet;
2745  for (Instruction &I : *BB)
2746    if (isHandledGCPointerType(I.getType()))
2747      KillSet.insert(&I);
2748  return KillSet;
2749}
2750
2751#ifndef NDEBUG
2752/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2753/// sanity check for the liveness computation.
2754static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2755                          TerminatorInst *TI, bool TermOkay = false) {
2756  for (Value *V : Live) {
2757    if (auto *I = dyn_cast<Instruction>(V)) {
2758      // The terminator can be a member of the LiveOut set.  LLVM's definition
2759      // of instruction dominance states that V does not dominate itself.  As
2760      // such, we need to special case this to allow it.
2761      if (TermOkay && TI == I)
2762        continue;
2763      assert(DT.dominates(I, TI) &&
2764             "basic SSA liveness expectation violated by liveness analysis");
2765    }
2766  }
2767}
2768
2769/// Check that all the liveness sets used during the computation of liveness
2770/// obey basic SSA properties.  This is useful for finding cases where we miss
2771/// a def.
2772static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2773                          BasicBlock &BB) {
2774  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2775  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2776  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2777}
2778#endif
2779
2780static void computeLiveInValues(DominatorTree &DT, Function &F,
2781                                GCPtrLivenessData &Data) {
2782
2783  SmallSetVector<BasicBlock *, 200> Worklist;
2784  auto AddPredsToWorklist = [&](BasicBlock *BB) {
2785    // We use a SetVector so that we don't have duplicates in the worklist.
2786    Worklist.insert(pred_begin(BB), pred_end(BB));
2787  };
2788  auto NextItem = [&]() {
2789    BasicBlock *BB = Worklist.back();
2790    Worklist.pop_back();
2791    return BB;
2792  };
2793
2794  // Seed the liveness for each individual block
2795  for (BasicBlock &BB : F) {
2796    Data.KillSet[&BB] = computeKillSet(&BB);
2797    Data.LiveSet[&BB].clear();
2798    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2799
2800#ifndef NDEBUG
2801    for (Value *Kill : Data.KillSet[&BB])
2802      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2803#endif
2804
2805    Data.LiveOut[&BB] = DenseSet<Value *>();
2806    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2807    Data.LiveIn[&BB] = Data.LiveSet[&BB];
2808    set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2809    set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2810    if (!Data.LiveIn[&BB].empty())
2811      AddPredsToWorklist(&BB);
2812  }
2813
2814  // Propagate that liveness until stable
2815  while (!Worklist.empty()) {
2816    BasicBlock *BB = NextItem();
2817
2818    // Compute our new liveout set, then exit early if it hasn't changed
2819    // despite the contribution of our successor.
2820    DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2821    const auto OldLiveOutSize = LiveOut.size();
2822    for (BasicBlock *Succ : successors(BB)) {
2823      assert(Data.LiveIn.count(Succ));
2824      set_union(LiveOut, Data.LiveIn[Succ]);
2825    }
2826    // assert OutLiveOut is a subset of LiveOut
2827    if (OldLiveOutSize == LiveOut.size()) {
2828      // If the sets are the same size, then we didn't actually add anything
2829      // when unioning our successors LiveIn  Thus, the LiveIn of this block
2830      // hasn't changed.
2831      continue;
2832    }
2833    Data.LiveOut[BB] = LiveOut;
2834
2835    // Apply the effects of this basic block
2836    DenseSet<Value *> LiveTmp = LiveOut;
2837    set_union(LiveTmp, Data.LiveSet[BB]);
2838    set_subtract(LiveTmp, Data.KillSet[BB]);
2839
2840    assert(Data.LiveIn.count(BB));
2841    const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2842    // assert: OldLiveIn is a subset of LiveTmp
2843    if (OldLiveIn.size() != LiveTmp.size()) {
2844      Data.LiveIn[BB] = LiveTmp;
2845      AddPredsToWorklist(BB);
2846    }
2847  } // while( !worklist.empty() )
2848
2849#ifndef NDEBUG
2850  // Sanity check our output against SSA properties.  This helps catch any
2851  // missing kills during the above iteration.
2852  for (BasicBlock &BB : F) {
2853    checkBasicSSA(DT, Data, BB);
2854  }
2855#endif
2856}
2857
2858static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2859                              StatepointLiveSetTy &Out) {
2860
2861  BasicBlock *BB = Inst->getParent();
2862
2863  // Note: The copy is intentional and required
2864  assert(Data.LiveOut.count(BB));
2865  DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2866
2867  // We want to handle the statepoint itself oddly.  It's
2868  // call result is not live (normal), nor are it's arguments
2869  // (unless they're used again later).  This adjustment is
2870  // specifically what we need to relocate
2871  BasicBlock::reverse_iterator rend(Inst->getIterator());
2872  computeLiveInValues(BB->rbegin(), rend, LiveOut);
2873  LiveOut.erase(Inst);
2874  Out.insert(LiveOut.begin(), LiveOut.end());
2875}
2876
2877static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2878                                  const CallSite &CS,
2879                                  PartiallyConstructedSafepointRecord &Info) {
2880  Instruction *Inst = CS.getInstruction();
2881  StatepointLiveSetTy Updated;
2882  findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2883
2884#ifndef NDEBUG
2885  DenseSet<Value *> Bases;
2886  for (auto KVPair : Info.PointerToBase) {
2887    Bases.insert(KVPair.second);
2888  }
2889#endif
2890  // We may have base pointers which are now live that weren't before.  We need
2891  // to update the PointerToBase structure to reflect this.
2892  for (auto V : Updated)
2893    if (!Info.PointerToBase.count(V)) {
2894      assert(Bases.count(V) && "can't find base for unexpected live value");
2895      Info.PointerToBase[V] = V;
2896      continue;
2897    }
2898
2899#ifndef NDEBUG
2900  for (auto V : Updated) {
2901    assert(Info.PointerToBase.count(V) &&
2902           "must be able to find base for live value");
2903  }
2904#endif
2905
2906  // Remove any stale base mappings - this can happen since our liveness is
2907  // more precise then the one inherent in the base pointer analysis
2908  DenseSet<Value *> ToErase;
2909  for (auto KVPair : Info.PointerToBase)
2910    if (!Updated.count(KVPair.first))
2911      ToErase.insert(KVPair.first);
2912  for (auto V : ToErase)
2913    Info.PointerToBase.erase(V);
2914
2915#ifndef NDEBUG
2916  for (auto KVPair : Info.PointerToBase)
2917    assert(Updated.count(KVPair.first) && "record for non-live value");
2918#endif
2919
2920  Info.LiveSet = Updated;
2921}
2922