1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/TableGen/Error.h"
23#include "llvm/TableGen/Record.h"
24#include <algorithm>
25#include <cstdio>
26#include <set>
27using namespace llvm;
28
29#define DEBUG_TYPE "dag-patterns"
30
31//===----------------------------------------------------------------------===//
32//  EEVT::TypeSet Implementation
33//===----------------------------------------------------------------------===//
34
35static inline bool isInteger(MVT::SimpleValueType VT) {
36  return MVT(VT).isInteger();
37}
38static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
39  return MVT(VT).isFloatingPoint();
40}
41static inline bool isVector(MVT::SimpleValueType VT) {
42  return MVT(VT).isVector();
43}
44static inline bool isScalar(MVT::SimpleValueType VT) {
45  return !MVT(VT).isVector();
46}
47
48EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
49  if (VT == MVT::iAny)
50    EnforceInteger(TP);
51  else if (VT == MVT::fAny)
52    EnforceFloatingPoint(TP);
53  else if (VT == MVT::vAny)
54    EnforceVector(TP);
55  else {
56    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
57            VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!");
58    TypeVec.push_back(VT);
59  }
60}
61
62
63EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
64  assert(!VTList.empty() && "empty list?");
65  TypeVec.append(VTList.begin(), VTList.end());
66
67  if (!VTList.empty())
68    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
69           VTList[0] != MVT::fAny);
70
71  // Verify no duplicates.
72  array_pod_sort(TypeVec.begin(), TypeVec.end());
73  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
74}
75
76/// FillWithPossibleTypes - Set to all legal types and return true, only valid
77/// on completely unknown type sets.
78bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
79                                          bool (*Pred)(MVT::SimpleValueType),
80                                          const char *PredicateName) {
81  assert(isCompletelyUnknown());
82  ArrayRef<MVT::SimpleValueType> LegalTypes =
83    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
84
85  if (TP.hasError())
86    return false;
87
88  for (MVT::SimpleValueType VT : LegalTypes)
89    if (!Pred || Pred(VT))
90      TypeVec.push_back(VT);
91
92  // If we have nothing that matches the predicate, bail out.
93  if (TypeVec.empty()) {
94    TP.error("Type inference contradiction found, no " +
95             std::string(PredicateName) + " types found");
96    return false;
97  }
98  // No need to sort with one element.
99  if (TypeVec.size() == 1) return true;
100
101  // Remove duplicates.
102  array_pod_sort(TypeVec.begin(), TypeVec.end());
103  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
104
105  return true;
106}
107
108/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
109/// integer value type.
110bool EEVT::TypeSet::hasIntegerTypes() const {
111  return std::any_of(TypeVec.begin(), TypeVec.end(), isInteger);
112}
113
114/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115/// a floating point value type.
116bool EEVT::TypeSet::hasFloatingPointTypes() const {
117  return std::any_of(TypeVec.begin(), TypeVec.end(), isFloatingPoint);
118}
119
120/// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
121bool EEVT::TypeSet::hasScalarTypes() const {
122  return std::any_of(TypeVec.begin(), TypeVec.end(), isScalar);
123}
124
125/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
126/// value type.
127bool EEVT::TypeSet::hasVectorTypes() const {
128  return std::any_of(TypeVec.begin(), TypeVec.end(), isVector);
129}
130
131
132std::string EEVT::TypeSet::getName() const {
133  if (TypeVec.empty()) return "<empty>";
134
135  std::string Result;
136
137  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
138    std::string VTName = llvm::getEnumName(TypeVec[i]);
139    // Strip off MVT:: prefix if present.
140    if (VTName.substr(0,5) == "MVT::")
141      VTName = VTName.substr(5);
142    if (i) Result += ':';
143    Result += VTName;
144  }
145
146  if (TypeVec.size() == 1)
147    return Result;
148  return "{" + Result + "}";
149}
150
151/// MergeInTypeInfo - This merges in type information from the specified
152/// argument.  If 'this' changes, it returns true.  If the two types are
153/// contradictory (e.g. merge f32 into i32) then this flags an error.
154bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
155  if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
156    return false;
157
158  if (isCompletelyUnknown()) {
159    *this = InVT;
160    return true;
161  }
162
163  assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns");
164
165  // Handle the abstract cases, seeing if we can resolve them better.
166  switch (TypeVec[0]) {
167  default: break;
168  case MVT::iPTR:
169  case MVT::iPTRAny:
170    if (InVT.hasIntegerTypes()) {
171      EEVT::TypeSet InCopy(InVT);
172      InCopy.EnforceInteger(TP);
173      InCopy.EnforceScalar(TP);
174
175      if (InCopy.isConcrete()) {
176        // If the RHS has one integer type, upgrade iPTR to i32.
177        TypeVec[0] = InVT.TypeVec[0];
178        return true;
179      }
180
181      // If the input has multiple scalar integers, this doesn't add any info.
182      if (!InCopy.isCompletelyUnknown())
183        return false;
184    }
185    break;
186  }
187
188  // If the input constraint is iAny/iPTR and this is an integer type list,
189  // remove non-integer types from the list.
190  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
191      hasIntegerTypes()) {
192    bool MadeChange = EnforceInteger(TP);
193
194    // If we're merging in iPTR/iPTRAny and the node currently has a list of
195    // multiple different integer types, replace them with a single iPTR.
196    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
197        TypeVec.size() != 1) {
198      TypeVec.assign(1, InVT.TypeVec[0]);
199      MadeChange = true;
200    }
201
202    return MadeChange;
203  }
204
205  // If this is a type list and the RHS is a typelist as well, eliminate entries
206  // from this list that aren't in the other one.
207  TypeSet InputSet(*this);
208
209  TypeVec.clear();
210  std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(),
211                        InVT.TypeVec.begin(), InVT.TypeVec.end(),
212                        std::back_inserter(TypeVec));
213
214  // If the intersection is the same size as the original set then we're done.
215  if (TypeVec.size() == InputSet.TypeVec.size())
216    return false;
217
218  // If we removed all of our types, we have a type contradiction.
219  if (!TypeVec.empty())
220    return true;
221
222  // FIXME: Really want an SMLoc here!
223  TP.error("Type inference contradiction found, merging '" +
224           InVT.getName() + "' into '" + InputSet.getName() + "'");
225  return false;
226}
227
228/// EnforceInteger - Remove all non-integer types from this set.
229bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
230  if (TP.hasError())
231    return false;
232  // If we know nothing, then get the full set.
233  if (TypeVec.empty())
234    return FillWithPossibleTypes(TP, isInteger, "integer");
235
236  if (!hasFloatingPointTypes())
237    return false;
238
239  TypeSet InputSet(*this);
240
241  // Filter out all the fp types.
242  TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
243                               std::not1(std::ptr_fun(isInteger))),
244                TypeVec.end());
245
246  if (TypeVec.empty()) {
247    TP.error("Type inference contradiction found, '" +
248             InputSet.getName() + "' needs to be integer");
249    return false;
250  }
251  return true;
252}
253
254/// EnforceFloatingPoint - Remove all integer types from this set.
255bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
256  if (TP.hasError())
257    return false;
258  // If we know nothing, then get the full set.
259  if (TypeVec.empty())
260    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
261
262  if (!hasIntegerTypes())
263    return false;
264
265  TypeSet InputSet(*this);
266
267  // Filter out all the integer types.
268  TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
269                               std::not1(std::ptr_fun(isFloatingPoint))),
270                TypeVec.end());
271
272  if (TypeVec.empty()) {
273    TP.error("Type inference contradiction found, '" +
274             InputSet.getName() + "' needs to be floating point");
275    return false;
276  }
277  return true;
278}
279
280/// EnforceScalar - Remove all vector types from this.
281bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
282  if (TP.hasError())
283    return false;
284
285  // If we know nothing, then get the full set.
286  if (TypeVec.empty())
287    return FillWithPossibleTypes(TP, isScalar, "scalar");
288
289  if (!hasVectorTypes())
290    return false;
291
292  TypeSet InputSet(*this);
293
294  // Filter out all the vector types.
295  TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
296                               std::not1(std::ptr_fun(isScalar))),
297                TypeVec.end());
298
299  if (TypeVec.empty()) {
300    TP.error("Type inference contradiction found, '" +
301             InputSet.getName() + "' needs to be scalar");
302    return false;
303  }
304  return true;
305}
306
307/// EnforceVector - Remove all vector types from this.
308bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
309  if (TP.hasError())
310    return false;
311
312  // If we know nothing, then get the full set.
313  if (TypeVec.empty())
314    return FillWithPossibleTypes(TP, isVector, "vector");
315
316  TypeSet InputSet(*this);
317  bool MadeChange = false;
318
319  // Filter out all the scalar types.
320  TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
321                               std::not1(std::ptr_fun(isVector))),
322                TypeVec.end());
323
324  if (TypeVec.empty()) {
325    TP.error("Type inference contradiction found, '" +
326             InputSet.getName() + "' needs to be a vector");
327    return false;
328  }
329  return MadeChange;
330}
331
332
333
334/// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
335/// this should be based on the element type. Update this and other based on
336/// this information.
337bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
338  if (TP.hasError())
339    return false;
340
341  // Both operands must be integer or FP, but we don't care which.
342  bool MadeChange = false;
343
344  if (isCompletelyUnknown())
345    MadeChange = FillWithPossibleTypes(TP);
346
347  if (Other.isCompletelyUnknown())
348    MadeChange = Other.FillWithPossibleTypes(TP);
349
350  // If one side is known to be integer or known to be FP but the other side has
351  // no information, get at least the type integrality info in there.
352  if (!hasFloatingPointTypes())
353    MadeChange |= Other.EnforceInteger(TP);
354  else if (!hasIntegerTypes())
355    MadeChange |= Other.EnforceFloatingPoint(TP);
356  if (!Other.hasFloatingPointTypes())
357    MadeChange |= EnforceInteger(TP);
358  else if (!Other.hasIntegerTypes())
359    MadeChange |= EnforceFloatingPoint(TP);
360
361  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
362         "Should have a type list now");
363
364  // If one contains vectors but the other doesn't pull vectors out.
365  if (!hasVectorTypes())
366    MadeChange |= Other.EnforceScalar(TP);
367  else if (!hasScalarTypes())
368    MadeChange |= Other.EnforceVector(TP);
369  if (!Other.hasVectorTypes())
370    MadeChange |= EnforceScalar(TP);
371  else if (!Other.hasScalarTypes())
372    MadeChange |= EnforceVector(TP);
373
374  // This code does not currently handle nodes which have multiple types,
375  // where some types are integer, and some are fp.  Assert that this is not
376  // the case.
377  assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
378         !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
379         "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
380
381  if (TP.hasError())
382    return false;
383
384  // Okay, find the smallest type from current set and remove anything the
385  // same or smaller from the other set. We need to ensure that the scalar
386  // type size is smaller than the scalar size of the smallest type. For
387  // vectors, we also need to make sure that the total size is no larger than
388  // the size of the smallest type.
389  {
390    TypeSet InputSet(Other);
391    MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(),
392      [](MVT A, MVT B) {
393        return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
394               (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
395                A.getSizeInBits() < B.getSizeInBits());
396      });
397
398    auto I = std::remove_if(Other.TypeVec.begin(), Other.TypeVec.end(),
399      [Smallest](MVT OtherVT) {
400        // Don't compare vector and non-vector types.
401        if (OtherVT.isVector() != Smallest.isVector())
402          return false;
403        // The getSizeInBits() check here is only needed for vectors, but is
404        // a subset of the scalar check for scalars so no need to qualify.
405        return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits()||
406               OtherVT.getSizeInBits() < Smallest.getSizeInBits();
407      });
408    MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types.
409    Other.TypeVec.erase(I, Other.TypeVec.end());
410
411    if (Other.TypeVec.empty()) {
412      TP.error("Type inference contradiction found, '" + InputSet.getName() +
413               "' has nothing larger than '" + getName() +"'!");
414      return false;
415    }
416  }
417
418  // Okay, find the largest type from the other set and remove anything the
419  // same or smaller from the current set. We need to ensure that the scalar
420  // type size is larger than the scalar size of the largest type. For
421  // vectors, we also need to make sure that the total size is no smaller than
422  // the size of the largest type.
423  {
424    TypeSet InputSet(*this);
425    MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(),
426      [](MVT A, MVT B) {
427        return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
428               (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
429                A.getSizeInBits() < B.getSizeInBits());
430      });
431    auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
432      [Largest](MVT OtherVT) {
433        // Don't compare vector and non-vector types.
434        if (OtherVT.isVector() != Largest.isVector())
435          return false;
436        return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() ||
437               OtherVT.getSizeInBits() > Largest.getSizeInBits();
438      });
439    MadeChange |= I != TypeVec.end(); // If we're about to remove types.
440    TypeVec.erase(I, TypeVec.end());
441
442    if (TypeVec.empty()) {
443      TP.error("Type inference contradiction found, '" + InputSet.getName() +
444               "' has nothing smaller than '" + Other.getName() +"'!");
445      return false;
446    }
447  }
448
449  return MadeChange;
450}
451
452/// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
453/// whose element is specified by VTOperand.
454bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT,
455                                           TreePattern &TP) {
456  bool MadeChange = false;
457
458  MadeChange |= EnforceVector(TP);
459
460  TypeSet InputSet(*this);
461
462  // Filter out all the types which don't have the right element type.
463  auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
464    [VT](MVT VVT) {
465      return VVT.getVectorElementType().SimpleTy != VT;
466    });
467  MadeChange |= I != TypeVec.end();
468  TypeVec.erase(I, TypeVec.end());
469
470  if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
471    TP.error("Type inference contradiction found, forcing '" +
472             InputSet.getName() + "' to have a vector element of type " +
473             getEnumName(VT));
474    return false;
475  }
476
477  return MadeChange;
478}
479
480/// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
481/// whose element is specified by VTOperand.
482bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
483                                           TreePattern &TP) {
484  if (TP.hasError())
485    return false;
486
487  // "This" must be a vector and "VTOperand" must be a scalar.
488  bool MadeChange = false;
489  MadeChange |= EnforceVector(TP);
490  MadeChange |= VTOperand.EnforceScalar(TP);
491
492  // If we know the vector type, it forces the scalar to agree.
493  if (isConcrete()) {
494    MVT IVT = getConcrete();
495    IVT = IVT.getVectorElementType();
496    return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
497  }
498
499  // If the scalar type is known, filter out vector types whose element types
500  // disagree.
501  if (!VTOperand.isConcrete())
502    return MadeChange;
503
504  MVT::SimpleValueType VT = VTOperand.getConcrete();
505
506  MadeChange |= EnforceVectorEltTypeIs(VT, TP);
507
508  return MadeChange;
509}
510
511/// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a
512/// vector type specified by VTOperand.
513bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
514                                                 TreePattern &TP) {
515  if (TP.hasError())
516    return false;
517
518  // "This" must be a vector and "VTOperand" must be a vector.
519  bool MadeChange = false;
520  MadeChange |= EnforceVector(TP);
521  MadeChange |= VTOperand.EnforceVector(TP);
522
523  // If one side is known to be integer or known to be FP but the other side has
524  // no information, get at least the type integrality info in there.
525  if (!hasFloatingPointTypes())
526    MadeChange |= VTOperand.EnforceInteger(TP);
527  else if (!hasIntegerTypes())
528    MadeChange |= VTOperand.EnforceFloatingPoint(TP);
529  if (!VTOperand.hasFloatingPointTypes())
530    MadeChange |= EnforceInteger(TP);
531  else if (!VTOperand.hasIntegerTypes())
532    MadeChange |= EnforceFloatingPoint(TP);
533
534  assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
535         "Should have a type list now");
536
537  // If we know the vector type, it forces the scalar types to agree.
538  // Also force one vector to have more elements than the other.
539  if (isConcrete()) {
540    MVT IVT = getConcrete();
541    unsigned NumElems = IVT.getVectorNumElements();
542    IVT = IVT.getVectorElementType();
543
544    EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
545    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
546
547    // Only keep types that have less elements than VTOperand.
548    TypeSet InputSet(VTOperand);
549
550    auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
551                            [NumElems](MVT VVT) {
552                              return VVT.getVectorNumElements() >= NumElems;
553                            });
554    MadeChange |= I != VTOperand.TypeVec.end();
555    VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
556
557    if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
558      TP.error("Type inference contradiction found, forcing '" +
559               InputSet.getName() + "' to have less vector elements than '" +
560               getName() + "'");
561      return false;
562    }
563  } else if (VTOperand.isConcrete()) {
564    MVT IVT = VTOperand.getConcrete();
565    unsigned NumElems = IVT.getVectorNumElements();
566    IVT = IVT.getVectorElementType();
567
568    EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
569    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
570
571    // Only keep types that have more elements than 'this'.
572    TypeSet InputSet(*this);
573
574    auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
575                            [NumElems](MVT VVT) {
576                              return VVT.getVectorNumElements() <= NumElems;
577                            });
578    MadeChange |= I != TypeVec.end();
579    TypeVec.erase(I, TypeVec.end());
580
581    if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
582      TP.error("Type inference contradiction found, forcing '" +
583               InputSet.getName() + "' to have more vector elements than '" +
584               VTOperand.getName() + "'");
585      return false;
586    }
587  }
588
589  return MadeChange;
590}
591
592/// EnforceVectorSameNumElts - 'this' is now constrained to
593/// be a vector with same num elements as VTOperand.
594bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand,
595                                             TreePattern &TP) {
596  if (TP.hasError())
597    return false;
598
599  // "This" must be a vector and "VTOperand" must be a vector.
600  bool MadeChange = false;
601  MadeChange |= EnforceVector(TP);
602  MadeChange |= VTOperand.EnforceVector(TP);
603
604  // If we know one of the vector types, it forces the other type to agree.
605  if (isConcrete()) {
606    MVT IVT = getConcrete();
607    unsigned NumElems = IVT.getVectorNumElements();
608
609    // Only keep types that have same elements as 'this'.
610    TypeSet InputSet(VTOperand);
611
612    auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
613                            [NumElems](MVT VVT) {
614                              return VVT.getVectorNumElements() != NumElems;
615                            });
616    MadeChange |= I != VTOperand.TypeVec.end();
617    VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
618
619    if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
620      TP.error("Type inference contradiction found, forcing '" +
621               InputSet.getName() + "' to have same number elements as '" +
622               getName() + "'");
623      return false;
624    }
625  } else if (VTOperand.isConcrete()) {
626    MVT IVT = VTOperand.getConcrete();
627    unsigned NumElems = IVT.getVectorNumElements();
628
629    // Only keep types that have same elements as VTOperand.
630    TypeSet InputSet(*this);
631
632    auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
633                            [NumElems](MVT VVT) {
634                              return VVT.getVectorNumElements() != NumElems;
635                            });
636    MadeChange |= I != TypeVec.end();
637    TypeVec.erase(I, TypeVec.end());
638
639    if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
640      TP.error("Type inference contradiction found, forcing '" +
641               InputSet.getName() + "' to have same number elements than '" +
642               VTOperand.getName() + "'");
643      return false;
644    }
645  }
646
647  return MadeChange;
648}
649
650/// EnforceSameSize - 'this' is now constrained to be same size as VTOperand.
651bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand,
652                                    TreePattern &TP) {
653  if (TP.hasError())
654    return false;
655
656  bool MadeChange = false;
657
658  // If we know one of the types, it forces the other type agree.
659  if (isConcrete()) {
660    MVT IVT = getConcrete();
661    unsigned Size = IVT.getSizeInBits();
662
663    // Only keep types that have the same size as 'this'.
664    TypeSet InputSet(VTOperand);
665
666    auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
667                            [&](MVT VT) {
668                              return VT.getSizeInBits() != Size;
669                            });
670    MadeChange |= I != VTOperand.TypeVec.end();
671    VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
672
673    if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
674      TP.error("Type inference contradiction found, forcing '" +
675               InputSet.getName() + "' to have same size as '" +
676               getName() + "'");
677      return false;
678    }
679  } else if (VTOperand.isConcrete()) {
680    MVT IVT = VTOperand.getConcrete();
681    unsigned Size = IVT.getSizeInBits();
682
683    // Only keep types that have the same size as VTOperand.
684    TypeSet InputSet(*this);
685
686    auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
687                            [&](MVT VT) {
688                              return VT.getSizeInBits() != Size;
689                            });
690    MadeChange |= I != TypeVec.end();
691    TypeVec.erase(I, TypeVec.end());
692
693    if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
694      TP.error("Type inference contradiction found, forcing '" +
695               InputSet.getName() + "' to have same size as '" +
696               VTOperand.getName() + "'");
697      return false;
698    }
699  }
700
701  return MadeChange;
702}
703
704//===----------------------------------------------------------------------===//
705// Helpers for working with extended types.
706
707/// Dependent variable map for CodeGenDAGPattern variant generation
708typedef std::map<std::string, int> DepVarMap;
709
710static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
711  if (N->isLeaf()) {
712    if (isa<DefInit>(N->getLeafValue()))
713      DepMap[N->getName()]++;
714  } else {
715    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
716      FindDepVarsOf(N->getChild(i), DepMap);
717  }
718}
719
720/// Find dependent variables within child patterns
721static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
722  DepVarMap depcounts;
723  FindDepVarsOf(N, depcounts);
724  for (const std::pair<std::string, int> &Pair : depcounts) {
725    if (Pair.second > 1)
726      DepVars.insert(Pair.first);
727  }
728}
729
730#ifndef NDEBUG
731/// Dump the dependent variable set:
732static void DumpDepVars(MultipleUseVarSet &DepVars) {
733  if (DepVars.empty()) {
734    DEBUG(errs() << "<empty set>");
735  } else {
736    DEBUG(errs() << "[ ");
737    for (const std::string &DepVar : DepVars) {
738      DEBUG(errs() << DepVar << " ");
739    }
740    DEBUG(errs() << "]");
741  }
742}
743#endif
744
745
746//===----------------------------------------------------------------------===//
747// TreePredicateFn Implementation
748//===----------------------------------------------------------------------===//
749
750/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
751TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
752  assert((getPredCode().empty() || getImmCode().empty()) &&
753        ".td file corrupt: can't have a node predicate *and* an imm predicate");
754}
755
756std::string TreePredicateFn::getPredCode() const {
757  return PatFragRec->getRecord()->getValueAsString("PredicateCode");
758}
759
760std::string TreePredicateFn::getImmCode() const {
761  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
762}
763
764
765/// isAlwaysTrue - Return true if this is a noop predicate.
766bool TreePredicateFn::isAlwaysTrue() const {
767  return getPredCode().empty() && getImmCode().empty();
768}
769
770/// Return the name to use in the generated code to reference this, this is
771/// "Predicate_foo" if from a pattern fragment "foo".
772std::string TreePredicateFn::getFnName() const {
773  return "Predicate_" + PatFragRec->getRecord()->getName();
774}
775
776/// getCodeToRunOnSDNode - Return the code for the function body that
777/// evaluates this predicate.  The argument is expected to be in "Node",
778/// not N.  This handles casting and conversion to a concrete node type as
779/// appropriate.
780std::string TreePredicateFn::getCodeToRunOnSDNode() const {
781  // Handle immediate predicates first.
782  std::string ImmCode = getImmCode();
783  if (!ImmCode.empty()) {
784    std::string Result =
785      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
786    return Result + ImmCode;
787  }
788
789  // Handle arbitrary node predicates.
790  assert(!getPredCode().empty() && "Don't have any predicate code!");
791  std::string ClassName;
792  if (PatFragRec->getOnlyTree()->isLeaf())
793    ClassName = "SDNode";
794  else {
795    Record *Op = PatFragRec->getOnlyTree()->getOperator();
796    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
797  }
798  std::string Result;
799  if (ClassName == "SDNode")
800    Result = "    SDNode *N = Node;\n";
801  else
802    Result = "    auto *N = cast<" + ClassName + ">(Node);\n";
803
804  return Result + getPredCode();
805}
806
807//===----------------------------------------------------------------------===//
808// PatternToMatch implementation
809//
810
811
812/// getPatternSize - Return the 'size' of this pattern.  We want to match large
813/// patterns before small ones.  This is used to determine the size of a
814/// pattern.
815static unsigned getPatternSize(const TreePatternNode *P,
816                               const CodeGenDAGPatterns &CGP) {
817  unsigned Size = 3;  // The node itself.
818  // If the root node is a ConstantSDNode, increases its size.
819  // e.g. (set R32:$dst, 0).
820  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
821    Size += 2;
822
823  // FIXME: This is a hack to statically increase the priority of patterns
824  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
825  // Later we can allow complexity / cost for each pattern to be (optionally)
826  // specified. To get best possible pattern match we'll need to dynamically
827  // calculate the complexity of all patterns a dag can potentially map to.
828  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
829  if (AM) {
830    Size += AM->getNumOperands() * 3;
831
832    // We don't want to count any children twice, so return early.
833    return Size;
834  }
835
836  // If this node has some predicate function that must match, it adds to the
837  // complexity of this node.
838  if (!P->getPredicateFns().empty())
839    ++Size;
840
841  // Count children in the count if they are also nodes.
842  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
843    TreePatternNode *Child = P->getChild(i);
844    if (!Child->isLeaf() && Child->getNumTypes() &&
845        Child->getType(0) != MVT::Other)
846      Size += getPatternSize(Child, CGP);
847    else if (Child->isLeaf()) {
848      if (isa<IntInit>(Child->getLeafValue()))
849        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
850      else if (Child->getComplexPatternInfo(CGP))
851        Size += getPatternSize(Child, CGP);
852      else if (!Child->getPredicateFns().empty())
853        ++Size;
854    }
855  }
856
857  return Size;
858}
859
860/// Compute the complexity metric for the input pattern.  This roughly
861/// corresponds to the number of nodes that are covered.
862int PatternToMatch::
863getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
864  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
865}
866
867
868/// getPredicateCheck - Return a single string containing all of this
869/// pattern's predicates concatenated with "&&" operators.
870///
871std::string PatternToMatch::getPredicateCheck() const {
872  SmallVector<Record *, 4> PredicateRecs;
873  for (Init *I : Predicates->getValues()) {
874    if (DefInit *Pred = dyn_cast<DefInit>(I)) {
875      Record *Def = Pred->getDef();
876      if (!Def->isSubClassOf("Predicate")) {
877#ifndef NDEBUG
878        Def->dump();
879#endif
880        llvm_unreachable("Unknown predicate type!");
881      }
882      PredicateRecs.push_back(Def);
883    }
884  }
885  // Sort so that different orders get canonicalized to the same string.
886  std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord());
887
888  SmallString<128> PredicateCheck;
889  for (Record *Pred : PredicateRecs) {
890    if (!PredicateCheck.empty())
891      PredicateCheck += " && ";
892    PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")";
893  }
894
895  return PredicateCheck.str();
896}
897
898//===----------------------------------------------------------------------===//
899// SDTypeConstraint implementation
900//
901
902SDTypeConstraint::SDTypeConstraint(Record *R) {
903  OperandNo = R->getValueAsInt("OperandNum");
904
905  if (R->isSubClassOf("SDTCisVT")) {
906    ConstraintType = SDTCisVT;
907    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
908    if (x.SDTCisVT_Info.VT == MVT::isVoid)
909      PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
910
911  } else if (R->isSubClassOf("SDTCisPtrTy")) {
912    ConstraintType = SDTCisPtrTy;
913  } else if (R->isSubClassOf("SDTCisInt")) {
914    ConstraintType = SDTCisInt;
915  } else if (R->isSubClassOf("SDTCisFP")) {
916    ConstraintType = SDTCisFP;
917  } else if (R->isSubClassOf("SDTCisVec")) {
918    ConstraintType = SDTCisVec;
919  } else if (R->isSubClassOf("SDTCisSameAs")) {
920    ConstraintType = SDTCisSameAs;
921    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
922  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
923    ConstraintType = SDTCisVTSmallerThanOp;
924    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
925      R->getValueAsInt("OtherOperandNum");
926  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
927    ConstraintType = SDTCisOpSmallerThanOp;
928    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
929      R->getValueAsInt("BigOperandNum");
930  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
931    ConstraintType = SDTCisEltOfVec;
932    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
933  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
934    ConstraintType = SDTCisSubVecOfVec;
935    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
936      R->getValueAsInt("OtherOpNum");
937  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
938    ConstraintType = SDTCVecEltisVT;
939    x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
940    if (MVT(x.SDTCVecEltisVT_Info.VT).isVector())
941      PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT");
942    if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() &&
943        !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint())
944      PrintFatalError(R->getLoc(), "Must use integer or floating point type "
945                                   "as SDTCVecEltisVT");
946  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
947    ConstraintType = SDTCisSameNumEltsAs;
948    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
949      R->getValueAsInt("OtherOperandNum");
950  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
951    ConstraintType = SDTCisSameSizeAs;
952    x.SDTCisSameSizeAs_Info.OtherOperandNum =
953      R->getValueAsInt("OtherOperandNum");
954  } else {
955    PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
956  }
957}
958
959/// getOperandNum - Return the node corresponding to operand #OpNo in tree
960/// N, and the result number in ResNo.
961static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
962                                      const SDNodeInfo &NodeInfo,
963                                      unsigned &ResNo) {
964  unsigned NumResults = NodeInfo.getNumResults();
965  if (OpNo < NumResults) {
966    ResNo = OpNo;
967    return N;
968  }
969
970  OpNo -= NumResults;
971
972  if (OpNo >= N->getNumChildren()) {
973    std::string S;
974    raw_string_ostream OS(S);
975    OS << "Invalid operand number in type constraint "
976           << (OpNo+NumResults) << " ";
977    N->print(OS);
978    PrintFatalError(OS.str());
979  }
980
981  return N->getChild(OpNo);
982}
983
984/// ApplyTypeConstraint - Given a node in a pattern, apply this type
985/// constraint to the nodes operands.  This returns true if it makes a
986/// change, false otherwise.  If a type contradiction is found, flag an error.
987bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
988                                           const SDNodeInfo &NodeInfo,
989                                           TreePattern &TP) const {
990  if (TP.hasError())
991    return false;
992
993  unsigned ResNo = 0; // The result number being referenced.
994  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
995
996  switch (ConstraintType) {
997  case SDTCisVT:
998    // Operand must be a particular type.
999    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
1000  case SDTCisPtrTy:
1001    // Operand must be same as target pointer type.
1002    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1003  case SDTCisInt:
1004    // Require it to be one of the legal integer VTs.
1005    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
1006  case SDTCisFP:
1007    // Require it to be one of the legal fp VTs.
1008    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
1009  case SDTCisVec:
1010    // Require it to be one of the legal vector VTs.
1011    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
1012  case SDTCisSameAs: {
1013    unsigned OResNo = 0;
1014    TreePatternNode *OtherNode =
1015      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1016    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1017           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1018  }
1019  case SDTCisVTSmallerThanOp: {
1020    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1021    // have an integer type that is smaller than the VT.
1022    if (!NodeToApply->isLeaf() ||
1023        !isa<DefInit>(NodeToApply->getLeafValue()) ||
1024        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1025               ->isSubClassOf("ValueType")) {
1026      TP.error(N->getOperator()->getName() + " expects a VT operand!");
1027      return false;
1028    }
1029    MVT::SimpleValueType VT =
1030     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
1031
1032    EEVT::TypeSet TypeListTmp(VT, TP);
1033
1034    unsigned OResNo = 0;
1035    TreePatternNode *OtherNode =
1036      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1037                    OResNo);
1038
1039    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
1040  }
1041  case SDTCisOpSmallerThanOp: {
1042    unsigned BResNo = 0;
1043    TreePatternNode *BigOperand =
1044      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1045                    BResNo);
1046    return NodeToApply->getExtType(ResNo).
1047                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
1048  }
1049  case SDTCisEltOfVec: {
1050    unsigned VResNo = 0;
1051    TreePatternNode *VecOperand =
1052      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1053                    VResNo);
1054
1055    // Filter vector types out of VecOperand that don't have the right element
1056    // type.
1057    return VecOperand->getExtType(VResNo).
1058      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
1059  }
1060  case SDTCisSubVecOfVec: {
1061    unsigned VResNo = 0;
1062    TreePatternNode *BigVecOperand =
1063      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1064                    VResNo);
1065
1066    // Filter vector types out of BigVecOperand that don't have the
1067    // right subvector type.
1068    return BigVecOperand->getExtType(VResNo).
1069      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
1070  }
1071  case SDTCVecEltisVT: {
1072    return NodeToApply->getExtType(ResNo).
1073      EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP);
1074  }
1075  case SDTCisSameNumEltsAs: {
1076    unsigned OResNo = 0;
1077    TreePatternNode *OtherNode =
1078      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1079                    N, NodeInfo, OResNo);
1080    return OtherNode->getExtType(OResNo).
1081      EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP);
1082  }
1083  case SDTCisSameSizeAs: {
1084    unsigned OResNo = 0;
1085    TreePatternNode *OtherNode =
1086      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1087                    N, NodeInfo, OResNo);
1088    return OtherNode->getExtType(OResNo).
1089      EnforceSameSize(NodeToApply->getExtType(ResNo), TP);
1090  }
1091  }
1092  llvm_unreachable("Invalid ConstraintType!");
1093}
1094
1095// Update the node type to match an instruction operand or result as specified
1096// in the ins or outs lists on the instruction definition. Return true if the
1097// type was actually changed.
1098bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1099                                             Record *Operand,
1100                                             TreePattern &TP) {
1101  // The 'unknown' operand indicates that types should be inferred from the
1102  // context.
1103  if (Operand->isSubClassOf("unknown_class"))
1104    return false;
1105
1106  // The Operand class specifies a type directly.
1107  if (Operand->isSubClassOf("Operand"))
1108    return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
1109                          TP);
1110
1111  // PointerLikeRegClass has a type that is determined at runtime.
1112  if (Operand->isSubClassOf("PointerLikeRegClass"))
1113    return UpdateNodeType(ResNo, MVT::iPTR, TP);
1114
1115  // Both RegisterClass and RegisterOperand operands derive their types from a
1116  // register class def.
1117  Record *RC = nullptr;
1118  if (Operand->isSubClassOf("RegisterClass"))
1119    RC = Operand;
1120  else if (Operand->isSubClassOf("RegisterOperand"))
1121    RC = Operand->getValueAsDef("RegClass");
1122
1123  assert(RC && "Unknown operand type");
1124  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1125  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1126}
1127
1128
1129//===----------------------------------------------------------------------===//
1130// SDNodeInfo implementation
1131//
1132SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
1133  EnumName    = R->getValueAsString("Opcode");
1134  SDClassName = R->getValueAsString("SDClass");
1135  Record *TypeProfile = R->getValueAsDef("TypeProfile");
1136  NumResults = TypeProfile->getValueAsInt("NumResults");
1137  NumOperands = TypeProfile->getValueAsInt("NumOperands");
1138
1139  // Parse the properties.
1140  Properties = 0;
1141  for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1142    if (Property->getName() == "SDNPCommutative") {
1143      Properties |= 1 << SDNPCommutative;
1144    } else if (Property->getName() == "SDNPAssociative") {
1145      Properties |= 1 << SDNPAssociative;
1146    } else if (Property->getName() == "SDNPHasChain") {
1147      Properties |= 1 << SDNPHasChain;
1148    } else if (Property->getName() == "SDNPOutGlue") {
1149      Properties |= 1 << SDNPOutGlue;
1150    } else if (Property->getName() == "SDNPInGlue") {
1151      Properties |= 1 << SDNPInGlue;
1152    } else if (Property->getName() == "SDNPOptInGlue") {
1153      Properties |= 1 << SDNPOptInGlue;
1154    } else if (Property->getName() == "SDNPMayStore") {
1155      Properties |= 1 << SDNPMayStore;
1156    } else if (Property->getName() == "SDNPMayLoad") {
1157      Properties |= 1 << SDNPMayLoad;
1158    } else if (Property->getName() == "SDNPSideEffect") {
1159      Properties |= 1 << SDNPSideEffect;
1160    } else if (Property->getName() == "SDNPMemOperand") {
1161      Properties |= 1 << SDNPMemOperand;
1162    } else if (Property->getName() == "SDNPVariadic") {
1163      Properties |= 1 << SDNPVariadic;
1164    } else {
1165      PrintFatalError("Unknown SD Node property '" +
1166                      Property->getName() + "' on node '" +
1167                      R->getName() + "'!");
1168    }
1169  }
1170
1171
1172  // Parse the type constraints.
1173  std::vector<Record*> ConstraintList =
1174    TypeProfile->getValueAsListOfDefs("Constraints");
1175  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1176}
1177
1178/// getKnownType - If the type constraints on this node imply a fixed type
1179/// (e.g. all stores return void, etc), then return it as an
1180/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1181MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1182  unsigned NumResults = getNumResults();
1183  assert(NumResults <= 1 &&
1184         "We only work with nodes with zero or one result so far!");
1185  assert(ResNo == 0 && "Only handles single result nodes so far");
1186
1187  for (const SDTypeConstraint &Constraint : TypeConstraints) {
1188    // Make sure that this applies to the correct node result.
1189    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1190      continue;
1191
1192    switch (Constraint.ConstraintType) {
1193    default: break;
1194    case SDTypeConstraint::SDTCisVT:
1195      return Constraint.x.SDTCisVT_Info.VT;
1196    case SDTypeConstraint::SDTCisPtrTy:
1197      return MVT::iPTR;
1198    }
1199  }
1200  return MVT::Other;
1201}
1202
1203//===----------------------------------------------------------------------===//
1204// TreePatternNode implementation
1205//
1206
1207TreePatternNode::~TreePatternNode() {
1208#if 0 // FIXME: implement refcounted tree nodes!
1209  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1210    delete getChild(i);
1211#endif
1212}
1213
1214static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1215  if (Operator->getName() == "set" ||
1216      Operator->getName() == "implicit")
1217    return 0;  // All return nothing.
1218
1219  if (Operator->isSubClassOf("Intrinsic"))
1220    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1221
1222  if (Operator->isSubClassOf("SDNode"))
1223    return CDP.getSDNodeInfo(Operator).getNumResults();
1224
1225  if (Operator->isSubClassOf("PatFrag")) {
1226    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1227    // the forward reference case where one pattern fragment references another
1228    // before it is processed.
1229    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1230      return PFRec->getOnlyTree()->getNumTypes();
1231
1232    // Get the result tree.
1233    DagInit *Tree = Operator->getValueAsDag("Fragment");
1234    Record *Op = nullptr;
1235    if (Tree)
1236      if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1237        Op = DI->getDef();
1238    assert(Op && "Invalid Fragment");
1239    return GetNumNodeResults(Op, CDP);
1240  }
1241
1242  if (Operator->isSubClassOf("Instruction")) {
1243    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1244
1245    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1246
1247    // Subtract any defaulted outputs.
1248    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1249      Record *OperandNode = InstInfo.Operands[i].Rec;
1250
1251      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1252          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1253        --NumDefsToAdd;
1254    }
1255
1256    // Add on one implicit def if it has a resolvable type.
1257    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1258      ++NumDefsToAdd;
1259    return NumDefsToAdd;
1260  }
1261
1262  if (Operator->isSubClassOf("SDNodeXForm"))
1263    return 1;  // FIXME: Generalize SDNodeXForm
1264
1265  if (Operator->isSubClassOf("ValueType"))
1266    return 1;  // A type-cast of one result.
1267
1268  if (Operator->isSubClassOf("ComplexPattern"))
1269    return 1;
1270
1271  Operator->dump();
1272  PrintFatalError("Unhandled node in GetNumNodeResults");
1273}
1274
1275void TreePatternNode::print(raw_ostream &OS) const {
1276  if (isLeaf())
1277    OS << *getLeafValue();
1278  else
1279    OS << '(' << getOperator()->getName();
1280
1281  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1282    OS << ':' << getExtType(i).getName();
1283
1284  if (!isLeaf()) {
1285    if (getNumChildren() != 0) {
1286      OS << " ";
1287      getChild(0)->print(OS);
1288      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1289        OS << ", ";
1290        getChild(i)->print(OS);
1291      }
1292    }
1293    OS << ")";
1294  }
1295
1296  for (const TreePredicateFn &Pred : PredicateFns)
1297    OS << "<<P:" << Pred.getFnName() << ">>";
1298  if (TransformFn)
1299    OS << "<<X:" << TransformFn->getName() << ">>";
1300  if (!getName().empty())
1301    OS << ":$" << getName();
1302
1303}
1304void TreePatternNode::dump() const {
1305  print(errs());
1306}
1307
1308/// isIsomorphicTo - Return true if this node is recursively
1309/// isomorphic to the specified node.  For this comparison, the node's
1310/// entire state is considered. The assigned name is ignored, since
1311/// nodes with differing names are considered isomorphic. However, if
1312/// the assigned name is present in the dependent variable set, then
1313/// the assigned name is considered significant and the node is
1314/// isomorphic if the names match.
1315bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1316                                     const MultipleUseVarSet &DepVars) const {
1317  if (N == this) return true;
1318  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1319      getPredicateFns() != N->getPredicateFns() ||
1320      getTransformFn() != N->getTransformFn())
1321    return false;
1322
1323  if (isLeaf()) {
1324    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1325      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1326        return ((DI->getDef() == NDI->getDef())
1327                && (DepVars.find(getName()) == DepVars.end()
1328                    || getName() == N->getName()));
1329      }
1330    }
1331    return getLeafValue() == N->getLeafValue();
1332  }
1333
1334  if (N->getOperator() != getOperator() ||
1335      N->getNumChildren() != getNumChildren()) return false;
1336  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1337    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1338      return false;
1339  return true;
1340}
1341
1342/// clone - Make a copy of this tree and all of its children.
1343///
1344TreePatternNode *TreePatternNode::clone() const {
1345  TreePatternNode *New;
1346  if (isLeaf()) {
1347    New = new TreePatternNode(getLeafValue(), getNumTypes());
1348  } else {
1349    std::vector<TreePatternNode*> CChildren;
1350    CChildren.reserve(Children.size());
1351    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1352      CChildren.push_back(getChild(i)->clone());
1353    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1354  }
1355  New->setName(getName());
1356  New->Types = Types;
1357  New->setPredicateFns(getPredicateFns());
1358  New->setTransformFn(getTransformFn());
1359  return New;
1360}
1361
1362/// RemoveAllTypes - Recursively strip all the types of this tree.
1363void TreePatternNode::RemoveAllTypes() {
1364  // Reset to unknown type.
1365  std::fill(Types.begin(), Types.end(), EEVT::TypeSet());
1366  if (isLeaf()) return;
1367  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1368    getChild(i)->RemoveAllTypes();
1369}
1370
1371
1372/// SubstituteFormalArguments - Replace the formal arguments in this tree
1373/// with actual values specified by ArgMap.
1374void TreePatternNode::
1375SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1376  if (isLeaf()) return;
1377
1378  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1379    TreePatternNode *Child = getChild(i);
1380    if (Child->isLeaf()) {
1381      Init *Val = Child->getLeafValue();
1382      // Note that, when substituting into an output pattern, Val might be an
1383      // UnsetInit.
1384      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1385          cast<DefInit>(Val)->getDef()->getName() == "node")) {
1386        // We found a use of a formal argument, replace it with its value.
1387        TreePatternNode *NewChild = ArgMap[Child->getName()];
1388        assert(NewChild && "Couldn't find formal argument!");
1389        assert((Child->getPredicateFns().empty() ||
1390                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1391               "Non-empty child predicate clobbered!");
1392        setChild(i, NewChild);
1393      }
1394    } else {
1395      getChild(i)->SubstituteFormalArguments(ArgMap);
1396    }
1397  }
1398}
1399
1400
1401/// InlinePatternFragments - If this pattern refers to any pattern
1402/// fragments, inline them into place, giving us a pattern without any
1403/// PatFrag references.
1404TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1405  if (TP.hasError())
1406    return nullptr;
1407
1408  if (isLeaf())
1409     return this;  // nothing to do.
1410  Record *Op = getOperator();
1411
1412  if (!Op->isSubClassOf("PatFrag")) {
1413    // Just recursively inline children nodes.
1414    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1415      TreePatternNode *Child = getChild(i);
1416      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1417
1418      assert((Child->getPredicateFns().empty() ||
1419              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1420             "Non-empty child predicate clobbered!");
1421
1422      setChild(i, NewChild);
1423    }
1424    return this;
1425  }
1426
1427  // Otherwise, we found a reference to a fragment.  First, look up its
1428  // TreePattern record.
1429  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1430
1431  // Verify that we are passing the right number of operands.
1432  if (Frag->getNumArgs() != Children.size()) {
1433    TP.error("'" + Op->getName() + "' fragment requires " +
1434             utostr(Frag->getNumArgs()) + " operands!");
1435    return nullptr;
1436  }
1437
1438  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1439
1440  TreePredicateFn PredFn(Frag);
1441  if (!PredFn.isAlwaysTrue())
1442    FragTree->addPredicateFn(PredFn);
1443
1444  // Resolve formal arguments to their actual value.
1445  if (Frag->getNumArgs()) {
1446    // Compute the map of formal to actual arguments.
1447    std::map<std::string, TreePatternNode*> ArgMap;
1448    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1449      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1450
1451    FragTree->SubstituteFormalArguments(ArgMap);
1452  }
1453
1454  FragTree->setName(getName());
1455  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1456    FragTree->UpdateNodeType(i, getExtType(i), TP);
1457
1458  // Transfer in the old predicates.
1459  for (const TreePredicateFn &Pred : getPredicateFns())
1460    FragTree->addPredicateFn(Pred);
1461
1462  // Get a new copy of this fragment to stitch into here.
1463  //delete this;    // FIXME: implement refcounting!
1464
1465  // The fragment we inlined could have recursive inlining that is needed.  See
1466  // if there are any pattern fragments in it and inline them as needed.
1467  return FragTree->InlinePatternFragments(TP);
1468}
1469
1470/// getImplicitType - Check to see if the specified record has an implicit
1471/// type which should be applied to it.  This will infer the type of register
1472/// references from the register file information, for example.
1473///
1474/// When Unnamed is set, return the type of a DAG operand with no name, such as
1475/// the F8RC register class argument in:
1476///
1477///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1478///
1479/// When Unnamed is false, return the type of a named DAG operand such as the
1480/// GPR:$src operand above.
1481///
1482static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1483                                     bool NotRegisters,
1484                                     bool Unnamed,
1485                                     TreePattern &TP) {
1486  // Check to see if this is a register operand.
1487  if (R->isSubClassOf("RegisterOperand")) {
1488    assert(ResNo == 0 && "Regoperand ref only has one result!");
1489    if (NotRegisters)
1490      return EEVT::TypeSet(); // Unknown.
1491    Record *RegClass = R->getValueAsDef("RegClass");
1492    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1493    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1494  }
1495
1496  // Check to see if this is a register or a register class.
1497  if (R->isSubClassOf("RegisterClass")) {
1498    assert(ResNo == 0 && "Regclass ref only has one result!");
1499    // An unnamed register class represents itself as an i32 immediate, for
1500    // example on a COPY_TO_REGCLASS instruction.
1501    if (Unnamed)
1502      return EEVT::TypeSet(MVT::i32, TP);
1503
1504    // In a named operand, the register class provides the possible set of
1505    // types.
1506    if (NotRegisters)
1507      return EEVT::TypeSet(); // Unknown.
1508    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1509    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1510  }
1511
1512  if (R->isSubClassOf("PatFrag")) {
1513    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1514    // Pattern fragment types will be resolved when they are inlined.
1515    return EEVT::TypeSet(); // Unknown.
1516  }
1517
1518  if (R->isSubClassOf("Register")) {
1519    assert(ResNo == 0 && "Registers only produce one result!");
1520    if (NotRegisters)
1521      return EEVT::TypeSet(); // Unknown.
1522    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1523    return EEVT::TypeSet(T.getRegisterVTs(R));
1524  }
1525
1526  if (R->isSubClassOf("SubRegIndex")) {
1527    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1528    return EEVT::TypeSet(MVT::i32, TP);
1529  }
1530
1531  if (R->isSubClassOf("ValueType")) {
1532    assert(ResNo == 0 && "This node only has one result!");
1533    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1534    //
1535    //   (sext_inreg GPR:$src, i16)
1536    //                         ~~~
1537    if (Unnamed)
1538      return EEVT::TypeSet(MVT::Other, TP);
1539    // With a name, the ValueType simply provides the type of the named
1540    // variable.
1541    //
1542    //   (sext_inreg i32:$src, i16)
1543    //               ~~~~~~~~
1544    if (NotRegisters)
1545      return EEVT::TypeSet(); // Unknown.
1546    return EEVT::TypeSet(getValueType(R), TP);
1547  }
1548
1549  if (R->isSubClassOf("CondCode")) {
1550    assert(ResNo == 0 && "This node only has one result!");
1551    // Using a CondCodeSDNode.
1552    return EEVT::TypeSet(MVT::Other, TP);
1553  }
1554
1555  if (R->isSubClassOf("ComplexPattern")) {
1556    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1557    if (NotRegisters)
1558      return EEVT::TypeSet(); // Unknown.
1559   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1560                         TP);
1561  }
1562  if (R->isSubClassOf("PointerLikeRegClass")) {
1563    assert(ResNo == 0 && "Regclass can only have one result!");
1564    return EEVT::TypeSet(MVT::iPTR, TP);
1565  }
1566
1567  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1568      R->getName() == "zero_reg") {
1569    // Placeholder.
1570    return EEVT::TypeSet(); // Unknown.
1571  }
1572
1573  if (R->isSubClassOf("Operand"))
1574    return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
1575
1576  TP.error("Unknown node flavor used in pattern: " + R->getName());
1577  return EEVT::TypeSet(MVT::Other, TP);
1578}
1579
1580
1581/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1582/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1583const CodeGenIntrinsic *TreePatternNode::
1584getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1585  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1586      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1587      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1588    return nullptr;
1589
1590  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1591  return &CDP.getIntrinsicInfo(IID);
1592}
1593
1594/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1595/// return the ComplexPattern information, otherwise return null.
1596const ComplexPattern *
1597TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1598  Record *Rec;
1599  if (isLeaf()) {
1600    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1601    if (!DI)
1602      return nullptr;
1603    Rec = DI->getDef();
1604  } else
1605    Rec = getOperator();
1606
1607  if (!Rec->isSubClassOf("ComplexPattern"))
1608    return nullptr;
1609  return &CGP.getComplexPattern(Rec);
1610}
1611
1612unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1613  // A ComplexPattern specifically declares how many results it fills in.
1614  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1615    return CP->getNumOperands();
1616
1617  // If MIOperandInfo is specified, that gives the count.
1618  if (isLeaf()) {
1619    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1620    if (DI && DI->getDef()->isSubClassOf("Operand")) {
1621      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1622      if (MIOps->getNumArgs())
1623        return MIOps->getNumArgs();
1624    }
1625  }
1626
1627  // Otherwise there is just one result.
1628  return 1;
1629}
1630
1631/// NodeHasProperty - Return true if this node has the specified property.
1632bool TreePatternNode::NodeHasProperty(SDNP Property,
1633                                      const CodeGenDAGPatterns &CGP) const {
1634  if (isLeaf()) {
1635    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1636      return CP->hasProperty(Property);
1637    return false;
1638  }
1639
1640  Record *Operator = getOperator();
1641  if (!Operator->isSubClassOf("SDNode")) return false;
1642
1643  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1644}
1645
1646
1647
1648
1649/// TreeHasProperty - Return true if any node in this tree has the specified
1650/// property.
1651bool TreePatternNode::TreeHasProperty(SDNP Property,
1652                                      const CodeGenDAGPatterns &CGP) const {
1653  if (NodeHasProperty(Property, CGP))
1654    return true;
1655  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1656    if (getChild(i)->TreeHasProperty(Property, CGP))
1657      return true;
1658  return false;
1659}
1660
1661/// isCommutativeIntrinsic - Return true if the node corresponds to a
1662/// commutative intrinsic.
1663bool
1664TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1665  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1666    return Int->isCommutative;
1667  return false;
1668}
1669
1670static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1671  if (!N->isLeaf())
1672    return N->getOperator()->isSubClassOf(Class);
1673
1674  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1675  if (DI && DI->getDef()->isSubClassOf(Class))
1676    return true;
1677
1678  return false;
1679}
1680
1681static void emitTooManyOperandsError(TreePattern &TP,
1682                                     StringRef InstName,
1683                                     unsigned Expected,
1684                                     unsigned Actual) {
1685  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1686           " operands but expected only " + Twine(Expected) + "!");
1687}
1688
1689static void emitTooFewOperandsError(TreePattern &TP,
1690                                    StringRef InstName,
1691                                    unsigned Actual) {
1692  TP.error("Instruction '" + InstName +
1693           "' expects more than the provided " + Twine(Actual) + " operands!");
1694}
1695
1696/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1697/// this node and its children in the tree.  This returns true if it makes a
1698/// change, false otherwise.  If a type contradiction is found, flag an error.
1699bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1700  if (TP.hasError())
1701    return false;
1702
1703  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1704  if (isLeaf()) {
1705    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1706      // If it's a regclass or something else known, include the type.
1707      bool MadeChange = false;
1708      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1709        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1710                                                        NotRegisters,
1711                                                        !hasName(), TP), TP);
1712      return MadeChange;
1713    }
1714
1715    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1716      assert(Types.size() == 1 && "Invalid IntInit");
1717
1718      // Int inits are always integers. :)
1719      bool MadeChange = Types[0].EnforceInteger(TP);
1720
1721      if (!Types[0].isConcrete())
1722        return MadeChange;
1723
1724      MVT::SimpleValueType VT = getType(0);
1725      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1726        return MadeChange;
1727
1728      unsigned Size = MVT(VT).getSizeInBits();
1729      // Make sure that the value is representable for this type.
1730      if (Size >= 32) return MadeChange;
1731
1732      // Check that the value doesn't use more bits than we have. It must either
1733      // be a sign- or zero-extended equivalent of the original.
1734      int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1735      if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1736        return MadeChange;
1737
1738      TP.error("Integer value '" + itostr(II->getValue()) +
1739               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1740      return false;
1741    }
1742    return false;
1743  }
1744
1745  // special handling for set, which isn't really an SDNode.
1746  if (getOperator()->getName() == "set") {
1747    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1748    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1749    unsigned NC = getNumChildren();
1750
1751    TreePatternNode *SetVal = getChild(NC-1);
1752    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1753
1754    for (unsigned i = 0; i < NC-1; ++i) {
1755      TreePatternNode *Child = getChild(i);
1756      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1757
1758      // Types of operands must match.
1759      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1760      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1761    }
1762    return MadeChange;
1763  }
1764
1765  if (getOperator()->getName() == "implicit") {
1766    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1767
1768    bool MadeChange = false;
1769    for (unsigned i = 0; i < getNumChildren(); ++i)
1770      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1771    return MadeChange;
1772  }
1773
1774  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1775    bool MadeChange = false;
1776
1777    // Apply the result type to the node.
1778    unsigned NumRetVTs = Int->IS.RetVTs.size();
1779    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1780
1781    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1782      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1783
1784    if (getNumChildren() != NumParamVTs + 1) {
1785      TP.error("Intrinsic '" + Int->Name + "' expects " +
1786               utostr(NumParamVTs) + " operands, not " +
1787               utostr(getNumChildren() - 1) + " operands!");
1788      return false;
1789    }
1790
1791    // Apply type info to the intrinsic ID.
1792    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1793
1794    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1795      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1796
1797      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1798      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1799      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1800    }
1801    return MadeChange;
1802  }
1803
1804  if (getOperator()->isSubClassOf("SDNode")) {
1805    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1806
1807    // Check that the number of operands is sane.  Negative operands -> varargs.
1808    if (NI.getNumOperands() >= 0 &&
1809        getNumChildren() != (unsigned)NI.getNumOperands()) {
1810      TP.error(getOperator()->getName() + " node requires exactly " +
1811               itostr(NI.getNumOperands()) + " operands!");
1812      return false;
1813    }
1814
1815    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1816    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1817      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1818    return MadeChange;
1819  }
1820
1821  if (getOperator()->isSubClassOf("Instruction")) {
1822    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1823    CodeGenInstruction &InstInfo =
1824      CDP.getTargetInfo().getInstruction(getOperator());
1825
1826    bool MadeChange = false;
1827
1828    // Apply the result types to the node, these come from the things in the
1829    // (outs) list of the instruction.
1830    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1831                                        Inst.getNumResults());
1832    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1833      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1834
1835    // If the instruction has implicit defs, we apply the first one as a result.
1836    // FIXME: This sucks, it should apply all implicit defs.
1837    if (!InstInfo.ImplicitDefs.empty()) {
1838      unsigned ResNo = NumResultsToAdd;
1839
1840      // FIXME: Generalize to multiple possible types and multiple possible
1841      // ImplicitDefs.
1842      MVT::SimpleValueType VT =
1843        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1844
1845      if (VT != MVT::Other)
1846        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1847    }
1848
1849    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1850    // be the same.
1851    if (getOperator()->getName() == "INSERT_SUBREG") {
1852      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1853      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1854      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1855    } else if (getOperator()->getName() == "REG_SEQUENCE") {
1856      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
1857      // variadic.
1858
1859      unsigned NChild = getNumChildren();
1860      if (NChild < 3) {
1861        TP.error("REG_SEQUENCE requires at least 3 operands!");
1862        return false;
1863      }
1864
1865      if (NChild % 2 == 0) {
1866        TP.error("REG_SEQUENCE requires an odd number of operands!");
1867        return false;
1868      }
1869
1870      if (!isOperandClass(getChild(0), "RegisterClass")) {
1871        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
1872        return false;
1873      }
1874
1875      for (unsigned I = 1; I < NChild; I += 2) {
1876        TreePatternNode *SubIdxChild = getChild(I + 1);
1877        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
1878          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
1879                   itostr(I + 1) + "!");
1880          return false;
1881        }
1882      }
1883    }
1884
1885    unsigned ChildNo = 0;
1886    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1887      Record *OperandNode = Inst.getOperand(i);
1888
1889      // If the instruction expects a predicate or optional def operand, we
1890      // codegen this by setting the operand to it's default value if it has a
1891      // non-empty DefaultOps field.
1892      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1893          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1894        continue;
1895
1896      // Verify that we didn't run out of provided operands.
1897      if (ChildNo >= getNumChildren()) {
1898        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
1899        return false;
1900      }
1901
1902      TreePatternNode *Child = getChild(ChildNo++);
1903      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1904
1905      // If the operand has sub-operands, they may be provided by distinct
1906      // child patterns, so attempt to match each sub-operand separately.
1907      if (OperandNode->isSubClassOf("Operand")) {
1908        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1909        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1910          // But don't do that if the whole operand is being provided by
1911          // a single ComplexPattern-related Operand.
1912
1913          if (Child->getNumMIResults(CDP) < NumArgs) {
1914            // Match first sub-operand against the child we already have.
1915            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1916            MadeChange |=
1917              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1918
1919            // And the remaining sub-operands against subsequent children.
1920            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1921              if (ChildNo >= getNumChildren()) {
1922                emitTooFewOperandsError(TP, getOperator()->getName(),
1923                                        getNumChildren());
1924                return false;
1925              }
1926              Child = getChild(ChildNo++);
1927
1928              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1929              MadeChange |=
1930                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1931            }
1932            continue;
1933          }
1934        }
1935      }
1936
1937      // If we didn't match by pieces above, attempt to match the whole
1938      // operand now.
1939      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1940    }
1941
1942    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
1943      emitTooManyOperandsError(TP, getOperator()->getName(),
1944                               ChildNo, getNumChildren());
1945      return false;
1946    }
1947
1948    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1949      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1950    return MadeChange;
1951  }
1952
1953  if (getOperator()->isSubClassOf("ComplexPattern")) {
1954    bool MadeChange = false;
1955
1956    for (unsigned i = 0; i < getNumChildren(); ++i)
1957      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1958
1959    return MadeChange;
1960  }
1961
1962  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1963
1964  // Node transforms always take one operand.
1965  if (getNumChildren() != 1) {
1966    TP.error("Node transform '" + getOperator()->getName() +
1967             "' requires one operand!");
1968    return false;
1969  }
1970
1971  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1972
1973
1974  // If either the output or input of the xform does not have exact
1975  // type info. We assume they must be the same. Otherwise, it is perfectly
1976  // legal to transform from one type to a completely different type.
1977#if 0
1978  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1979    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1980    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1981    return MadeChange;
1982  }
1983#endif
1984  return MadeChange;
1985}
1986
1987/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1988/// RHS of a commutative operation, not the on LHS.
1989static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1990  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1991    return true;
1992  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1993    return true;
1994  return false;
1995}
1996
1997
1998/// canPatternMatch - If it is impossible for this pattern to match on this
1999/// target, fill in Reason and return false.  Otherwise, return true.  This is
2000/// used as a sanity check for .td files (to prevent people from writing stuff
2001/// that can never possibly work), and to prevent the pattern permuter from
2002/// generating stuff that is useless.
2003bool TreePatternNode::canPatternMatch(std::string &Reason,
2004                                      const CodeGenDAGPatterns &CDP) {
2005  if (isLeaf()) return true;
2006
2007  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2008    if (!getChild(i)->canPatternMatch(Reason, CDP))
2009      return false;
2010
2011  // If this is an intrinsic, handle cases that would make it not match.  For
2012  // example, if an operand is required to be an immediate.
2013  if (getOperator()->isSubClassOf("Intrinsic")) {
2014    // TODO:
2015    return true;
2016  }
2017
2018  if (getOperator()->isSubClassOf("ComplexPattern"))
2019    return true;
2020
2021  // If this node is a commutative operator, check that the LHS isn't an
2022  // immediate.
2023  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2024  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2025  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2026    // Scan all of the operands of the node and make sure that only the last one
2027    // is a constant node, unless the RHS also is.
2028    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2029      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2030      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2031        if (OnlyOnRHSOfCommutative(getChild(i))) {
2032          Reason="Immediate value must be on the RHS of commutative operators!";
2033          return false;
2034        }
2035    }
2036  }
2037
2038  return true;
2039}
2040
2041//===----------------------------------------------------------------------===//
2042// TreePattern implementation
2043//
2044
2045TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2046                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2047                         isInputPattern(isInput), HasError(false) {
2048  for (Init *I : RawPat->getValues())
2049    Trees.push_back(ParseTreePattern(I, ""));
2050}
2051
2052TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2053                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2054                         isInputPattern(isInput), HasError(false) {
2055  Trees.push_back(ParseTreePattern(Pat, ""));
2056}
2057
2058TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2059                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2060                         isInputPattern(isInput), HasError(false) {
2061  Trees.push_back(Pat);
2062}
2063
2064void TreePattern::error(const Twine &Msg) {
2065  if (HasError)
2066    return;
2067  dump();
2068  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2069  HasError = true;
2070}
2071
2072void TreePattern::ComputeNamedNodes() {
2073  for (TreePatternNode *Tree : Trees)
2074    ComputeNamedNodes(Tree);
2075}
2076
2077void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2078  if (!N->getName().empty())
2079    NamedNodes[N->getName()].push_back(N);
2080
2081  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2082    ComputeNamedNodes(N->getChild(i));
2083}
2084
2085
2086TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2087  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2088    Record *R = DI->getDef();
2089
2090    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2091    // TreePatternNode of its own.  For example:
2092    ///   (foo GPR, imm) -> (foo GPR, (imm))
2093    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2094      return ParseTreePattern(
2095        DagInit::get(DI, "",
2096                     std::vector<std::pair<Init*, std::string> >()),
2097        OpName);
2098
2099    // Input argument?
2100    TreePatternNode *Res = new TreePatternNode(DI, 1);
2101    if (R->getName() == "node" && !OpName.empty()) {
2102      if (OpName.empty())
2103        error("'node' argument requires a name to match with operand list");
2104      Args.push_back(OpName);
2105    }
2106
2107    Res->setName(OpName);
2108    return Res;
2109  }
2110
2111  // ?:$name or just $name.
2112  if (isa<UnsetInit>(TheInit)) {
2113    if (OpName.empty())
2114      error("'?' argument requires a name to match with operand list");
2115    TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2116    Args.push_back(OpName);
2117    Res->setName(OpName);
2118    return Res;
2119  }
2120
2121  if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2122    if (!OpName.empty())
2123      error("Constant int argument should not have a name!");
2124    return new TreePatternNode(II, 1);
2125  }
2126
2127  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2128    // Turn this into an IntInit.
2129    Init *II = BI->convertInitializerTo(IntRecTy::get());
2130    if (!II || !isa<IntInit>(II))
2131      error("Bits value must be constants!");
2132    return ParseTreePattern(II, OpName);
2133  }
2134
2135  DagInit *Dag = dyn_cast<DagInit>(TheInit);
2136  if (!Dag) {
2137    TheInit->dump();
2138    error("Pattern has unexpected init kind!");
2139  }
2140  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2141  if (!OpDef) error("Pattern has unexpected operator type!");
2142  Record *Operator = OpDef->getDef();
2143
2144  if (Operator->isSubClassOf("ValueType")) {
2145    // If the operator is a ValueType, then this must be "type cast" of a leaf
2146    // node.
2147    if (Dag->getNumArgs() != 1)
2148      error("Type cast only takes one operand!");
2149
2150    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
2151
2152    // Apply the type cast.
2153    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2154    New->UpdateNodeType(0, getValueType(Operator), *this);
2155
2156    if (!OpName.empty())
2157      error("ValueType cast should not have a name!");
2158    return New;
2159  }
2160
2161  // Verify that this is something that makes sense for an operator.
2162  if (!Operator->isSubClassOf("PatFrag") &&
2163      !Operator->isSubClassOf("SDNode") &&
2164      !Operator->isSubClassOf("Instruction") &&
2165      !Operator->isSubClassOf("SDNodeXForm") &&
2166      !Operator->isSubClassOf("Intrinsic") &&
2167      !Operator->isSubClassOf("ComplexPattern") &&
2168      Operator->getName() != "set" &&
2169      Operator->getName() != "implicit")
2170    error("Unrecognized node '" + Operator->getName() + "'!");
2171
2172  //  Check to see if this is something that is illegal in an input pattern.
2173  if (isInputPattern) {
2174    if (Operator->isSubClassOf("Instruction") ||
2175        Operator->isSubClassOf("SDNodeXForm"))
2176      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2177  } else {
2178    if (Operator->isSubClassOf("Intrinsic"))
2179      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2180
2181    if (Operator->isSubClassOf("SDNode") &&
2182        Operator->getName() != "imm" &&
2183        Operator->getName() != "fpimm" &&
2184        Operator->getName() != "tglobaltlsaddr" &&
2185        Operator->getName() != "tconstpool" &&
2186        Operator->getName() != "tjumptable" &&
2187        Operator->getName() != "tframeindex" &&
2188        Operator->getName() != "texternalsym" &&
2189        Operator->getName() != "tblockaddress" &&
2190        Operator->getName() != "tglobaladdr" &&
2191        Operator->getName() != "bb" &&
2192        Operator->getName() != "vt" &&
2193        Operator->getName() != "mcsym")
2194      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2195  }
2196
2197  std::vector<TreePatternNode*> Children;
2198
2199  // Parse all the operands.
2200  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2201    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
2202
2203  // If the operator is an intrinsic, then this is just syntactic sugar for for
2204  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2205  // convert the intrinsic name to a number.
2206  if (Operator->isSubClassOf("Intrinsic")) {
2207    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2208    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2209
2210    // If this intrinsic returns void, it must have side-effects and thus a
2211    // chain.
2212    if (Int.IS.RetVTs.empty())
2213      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2214    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2215      // Has side-effects, requires chain.
2216      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2217    else // Otherwise, no chain.
2218      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2219
2220    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2221    Children.insert(Children.begin(), IIDNode);
2222  }
2223
2224  if (Operator->isSubClassOf("ComplexPattern")) {
2225    for (unsigned i = 0; i < Children.size(); ++i) {
2226      TreePatternNode *Child = Children[i];
2227
2228      if (Child->getName().empty())
2229        error("All arguments to a ComplexPattern must be named");
2230
2231      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2232      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2233      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2234      auto OperandId = std::make_pair(Operator, i);
2235      auto PrevOp = ComplexPatternOperands.find(Child->getName());
2236      if (PrevOp != ComplexPatternOperands.end()) {
2237        if (PrevOp->getValue() != OperandId)
2238          error("All ComplexPattern operands must appear consistently: "
2239                "in the same order in just one ComplexPattern instance.");
2240      } else
2241        ComplexPatternOperands[Child->getName()] = OperandId;
2242    }
2243  }
2244
2245  unsigned NumResults = GetNumNodeResults(Operator, CDP);
2246  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2247  Result->setName(OpName);
2248
2249  if (!Dag->getName().empty()) {
2250    assert(Result->getName().empty());
2251    Result->setName(Dag->getName());
2252  }
2253  return Result;
2254}
2255
2256/// SimplifyTree - See if we can simplify this tree to eliminate something that
2257/// will never match in favor of something obvious that will.  This is here
2258/// strictly as a convenience to target authors because it allows them to write
2259/// more type generic things and have useless type casts fold away.
2260///
2261/// This returns true if any change is made.
2262static bool SimplifyTree(TreePatternNode *&N) {
2263  if (N->isLeaf())
2264    return false;
2265
2266  // If we have a bitconvert with a resolved type and if the source and
2267  // destination types are the same, then the bitconvert is useless, remove it.
2268  if (N->getOperator()->getName() == "bitconvert" &&
2269      N->getExtType(0).isConcrete() &&
2270      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2271      N->getName().empty()) {
2272    N = N->getChild(0);
2273    SimplifyTree(N);
2274    return true;
2275  }
2276
2277  // Walk all children.
2278  bool MadeChange = false;
2279  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2280    TreePatternNode *Child = N->getChild(i);
2281    MadeChange |= SimplifyTree(Child);
2282    N->setChild(i, Child);
2283  }
2284  return MadeChange;
2285}
2286
2287
2288
2289/// InferAllTypes - Infer/propagate as many types throughout the expression
2290/// patterns as possible.  Return true if all types are inferred, false
2291/// otherwise.  Flags an error if a type contradiction is found.
2292bool TreePattern::
2293InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2294  if (NamedNodes.empty())
2295    ComputeNamedNodes();
2296
2297  bool MadeChange = true;
2298  while (MadeChange) {
2299    MadeChange = false;
2300    for (TreePatternNode *Tree : Trees) {
2301      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2302      MadeChange |= SimplifyTree(Tree);
2303    }
2304
2305    // If there are constraints on our named nodes, apply them.
2306    for (auto &Entry : NamedNodes) {
2307      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2308
2309      // If we have input named node types, propagate their types to the named
2310      // values here.
2311      if (InNamedTypes) {
2312        if (!InNamedTypes->count(Entry.getKey())) {
2313          error("Node '" + std::string(Entry.getKey()) +
2314                "' in output pattern but not input pattern");
2315          return true;
2316        }
2317
2318        const SmallVectorImpl<TreePatternNode*> &InNodes =
2319          InNamedTypes->find(Entry.getKey())->second;
2320
2321        // The input types should be fully resolved by now.
2322        for (TreePatternNode *Node : Nodes) {
2323          // If this node is a register class, and it is the root of the pattern
2324          // then we're mapping something onto an input register.  We allow
2325          // changing the type of the input register in this case.  This allows
2326          // us to match things like:
2327          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2328          if (Node == Trees[0] && Node->isLeaf()) {
2329            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2330            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2331                       DI->getDef()->isSubClassOf("RegisterOperand")))
2332              continue;
2333          }
2334
2335          assert(Node->getNumTypes() == 1 &&
2336                 InNodes[0]->getNumTypes() == 1 &&
2337                 "FIXME: cannot name multiple result nodes yet");
2338          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2339                                             *this);
2340        }
2341      }
2342
2343      // If there are multiple nodes with the same name, they must all have the
2344      // same type.
2345      if (Entry.second.size() > 1) {
2346        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2347          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2348          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2349                 "FIXME: cannot name multiple result nodes yet");
2350
2351          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2352          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2353        }
2354      }
2355    }
2356  }
2357
2358  bool HasUnresolvedTypes = false;
2359  for (const TreePatternNode *Tree : Trees)
2360    HasUnresolvedTypes |= Tree->ContainsUnresolvedType();
2361  return !HasUnresolvedTypes;
2362}
2363
2364void TreePattern::print(raw_ostream &OS) const {
2365  OS << getRecord()->getName();
2366  if (!Args.empty()) {
2367    OS << "(" << Args[0];
2368    for (unsigned i = 1, e = Args.size(); i != e; ++i)
2369      OS << ", " << Args[i];
2370    OS << ")";
2371  }
2372  OS << ": ";
2373
2374  if (Trees.size() > 1)
2375    OS << "[\n";
2376  for (const TreePatternNode *Tree : Trees) {
2377    OS << "\t";
2378    Tree->print(OS);
2379    OS << "\n";
2380  }
2381
2382  if (Trees.size() > 1)
2383    OS << "]\n";
2384}
2385
2386void TreePattern::dump() const { print(errs()); }
2387
2388//===----------------------------------------------------------------------===//
2389// CodeGenDAGPatterns implementation
2390//
2391
2392CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2393  Records(R), Target(R) {
2394
2395  Intrinsics = LoadIntrinsics(Records, false);
2396  TgtIntrinsics = LoadIntrinsics(Records, true);
2397  ParseNodeInfo();
2398  ParseNodeTransforms();
2399  ParseComplexPatterns();
2400  ParsePatternFragments();
2401  ParseDefaultOperands();
2402  ParseInstructions();
2403  ParsePatternFragments(/*OutFrags*/true);
2404  ParsePatterns();
2405
2406  // Generate variants.  For example, commutative patterns can match
2407  // multiple ways.  Add them to PatternsToMatch as well.
2408  GenerateVariants();
2409
2410  // Infer instruction flags.  For example, we can detect loads,
2411  // stores, and side effects in many cases by examining an
2412  // instruction's pattern.
2413  InferInstructionFlags();
2414
2415  // Verify that instruction flags match the patterns.
2416  VerifyInstructionFlags();
2417}
2418
2419Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2420  Record *N = Records.getDef(Name);
2421  if (!N || !N->isSubClassOf("SDNode"))
2422    PrintFatalError("Error getting SDNode '" + Name + "'!");
2423
2424  return N;
2425}
2426
2427// Parse all of the SDNode definitions for the target, populating SDNodes.
2428void CodeGenDAGPatterns::ParseNodeInfo() {
2429  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2430  while (!Nodes.empty()) {
2431    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2432    Nodes.pop_back();
2433  }
2434
2435  // Get the builtin intrinsic nodes.
2436  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2437  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2438  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2439}
2440
2441/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2442/// map, and emit them to the file as functions.
2443void CodeGenDAGPatterns::ParseNodeTransforms() {
2444  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2445  while (!Xforms.empty()) {
2446    Record *XFormNode = Xforms.back();
2447    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2448    std::string Code = XFormNode->getValueAsString("XFormFunction");
2449    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2450
2451    Xforms.pop_back();
2452  }
2453}
2454
2455void CodeGenDAGPatterns::ParseComplexPatterns() {
2456  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2457  while (!AMs.empty()) {
2458    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2459    AMs.pop_back();
2460  }
2461}
2462
2463
2464/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2465/// file, building up the PatternFragments map.  After we've collected them all,
2466/// inline fragments together as necessary, so that there are no references left
2467/// inside a pattern fragment to a pattern fragment.
2468///
2469void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2470  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2471
2472  // First step, parse all of the fragments.
2473  for (Record *Frag : Fragments) {
2474    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2475      continue;
2476
2477    DagInit *Tree = Frag->getValueAsDag("Fragment");
2478    TreePattern *P =
2479        (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2480             Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2481             *this)).get();
2482
2483    // Validate the argument list, converting it to set, to discard duplicates.
2484    std::vector<std::string> &Args = P->getArgList();
2485    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2486
2487    if (OperandsSet.count(""))
2488      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2489
2490    // Parse the operands list.
2491    DagInit *OpsList = Frag->getValueAsDag("Operands");
2492    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2493    // Special cases: ops == outs == ins. Different names are used to
2494    // improve readability.
2495    if (!OpsOp ||
2496        (OpsOp->getDef()->getName() != "ops" &&
2497         OpsOp->getDef()->getName() != "outs" &&
2498         OpsOp->getDef()->getName() != "ins"))
2499      P->error("Operands list should start with '(ops ... '!");
2500
2501    // Copy over the arguments.
2502    Args.clear();
2503    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2504      if (!isa<DefInit>(OpsList->getArg(j)) ||
2505          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2506        P->error("Operands list should all be 'node' values.");
2507      if (OpsList->getArgName(j).empty())
2508        P->error("Operands list should have names for each operand!");
2509      if (!OperandsSet.count(OpsList->getArgName(j)))
2510        P->error("'" + OpsList->getArgName(j) +
2511                 "' does not occur in pattern or was multiply specified!");
2512      OperandsSet.erase(OpsList->getArgName(j));
2513      Args.push_back(OpsList->getArgName(j));
2514    }
2515
2516    if (!OperandsSet.empty())
2517      P->error("Operands list does not contain an entry for operand '" +
2518               *OperandsSet.begin() + "'!");
2519
2520    // If there is a code init for this fragment, keep track of the fact that
2521    // this fragment uses it.
2522    TreePredicateFn PredFn(P);
2523    if (!PredFn.isAlwaysTrue())
2524      P->getOnlyTree()->addPredicateFn(PredFn);
2525
2526    // If there is a node transformation corresponding to this, keep track of
2527    // it.
2528    Record *Transform = Frag->getValueAsDef("OperandTransform");
2529    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2530      P->getOnlyTree()->setTransformFn(Transform);
2531  }
2532
2533  // Now that we've parsed all of the tree fragments, do a closure on them so
2534  // that there are not references to PatFrags left inside of them.
2535  for (Record *Frag : Fragments) {
2536    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2537      continue;
2538
2539    TreePattern &ThePat = *PatternFragments[Frag];
2540    ThePat.InlinePatternFragments();
2541
2542    // Infer as many types as possible.  Don't worry about it if we don't infer
2543    // all of them, some may depend on the inputs of the pattern.
2544    ThePat.InferAllTypes();
2545    ThePat.resetError();
2546
2547    // If debugging, print out the pattern fragment result.
2548    DEBUG(ThePat.dump());
2549  }
2550}
2551
2552void CodeGenDAGPatterns::ParseDefaultOperands() {
2553  std::vector<Record*> DefaultOps;
2554  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2555
2556  // Find some SDNode.
2557  assert(!SDNodes.empty() && "No SDNodes parsed?");
2558  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2559
2560  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2561    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2562
2563    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2564    // SomeSDnode so that we can parse this.
2565    std::vector<std::pair<Init*, std::string> > Ops;
2566    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2567      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2568                                   DefaultInfo->getArgName(op)));
2569    DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2570
2571    // Create a TreePattern to parse this.
2572    TreePattern P(DefaultOps[i], DI, false, *this);
2573    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2574
2575    // Copy the operands over into a DAGDefaultOperand.
2576    DAGDefaultOperand DefaultOpInfo;
2577
2578    TreePatternNode *T = P.getTree(0);
2579    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2580      TreePatternNode *TPN = T->getChild(op);
2581      while (TPN->ApplyTypeConstraints(P, false))
2582        /* Resolve all types */;
2583
2584      if (TPN->ContainsUnresolvedType()) {
2585        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2586                        DefaultOps[i]->getName() +
2587                        "' doesn't have a concrete type!");
2588      }
2589      DefaultOpInfo.DefaultOps.push_back(TPN);
2590    }
2591
2592    // Insert it into the DefaultOperands map so we can find it later.
2593    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2594  }
2595}
2596
2597/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2598/// instruction input.  Return true if this is a real use.
2599static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2600                      std::map<std::string, TreePatternNode*> &InstInputs) {
2601  // No name -> not interesting.
2602  if (Pat->getName().empty()) {
2603    if (Pat->isLeaf()) {
2604      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2605      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2606                 DI->getDef()->isSubClassOf("RegisterOperand")))
2607        I->error("Input " + DI->getDef()->getName() + " must be named!");
2608    }
2609    return false;
2610  }
2611
2612  Record *Rec;
2613  if (Pat->isLeaf()) {
2614    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2615    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2616    Rec = DI->getDef();
2617  } else {
2618    Rec = Pat->getOperator();
2619  }
2620
2621  // SRCVALUE nodes are ignored.
2622  if (Rec->getName() == "srcvalue")
2623    return false;
2624
2625  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2626  if (!Slot) {
2627    Slot = Pat;
2628    return true;
2629  }
2630  Record *SlotRec;
2631  if (Slot->isLeaf()) {
2632    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2633  } else {
2634    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2635    SlotRec = Slot->getOperator();
2636  }
2637
2638  // Ensure that the inputs agree if we've already seen this input.
2639  if (Rec != SlotRec)
2640    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2641  if (Slot->getExtTypes() != Pat->getExtTypes())
2642    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2643  return true;
2644}
2645
2646/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2647/// part of "I", the instruction), computing the set of inputs and outputs of
2648/// the pattern.  Report errors if we see anything naughty.
2649void CodeGenDAGPatterns::
2650FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2651                            std::map<std::string, TreePatternNode*> &InstInputs,
2652                            std::map<std::string, TreePatternNode*>&InstResults,
2653                            std::vector<Record*> &InstImpResults) {
2654  if (Pat->isLeaf()) {
2655    bool isUse = HandleUse(I, Pat, InstInputs);
2656    if (!isUse && Pat->getTransformFn())
2657      I->error("Cannot specify a transform function for a non-input value!");
2658    return;
2659  }
2660
2661  if (Pat->getOperator()->getName() == "implicit") {
2662    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2663      TreePatternNode *Dest = Pat->getChild(i);
2664      if (!Dest->isLeaf())
2665        I->error("implicitly defined value should be a register!");
2666
2667      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2668      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2669        I->error("implicitly defined value should be a register!");
2670      InstImpResults.push_back(Val->getDef());
2671    }
2672    return;
2673  }
2674
2675  if (Pat->getOperator()->getName() != "set") {
2676    // If this is not a set, verify that the children nodes are not void typed,
2677    // and recurse.
2678    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2679      if (Pat->getChild(i)->getNumTypes() == 0)
2680        I->error("Cannot have void nodes inside of patterns!");
2681      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2682                                  InstImpResults);
2683    }
2684
2685    // If this is a non-leaf node with no children, treat it basically as if
2686    // it were a leaf.  This handles nodes like (imm).
2687    bool isUse = HandleUse(I, Pat, InstInputs);
2688
2689    if (!isUse && Pat->getTransformFn())
2690      I->error("Cannot specify a transform function for a non-input value!");
2691    return;
2692  }
2693
2694  // Otherwise, this is a set, validate and collect instruction results.
2695  if (Pat->getNumChildren() == 0)
2696    I->error("set requires operands!");
2697
2698  if (Pat->getTransformFn())
2699    I->error("Cannot specify a transform function on a set node!");
2700
2701  // Check the set destinations.
2702  unsigned NumDests = Pat->getNumChildren()-1;
2703  for (unsigned i = 0; i != NumDests; ++i) {
2704    TreePatternNode *Dest = Pat->getChild(i);
2705    if (!Dest->isLeaf())
2706      I->error("set destination should be a register!");
2707
2708    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2709    if (!Val) {
2710      I->error("set destination should be a register!");
2711      continue;
2712    }
2713
2714    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2715        Val->getDef()->isSubClassOf("ValueType") ||
2716        Val->getDef()->isSubClassOf("RegisterOperand") ||
2717        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2718      if (Dest->getName().empty())
2719        I->error("set destination must have a name!");
2720      if (InstResults.count(Dest->getName()))
2721        I->error("cannot set '" + Dest->getName() +"' multiple times");
2722      InstResults[Dest->getName()] = Dest;
2723    } else if (Val->getDef()->isSubClassOf("Register")) {
2724      InstImpResults.push_back(Val->getDef());
2725    } else {
2726      I->error("set destination should be a register!");
2727    }
2728  }
2729
2730  // Verify and collect info from the computation.
2731  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2732                              InstInputs, InstResults, InstImpResults);
2733}
2734
2735//===----------------------------------------------------------------------===//
2736// Instruction Analysis
2737//===----------------------------------------------------------------------===//
2738
2739class InstAnalyzer {
2740  const CodeGenDAGPatterns &CDP;
2741public:
2742  bool hasSideEffects;
2743  bool mayStore;
2744  bool mayLoad;
2745  bool isBitcast;
2746  bool isVariadic;
2747
2748  InstAnalyzer(const CodeGenDAGPatterns &cdp)
2749    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2750      isBitcast(false), isVariadic(false) {}
2751
2752  void Analyze(const TreePattern *Pat) {
2753    // Assume only the first tree is the pattern. The others are clobber nodes.
2754    AnalyzeNode(Pat->getTree(0));
2755  }
2756
2757  void Analyze(const PatternToMatch *Pat) {
2758    AnalyzeNode(Pat->getSrcPattern());
2759  }
2760
2761private:
2762  bool IsNodeBitcast(const TreePatternNode *N) const {
2763    if (hasSideEffects || mayLoad || mayStore || isVariadic)
2764      return false;
2765
2766    if (N->getNumChildren() != 2)
2767      return false;
2768
2769    const TreePatternNode *N0 = N->getChild(0);
2770    if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2771      return false;
2772
2773    const TreePatternNode *N1 = N->getChild(1);
2774    if (N1->isLeaf())
2775      return false;
2776    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2777      return false;
2778
2779    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2780    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2781      return false;
2782    return OpInfo.getEnumName() == "ISD::BITCAST";
2783  }
2784
2785public:
2786  void AnalyzeNode(const TreePatternNode *N) {
2787    if (N->isLeaf()) {
2788      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2789        Record *LeafRec = DI->getDef();
2790        // Handle ComplexPattern leaves.
2791        if (LeafRec->isSubClassOf("ComplexPattern")) {
2792          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2793          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2794          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2795          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2796        }
2797      }
2798      return;
2799    }
2800
2801    // Analyze children.
2802    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2803      AnalyzeNode(N->getChild(i));
2804
2805    // Ignore set nodes, which are not SDNodes.
2806    if (N->getOperator()->getName() == "set") {
2807      isBitcast = IsNodeBitcast(N);
2808      return;
2809    }
2810
2811    // Notice properties of the node.
2812    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2813    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2814    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2815    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2816
2817    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2818      // If this is an intrinsic, analyze it.
2819      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2820        mayLoad = true;// These may load memory.
2821
2822      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2823        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2824
2825      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2826        // WriteMem intrinsics can have other strange effects.
2827        hasSideEffects = true;
2828    }
2829  }
2830
2831};
2832
2833static bool InferFromPattern(CodeGenInstruction &InstInfo,
2834                             const InstAnalyzer &PatInfo,
2835                             Record *PatDef) {
2836  bool Error = false;
2837
2838  // Remember where InstInfo got its flags.
2839  if (InstInfo.hasUndefFlags())
2840      InstInfo.InferredFrom = PatDef;
2841
2842  // Check explicitly set flags for consistency.
2843  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2844      !InstInfo.hasSideEffects_Unset) {
2845    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2846    // the pattern has no side effects. That could be useful for div/rem
2847    // instructions that may trap.
2848    if (!InstInfo.hasSideEffects) {
2849      Error = true;
2850      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2851                 Twine(InstInfo.hasSideEffects));
2852    }
2853  }
2854
2855  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2856    Error = true;
2857    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2858               Twine(InstInfo.mayStore));
2859  }
2860
2861  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2862    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2863    // Some targets translate immediates to loads.
2864    if (!InstInfo.mayLoad) {
2865      Error = true;
2866      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2867                 Twine(InstInfo.mayLoad));
2868    }
2869  }
2870
2871  // Transfer inferred flags.
2872  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2873  InstInfo.mayStore |= PatInfo.mayStore;
2874  InstInfo.mayLoad |= PatInfo.mayLoad;
2875
2876  // These flags are silently added without any verification.
2877  InstInfo.isBitcast |= PatInfo.isBitcast;
2878
2879  // Don't infer isVariadic. This flag means something different on SDNodes and
2880  // instructions. For example, a CALL SDNode is variadic because it has the
2881  // call arguments as operands, but a CALL instruction is not variadic - it
2882  // has argument registers as implicit, not explicit uses.
2883
2884  return Error;
2885}
2886
2887/// hasNullFragReference - Return true if the DAG has any reference to the
2888/// null_frag operator.
2889static bool hasNullFragReference(DagInit *DI) {
2890  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2891  if (!OpDef) return false;
2892  Record *Operator = OpDef->getDef();
2893
2894  // If this is the null fragment, return true.
2895  if (Operator->getName() == "null_frag") return true;
2896  // If any of the arguments reference the null fragment, return true.
2897  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2898    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2899    if (Arg && hasNullFragReference(Arg))
2900      return true;
2901  }
2902
2903  return false;
2904}
2905
2906/// hasNullFragReference - Return true if any DAG in the list references
2907/// the null_frag operator.
2908static bool hasNullFragReference(ListInit *LI) {
2909  for (Init *I : LI->getValues()) {
2910    DagInit *DI = dyn_cast<DagInit>(I);
2911    assert(DI && "non-dag in an instruction Pattern list?!");
2912    if (hasNullFragReference(DI))
2913      return true;
2914  }
2915  return false;
2916}
2917
2918/// Get all the instructions in a tree.
2919static void
2920getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2921  if (Tree->isLeaf())
2922    return;
2923  if (Tree->getOperator()->isSubClassOf("Instruction"))
2924    Instrs.push_back(Tree->getOperator());
2925  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2926    getInstructionsInTree(Tree->getChild(i), Instrs);
2927}
2928
2929/// Check the class of a pattern leaf node against the instruction operand it
2930/// represents.
2931static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2932                              Record *Leaf) {
2933  if (OI.Rec == Leaf)
2934    return true;
2935
2936  // Allow direct value types to be used in instruction set patterns.
2937  // The type will be checked later.
2938  if (Leaf->isSubClassOf("ValueType"))
2939    return true;
2940
2941  // Patterns can also be ComplexPattern instances.
2942  if (Leaf->isSubClassOf("ComplexPattern"))
2943    return true;
2944
2945  return false;
2946}
2947
2948const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2949    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2950
2951  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2952
2953  // Parse the instruction.
2954  TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2955  // Inline pattern fragments into it.
2956  I->InlinePatternFragments();
2957
2958  // Infer as many types as possible.  If we cannot infer all of them, we can
2959  // never do anything with this instruction pattern: report it to the user.
2960  if (!I->InferAllTypes())
2961    I->error("Could not infer all types in pattern!");
2962
2963  // InstInputs - Keep track of all of the inputs of the instruction, along
2964  // with the record they are declared as.
2965  std::map<std::string, TreePatternNode*> InstInputs;
2966
2967  // InstResults - Keep track of all the virtual registers that are 'set'
2968  // in the instruction, including what reg class they are.
2969  std::map<std::string, TreePatternNode*> InstResults;
2970
2971  std::vector<Record*> InstImpResults;
2972
2973  // Verify that the top-level forms in the instruction are of void type, and
2974  // fill in the InstResults map.
2975  for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2976    TreePatternNode *Pat = I->getTree(j);
2977    if (Pat->getNumTypes() != 0)
2978      I->error("Top-level forms in instruction pattern should have"
2979               " void types");
2980
2981    // Find inputs and outputs, and verify the structure of the uses/defs.
2982    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2983                                InstImpResults);
2984  }
2985
2986  // Now that we have inputs and outputs of the pattern, inspect the operands
2987  // list for the instruction.  This determines the order that operands are
2988  // added to the machine instruction the node corresponds to.
2989  unsigned NumResults = InstResults.size();
2990
2991  // Parse the operands list from the (ops) list, validating it.
2992  assert(I->getArgList().empty() && "Args list should still be empty here!");
2993
2994  // Check that all of the results occur first in the list.
2995  std::vector<Record*> Results;
2996  SmallVector<TreePatternNode *, 2> ResNodes;
2997  for (unsigned i = 0; i != NumResults; ++i) {
2998    if (i == CGI.Operands.size())
2999      I->error("'" + InstResults.begin()->first +
3000               "' set but does not appear in operand list!");
3001    const std::string &OpName = CGI.Operands[i].Name;
3002
3003    // Check that it exists in InstResults.
3004    TreePatternNode *RNode = InstResults[OpName];
3005    if (!RNode)
3006      I->error("Operand $" + OpName + " does not exist in operand list!");
3007
3008    ResNodes.push_back(RNode);
3009
3010    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3011    if (!R)
3012      I->error("Operand $" + OpName + " should be a set destination: all "
3013               "outputs must occur before inputs in operand list!");
3014
3015    if (!checkOperandClass(CGI.Operands[i], R))
3016      I->error("Operand $" + OpName + " class mismatch!");
3017
3018    // Remember the return type.
3019    Results.push_back(CGI.Operands[i].Rec);
3020
3021    // Okay, this one checks out.
3022    InstResults.erase(OpName);
3023  }
3024
3025  // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3026  // the copy while we're checking the inputs.
3027  std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3028
3029  std::vector<TreePatternNode*> ResultNodeOperands;
3030  std::vector<Record*> Operands;
3031  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3032    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3033    const std::string &OpName = Op.Name;
3034    if (OpName.empty())
3035      I->error("Operand #" + utostr(i) + " in operands list has no name!");
3036
3037    if (!InstInputsCheck.count(OpName)) {
3038      // If this is an operand with a DefaultOps set filled in, we can ignore
3039      // this.  When we codegen it, we will do so as always executed.
3040      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3041        // Does it have a non-empty DefaultOps field?  If so, ignore this
3042        // operand.
3043        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3044          continue;
3045      }
3046      I->error("Operand $" + OpName +
3047               " does not appear in the instruction pattern");
3048    }
3049    TreePatternNode *InVal = InstInputsCheck[OpName];
3050    InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3051
3052    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3053      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3054      if (!checkOperandClass(Op, InRec))
3055        I->error("Operand $" + OpName + "'s register class disagrees"
3056                 " between the operand and pattern");
3057    }
3058    Operands.push_back(Op.Rec);
3059
3060    // Construct the result for the dest-pattern operand list.
3061    TreePatternNode *OpNode = InVal->clone();
3062
3063    // No predicate is useful on the result.
3064    OpNode->clearPredicateFns();
3065
3066    // Promote the xform function to be an explicit node if set.
3067    if (Record *Xform = OpNode->getTransformFn()) {
3068      OpNode->setTransformFn(nullptr);
3069      std::vector<TreePatternNode*> Children;
3070      Children.push_back(OpNode);
3071      OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3072    }
3073
3074    ResultNodeOperands.push_back(OpNode);
3075  }
3076
3077  if (!InstInputsCheck.empty())
3078    I->error("Input operand $" + InstInputsCheck.begin()->first +
3079             " occurs in pattern but not in operands list!");
3080
3081  TreePatternNode *ResultPattern =
3082    new TreePatternNode(I->getRecord(), ResultNodeOperands,
3083                        GetNumNodeResults(I->getRecord(), *this));
3084  // Copy fully inferred output node types to instruction result pattern.
3085  for (unsigned i = 0; i != NumResults; ++i) {
3086    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3087    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3088  }
3089
3090  // Create and insert the instruction.
3091  // FIXME: InstImpResults should not be part of DAGInstruction.
3092  DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3093  DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3094
3095  // Use a temporary tree pattern to infer all types and make sure that the
3096  // constructed result is correct.  This depends on the instruction already
3097  // being inserted into the DAGInsts map.
3098  TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3099  Temp.InferAllTypes(&I->getNamedNodesMap());
3100
3101  DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3102  TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3103
3104  return TheInsertedInst;
3105}
3106
3107/// ParseInstructions - Parse all of the instructions, inlining and resolving
3108/// any fragments involved.  This populates the Instructions list with fully
3109/// resolved instructions.
3110void CodeGenDAGPatterns::ParseInstructions() {
3111  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3112
3113  for (Record *Instr : Instrs) {
3114    ListInit *LI = nullptr;
3115
3116    if (isa<ListInit>(Instr->getValueInit("Pattern")))
3117      LI = Instr->getValueAsListInit("Pattern");
3118
3119    // If there is no pattern, only collect minimal information about the
3120    // instruction for its operand list.  We have to assume that there is one
3121    // result, as we have no detailed info. A pattern which references the
3122    // null_frag operator is as-if no pattern were specified. Normally this
3123    // is from a multiclass expansion w/ a SDPatternOperator passed in as
3124    // null_frag.
3125    if (!LI || LI->empty() || hasNullFragReference(LI)) {
3126      std::vector<Record*> Results;
3127      std::vector<Record*> Operands;
3128
3129      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3130
3131      if (InstInfo.Operands.size() != 0) {
3132        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3133          Results.push_back(InstInfo.Operands[j].Rec);
3134
3135        // The rest are inputs.
3136        for (unsigned j = InstInfo.Operands.NumDefs,
3137               e = InstInfo.Operands.size(); j < e; ++j)
3138          Operands.push_back(InstInfo.Operands[j].Rec);
3139      }
3140
3141      // Create and insert the instruction.
3142      std::vector<Record*> ImpResults;
3143      Instructions.insert(std::make_pair(Instr,
3144                          DAGInstruction(nullptr, Results, Operands, ImpResults)));
3145      continue;  // no pattern.
3146    }
3147
3148    CodeGenInstruction &CGI = Target.getInstruction(Instr);
3149    const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3150
3151    (void)DI;
3152    DEBUG(DI.getPattern()->dump());
3153  }
3154
3155  // If we can, convert the instructions to be patterns that are matched!
3156  for (auto &Entry : Instructions) {
3157    DAGInstruction &TheInst = Entry.second;
3158    TreePattern *I = TheInst.getPattern();
3159    if (!I) continue;  // No pattern.
3160
3161    // FIXME: Assume only the first tree is the pattern. The others are clobber
3162    // nodes.
3163    TreePatternNode *Pattern = I->getTree(0);
3164    TreePatternNode *SrcPattern;
3165    if (Pattern->getOperator()->getName() == "set") {
3166      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3167    } else{
3168      // Not a set (store or something?)
3169      SrcPattern = Pattern;
3170    }
3171
3172    Record *Instr = Entry.first;
3173    AddPatternToMatch(I,
3174                      PatternToMatch(Instr,
3175                                     Instr->getValueAsListInit("Predicates"),
3176                                     SrcPattern,
3177                                     TheInst.getResultPattern(),
3178                                     TheInst.getImpResults(),
3179                                     Instr->getValueAsInt("AddedComplexity"),
3180                                     Instr->getID()));
3181  }
3182}
3183
3184
3185typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3186
3187static void FindNames(const TreePatternNode *P,
3188                      std::map<std::string, NameRecord> &Names,
3189                      TreePattern *PatternTop) {
3190  if (!P->getName().empty()) {
3191    NameRecord &Rec = Names[P->getName()];
3192    // If this is the first instance of the name, remember the node.
3193    if (Rec.second++ == 0)
3194      Rec.first = P;
3195    else if (Rec.first->getExtTypes() != P->getExtTypes())
3196      PatternTop->error("repetition of value: $" + P->getName() +
3197                        " where different uses have different types!");
3198  }
3199
3200  if (!P->isLeaf()) {
3201    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3202      FindNames(P->getChild(i), Names, PatternTop);
3203  }
3204}
3205
3206void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3207                                           const PatternToMatch &PTM) {
3208  // Do some sanity checking on the pattern we're about to match.
3209  std::string Reason;
3210  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3211    PrintWarning(Pattern->getRecord()->getLoc(),
3212      Twine("Pattern can never match: ") + Reason);
3213    return;
3214  }
3215
3216  // If the source pattern's root is a complex pattern, that complex pattern
3217  // must specify the nodes it can potentially match.
3218  if (const ComplexPattern *CP =
3219        PTM.getSrcPattern()->getComplexPatternInfo(*this))
3220    if (CP->getRootNodes().empty())
3221      Pattern->error("ComplexPattern at root must specify list of opcodes it"
3222                     " could match");
3223
3224
3225  // Find all of the named values in the input and output, ensure they have the
3226  // same type.
3227  std::map<std::string, NameRecord> SrcNames, DstNames;
3228  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3229  FindNames(PTM.getDstPattern(), DstNames, Pattern);
3230
3231  // Scan all of the named values in the destination pattern, rejecting them if
3232  // they don't exist in the input pattern.
3233  for (const auto &Entry : DstNames) {
3234    if (SrcNames[Entry.first].first == nullptr)
3235      Pattern->error("Pattern has input without matching name in output: $" +
3236                     Entry.first);
3237  }
3238
3239  // Scan all of the named values in the source pattern, rejecting them if the
3240  // name isn't used in the dest, and isn't used to tie two values together.
3241  for (const auto &Entry : SrcNames)
3242    if (DstNames[Entry.first].first == nullptr &&
3243        SrcNames[Entry.first].second == 1)
3244      Pattern->error("Pattern has dead named input: $" + Entry.first);
3245
3246  PatternsToMatch.push_back(PTM);
3247}
3248
3249
3250
3251void CodeGenDAGPatterns::InferInstructionFlags() {
3252  const std::vector<const CodeGenInstruction*> &Instructions =
3253    Target.getInstructionsByEnumValue();
3254
3255  // First try to infer flags from the primary instruction pattern, if any.
3256  SmallVector<CodeGenInstruction*, 8> Revisit;
3257  unsigned Errors = 0;
3258  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3259    CodeGenInstruction &InstInfo =
3260      const_cast<CodeGenInstruction &>(*Instructions[i]);
3261
3262    // Get the primary instruction pattern.
3263    const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3264    if (!Pattern) {
3265      if (InstInfo.hasUndefFlags())
3266        Revisit.push_back(&InstInfo);
3267      continue;
3268    }
3269    InstAnalyzer PatInfo(*this);
3270    PatInfo.Analyze(Pattern);
3271    Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3272  }
3273
3274  // Second, look for single-instruction patterns defined outside the
3275  // instruction.
3276  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3277    const PatternToMatch &PTM = *I;
3278
3279    // We can only infer from single-instruction patterns, otherwise we won't
3280    // know which instruction should get the flags.
3281    SmallVector<Record*, 8> PatInstrs;
3282    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3283    if (PatInstrs.size() != 1)
3284      continue;
3285
3286    // Get the single instruction.
3287    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3288
3289    // Only infer properties from the first pattern. We'll verify the others.
3290    if (InstInfo.InferredFrom)
3291      continue;
3292
3293    InstAnalyzer PatInfo(*this);
3294    PatInfo.Analyze(&PTM);
3295    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3296  }
3297
3298  if (Errors)
3299    PrintFatalError("pattern conflicts");
3300
3301  // Revisit instructions with undefined flags and no pattern.
3302  if (Target.guessInstructionProperties()) {
3303    for (CodeGenInstruction *InstInfo : Revisit) {
3304      if (InstInfo->InferredFrom)
3305        continue;
3306      // The mayLoad and mayStore flags default to false.
3307      // Conservatively assume hasSideEffects if it wasn't explicit.
3308      if (InstInfo->hasSideEffects_Unset)
3309        InstInfo->hasSideEffects = true;
3310    }
3311    return;
3312  }
3313
3314  // Complain about any flags that are still undefined.
3315  for (CodeGenInstruction *InstInfo : Revisit) {
3316    if (InstInfo->InferredFrom)
3317      continue;
3318    if (InstInfo->hasSideEffects_Unset)
3319      PrintError(InstInfo->TheDef->getLoc(),
3320                 "Can't infer hasSideEffects from patterns");
3321    if (InstInfo->mayStore_Unset)
3322      PrintError(InstInfo->TheDef->getLoc(),
3323                 "Can't infer mayStore from patterns");
3324    if (InstInfo->mayLoad_Unset)
3325      PrintError(InstInfo->TheDef->getLoc(),
3326                 "Can't infer mayLoad from patterns");
3327  }
3328}
3329
3330
3331/// Verify instruction flags against pattern node properties.
3332void CodeGenDAGPatterns::VerifyInstructionFlags() {
3333  unsigned Errors = 0;
3334  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3335    const PatternToMatch &PTM = *I;
3336    SmallVector<Record*, 8> Instrs;
3337    getInstructionsInTree(PTM.getDstPattern(), Instrs);
3338    if (Instrs.empty())
3339      continue;
3340
3341    // Count the number of instructions with each flag set.
3342    unsigned NumSideEffects = 0;
3343    unsigned NumStores = 0;
3344    unsigned NumLoads = 0;
3345    for (const Record *Instr : Instrs) {
3346      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3347      NumSideEffects += InstInfo.hasSideEffects;
3348      NumStores += InstInfo.mayStore;
3349      NumLoads += InstInfo.mayLoad;
3350    }
3351
3352    // Analyze the source pattern.
3353    InstAnalyzer PatInfo(*this);
3354    PatInfo.Analyze(&PTM);
3355
3356    // Collect error messages.
3357    SmallVector<std::string, 4> Msgs;
3358
3359    // Check for missing flags in the output.
3360    // Permit extra flags for now at least.
3361    if (PatInfo.hasSideEffects && !NumSideEffects)
3362      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3363
3364    // Don't verify store flags on instructions with side effects. At least for
3365    // intrinsics, side effects implies mayStore.
3366    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3367      Msgs.push_back("pattern may store, but mayStore isn't set");
3368
3369    // Similarly, mayStore implies mayLoad on intrinsics.
3370    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3371      Msgs.push_back("pattern may load, but mayLoad isn't set");
3372
3373    // Print error messages.
3374    if (Msgs.empty())
3375      continue;
3376    ++Errors;
3377
3378    for (const std::string &Msg : Msgs)
3379      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3380                 (Instrs.size() == 1 ?
3381                  "instruction" : "output instructions"));
3382    // Provide the location of the relevant instruction definitions.
3383    for (const Record *Instr : Instrs) {
3384      if (Instr != PTM.getSrcRecord())
3385        PrintError(Instr->getLoc(), "defined here");
3386      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3387      if (InstInfo.InferredFrom &&
3388          InstInfo.InferredFrom != InstInfo.TheDef &&
3389          InstInfo.InferredFrom != PTM.getSrcRecord())
3390        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3391    }
3392  }
3393  if (Errors)
3394    PrintFatalError("Errors in DAG patterns");
3395}
3396
3397/// Given a pattern result with an unresolved type, see if we can find one
3398/// instruction with an unresolved result type.  Force this result type to an
3399/// arbitrary element if it's possible types to converge results.
3400static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3401  if (N->isLeaf())
3402    return false;
3403
3404  // Analyze children.
3405  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3406    if (ForceArbitraryInstResultType(N->getChild(i), TP))
3407      return true;
3408
3409  if (!N->getOperator()->isSubClassOf("Instruction"))
3410    return false;
3411
3412  // If this type is already concrete or completely unknown we can't do
3413  // anything.
3414  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3415    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3416      continue;
3417
3418    // Otherwise, force its type to the first possibility (an arbitrary choice).
3419    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3420      return true;
3421  }
3422
3423  return false;
3424}
3425
3426void CodeGenDAGPatterns::ParsePatterns() {
3427  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3428
3429  for (Record *CurPattern : Patterns) {
3430    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3431
3432    // If the pattern references the null_frag, there's nothing to do.
3433    if (hasNullFragReference(Tree))
3434      continue;
3435
3436    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3437
3438    // Inline pattern fragments into it.
3439    Pattern->InlinePatternFragments();
3440
3441    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3442    if (LI->empty()) continue;  // no pattern.
3443
3444    // Parse the instruction.
3445    TreePattern Result(CurPattern, LI, false, *this);
3446
3447    // Inline pattern fragments into it.
3448    Result.InlinePatternFragments();
3449
3450    if (Result.getNumTrees() != 1)
3451      Result.error("Cannot handle instructions producing instructions "
3452                   "with temporaries yet!");
3453
3454    bool IterateInference;
3455    bool InferredAllPatternTypes, InferredAllResultTypes;
3456    do {
3457      // Infer as many types as possible.  If we cannot infer all of them, we
3458      // can never do anything with this pattern: report it to the user.
3459      InferredAllPatternTypes =
3460        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3461
3462      // Infer as many types as possible.  If we cannot infer all of them, we
3463      // can never do anything with this pattern: report it to the user.
3464      InferredAllResultTypes =
3465          Result.InferAllTypes(&Pattern->getNamedNodesMap());
3466
3467      IterateInference = false;
3468
3469      // Apply the type of the result to the source pattern.  This helps us
3470      // resolve cases where the input type is known to be a pointer type (which
3471      // is considered resolved), but the result knows it needs to be 32- or
3472      // 64-bits.  Infer the other way for good measure.
3473      for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3474                                        Pattern->getTree(0)->getNumTypes());
3475           i != e; ++i) {
3476        IterateInference = Pattern->getTree(0)->UpdateNodeType(
3477            i, Result.getTree(0)->getExtType(i), Result);
3478        IterateInference |= Result.getTree(0)->UpdateNodeType(
3479            i, Pattern->getTree(0)->getExtType(i), Result);
3480      }
3481
3482      // If our iteration has converged and the input pattern's types are fully
3483      // resolved but the result pattern is not fully resolved, we may have a
3484      // situation where we have two instructions in the result pattern and
3485      // the instructions require a common register class, but don't care about
3486      // what actual MVT is used.  This is actually a bug in our modelling:
3487      // output patterns should have register classes, not MVTs.
3488      //
3489      // In any case, to handle this, we just go through and disambiguate some
3490      // arbitrary types to the result pattern's nodes.
3491      if (!IterateInference && InferredAllPatternTypes &&
3492          !InferredAllResultTypes)
3493        IterateInference =
3494            ForceArbitraryInstResultType(Result.getTree(0), Result);
3495    } while (IterateInference);
3496
3497    // Verify that we inferred enough types that we can do something with the
3498    // pattern and result.  If these fire the user has to add type casts.
3499    if (!InferredAllPatternTypes)
3500      Pattern->error("Could not infer all types in pattern!");
3501    if (!InferredAllResultTypes) {
3502      Pattern->dump();
3503      Result.error("Could not infer all types in pattern result!");
3504    }
3505
3506    // Validate that the input pattern is correct.
3507    std::map<std::string, TreePatternNode*> InstInputs;
3508    std::map<std::string, TreePatternNode*> InstResults;
3509    std::vector<Record*> InstImpResults;
3510    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3511      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3512                                  InstInputs, InstResults,
3513                                  InstImpResults);
3514
3515    // Promote the xform function to be an explicit node if set.
3516    TreePatternNode *DstPattern = Result.getOnlyTree();
3517    std::vector<TreePatternNode*> ResultNodeOperands;
3518    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3519      TreePatternNode *OpNode = DstPattern->getChild(ii);
3520      if (Record *Xform = OpNode->getTransformFn()) {
3521        OpNode->setTransformFn(nullptr);
3522        std::vector<TreePatternNode*> Children;
3523        Children.push_back(OpNode);
3524        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3525      }
3526      ResultNodeOperands.push_back(OpNode);
3527    }
3528    DstPattern = Result.getOnlyTree();
3529    if (!DstPattern->isLeaf())
3530      DstPattern = new TreePatternNode(DstPattern->getOperator(),
3531                                       ResultNodeOperands,
3532                                       DstPattern->getNumTypes());
3533
3534    for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3535      DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3536
3537    TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3538    Temp.InferAllTypes();
3539
3540
3541    AddPatternToMatch(Pattern,
3542                    PatternToMatch(CurPattern,
3543                                   CurPattern->getValueAsListInit("Predicates"),
3544                                   Pattern->getTree(0),
3545                                   Temp.getOnlyTree(), InstImpResults,
3546                                   CurPattern->getValueAsInt("AddedComplexity"),
3547                                   CurPattern->getID()));
3548  }
3549}
3550
3551/// CombineChildVariants - Given a bunch of permutations of each child of the
3552/// 'operator' node, put them together in all possible ways.
3553static void CombineChildVariants(TreePatternNode *Orig,
3554               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3555                                 std::vector<TreePatternNode*> &OutVariants,
3556                                 CodeGenDAGPatterns &CDP,
3557                                 const MultipleUseVarSet &DepVars) {
3558  // Make sure that each operand has at least one variant to choose from.
3559  for (const auto &Variants : ChildVariants)
3560    if (Variants.empty())
3561      return;
3562
3563  // The end result is an all-pairs construction of the resultant pattern.
3564  std::vector<unsigned> Idxs;
3565  Idxs.resize(ChildVariants.size());
3566  bool NotDone;
3567  do {
3568#ifndef NDEBUG
3569    DEBUG(if (!Idxs.empty()) {
3570            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3571              for (unsigned Idx : Idxs) {
3572                errs() << Idx << " ";
3573            }
3574            errs() << "]\n";
3575          });
3576#endif
3577    // Create the variant and add it to the output list.
3578    std::vector<TreePatternNode*> NewChildren;
3579    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3580      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3581    auto R = llvm::make_unique<TreePatternNode>(
3582        Orig->getOperator(), NewChildren, Orig->getNumTypes());
3583
3584    // Copy over properties.
3585    R->setName(Orig->getName());
3586    R->setPredicateFns(Orig->getPredicateFns());
3587    R->setTransformFn(Orig->getTransformFn());
3588    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3589      R->setType(i, Orig->getExtType(i));
3590
3591    // If this pattern cannot match, do not include it as a variant.
3592    std::string ErrString;
3593    // Scan to see if this pattern has already been emitted.  We can get
3594    // duplication due to things like commuting:
3595    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3596    // which are the same pattern.  Ignore the dups.
3597    if (R->canPatternMatch(ErrString, CDP) &&
3598        std::none_of(OutVariants.begin(), OutVariants.end(),
3599                     [&](TreePatternNode *Variant) {
3600                       return R->isIsomorphicTo(Variant, DepVars);
3601                     }))
3602      OutVariants.push_back(R.release());
3603
3604    // Increment indices to the next permutation by incrementing the
3605    // indices from last index backward, e.g., generate the sequence
3606    // [0, 0], [0, 1], [1, 0], [1, 1].
3607    int IdxsIdx;
3608    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3609      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3610        Idxs[IdxsIdx] = 0;
3611      else
3612        break;
3613    }
3614    NotDone = (IdxsIdx >= 0);
3615  } while (NotDone);
3616}
3617
3618/// CombineChildVariants - A helper function for binary operators.
3619///
3620static void CombineChildVariants(TreePatternNode *Orig,
3621                                 const std::vector<TreePatternNode*> &LHS,
3622                                 const std::vector<TreePatternNode*> &RHS,
3623                                 std::vector<TreePatternNode*> &OutVariants,
3624                                 CodeGenDAGPatterns &CDP,
3625                                 const MultipleUseVarSet &DepVars) {
3626  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3627  ChildVariants.push_back(LHS);
3628  ChildVariants.push_back(RHS);
3629  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3630}
3631
3632
3633static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3634                                     std::vector<TreePatternNode *> &Children) {
3635  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3636  Record *Operator = N->getOperator();
3637
3638  // Only permit raw nodes.
3639  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3640      N->getTransformFn()) {
3641    Children.push_back(N);
3642    return;
3643  }
3644
3645  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3646    Children.push_back(N->getChild(0));
3647  else
3648    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3649
3650  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3651    Children.push_back(N->getChild(1));
3652  else
3653    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3654}
3655
3656/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3657/// the (potentially recursive) pattern by using algebraic laws.
3658///
3659static void GenerateVariantsOf(TreePatternNode *N,
3660                               std::vector<TreePatternNode*> &OutVariants,
3661                               CodeGenDAGPatterns &CDP,
3662                               const MultipleUseVarSet &DepVars) {
3663  // We cannot permute leaves or ComplexPattern uses.
3664  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3665    OutVariants.push_back(N);
3666    return;
3667  }
3668
3669  // Look up interesting info about the node.
3670  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3671
3672  // If this node is associative, re-associate.
3673  if (NodeInfo.hasProperty(SDNPAssociative)) {
3674    // Re-associate by pulling together all of the linked operators
3675    std::vector<TreePatternNode*> MaximalChildren;
3676    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3677
3678    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3679    // permutations.
3680    if (MaximalChildren.size() == 3) {
3681      // Find the variants of all of our maximal children.
3682      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3683      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3684      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3685      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3686
3687      // There are only two ways we can permute the tree:
3688      //   (A op B) op C    and    A op (B op C)
3689      // Within these forms, we can also permute A/B/C.
3690
3691      // Generate legal pair permutations of A/B/C.
3692      std::vector<TreePatternNode*> ABVariants;
3693      std::vector<TreePatternNode*> BAVariants;
3694      std::vector<TreePatternNode*> ACVariants;
3695      std::vector<TreePatternNode*> CAVariants;
3696      std::vector<TreePatternNode*> BCVariants;
3697      std::vector<TreePatternNode*> CBVariants;
3698      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3699      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3700      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3701      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3702      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3703      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3704
3705      // Combine those into the result: (x op x) op x
3706      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3707      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3708      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3709      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3710      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3711      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3712
3713      // Combine those into the result: x op (x op x)
3714      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3715      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3716      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3717      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3718      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3719      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3720      return;
3721    }
3722  }
3723
3724  // Compute permutations of all children.
3725  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3726  ChildVariants.resize(N->getNumChildren());
3727  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3728    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3729
3730  // Build all permutations based on how the children were formed.
3731  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3732
3733  // If this node is commutative, consider the commuted order.
3734  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3735  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3736    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3737           "Commutative but doesn't have 2 children!");
3738    // Don't count children which are actually register references.
3739    unsigned NC = 0;
3740    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3741      TreePatternNode *Child = N->getChild(i);
3742      if (Child->isLeaf())
3743        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3744          Record *RR = DI->getDef();
3745          if (RR->isSubClassOf("Register"))
3746            continue;
3747        }
3748      NC++;
3749    }
3750    // Consider the commuted order.
3751    if (isCommIntrinsic) {
3752      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3753      // operands are the commutative operands, and there might be more operands
3754      // after those.
3755      assert(NC >= 3 &&
3756             "Commutative intrinsic should have at least 3 children!");
3757      std::vector<std::vector<TreePatternNode*> > Variants;
3758      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3759      Variants.push_back(ChildVariants[2]);
3760      Variants.push_back(ChildVariants[1]);
3761      for (unsigned i = 3; i != NC; ++i)
3762        Variants.push_back(ChildVariants[i]);
3763      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3764    } else if (NC == 2)
3765      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3766                           OutVariants, CDP, DepVars);
3767  }
3768}
3769
3770
3771// GenerateVariants - Generate variants.  For example, commutative patterns can
3772// match multiple ways.  Add them to PatternsToMatch as well.
3773void CodeGenDAGPatterns::GenerateVariants() {
3774  DEBUG(errs() << "Generating instruction variants.\n");
3775
3776  // Loop over all of the patterns we've collected, checking to see if we can
3777  // generate variants of the instruction, through the exploitation of
3778  // identities.  This permits the target to provide aggressive matching without
3779  // the .td file having to contain tons of variants of instructions.
3780  //
3781  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3782  // intentionally do not reconsider these.  Any variants of added patterns have
3783  // already been added.
3784  //
3785  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3786    MultipleUseVarSet             DepVars;
3787    std::vector<TreePatternNode*> Variants;
3788    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3789    DEBUG(errs() << "Dependent/multiply used variables: ");
3790    DEBUG(DumpDepVars(DepVars));
3791    DEBUG(errs() << "\n");
3792    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3793                       DepVars);
3794
3795    assert(!Variants.empty() && "Must create at least original variant!");
3796    Variants.erase(Variants.begin());  // Remove the original pattern.
3797
3798    if (Variants.empty())  // No variants for this pattern.
3799      continue;
3800
3801    DEBUG(errs() << "FOUND VARIANTS OF: ";
3802          PatternsToMatch[i].getSrcPattern()->dump();
3803          errs() << "\n");
3804
3805    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3806      TreePatternNode *Variant = Variants[v];
3807
3808      DEBUG(errs() << "  VAR#" << v <<  ": ";
3809            Variant->dump();
3810            errs() << "\n");
3811
3812      // Scan to see if an instruction or explicit pattern already matches this.
3813      bool AlreadyExists = false;
3814      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3815        // Skip if the top level predicates do not match.
3816        if (PatternsToMatch[i].getPredicates() !=
3817            PatternsToMatch[p].getPredicates())
3818          continue;
3819        // Check to see if this variant already exists.
3820        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3821                                    DepVars)) {
3822          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3823          AlreadyExists = true;
3824          break;
3825        }
3826      }
3827      // If we already have it, ignore the variant.
3828      if (AlreadyExists) continue;
3829
3830      // Otherwise, add it to the list of patterns we have.
3831      PatternsToMatch.emplace_back(
3832          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
3833          Variant, PatternsToMatch[i].getDstPattern(),
3834          PatternsToMatch[i].getDstRegs(),
3835          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
3836    }
3837
3838    DEBUG(errs() << "\n");
3839  }
3840}
3841