1/* LzmaEnc.c -- LZMA Encoder
22014-12-29 : Igor Pavlov : Public domain */
3
4#include "Precomp.h"
5
6#include <string.h>
7
8/* #define SHOW_STAT */
9/* #define SHOW_STAT2 */
10
11#if defined(SHOW_STAT) || defined(SHOW_STAT2)
12#include <stdio.h>
13#endif
14
15#include "LzmaEnc.h"
16
17#include "LzFind.h"
18#ifndef _7ZIP_ST
19#include "LzFindMt.h"
20#endif
21
22#ifdef SHOW_STAT
23static unsigned g_STAT_OFFSET = 0;
24#endif
25
26#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
27
28#define kBlockSize (9 << 10)
29#define kUnpackBlockSize (1 << 18)
30#define kMatchArraySize (1 << 21)
31#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
32
33#define kNumMaxDirectBits (31)
34
35#define kNumTopBits 24
36#define kTopValue ((UInt32)1 << kNumTopBits)
37
38#define kNumBitModelTotalBits 11
39#define kBitModelTotal (1 << kNumBitModelTotalBits)
40#define kNumMoveBits 5
41#define kProbInitValue (kBitModelTotal >> 1)
42
43#define kNumMoveReducingBits 4
44#define kNumBitPriceShiftBits 4
45#define kBitPrice (1 << kNumBitPriceShiftBits)
46
47void LzmaEncProps_Init(CLzmaEncProps *p)
48{
49  p->level = 5;
50  p->dictSize = p->mc = 0;
51  p->reduceSize = (UInt64)(Int64)-1;
52  p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
53  p->writeEndMark = 0;
54}
55
56void LzmaEncProps_Normalize(CLzmaEncProps *p)
57{
58  int level = p->level;
59  if (level < 0) level = 5;
60  p->level = level;
61  if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
62  if (p->dictSize > p->reduceSize)
63  {
64    unsigned i;
65    for (i = 11; i <= 30; i++)
66    {
67      if ((UInt32)p->reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
68      if ((UInt32)p->reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
69    }
70  }
71  if (p->lc < 0) p->lc = 3;
72  if (p->lp < 0) p->lp = 0;
73  if (p->pb < 0) p->pb = 2;
74  if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
75  if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
76  if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
77  if (p->numHashBytes < 0) p->numHashBytes = 4;
78  if (p->mc == 0)  p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
79  if (p->numThreads < 0)
80    p->numThreads =
81      #ifndef _7ZIP_ST
82      ((p->btMode && p->algo) ? 2 : 1);
83      #else
84      1;
85      #endif
86}
87
88UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
89{
90  CLzmaEncProps props = *props2;
91  LzmaEncProps_Normalize(&props);
92  return props.dictSize;
93}
94
95/* #define LZMA_LOG_BSR */
96/* Define it for Intel's CPU */
97
98
99#ifdef LZMA_LOG_BSR
100
101#define kDicLogSizeMaxCompress 30
102
103#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
104
105UInt32 GetPosSlot1(UInt32 pos)
106{
107  UInt32 res;
108  BSR2_RET(pos, res);
109  return res;
110}
111#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
112#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
113
114#else
115
116#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
117#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
118
119void LzmaEnc_FastPosInit(Byte *g_FastPos)
120{
121  int c = 2, slotFast;
122  g_FastPos[0] = 0;
123  g_FastPos[1] = 1;
124
125  for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
126  {
127    UInt32 k = (1 << ((slotFast >> 1) - 1));
128    UInt32 j;
129    for (j = 0; j < k; j++, c++)
130      g_FastPos[c] = (Byte)slotFast;
131  }
132}
133
134#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
135  (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
136  res = p->g_FastPos[pos >> i] + (i * 2); }
137/*
138#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
139  p->g_FastPos[pos >> 6] + 12 : \
140  p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
141*/
142
143#define GetPosSlot1(pos) p->g_FastPos[pos]
144#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
145#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
146
147#endif
148
149
150#define LZMA_NUM_REPS 4
151
152typedef unsigned CState;
153
154typedef struct
155{
156  UInt32 price;
157
158  CState state;
159  int prev1IsChar;
160  int prev2;
161
162  UInt32 posPrev2;
163  UInt32 backPrev2;
164
165  UInt32 posPrev;
166  UInt32 backPrev;
167  UInt32 backs[LZMA_NUM_REPS];
168} COptimal;
169
170#define kNumOpts (1 << 12)
171
172#define kNumLenToPosStates 4
173#define kNumPosSlotBits 6
174#define kDicLogSizeMin 0
175#define kDicLogSizeMax 32
176#define kDistTableSizeMax (kDicLogSizeMax * 2)
177
178
179#define kNumAlignBits 4
180#define kAlignTableSize (1 << kNumAlignBits)
181#define kAlignMask (kAlignTableSize - 1)
182
183#define kStartPosModelIndex 4
184#define kEndPosModelIndex 14
185#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
186
187#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
188
189#ifdef _LZMA_PROB32
190#define CLzmaProb UInt32
191#else
192#define CLzmaProb UInt16
193#endif
194
195#define LZMA_PB_MAX 4
196#define LZMA_LC_MAX 8
197#define LZMA_LP_MAX 4
198
199#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
200
201
202#define kLenNumLowBits 3
203#define kLenNumLowSymbols (1 << kLenNumLowBits)
204#define kLenNumMidBits 3
205#define kLenNumMidSymbols (1 << kLenNumMidBits)
206#define kLenNumHighBits 8
207#define kLenNumHighSymbols (1 << kLenNumHighBits)
208
209#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
210
211#define LZMA_MATCH_LEN_MIN 2
212#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
213
214#define kNumStates 12
215
216typedef struct
217{
218  CLzmaProb choice;
219  CLzmaProb choice2;
220  CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
221  CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
222  CLzmaProb high[kLenNumHighSymbols];
223} CLenEnc;
224
225typedef struct
226{
227  CLenEnc p;
228  UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
229  UInt32 tableSize;
230  UInt32 counters[LZMA_NUM_PB_STATES_MAX];
231} CLenPriceEnc;
232
233typedef struct
234{
235  UInt32 range;
236  Byte cache;
237  UInt64 low;
238  UInt64 cacheSize;
239  Byte *buf;
240  Byte *bufLim;
241  Byte *bufBase;
242  ISeqOutStream *outStream;
243  UInt64 processed;
244  SRes res;
245} CRangeEnc;
246
247typedef struct
248{
249  CLzmaProb *litProbs;
250
251  CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
252  CLzmaProb isRep[kNumStates];
253  CLzmaProb isRepG0[kNumStates];
254  CLzmaProb isRepG1[kNumStates];
255  CLzmaProb isRepG2[kNumStates];
256  CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
257
258  CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
259  CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
260  CLzmaProb posAlignEncoder[1 << kNumAlignBits];
261
262  CLenPriceEnc lenEnc;
263  CLenPriceEnc repLenEnc;
264
265  UInt32 reps[LZMA_NUM_REPS];
266  UInt32 state;
267} CSaveState;
268
269typedef struct
270{
271  IMatchFinder matchFinder;
272  void *matchFinderObj;
273
274  #ifndef _7ZIP_ST
275  Bool mtMode;
276  CMatchFinderMt matchFinderMt;
277  #endif
278
279  CMatchFinder matchFinderBase;
280
281  #ifndef _7ZIP_ST
282  Byte pad[128];
283  #endif
284
285  UInt32 optimumEndIndex;
286  UInt32 optimumCurrentIndex;
287
288  UInt32 longestMatchLength;
289  UInt32 numPairs;
290  UInt32 numAvail;
291  COptimal opt[kNumOpts];
292
293  #ifndef LZMA_LOG_BSR
294  Byte g_FastPos[1 << kNumLogBits];
295  #endif
296
297  UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
298  UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
299  UInt32 numFastBytes;
300  UInt32 additionalOffset;
301  UInt32 reps[LZMA_NUM_REPS];
302  UInt32 state;
303
304  UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
305  UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
306  UInt32 alignPrices[kAlignTableSize];
307  UInt32 alignPriceCount;
308
309  UInt32 distTableSize;
310
311  unsigned lc, lp, pb;
312  unsigned lpMask, pbMask;
313
314  CLzmaProb *litProbs;
315
316  CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
317  CLzmaProb isRep[kNumStates];
318  CLzmaProb isRepG0[kNumStates];
319  CLzmaProb isRepG1[kNumStates];
320  CLzmaProb isRepG2[kNumStates];
321  CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
322
323  CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
324  CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
325  CLzmaProb posAlignEncoder[1 << kNumAlignBits];
326
327  CLenPriceEnc lenEnc;
328  CLenPriceEnc repLenEnc;
329
330  unsigned lclp;
331
332  Bool fastMode;
333
334  CRangeEnc rc;
335
336  Bool writeEndMark;
337  UInt64 nowPos64;
338  UInt32 matchPriceCount;
339  Bool finished;
340  Bool multiThread;
341
342  SRes result;
343  UInt32 dictSize;
344
345  int needInit;
346
347  CSaveState saveState;
348} CLzmaEnc;
349
350void LzmaEnc_SaveState(CLzmaEncHandle pp)
351{
352  CLzmaEnc *p = (CLzmaEnc *)pp;
353  CSaveState *dest = &p->saveState;
354  int i;
355  dest->lenEnc = p->lenEnc;
356  dest->repLenEnc = p->repLenEnc;
357  dest->state = p->state;
358
359  for (i = 0; i < kNumStates; i++)
360  {
361    memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
362    memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
363  }
364  for (i = 0; i < kNumLenToPosStates; i++)
365    memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
366  memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
367  memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
368  memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
369  memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
370  memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
371  memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
372  memcpy(dest->reps, p->reps, sizeof(p->reps));
373  memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
374}
375
376void LzmaEnc_RestoreState(CLzmaEncHandle pp)
377{
378  CLzmaEnc *dest = (CLzmaEnc *)pp;
379  const CSaveState *p = &dest->saveState;
380  int i;
381  dest->lenEnc = p->lenEnc;
382  dest->repLenEnc = p->repLenEnc;
383  dest->state = p->state;
384
385  for (i = 0; i < kNumStates; i++)
386  {
387    memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
388    memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
389  }
390  for (i = 0; i < kNumLenToPosStates; i++)
391    memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
392  memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
393  memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
394  memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
395  memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
396  memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
397  memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
398  memcpy(dest->reps, p->reps, sizeof(p->reps));
399  memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
400}
401
402SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
403{
404  CLzmaEnc *p = (CLzmaEnc *)pp;
405  CLzmaEncProps props = *props2;
406  LzmaEncProps_Normalize(&props);
407
408  if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
409      props.dictSize > ((UInt32)1 << kDicLogSizeMaxCompress) || props.dictSize > ((UInt32)1 << 30))
410    return SZ_ERROR_PARAM;
411  p->dictSize = props.dictSize;
412  {
413    unsigned fb = props.fb;
414    if (fb < 5)
415      fb = 5;
416    if (fb > LZMA_MATCH_LEN_MAX)
417      fb = LZMA_MATCH_LEN_MAX;
418    p->numFastBytes = fb;
419  }
420  p->lc = props.lc;
421  p->lp = props.lp;
422  p->pb = props.pb;
423  p->fastMode = (props.algo == 0);
424  p->matchFinderBase.btMode = props.btMode;
425  {
426    UInt32 numHashBytes = 4;
427    if (props.btMode)
428    {
429      if (props.numHashBytes < 2)
430        numHashBytes = 2;
431      else if (props.numHashBytes < 4)
432        numHashBytes = props.numHashBytes;
433    }
434    p->matchFinderBase.numHashBytes = numHashBytes;
435  }
436
437  p->matchFinderBase.cutValue = props.mc;
438
439  p->writeEndMark = props.writeEndMark;
440
441  #ifndef _7ZIP_ST
442  /*
443  if (newMultiThread != _multiThread)
444  {
445    ReleaseMatchFinder();
446    _multiThread = newMultiThread;
447  }
448  */
449  p->multiThread = (props.numThreads > 1);
450  #endif
451
452  return SZ_OK;
453}
454
455static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
456static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
457static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
458static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
459
460#define IsCharState(s) ((s) < 7)
461
462#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
463
464#define kInfinityPrice (1 << 30)
465
466static void RangeEnc_Construct(CRangeEnc *p)
467{
468  p->outStream = 0;
469  p->bufBase = 0;
470}
471
472#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
473
474#define RC_BUF_SIZE (1 << 16)
475static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
476{
477  if (p->bufBase == 0)
478  {
479    p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
480    if (p->bufBase == 0)
481      return 0;
482    p->bufLim = p->bufBase + RC_BUF_SIZE;
483  }
484  return 1;
485}
486
487static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
488{
489  alloc->Free(alloc, p->bufBase);
490  p->bufBase = 0;
491}
492
493static void RangeEnc_Init(CRangeEnc *p)
494{
495  /* Stream.Init(); */
496  p->low = 0;
497  p->range = 0xFFFFFFFF;
498  p->cacheSize = 1;
499  p->cache = 0;
500
501  p->buf = p->bufBase;
502
503  p->processed = 0;
504  p->res = SZ_OK;
505}
506
507static void RangeEnc_FlushStream(CRangeEnc *p)
508{
509  size_t num;
510  if (p->res != SZ_OK)
511    return;
512  num = p->buf - p->bufBase;
513  if (num != p->outStream->Write(p->outStream, p->bufBase, num))
514    p->res = SZ_ERROR_WRITE;
515  p->processed += num;
516  p->buf = p->bufBase;
517}
518
519static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
520{
521  if ((UInt32)p->low < (UInt32)0xFF000000 || (unsigned)(p->low >> 32) != 0)
522  {
523    Byte temp = p->cache;
524    do
525    {
526      Byte *buf = p->buf;
527      *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
528      p->buf = buf;
529      if (buf == p->bufLim)
530        RangeEnc_FlushStream(p);
531      temp = 0xFF;
532    }
533    while (--p->cacheSize != 0);
534    p->cache = (Byte)((UInt32)p->low >> 24);
535  }
536  p->cacheSize++;
537  p->low = (UInt32)p->low << 8;
538}
539
540static void RangeEnc_FlushData(CRangeEnc *p)
541{
542  int i;
543  for (i = 0; i < 5; i++)
544    RangeEnc_ShiftLow(p);
545}
546
547static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, unsigned numBits)
548{
549  do
550  {
551    p->range >>= 1;
552    p->low += p->range & (0 - ((value >> --numBits) & 1));
553    if (p->range < kTopValue)
554    {
555      p->range <<= 8;
556      RangeEnc_ShiftLow(p);
557    }
558  }
559  while (numBits != 0);
560}
561
562static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
563{
564  UInt32 ttt = *prob;
565  UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
566  if (symbol == 0)
567  {
568    p->range = newBound;
569    ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
570  }
571  else
572  {
573    p->low += newBound;
574    p->range -= newBound;
575    ttt -= ttt >> kNumMoveBits;
576  }
577  *prob = (CLzmaProb)ttt;
578  if (p->range < kTopValue)
579  {
580    p->range <<= 8;
581    RangeEnc_ShiftLow(p);
582  }
583}
584
585static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
586{
587  symbol |= 0x100;
588  do
589  {
590    RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
591    symbol <<= 1;
592  }
593  while (symbol < 0x10000);
594}
595
596static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
597{
598  UInt32 offs = 0x100;
599  symbol |= 0x100;
600  do
601  {
602    matchByte <<= 1;
603    RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
604    symbol <<= 1;
605    offs &= ~(matchByte ^ symbol);
606  }
607  while (symbol < 0x10000);
608}
609
610void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
611{
612  UInt32 i;
613  for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
614  {
615    const int kCyclesBits = kNumBitPriceShiftBits;
616    UInt32 w = i;
617    UInt32 bitCount = 0;
618    int j;
619    for (j = 0; j < kCyclesBits; j++)
620    {
621      w = w * w;
622      bitCount <<= 1;
623      while (w >= ((UInt32)1 << 16))
624      {
625        w >>= 1;
626        bitCount++;
627      }
628    }
629    ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
630  }
631}
632
633
634#define GET_PRICE(prob, symbol) \
635  p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
636
637#define GET_PRICEa(prob, symbol) \
638  ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
639
640#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
641#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
642
643#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
644#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
645
646static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
647{
648  UInt32 price = 0;
649  symbol |= 0x100;
650  do
651  {
652    price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
653    symbol <<= 1;
654  }
655  while (symbol < 0x10000);
656  return price;
657}
658
659static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
660{
661  UInt32 price = 0;
662  UInt32 offs = 0x100;
663  symbol |= 0x100;
664  do
665  {
666    matchByte <<= 1;
667    price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
668    symbol <<= 1;
669    offs &= ~(matchByte ^ symbol);
670  }
671  while (symbol < 0x10000);
672  return price;
673}
674
675
676static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
677{
678  UInt32 m = 1;
679  int i;
680  for (i = numBitLevels; i != 0;)
681  {
682    UInt32 bit;
683    i--;
684    bit = (symbol >> i) & 1;
685    RangeEnc_EncodeBit(rc, probs + m, bit);
686    m = (m << 1) | bit;
687  }
688}
689
690static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
691{
692  UInt32 m = 1;
693  int i;
694  for (i = 0; i < numBitLevels; i++)
695  {
696    UInt32 bit = symbol & 1;
697    RangeEnc_EncodeBit(rc, probs + m, bit);
698    m = (m << 1) | bit;
699    symbol >>= 1;
700  }
701}
702
703static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
704{
705  UInt32 price = 0;
706  symbol |= (1 << numBitLevels);
707  while (symbol != 1)
708  {
709    price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
710    symbol >>= 1;
711  }
712  return price;
713}
714
715static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
716{
717  UInt32 price = 0;
718  UInt32 m = 1;
719  int i;
720  for (i = numBitLevels; i != 0; i--)
721  {
722    UInt32 bit = symbol & 1;
723    symbol >>= 1;
724    price += GET_PRICEa(probs[m], bit);
725    m = (m << 1) | bit;
726  }
727  return price;
728}
729
730
731static void LenEnc_Init(CLenEnc *p)
732{
733  unsigned i;
734  p->choice = p->choice2 = kProbInitValue;
735  for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
736    p->low[i] = kProbInitValue;
737  for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
738    p->mid[i] = kProbInitValue;
739  for (i = 0; i < kLenNumHighSymbols; i++)
740    p->high[i] = kProbInitValue;
741}
742
743static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
744{
745  if (symbol < kLenNumLowSymbols)
746  {
747    RangeEnc_EncodeBit(rc, &p->choice, 0);
748    RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
749  }
750  else
751  {
752    RangeEnc_EncodeBit(rc, &p->choice, 1);
753    if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
754    {
755      RangeEnc_EncodeBit(rc, &p->choice2, 0);
756      RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
757    }
758    else
759    {
760      RangeEnc_EncodeBit(rc, &p->choice2, 1);
761      RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
762    }
763  }
764}
765
766static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
767{
768  UInt32 a0 = GET_PRICE_0a(p->choice);
769  UInt32 a1 = GET_PRICE_1a(p->choice);
770  UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
771  UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
772  UInt32 i = 0;
773  for (i = 0; i < kLenNumLowSymbols; i++)
774  {
775    if (i >= numSymbols)
776      return;
777    prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
778  }
779  for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
780  {
781    if (i >= numSymbols)
782      return;
783    prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
784  }
785  for (; i < numSymbols; i++)
786    prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
787}
788
789static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
790{
791  LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
792  p->counters[posState] = p->tableSize;
793}
794
795static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
796{
797  UInt32 posState;
798  for (posState = 0; posState < numPosStates; posState++)
799    LenPriceEnc_UpdateTable(p, posState, ProbPrices);
800}
801
802static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
803{
804  LenEnc_Encode(&p->p, rc, symbol, posState);
805  if (updatePrice)
806    if (--p->counters[posState] == 0)
807      LenPriceEnc_UpdateTable(p, posState, ProbPrices);
808}
809
810
811
812
813static void MovePos(CLzmaEnc *p, UInt32 num)
814{
815  #ifdef SHOW_STAT
816  g_STAT_OFFSET += num;
817  printf("\n MovePos %d", num);
818  #endif
819
820  if (num != 0)
821  {
822    p->additionalOffset += num;
823    p->matchFinder.Skip(p->matchFinderObj, num);
824  }
825}
826
827static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
828{
829  UInt32 lenRes = 0, numPairs;
830  p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
831  numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
832
833  #ifdef SHOW_STAT
834  printf("\n i = %d numPairs = %d    ", g_STAT_OFFSET, numPairs / 2);
835  g_STAT_OFFSET++;
836  {
837    UInt32 i;
838    for (i = 0; i < numPairs; i += 2)
839      printf("%2d %6d   | ", p->matches[i], p->matches[i + 1]);
840  }
841  #endif
842
843  if (numPairs > 0)
844  {
845    lenRes = p->matches[numPairs - 2];
846    if (lenRes == p->numFastBytes)
847    {
848      const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
849      UInt32 distance = p->matches[numPairs - 1] + 1;
850      UInt32 numAvail = p->numAvail;
851      if (numAvail > LZMA_MATCH_LEN_MAX)
852        numAvail = LZMA_MATCH_LEN_MAX;
853      {
854        const Byte *pby2 = pby - distance;
855        for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
856      }
857    }
858  }
859  p->additionalOffset++;
860  *numDistancePairsRes = numPairs;
861  return lenRes;
862}
863
864
865#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
866#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
867#define IsShortRep(p) ((p)->backPrev == 0)
868
869static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
870{
871  return
872    GET_PRICE_0(p->isRepG0[state]) +
873    GET_PRICE_0(p->isRep0Long[state][posState]);
874}
875
876static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
877{
878  UInt32 price;
879  if (repIndex == 0)
880  {
881    price = GET_PRICE_0(p->isRepG0[state]);
882    price += GET_PRICE_1(p->isRep0Long[state][posState]);
883  }
884  else
885  {
886    price = GET_PRICE_1(p->isRepG0[state]);
887    if (repIndex == 1)
888      price += GET_PRICE_0(p->isRepG1[state]);
889    else
890    {
891      price += GET_PRICE_1(p->isRepG1[state]);
892      price += GET_PRICE(p->isRepG2[state], repIndex - 2);
893    }
894  }
895  return price;
896}
897
898static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
899{
900  return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
901    GetPureRepPrice(p, repIndex, state, posState);
902}
903
904static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
905{
906  UInt32 posMem = p->opt[cur].posPrev;
907  UInt32 backMem = p->opt[cur].backPrev;
908  p->optimumEndIndex = cur;
909  do
910  {
911    if (p->opt[cur].prev1IsChar)
912    {
913      MakeAsChar(&p->opt[posMem])
914      p->opt[posMem].posPrev = posMem - 1;
915      if (p->opt[cur].prev2)
916      {
917        p->opt[posMem - 1].prev1IsChar = False;
918        p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
919        p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
920      }
921    }
922    {
923      UInt32 posPrev = posMem;
924      UInt32 backCur = backMem;
925
926      backMem = p->opt[posPrev].backPrev;
927      posMem = p->opt[posPrev].posPrev;
928
929      p->opt[posPrev].backPrev = backCur;
930      p->opt[posPrev].posPrev = cur;
931      cur = posPrev;
932    }
933  }
934  while (cur != 0);
935  *backRes = p->opt[0].backPrev;
936  p->optimumCurrentIndex  = p->opt[0].posPrev;
937  return p->optimumCurrentIndex;
938}
939
940#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
941
942static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
943{
944  UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
945  UInt32 matchPrice, repMatchPrice, normalMatchPrice;
946  UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
947  UInt32 *matches;
948  const Byte *data;
949  Byte curByte, matchByte;
950  if (p->optimumEndIndex != p->optimumCurrentIndex)
951  {
952    const COptimal *opt = &p->opt[p->optimumCurrentIndex];
953    UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
954    *backRes = opt->backPrev;
955    p->optimumCurrentIndex = opt->posPrev;
956    return lenRes;
957  }
958  p->optimumCurrentIndex = p->optimumEndIndex = 0;
959
960  if (p->additionalOffset == 0)
961    mainLen = ReadMatchDistances(p, &numPairs);
962  else
963  {
964    mainLen = p->longestMatchLength;
965    numPairs = p->numPairs;
966  }
967
968  numAvail = p->numAvail;
969  if (numAvail < 2)
970  {
971    *backRes = (UInt32)(-1);
972    return 1;
973  }
974  if (numAvail > LZMA_MATCH_LEN_MAX)
975    numAvail = LZMA_MATCH_LEN_MAX;
976
977  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
978  repMaxIndex = 0;
979  for (i = 0; i < LZMA_NUM_REPS; i++)
980  {
981    UInt32 lenTest;
982    const Byte *data2;
983    reps[i] = p->reps[i];
984    data2 = data - (reps[i] + 1);
985    if (data[0] != data2[0] || data[1] != data2[1])
986    {
987      repLens[i] = 0;
988      continue;
989    }
990    for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
991    repLens[i] = lenTest;
992    if (lenTest > repLens[repMaxIndex])
993      repMaxIndex = i;
994  }
995  if (repLens[repMaxIndex] >= p->numFastBytes)
996  {
997    UInt32 lenRes;
998    *backRes = repMaxIndex;
999    lenRes = repLens[repMaxIndex];
1000    MovePos(p, lenRes - 1);
1001    return lenRes;
1002  }
1003
1004  matches = p->matches;
1005  if (mainLen >= p->numFastBytes)
1006  {
1007    *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1008    MovePos(p, mainLen - 1);
1009    return mainLen;
1010  }
1011  curByte = *data;
1012  matchByte = *(data - (reps[0] + 1));
1013
1014  if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1015  {
1016    *backRes = (UInt32)-1;
1017    return 1;
1018  }
1019
1020  p->opt[0].state = (CState)p->state;
1021
1022  posState = (position & p->pbMask);
1023
1024  {
1025    const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1026    p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1027        (!IsCharState(p->state) ?
1028          LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1029          LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1030  }
1031
1032  MakeAsChar(&p->opt[1]);
1033
1034  matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1035  repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1036
1037  if (matchByte == curByte)
1038  {
1039    UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1040    if (shortRepPrice < p->opt[1].price)
1041    {
1042      p->opt[1].price = shortRepPrice;
1043      MakeAsShortRep(&p->opt[1]);
1044    }
1045  }
1046  lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
1047
1048  if (lenEnd < 2)
1049  {
1050    *backRes = p->opt[1].backPrev;
1051    return 1;
1052  }
1053
1054  p->opt[1].posPrev = 0;
1055  for (i = 0; i < LZMA_NUM_REPS; i++)
1056    p->opt[0].backs[i] = reps[i];
1057
1058  len = lenEnd;
1059  do
1060    p->opt[len--].price = kInfinityPrice;
1061  while (len >= 2);
1062
1063  for (i = 0; i < LZMA_NUM_REPS; i++)
1064  {
1065    UInt32 repLen = repLens[i];
1066    UInt32 price;
1067    if (repLen < 2)
1068      continue;
1069    price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1070    do
1071    {
1072      UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1073      COptimal *opt = &p->opt[repLen];
1074      if (curAndLenPrice < opt->price)
1075      {
1076        opt->price = curAndLenPrice;
1077        opt->posPrev = 0;
1078        opt->backPrev = i;
1079        opt->prev1IsChar = False;
1080      }
1081    }
1082    while (--repLen >= 2);
1083  }
1084
1085  normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1086
1087  len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1088  if (len <= mainLen)
1089  {
1090    UInt32 offs = 0;
1091    while (len > matches[offs])
1092      offs += 2;
1093    for (; ; len++)
1094    {
1095      COptimal *opt;
1096      UInt32 distance = matches[offs + 1];
1097
1098      UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1099      UInt32 lenToPosState = GetLenToPosState(len);
1100      if (distance < kNumFullDistances)
1101        curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1102      else
1103      {
1104        UInt32 slot;
1105        GetPosSlot2(distance, slot);
1106        curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1107      }
1108      opt = &p->opt[len];
1109      if (curAndLenPrice < opt->price)
1110      {
1111        opt->price = curAndLenPrice;
1112        opt->posPrev = 0;
1113        opt->backPrev = distance + LZMA_NUM_REPS;
1114        opt->prev1IsChar = False;
1115      }
1116      if (len == matches[offs])
1117      {
1118        offs += 2;
1119        if (offs == numPairs)
1120          break;
1121      }
1122    }
1123  }
1124
1125  cur = 0;
1126
1127    #ifdef SHOW_STAT2
1128    if (position >= 0)
1129    {
1130      unsigned i;
1131      printf("\n pos = %4X", position);
1132      for (i = cur; i <= lenEnd; i++)
1133      printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1134    }
1135    #endif
1136
1137  for (;;)
1138  {
1139    UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
1140    UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
1141    Bool nextIsChar;
1142    Byte curByte, matchByte;
1143    const Byte *data;
1144    COptimal *curOpt;
1145    COptimal *nextOpt;
1146
1147    cur++;
1148    if (cur == lenEnd)
1149      return Backward(p, backRes, cur);
1150
1151    newLen = ReadMatchDistances(p, &numPairs);
1152    if (newLen >= p->numFastBytes)
1153    {
1154      p->numPairs = numPairs;
1155      p->longestMatchLength = newLen;
1156      return Backward(p, backRes, cur);
1157    }
1158    position++;
1159    curOpt = &p->opt[cur];
1160    posPrev = curOpt->posPrev;
1161    if (curOpt->prev1IsChar)
1162    {
1163      posPrev--;
1164      if (curOpt->prev2)
1165      {
1166        state = p->opt[curOpt->posPrev2].state;
1167        if (curOpt->backPrev2 < LZMA_NUM_REPS)
1168          state = kRepNextStates[state];
1169        else
1170          state = kMatchNextStates[state];
1171      }
1172      else
1173        state = p->opt[posPrev].state;
1174      state = kLiteralNextStates[state];
1175    }
1176    else
1177      state = p->opt[posPrev].state;
1178    if (posPrev == cur - 1)
1179    {
1180      if (IsShortRep(curOpt))
1181        state = kShortRepNextStates[state];
1182      else
1183        state = kLiteralNextStates[state];
1184    }
1185    else
1186    {
1187      UInt32 pos;
1188      const COptimal *prevOpt;
1189      if (curOpt->prev1IsChar && curOpt->prev2)
1190      {
1191        posPrev = curOpt->posPrev2;
1192        pos = curOpt->backPrev2;
1193        state = kRepNextStates[state];
1194      }
1195      else
1196      {
1197        pos = curOpt->backPrev;
1198        if (pos < LZMA_NUM_REPS)
1199          state = kRepNextStates[state];
1200        else
1201          state = kMatchNextStates[state];
1202      }
1203      prevOpt = &p->opt[posPrev];
1204      if (pos < LZMA_NUM_REPS)
1205      {
1206        UInt32 i;
1207        reps[0] = prevOpt->backs[pos];
1208        for (i = 1; i <= pos; i++)
1209          reps[i] = prevOpt->backs[i - 1];
1210        for (; i < LZMA_NUM_REPS; i++)
1211          reps[i] = prevOpt->backs[i];
1212      }
1213      else
1214      {
1215        UInt32 i;
1216        reps[0] = (pos - LZMA_NUM_REPS);
1217        for (i = 1; i < LZMA_NUM_REPS; i++)
1218          reps[i] = prevOpt->backs[i - 1];
1219      }
1220    }
1221    curOpt->state = (CState)state;
1222
1223    curOpt->backs[0] = reps[0];
1224    curOpt->backs[1] = reps[1];
1225    curOpt->backs[2] = reps[2];
1226    curOpt->backs[3] = reps[3];
1227
1228    curPrice = curOpt->price;
1229    nextIsChar = False;
1230    data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1231    curByte = *data;
1232    matchByte = *(data - (reps[0] + 1));
1233
1234    posState = (position & p->pbMask);
1235
1236    curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1237    {
1238      const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1239      curAnd1Price +=
1240        (!IsCharState(state) ?
1241          LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1242          LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1243    }
1244
1245    nextOpt = &p->opt[cur + 1];
1246
1247    if (curAnd1Price < nextOpt->price)
1248    {
1249      nextOpt->price = curAnd1Price;
1250      nextOpt->posPrev = cur;
1251      MakeAsChar(nextOpt);
1252      nextIsChar = True;
1253    }
1254
1255    matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1256    repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1257
1258    if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1259    {
1260      UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1261      if (shortRepPrice <= nextOpt->price)
1262      {
1263        nextOpt->price = shortRepPrice;
1264        nextOpt->posPrev = cur;
1265        MakeAsShortRep(nextOpt);
1266        nextIsChar = True;
1267      }
1268    }
1269    numAvailFull = p->numAvail;
1270    {
1271      UInt32 temp = kNumOpts - 1 - cur;
1272      if (temp < numAvailFull)
1273        numAvailFull = temp;
1274    }
1275
1276    if (numAvailFull < 2)
1277      continue;
1278    numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1279
1280    if (!nextIsChar && matchByte != curByte) /* speed optimization */
1281    {
1282      /* try Literal + rep0 */
1283      UInt32 temp;
1284      UInt32 lenTest2;
1285      const Byte *data2 = data - (reps[0] + 1);
1286      UInt32 limit = p->numFastBytes + 1;
1287      if (limit > numAvailFull)
1288        limit = numAvailFull;
1289
1290      for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1291      lenTest2 = temp - 1;
1292      if (lenTest2 >= 2)
1293      {
1294        UInt32 state2 = kLiteralNextStates[state];
1295        UInt32 posStateNext = (position + 1) & p->pbMask;
1296        UInt32 nextRepMatchPrice = curAnd1Price +
1297            GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1298            GET_PRICE_1(p->isRep[state2]);
1299        /* for (; lenTest2 >= 2; lenTest2--) */
1300        {
1301          UInt32 curAndLenPrice;
1302          COptimal *opt;
1303          UInt32 offset = cur + 1 + lenTest2;
1304          while (lenEnd < offset)
1305            p->opt[++lenEnd].price = kInfinityPrice;
1306          curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1307          opt = &p->opt[offset];
1308          if (curAndLenPrice < opt->price)
1309          {
1310            opt->price = curAndLenPrice;
1311            opt->posPrev = cur + 1;
1312            opt->backPrev = 0;
1313            opt->prev1IsChar = True;
1314            opt->prev2 = False;
1315          }
1316        }
1317      }
1318    }
1319
1320    startLen = 2; /* speed optimization */
1321    {
1322    UInt32 repIndex;
1323    for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1324    {
1325      UInt32 lenTest;
1326      UInt32 lenTestTemp;
1327      UInt32 price;
1328      const Byte *data2 = data - (reps[repIndex] + 1);
1329      if (data[0] != data2[0] || data[1] != data2[1])
1330        continue;
1331      for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1332      while (lenEnd < cur + lenTest)
1333        p->opt[++lenEnd].price = kInfinityPrice;
1334      lenTestTemp = lenTest;
1335      price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1336      do
1337      {
1338        UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1339        COptimal *opt = &p->opt[cur + lenTest];
1340        if (curAndLenPrice < opt->price)
1341        {
1342          opt->price = curAndLenPrice;
1343          opt->posPrev = cur;
1344          opt->backPrev = repIndex;
1345          opt->prev1IsChar = False;
1346        }
1347      }
1348      while (--lenTest >= 2);
1349      lenTest = lenTestTemp;
1350
1351      if (repIndex == 0)
1352        startLen = lenTest + 1;
1353
1354      /* if (_maxMode) */
1355        {
1356          UInt32 lenTest2 = lenTest + 1;
1357          UInt32 limit = lenTest2 + p->numFastBytes;
1358          UInt32 nextRepMatchPrice;
1359          if (limit > numAvailFull)
1360            limit = numAvailFull;
1361          for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1362          lenTest2 -= lenTest + 1;
1363          if (lenTest2 >= 2)
1364          {
1365            UInt32 state2 = kRepNextStates[state];
1366            UInt32 posStateNext = (position + lenTest) & p->pbMask;
1367            UInt32 curAndLenCharPrice =
1368                price + p->repLenEnc.prices[posState][lenTest - 2] +
1369                GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1370                LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1371                    data[lenTest], data2[lenTest], p->ProbPrices);
1372            state2 = kLiteralNextStates[state2];
1373            posStateNext = (position + lenTest + 1) & p->pbMask;
1374            nextRepMatchPrice = curAndLenCharPrice +
1375                GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1376                GET_PRICE_1(p->isRep[state2]);
1377
1378            /* for (; lenTest2 >= 2; lenTest2--) */
1379            {
1380              UInt32 curAndLenPrice;
1381              COptimal *opt;
1382              UInt32 offset = cur + lenTest + 1 + lenTest2;
1383              while (lenEnd < offset)
1384                p->opt[++lenEnd].price = kInfinityPrice;
1385              curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1386              opt = &p->opt[offset];
1387              if (curAndLenPrice < opt->price)
1388              {
1389                opt->price = curAndLenPrice;
1390                opt->posPrev = cur + lenTest + 1;
1391                opt->backPrev = 0;
1392                opt->prev1IsChar = True;
1393                opt->prev2 = True;
1394                opt->posPrev2 = cur;
1395                opt->backPrev2 = repIndex;
1396              }
1397            }
1398          }
1399        }
1400    }
1401    }
1402    /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1403    if (newLen > numAvail)
1404    {
1405      newLen = numAvail;
1406      for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1407      matches[numPairs] = newLen;
1408      numPairs += 2;
1409    }
1410    if (newLen >= startLen)
1411    {
1412      UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1413      UInt32 offs, curBack, posSlot;
1414      UInt32 lenTest;
1415      while (lenEnd < cur + newLen)
1416        p->opt[++lenEnd].price = kInfinityPrice;
1417
1418      offs = 0;
1419      while (startLen > matches[offs])
1420        offs += 2;
1421      curBack = matches[offs + 1];
1422      GetPosSlot2(curBack, posSlot);
1423      for (lenTest = /*2*/ startLen; ; lenTest++)
1424      {
1425        UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1426        UInt32 lenToPosState = GetLenToPosState(lenTest);
1427        COptimal *opt;
1428        if (curBack < kNumFullDistances)
1429          curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1430        else
1431          curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1432
1433        opt = &p->opt[cur + lenTest];
1434        if (curAndLenPrice < opt->price)
1435        {
1436          opt->price = curAndLenPrice;
1437          opt->posPrev = cur;
1438          opt->backPrev = curBack + LZMA_NUM_REPS;
1439          opt->prev1IsChar = False;
1440        }
1441
1442        if (/*_maxMode && */lenTest == matches[offs])
1443        {
1444          /* Try Match + Literal + Rep0 */
1445          const Byte *data2 = data - (curBack + 1);
1446          UInt32 lenTest2 = lenTest + 1;
1447          UInt32 limit = lenTest2 + p->numFastBytes;
1448          UInt32 nextRepMatchPrice;
1449          if (limit > numAvailFull)
1450            limit = numAvailFull;
1451          for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1452          lenTest2 -= lenTest + 1;
1453          if (lenTest2 >= 2)
1454          {
1455            UInt32 state2 = kMatchNextStates[state];
1456            UInt32 posStateNext = (position + lenTest) & p->pbMask;
1457            UInt32 curAndLenCharPrice = curAndLenPrice +
1458                GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1459                LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1460                    data[lenTest], data2[lenTest], p->ProbPrices);
1461            state2 = kLiteralNextStates[state2];
1462            posStateNext = (posStateNext + 1) & p->pbMask;
1463            nextRepMatchPrice = curAndLenCharPrice +
1464                GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1465                GET_PRICE_1(p->isRep[state2]);
1466
1467            /* for (; lenTest2 >= 2; lenTest2--) */
1468            {
1469              UInt32 offset = cur + lenTest + 1 + lenTest2;
1470              UInt32 curAndLenPrice;
1471              COptimal *opt;
1472              while (lenEnd < offset)
1473                p->opt[++lenEnd].price = kInfinityPrice;
1474              curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1475              opt = &p->opt[offset];
1476              if (curAndLenPrice < opt->price)
1477              {
1478                opt->price = curAndLenPrice;
1479                opt->posPrev = cur + lenTest + 1;
1480                opt->backPrev = 0;
1481                opt->prev1IsChar = True;
1482                opt->prev2 = True;
1483                opt->posPrev2 = cur;
1484                opt->backPrev2 = curBack + LZMA_NUM_REPS;
1485              }
1486            }
1487          }
1488          offs += 2;
1489          if (offs == numPairs)
1490            break;
1491          curBack = matches[offs + 1];
1492          if (curBack >= kNumFullDistances)
1493            GetPosSlot2(curBack, posSlot);
1494        }
1495      }
1496    }
1497  }
1498}
1499
1500#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1501
1502static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1503{
1504  UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1505  const Byte *data;
1506  const UInt32 *matches;
1507
1508  if (p->additionalOffset == 0)
1509    mainLen = ReadMatchDistances(p, &numPairs);
1510  else
1511  {
1512    mainLen = p->longestMatchLength;
1513    numPairs = p->numPairs;
1514  }
1515
1516  numAvail = p->numAvail;
1517  *backRes = (UInt32)-1;
1518  if (numAvail < 2)
1519    return 1;
1520  if (numAvail > LZMA_MATCH_LEN_MAX)
1521    numAvail = LZMA_MATCH_LEN_MAX;
1522  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1523
1524  repLen = repIndex = 0;
1525  for (i = 0; i < LZMA_NUM_REPS; i++)
1526  {
1527    UInt32 len;
1528    const Byte *data2 = data - (p->reps[i] + 1);
1529    if (data[0] != data2[0] || data[1] != data2[1])
1530      continue;
1531    for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1532    if (len >= p->numFastBytes)
1533    {
1534      *backRes = i;
1535      MovePos(p, len - 1);
1536      return len;
1537    }
1538    if (len > repLen)
1539    {
1540      repIndex = i;
1541      repLen = len;
1542    }
1543  }
1544
1545  matches = p->matches;
1546  if (mainLen >= p->numFastBytes)
1547  {
1548    *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1549    MovePos(p, mainLen - 1);
1550    return mainLen;
1551  }
1552
1553  mainDist = 0; /* for GCC */
1554  if (mainLen >= 2)
1555  {
1556    mainDist = matches[numPairs - 1];
1557    while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1558    {
1559      if (!ChangePair(matches[numPairs - 3], mainDist))
1560        break;
1561      numPairs -= 2;
1562      mainLen = matches[numPairs - 2];
1563      mainDist = matches[numPairs - 1];
1564    }
1565    if (mainLen == 2 && mainDist >= 0x80)
1566      mainLen = 1;
1567  }
1568
1569  if (repLen >= 2 && (
1570        (repLen + 1 >= mainLen) ||
1571        (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1572        (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1573  {
1574    *backRes = repIndex;
1575    MovePos(p, repLen - 1);
1576    return repLen;
1577  }
1578
1579  if (mainLen < 2 || numAvail <= 2)
1580    return 1;
1581
1582  p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1583  if (p->longestMatchLength >= 2)
1584  {
1585    UInt32 newDistance = matches[p->numPairs - 1];
1586    if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1587        (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1588        (p->longestMatchLength > mainLen + 1) ||
1589        (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1590      return 1;
1591  }
1592
1593  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1594  for (i = 0; i < LZMA_NUM_REPS; i++)
1595  {
1596    UInt32 len, limit;
1597    const Byte *data2 = data - (p->reps[i] + 1);
1598    if (data[0] != data2[0] || data[1] != data2[1])
1599      continue;
1600    limit = mainLen - 1;
1601    for (len = 2; len < limit && data[len] == data2[len]; len++);
1602    if (len >= limit)
1603      return 1;
1604  }
1605  *backRes = mainDist + LZMA_NUM_REPS;
1606  MovePos(p, mainLen - 2);
1607  return mainLen;
1608}
1609
1610static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1611{
1612  UInt32 len;
1613  RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1614  RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1615  p->state = kMatchNextStates[p->state];
1616  len = LZMA_MATCH_LEN_MIN;
1617  LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1618  RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1619  RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1620  RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1621}
1622
1623static SRes CheckErrors(CLzmaEnc *p)
1624{
1625  if (p->result != SZ_OK)
1626    return p->result;
1627  if (p->rc.res != SZ_OK)
1628    p->result = SZ_ERROR_WRITE;
1629  if (p->matchFinderBase.result != SZ_OK)
1630    p->result = SZ_ERROR_READ;
1631  if (p->result != SZ_OK)
1632    p->finished = True;
1633  return p->result;
1634}
1635
1636static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1637{
1638  /* ReleaseMFStream(); */
1639  p->finished = True;
1640  if (p->writeEndMark)
1641    WriteEndMarker(p, nowPos & p->pbMask);
1642  RangeEnc_FlushData(&p->rc);
1643  RangeEnc_FlushStream(&p->rc);
1644  return CheckErrors(p);
1645}
1646
1647static void FillAlignPrices(CLzmaEnc *p)
1648{
1649  UInt32 i;
1650  for (i = 0; i < kAlignTableSize; i++)
1651    p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1652  p->alignPriceCount = 0;
1653}
1654
1655static void FillDistancesPrices(CLzmaEnc *p)
1656{
1657  UInt32 tempPrices[kNumFullDistances];
1658  UInt32 i, lenToPosState;
1659  for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1660  {
1661    UInt32 posSlot = GetPosSlot1(i);
1662    UInt32 footerBits = ((posSlot >> 1) - 1);
1663    UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1664    tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1665  }
1666
1667  for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1668  {
1669    UInt32 posSlot;
1670    const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1671    UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1672    for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1673      posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1674    for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1675      posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1676
1677    {
1678      UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1679      UInt32 i;
1680      for (i = 0; i < kStartPosModelIndex; i++)
1681        distancesPrices[i] = posSlotPrices[i];
1682      for (; i < kNumFullDistances; i++)
1683        distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1684    }
1685  }
1686  p->matchPriceCount = 0;
1687}
1688
1689void LzmaEnc_Construct(CLzmaEnc *p)
1690{
1691  RangeEnc_Construct(&p->rc);
1692  MatchFinder_Construct(&p->matchFinderBase);
1693  #ifndef _7ZIP_ST
1694  MatchFinderMt_Construct(&p->matchFinderMt);
1695  p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1696  #endif
1697
1698  {
1699    CLzmaEncProps props;
1700    LzmaEncProps_Init(&props);
1701    LzmaEnc_SetProps(p, &props);
1702  }
1703
1704  #ifndef LZMA_LOG_BSR
1705  LzmaEnc_FastPosInit(p->g_FastPos);
1706  #endif
1707
1708  LzmaEnc_InitPriceTables(p->ProbPrices);
1709  p->litProbs = 0;
1710  p->saveState.litProbs = 0;
1711}
1712
1713CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1714{
1715  void *p;
1716  p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1717  if (p != 0)
1718    LzmaEnc_Construct((CLzmaEnc *)p);
1719  return p;
1720}
1721
1722void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1723{
1724  alloc->Free(alloc, p->litProbs);
1725  alloc->Free(alloc, p->saveState.litProbs);
1726  p->litProbs = 0;
1727  p->saveState.litProbs = 0;
1728}
1729
1730void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1731{
1732  #ifndef _7ZIP_ST
1733  MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1734  #endif
1735  MatchFinder_Free(&p->matchFinderBase, allocBig);
1736  LzmaEnc_FreeLits(p, alloc);
1737  RangeEnc_Free(&p->rc, alloc);
1738}
1739
1740void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1741{
1742  LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1743  alloc->Free(alloc, p);
1744}
1745
1746static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1747{
1748  UInt32 nowPos32, startPos32;
1749  if (p->needInit)
1750  {
1751    p->matchFinder.Init(p->matchFinderObj);
1752    p->needInit = 0;
1753  }
1754
1755  if (p->finished)
1756    return p->result;
1757  RINOK(CheckErrors(p));
1758
1759  nowPos32 = (UInt32)p->nowPos64;
1760  startPos32 = nowPos32;
1761
1762  if (p->nowPos64 == 0)
1763  {
1764    UInt32 numPairs;
1765    Byte curByte;
1766    if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1767      return Flush(p, nowPos32);
1768    ReadMatchDistances(p, &numPairs);
1769    RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1770    p->state = kLiteralNextStates[p->state];
1771    curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1772    LitEnc_Encode(&p->rc, p->litProbs, curByte);
1773    p->additionalOffset--;
1774    nowPos32++;
1775  }
1776
1777  if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1778  for (;;)
1779  {
1780    UInt32 pos, len, posState;
1781
1782    if (p->fastMode)
1783      len = GetOptimumFast(p, &pos);
1784    else
1785      len = GetOptimum(p, nowPos32, &pos);
1786
1787    #ifdef SHOW_STAT2
1788    printf("\n pos = %4X,   len = %d   pos = %d", nowPos32, len, pos);
1789    #endif
1790
1791    posState = nowPos32 & p->pbMask;
1792    if (len == 1 && pos == (UInt32)-1)
1793    {
1794      Byte curByte;
1795      CLzmaProb *probs;
1796      const Byte *data;
1797
1798      RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1799      data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1800      curByte = *data;
1801      probs = LIT_PROBS(nowPos32, *(data - 1));
1802      if (IsCharState(p->state))
1803        LitEnc_Encode(&p->rc, probs, curByte);
1804      else
1805        LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1806      p->state = kLiteralNextStates[p->state];
1807    }
1808    else
1809    {
1810      RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1811      if (pos < LZMA_NUM_REPS)
1812      {
1813        RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1814        if (pos == 0)
1815        {
1816          RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1817          RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1818        }
1819        else
1820        {
1821          UInt32 distance = p->reps[pos];
1822          RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1823          if (pos == 1)
1824            RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1825          else
1826          {
1827            RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1828            RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1829            if (pos == 3)
1830              p->reps[3] = p->reps[2];
1831            p->reps[2] = p->reps[1];
1832          }
1833          p->reps[1] = p->reps[0];
1834          p->reps[0] = distance;
1835        }
1836        if (len == 1)
1837          p->state = kShortRepNextStates[p->state];
1838        else
1839        {
1840          LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1841          p->state = kRepNextStates[p->state];
1842        }
1843      }
1844      else
1845      {
1846        UInt32 posSlot;
1847        RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1848        p->state = kMatchNextStates[p->state];
1849        LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1850        pos -= LZMA_NUM_REPS;
1851        GetPosSlot(pos, posSlot);
1852        RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1853
1854        if (posSlot >= kStartPosModelIndex)
1855        {
1856          UInt32 footerBits = ((posSlot >> 1) - 1);
1857          UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1858          UInt32 posReduced = pos - base;
1859
1860          if (posSlot < kEndPosModelIndex)
1861            RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1862          else
1863          {
1864            RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1865            RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1866            p->alignPriceCount++;
1867          }
1868        }
1869        p->reps[3] = p->reps[2];
1870        p->reps[2] = p->reps[1];
1871        p->reps[1] = p->reps[0];
1872        p->reps[0] = pos;
1873        p->matchPriceCount++;
1874      }
1875    }
1876    p->additionalOffset -= len;
1877    nowPos32 += len;
1878    if (p->additionalOffset == 0)
1879    {
1880      UInt32 processed;
1881      if (!p->fastMode)
1882      {
1883        if (p->matchPriceCount >= (1 << 7))
1884          FillDistancesPrices(p);
1885        if (p->alignPriceCount >= kAlignTableSize)
1886          FillAlignPrices(p);
1887      }
1888      if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1889        break;
1890      processed = nowPos32 - startPos32;
1891      if (useLimits)
1892      {
1893        if (processed + kNumOpts + 300 >= maxUnpackSize ||
1894            RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1895          break;
1896      }
1897      else if (processed >= (1 << 15))
1898      {
1899        p->nowPos64 += nowPos32 - startPos32;
1900        return CheckErrors(p);
1901      }
1902    }
1903  }
1904  p->nowPos64 += nowPos32 - startPos32;
1905  return Flush(p, nowPos32);
1906}
1907
1908#define kBigHashDicLimit ((UInt32)1 << 24)
1909
1910static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1911{
1912  UInt32 beforeSize = kNumOpts;
1913  if (!RangeEnc_Alloc(&p->rc, alloc))
1914    return SZ_ERROR_MEM;
1915  #ifndef _7ZIP_ST
1916  p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
1917  #endif
1918
1919  {
1920    unsigned lclp = p->lc + p->lp;
1921    if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1922    {
1923      LzmaEnc_FreeLits(p, alloc);
1924      p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1925      p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1926      if (p->litProbs == 0 || p->saveState.litProbs == 0)
1927      {
1928        LzmaEnc_FreeLits(p, alloc);
1929        return SZ_ERROR_MEM;
1930      }
1931      p->lclp = lclp;
1932    }
1933  }
1934
1935  p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1936
1937  if (beforeSize + p->dictSize < keepWindowSize)
1938    beforeSize = keepWindowSize - p->dictSize;
1939
1940  #ifndef _7ZIP_ST
1941  if (p->mtMode)
1942  {
1943    RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
1944    p->matchFinderObj = &p->matchFinderMt;
1945    MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
1946  }
1947  else
1948  #endif
1949  {
1950    if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
1951      return SZ_ERROR_MEM;
1952    p->matchFinderObj = &p->matchFinderBase;
1953    MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1954  }
1955  return SZ_OK;
1956}
1957
1958void LzmaEnc_Init(CLzmaEnc *p)
1959{
1960  UInt32 i;
1961  p->state = 0;
1962  for (i = 0 ; i < LZMA_NUM_REPS; i++)
1963    p->reps[i] = 0;
1964
1965  RangeEnc_Init(&p->rc);
1966
1967
1968  for (i = 0; i < kNumStates; i++)
1969  {
1970    UInt32 j;
1971    for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1972    {
1973      p->isMatch[i][j] = kProbInitValue;
1974      p->isRep0Long[i][j] = kProbInitValue;
1975    }
1976    p->isRep[i] = kProbInitValue;
1977    p->isRepG0[i] = kProbInitValue;
1978    p->isRepG1[i] = kProbInitValue;
1979    p->isRepG2[i] = kProbInitValue;
1980  }
1981
1982  {
1983    UInt32 num = 0x300 << (p->lp + p->lc);
1984    for (i = 0; i < num; i++)
1985      p->litProbs[i] = kProbInitValue;
1986  }
1987
1988  {
1989    for (i = 0; i < kNumLenToPosStates; i++)
1990    {
1991      CLzmaProb *probs = p->posSlotEncoder[i];
1992      UInt32 j;
1993      for (j = 0; j < (1 << kNumPosSlotBits); j++)
1994        probs[j] = kProbInitValue;
1995    }
1996  }
1997  {
1998    for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
1999      p->posEncoders[i] = kProbInitValue;
2000  }
2001
2002  LenEnc_Init(&p->lenEnc.p);
2003  LenEnc_Init(&p->repLenEnc.p);
2004
2005  for (i = 0; i < (1 << kNumAlignBits); i++)
2006    p->posAlignEncoder[i] = kProbInitValue;
2007
2008  p->optimumEndIndex = 0;
2009  p->optimumCurrentIndex = 0;
2010  p->additionalOffset = 0;
2011
2012  p->pbMask = (1 << p->pb) - 1;
2013  p->lpMask = (1 << p->lp) - 1;
2014}
2015
2016void LzmaEnc_InitPrices(CLzmaEnc *p)
2017{
2018  if (!p->fastMode)
2019  {
2020    FillDistancesPrices(p);
2021    FillAlignPrices(p);
2022  }
2023
2024  p->lenEnc.tableSize =
2025  p->repLenEnc.tableSize =
2026      p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2027  LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2028  LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2029}
2030
2031static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2032{
2033  UInt32 i;
2034  for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2035    if (p->dictSize <= ((UInt32)1 << i))
2036      break;
2037  p->distTableSize = i * 2;
2038
2039  p->finished = False;
2040  p->result = SZ_OK;
2041  RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2042  LzmaEnc_Init(p);
2043  LzmaEnc_InitPrices(p);
2044  p->nowPos64 = 0;
2045  return SZ_OK;
2046}
2047
2048static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
2049    ISzAlloc *alloc, ISzAlloc *allocBig)
2050{
2051  CLzmaEnc *p = (CLzmaEnc *)pp;
2052  p->matchFinderBase.stream = inStream;
2053  p->needInit = 1;
2054  p->rc.outStream = outStream;
2055  return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2056}
2057
2058SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2059    ISeqInStream *inStream, UInt32 keepWindowSize,
2060    ISzAlloc *alloc, ISzAlloc *allocBig)
2061{
2062  CLzmaEnc *p = (CLzmaEnc *)pp;
2063  p->matchFinderBase.stream = inStream;
2064  p->needInit = 1;
2065  return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2066}
2067
2068static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2069{
2070  p->matchFinderBase.directInput = 1;
2071  p->matchFinderBase.bufferBase = (Byte *)src;
2072  p->matchFinderBase.directInputRem = srcLen;
2073}
2074
2075SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2076    UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2077{
2078  CLzmaEnc *p = (CLzmaEnc *)pp;
2079  LzmaEnc_SetInputBuf(p, src, srcLen);
2080  p->needInit = 1;
2081
2082  return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2083}
2084
2085void LzmaEnc_Finish(CLzmaEncHandle pp)
2086{
2087  #ifndef _7ZIP_ST
2088  CLzmaEnc *p = (CLzmaEnc *)pp;
2089  if (p->mtMode)
2090    MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2091  #else
2092  pp = pp;
2093  #endif
2094}
2095
2096typedef struct
2097{
2098  ISeqOutStream funcTable;
2099  Byte *data;
2100  SizeT rem;
2101  Bool overflow;
2102} CSeqOutStreamBuf;
2103
2104static size_t MyWrite(void *pp, const void *data, size_t size)
2105{
2106  CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2107  if (p->rem < size)
2108  {
2109    size = p->rem;
2110    p->overflow = True;
2111  }
2112  memcpy(p->data, data, size);
2113  p->rem -= size;
2114  p->data += size;
2115  return size;
2116}
2117
2118
2119UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2120{
2121  const CLzmaEnc *p = (CLzmaEnc *)pp;
2122  return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2123}
2124
2125const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2126{
2127  const CLzmaEnc *p = (CLzmaEnc *)pp;
2128  return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2129}
2130
2131SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2132    Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2133{
2134  CLzmaEnc *p = (CLzmaEnc *)pp;
2135  UInt64 nowPos64;
2136  SRes res;
2137  CSeqOutStreamBuf outStream;
2138
2139  outStream.funcTable.Write = MyWrite;
2140  outStream.data = dest;
2141  outStream.rem = *destLen;
2142  outStream.overflow = False;
2143
2144  p->writeEndMark = False;
2145  p->finished = False;
2146  p->result = SZ_OK;
2147
2148  if (reInit)
2149    LzmaEnc_Init(p);
2150  LzmaEnc_InitPrices(p);
2151  nowPos64 = p->nowPos64;
2152  RangeEnc_Init(&p->rc);
2153  p->rc.outStream = &outStream.funcTable;
2154
2155  res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
2156
2157  *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2158  *destLen -= outStream.rem;
2159  if (outStream.overflow)
2160    return SZ_ERROR_OUTPUT_EOF;
2161
2162  return res;
2163}
2164
2165static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
2166{
2167  SRes res = SZ_OK;
2168
2169  #ifndef _7ZIP_ST
2170  Byte allocaDummy[0x300];
2171  allocaDummy[0] = 0;
2172  allocaDummy[1] = allocaDummy[0];
2173  #endif
2174
2175  for (;;)
2176  {
2177    res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
2178    if (res != SZ_OK || p->finished != 0)
2179      break;
2180    if (progress != 0)
2181    {
2182      res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2183      if (res != SZ_OK)
2184      {
2185        res = SZ_ERROR_PROGRESS;
2186        break;
2187      }
2188    }
2189  }
2190  LzmaEnc_Finish(p);
2191  return res;
2192}
2193
2194SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2195    ISzAlloc *alloc, ISzAlloc *allocBig)
2196{
2197  RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2198  return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
2199}
2200
2201SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2202{
2203  CLzmaEnc *p = (CLzmaEnc *)pp;
2204  int i;
2205  UInt32 dictSize = p->dictSize;
2206  if (*size < LZMA_PROPS_SIZE)
2207    return SZ_ERROR_PARAM;
2208  *size = LZMA_PROPS_SIZE;
2209  props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2210
2211  for (i = 11; i <= 30; i++)
2212  {
2213    if (dictSize <= ((UInt32)2 << i))
2214    {
2215      dictSize = (2 << i);
2216      break;
2217    }
2218    if (dictSize <= ((UInt32)3 << i))
2219    {
2220      dictSize = (3 << i);
2221      break;
2222    }
2223  }
2224
2225  for (i = 0; i < 4; i++)
2226    props[1 + i] = (Byte)(dictSize >> (8 * i));
2227  return SZ_OK;
2228}
2229
2230SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2231    int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2232{
2233  SRes res;
2234  CLzmaEnc *p = (CLzmaEnc *)pp;
2235
2236  CSeqOutStreamBuf outStream;
2237
2238  LzmaEnc_SetInputBuf(p, src, srcLen);
2239
2240  outStream.funcTable.Write = MyWrite;
2241  outStream.data = dest;
2242  outStream.rem = *destLen;
2243  outStream.overflow = False;
2244
2245  p->writeEndMark = writeEndMark;
2246
2247  p->rc.outStream = &outStream.funcTable;
2248  res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2249  if (res == SZ_OK)
2250    res = LzmaEnc_Encode2(p, progress);
2251
2252  *destLen -= outStream.rem;
2253  if (outStream.overflow)
2254    return SZ_ERROR_OUTPUT_EOF;
2255  return res;
2256}
2257
2258SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2259    const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2260    ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2261{
2262  CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2263  SRes res;
2264  if (p == 0)
2265    return SZ_ERROR_MEM;
2266
2267  res = LzmaEnc_SetProps(p, props);
2268  if (res == SZ_OK)
2269  {
2270    res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2271    if (res == SZ_OK)
2272      res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2273          writeEndMark, progress, alloc, allocBig);
2274  }
2275
2276  LzmaEnc_Destroy(p, alloc, allocBig);
2277  return res;
2278}
2279