1/*
2 * jdarith.c
3 *
4 * Developed 1997-2012 by Guido Vollbeding.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains portable arithmetic entropy decoding routines for JPEG
9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10 *
11 * Both sequential and progressive modes are supported in this single module.
12 *
13 * Suspension is not currently supported in this module.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19
20
21/* Expanded entropy decoder object for arithmetic decoding. */
22
23typedef struct {
24  struct jpeg_entropy_decoder pub; /* public fields */
25
26  INT32 c;       /* C register, base of coding interval + input bit buffer */
27  INT32 a;               /* A register, normalized size of coding interval */
28  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
29                                                         /* init: ct = -16 */
30                                                         /* run: ct = 0..7 */
31                                                         /* error: ct = -1 */
32  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34
35  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
36
37  /* Pointers to statistics areas (these workspaces have image lifespan) */
38  unsigned char * dc_stats[NUM_ARITH_TBLS];
39  unsigned char * ac_stats[NUM_ARITH_TBLS];
40
41  /* Statistics bin for coding with fixed probability 0.5 */
42  unsigned char fixed_bin[4];
43} arith_entropy_decoder;
44
45typedef arith_entropy_decoder * arith_entropy_ptr;
46
47/* The following two definitions specify the allocation chunk size
48 * for the statistics area.
49 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
51 *
52 * We use a compact representation with 1 byte per statistics bin,
53 * thus the numbers directly represent byte sizes.
54 * This 1 byte per statistics bin contains the meaning of the MPS
55 * (more probable symbol) in the highest bit (mask 0x80), and the
56 * index into the probability estimation state machine table
57 * in the lower bits (mask 0x7F).
58 */
59
60#define DC_STAT_BINS 64
61#define AC_STAT_BINS 256
62
63
64LOCAL(int)
65get_byte (j_decompress_ptr cinfo)
66/* Read next input byte; we do not support suspension in this module. */
67{
68  struct jpeg_source_mgr * src = cinfo->src;
69
70  if (src->bytes_in_buffer == 0)
71    if (! (*src->fill_input_buffer) (cinfo))
72      ERREXIT(cinfo, JERR_CANT_SUSPEND);
73  src->bytes_in_buffer--;
74  return GETJOCTET(*src->next_input_byte++);
75}
76
77
78/*
79 * The core arithmetic decoding routine (common in JPEG and JBIG).
80 * This needs to go as fast as possible.
81 * Machine-dependent optimization facilities
82 * are not utilized in this portable implementation.
83 * However, this code should be fairly efficient and
84 * may be a good base for further optimizations anyway.
85 *
86 * Return value is 0 or 1 (binary decision).
87 *
88 * Note: I've changed the handling of the code base & bit
89 * buffer register C compared to other implementations
90 * based on the standards layout & procedures.
91 * While it also contains both the actual base of the
92 * coding interval (16 bits) and the next-bits buffer,
93 * the cut-point between these two parts is floating
94 * (instead of fixed) with the bit shift counter CT.
95 * Thus, we also need only one (variable instead of
96 * fixed size) shift for the LPS/MPS decision, and
97 * we can get away with any renormalization update
98 * of C (except for new data insertion, of course).
99 *
100 * I've also introduced a new scheme for accessing
101 * the probability estimation state machine table,
102 * derived from Markus Kuhn's JBIG implementation.
103 */
104
105LOCAL(int)
106arith_decode (j_decompress_ptr cinfo, unsigned char *st)
107{
108  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109  register unsigned char nl, nm;
110  register INT32 qe, temp;
111  register int sv, data;
112
113  /* Renormalization & data input per section D.2.6 */
114  while (e->a < 0x8000L) {
115    if (--e->ct < 0) {
116      /* Need to fetch next data byte */
117      if (cinfo->unread_marker)
118        data = 0;		/* stuff zero data */
119      else {
120        data = get_byte(cinfo);	/* read next input byte */
121        if (data == 0xFF) {	/* zero stuff or marker code */
122          do data = get_byte(cinfo);
123          while (data == 0xFF);	/* swallow extra 0xFF bytes */
124          if (data == 0)
125            data = 0xFF;	/* discard stuffed zero byte */
126          else {
127            /* Note: Different from the Huffman decoder, hitting
128             * a marker while processing the compressed data
129             * segment is legal in arithmetic coding.
130             * The convention is to supply zero data
131             * then until decoding is complete.
132             */
133            cinfo->unread_marker = data;
134            data = 0;
135          }
136        }
137      }
138      e->c = (e->c << 8) | data; /* insert data into C register */
139      if ((e->ct += 8) < 0)	 /* update bit shift counter */
140        /* Need more initial bytes */
141        if (++e->ct == 0)
142          /* Got 2 initial bytes -> re-init A and exit loop */
143          e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144    }
145    e->a <<= 1;
146  }
147
148  /* Fetch values from our compact representation of Table D.3(D.2):
149   * Qe values and probability estimation state machine
150   */
151  sv = *st;
152  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
153  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
154  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
155
156  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157  temp = e->a - qe;
158  e->a = temp;
159  temp <<= e->ct;
160  if (e->c >= temp) {
161    e->c -= temp;
162    /* Conditional LPS (less probable symbol) exchange */
163    if (e->a < qe) {
164      e->a = qe;
165      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
166    } else {
167      e->a = qe;
168      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
169      sv ^= 0x80;		/* Exchange LPS/MPS */
170    }
171  } else if (e->a < 0x8000L) {
172    /* Conditional MPS (more probable symbol) exchange */
173    if (e->a < qe) {
174      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
175      sv ^= 0x80;		/* Exchange LPS/MPS */
176    } else {
177      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
178    }
179  }
180
181  return sv >> 7;
182}
183
184
185/*
186 * Check for a restart marker & resynchronize decoder.
187 */
188
189LOCAL(void)
190process_restart (j_decompress_ptr cinfo)
191{
192  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193  int ci;
194  jpeg_component_info * compptr;
195
196  /* Advance past the RSTn marker */
197  if (! (*cinfo->marker->read_restart_marker) (cinfo))
198    ERREXIT(cinfo, JERR_CANT_SUSPEND);
199
200  /* Re-initialize statistics areas */
201  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202    compptr = cinfo->cur_comp_info[ci];
203    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205      /* Reset DC predictions to 0 */
206      entropy->last_dc_val[ci] = 0;
207      entropy->dc_context[ci] = 0;
208    }
209    if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
210        (cinfo->progressive_mode && cinfo->Ss)) {
211      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
212    }
213  }
214
215  /* Reset arithmetic decoding variables */
216  entropy->c = 0;
217  entropy->a = 0;
218  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
219
220  /* Reset restart counter */
221  entropy->restarts_to_go = cinfo->restart_interval;
222}
223
224
225/*
226 * Arithmetic MCU decoding.
227 * Each of these routines decodes and returns one MCU's worth of
228 * arithmetic-compressed coefficients.
229 * The coefficients are reordered from zigzag order into natural array order,
230 * but are not dequantized.
231 *
232 * The i'th block of the MCU is stored into the block pointed to by
233 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
234 */
235
236/*
237 * MCU decoding for DC initial scan (either spectral selection,
238 * or first pass of successive approximation).
239 */
240
241METHODDEF(boolean)
242decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
243{
244  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
245  JBLOCKROW block;
246  unsigned char *st;
247  int blkn, ci, tbl, sign;
248  int v, m;
249
250  /* Process restart marker if needed */
251  if (cinfo->restart_interval) {
252    if (entropy->restarts_to_go == 0)
253      process_restart(cinfo);
254    entropy->restarts_to_go--;
255  }
256
257  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
258
259  /* Outer loop handles each block in the MCU */
260
261  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
262    block = MCU_data[blkn];
263    ci = cinfo->MCU_membership[blkn];
264    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
265
266    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
267
268    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
270
271    /* Figure F.19: Decode_DC_DIFF */
272    if (arith_decode(cinfo, st) == 0)
273      entropy->dc_context[ci] = 0;
274    else {
275      /* Figure F.21: Decoding nonzero value v */
276      /* Figure F.22: Decoding the sign of v */
277      sign = arith_decode(cinfo, st + 1);
278      st += 2; st += sign;
279      /* Figure F.23: Decoding the magnitude category of v */
280      if ((m = arith_decode(cinfo, st)) != 0) {
281        st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
282        while (arith_decode(cinfo, st)) {
283          if ((m <<= 1) == 0x8000) {
284            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
285            entropy->ct = -1;			/* magnitude overflow */
286            return TRUE;
287          }
288          st += 1;
289        }
290      }
291      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
293        entropy->dc_context[ci] = 0;		   /* zero diff category */
294      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
295        entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
296      else
297        entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
298      v = m;
299      /* Figure F.24: Decoding the magnitude bit pattern of v */
300      st += 14;
301      while (m >>= 1)
302        if (arith_decode(cinfo, st)) v |= m;
303      v += 1; if (sign) v = -v;
304      entropy->last_dc_val[ci] += v;
305    }
306
307    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308    (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
309  }
310
311  return TRUE;
312}
313
314
315/*
316 * MCU decoding for AC initial scan (either spectral selection,
317 * or first pass of successive approximation).
318 */
319
320METHODDEF(boolean)
321decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
322{
323  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324  JBLOCKROW block;
325  unsigned char *st;
326  int tbl, sign, k;
327  int v, m;
328  const int * natural_order;
329
330  /* Process restart marker if needed */
331  if (cinfo->restart_interval) {
332    if (entropy->restarts_to_go == 0)
333      process_restart(cinfo);
334    entropy->restarts_to_go--;
335  }
336
337  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
338
339  natural_order = cinfo->natural_order;
340
341  /* There is always only one block per MCU */
342  block = MCU_data[0];
343  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
344
345  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
346
347  /* Figure F.20: Decode_AC_coefficients */
348  k = cinfo->Ss - 1;
349  do {
350    st = entropy->ac_stats[tbl] + 3 * k;
351    if (arith_decode(cinfo, st)) break;		/* EOB flag */
352    for (;;) {
353      k++;
354      if (arith_decode(cinfo, st + 1)) break;
355      st += 3;
356      if (k >= cinfo->Se) {
357        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
358        entropy->ct = -1;			/* spectral overflow */
359        return TRUE;
360      }
361    }
362    /* Figure F.21: Decoding nonzero value v */
363    /* Figure F.22: Decoding the sign of v */
364    sign = arith_decode(cinfo, entropy->fixed_bin);
365    st += 2;
366    /* Figure F.23: Decoding the magnitude category of v */
367    if ((m = arith_decode(cinfo, st)) != 0) {
368      if (arith_decode(cinfo, st)) {
369        m <<= 1;
370        st = entropy->ac_stats[tbl] +
371             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
372        while (arith_decode(cinfo, st)) {
373          if ((m <<= 1) == 0x8000) {
374            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
375            entropy->ct = -1;			/* magnitude overflow */
376            return TRUE;
377          }
378          st += 1;
379        }
380      }
381    }
382    v = m;
383    /* Figure F.24: Decoding the magnitude bit pattern of v */
384    st += 14;
385    while (m >>= 1)
386      if (arith_decode(cinfo, st)) v |= m;
387    v += 1; if (sign) v = -v;
388    /* Scale and output coefficient in natural (dezigzagged) order */
389    (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
390  } while (k < cinfo->Se);
391
392  return TRUE;
393}
394
395
396/*
397 * MCU decoding for DC successive approximation refinement scan.
398 */
399
400METHODDEF(boolean)
401decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
402{
403  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
404  unsigned char *st;
405  int p1, blkn;
406
407  /* Process restart marker if needed */
408  if (cinfo->restart_interval) {
409    if (entropy->restarts_to_go == 0)
410      process_restart(cinfo);
411    entropy->restarts_to_go--;
412  }
413
414  st = entropy->fixed_bin;	/* use fixed probability estimation */
415  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
416
417  /* Outer loop handles each block in the MCU */
418
419  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
420    /* Encoded data is simply the next bit of the two's-complement DC value */
421    if (arith_decode(cinfo, st))
422      MCU_data[blkn][0][0] |= p1;
423  }
424
425  return TRUE;
426}
427
428
429/*
430 * MCU decoding for AC successive approximation refinement scan.
431 */
432
433METHODDEF(boolean)
434decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
435{
436  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
437  JBLOCKROW block;
438  JCOEFPTR thiscoef;
439  unsigned char *st;
440  int tbl, k, kex;
441  int p1, m1;
442  const int * natural_order;
443
444  /* Process restart marker if needed */
445  if (cinfo->restart_interval) {
446    if (entropy->restarts_to_go == 0)
447      process_restart(cinfo);
448    entropy->restarts_to_go--;
449  }
450
451  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
452
453  natural_order = cinfo->natural_order;
454
455  /* There is always only one block per MCU */
456  block = MCU_data[0];
457  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
458
459  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
460  m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
461
462  /* Establish EOBx (previous stage end-of-block) index */
463  kex = cinfo->Se;
464  do {
465    if ((*block)[natural_order[kex]]) break;
466  } while (--kex);
467
468  k = cinfo->Ss - 1;
469  do {
470    st = entropy->ac_stats[tbl] + 3 * k;
471    if (k >= kex)
472      if (arith_decode(cinfo, st)) break;	/* EOB flag */
473    for (;;) {
474      thiscoef = *block + natural_order[++k];
475      if (*thiscoef) {				/* previously nonzero coef */
476        if (arith_decode(cinfo, st + 2)) {
477          if (*thiscoef < 0)
478            *thiscoef += m1;
479          else
480            *thiscoef += p1;
481        }
482        break;
483      }
484      if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
485        if (arith_decode(cinfo, entropy->fixed_bin))
486          *thiscoef = m1;
487        else
488          *thiscoef = p1;
489        break;
490      }
491      st += 3;
492      if (k >= cinfo->Se) {
493        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
494        entropy->ct = -1;			/* spectral overflow */
495        return TRUE;
496      }
497    }
498  } while (k < cinfo->Se);
499
500  return TRUE;
501}
502
503
504/*
505 * Decode one MCU's worth of arithmetic-compressed coefficients.
506 */
507
508METHODDEF(boolean)
509decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
510{
511  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
512  jpeg_component_info * compptr;
513  JBLOCKROW block;
514  unsigned char *st;
515  int blkn, ci, tbl, sign, k;
516  int v, m;
517  const int * natural_order;
518
519  /* Process restart marker if needed */
520  if (cinfo->restart_interval) {
521    if (entropy->restarts_to_go == 0)
522      process_restart(cinfo);
523    entropy->restarts_to_go--;
524  }
525
526  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
527
528  natural_order = cinfo->natural_order;
529
530  /* Outer loop handles each block in the MCU */
531
532  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
533    block = MCU_data[blkn];
534    ci = cinfo->MCU_membership[blkn];
535    compptr = cinfo->cur_comp_info[ci];
536
537    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
538
539    tbl = compptr->dc_tbl_no;
540
541    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
542    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
543
544    /* Figure F.19: Decode_DC_DIFF */
545    if (arith_decode(cinfo, st) == 0)
546      entropy->dc_context[ci] = 0;
547    else {
548      /* Figure F.21: Decoding nonzero value v */
549      /* Figure F.22: Decoding the sign of v */
550      sign = arith_decode(cinfo, st + 1);
551      st += 2; st += sign;
552      /* Figure F.23: Decoding the magnitude category of v */
553      if ((m = arith_decode(cinfo, st)) != 0) {
554        st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
555        while (arith_decode(cinfo, st)) {
556          if ((m <<= 1) == 0x8000) {
557            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
558            entropy->ct = -1;			/* magnitude overflow */
559            return TRUE;
560          }
561          st += 1;
562        }
563      }
564      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
565      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
566        entropy->dc_context[ci] = 0;		   /* zero diff category */
567      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
568        entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
569      else
570        entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
571      v = m;
572      /* Figure F.24: Decoding the magnitude bit pattern of v */
573      st += 14;
574      while (m >>= 1)
575        if (arith_decode(cinfo, st)) v |= m;
576      v += 1; if (sign) v = -v;
577      entropy->last_dc_val[ci] += v;
578    }
579
580    (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
581
582    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
583
584    if (cinfo->lim_Se == 0) continue;
585    tbl = compptr->ac_tbl_no;
586    k = 0;
587
588    /* Figure F.20: Decode_AC_coefficients */
589    do {
590      st = entropy->ac_stats[tbl] + 3 * k;
591      if (arith_decode(cinfo, st)) break;	/* EOB flag */
592      for (;;) {
593        k++;
594        if (arith_decode(cinfo, st + 1)) break;
595        st += 3;
596        if (k >= cinfo->lim_Se) {
597          WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
598          entropy->ct = -1;			/* spectral overflow */
599          return TRUE;
600        }
601      }
602      /* Figure F.21: Decoding nonzero value v */
603      /* Figure F.22: Decoding the sign of v */
604      sign = arith_decode(cinfo, entropy->fixed_bin);
605      st += 2;
606      /* Figure F.23: Decoding the magnitude category of v */
607      if ((m = arith_decode(cinfo, st)) != 0) {
608        if (arith_decode(cinfo, st)) {
609          m <<= 1;
610          st = entropy->ac_stats[tbl] +
611               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
612          while (arith_decode(cinfo, st)) {
613            if ((m <<= 1) == 0x8000) {
614              WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
615              entropy->ct = -1;			/* magnitude overflow */
616              return TRUE;
617            }
618            st += 1;
619          }
620        }
621      }
622      v = m;
623      /* Figure F.24: Decoding the magnitude bit pattern of v */
624      st += 14;
625      while (m >>= 1)
626        if (arith_decode(cinfo, st)) v |= m;
627      v += 1; if (sign) v = -v;
628      (*block)[natural_order[k]] = (JCOEF) v;
629    } while (k < cinfo->lim_Se);
630  }
631
632  return TRUE;
633}
634
635
636/*
637 * Initialize for an arithmetic-compressed scan.
638 */
639
640METHODDEF(void)
641start_pass (j_decompress_ptr cinfo)
642{
643  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
644  int ci, tbl;
645  jpeg_component_info * compptr;
646
647  if (cinfo->progressive_mode) {
648    /* Validate progressive scan parameters */
649    if (cinfo->Ss == 0) {
650      if (cinfo->Se != 0)
651        goto bad;
652    } else {
653      /* need not check Ss/Se < 0 since they came from unsigned bytes */
654      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
655        goto bad;
656      /* AC scans may have only one component */
657      if (cinfo->comps_in_scan != 1)
658        goto bad;
659    }
660    if (cinfo->Ah != 0) {
661      /* Successive approximation refinement scan: must have Al = Ah-1. */
662      if (cinfo->Ah-1 != cinfo->Al)
663        goto bad;
664    }
665    if (cinfo->Al > 13) {	/* need not check for < 0 */
666      bad:
667      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
668               cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
669    }
670    /* Update progression status, and verify that scan order is legal.
671     * Note that inter-scan inconsistencies are treated as warnings
672     * not fatal errors ... not clear if this is right way to behave.
673     */
674    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
675      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
676      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
677      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
678        WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
679      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
680        int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
681        if (cinfo->Ah != expected)
682          WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
683        coef_bit_ptr[coefi] = cinfo->Al;
684      }
685    }
686    /* Select MCU decoding routine */
687    if (cinfo->Ah == 0) {
688      if (cinfo->Ss == 0)
689        entropy->pub.decode_mcu = decode_mcu_DC_first;
690      else
691        entropy->pub.decode_mcu = decode_mcu_AC_first;
692    } else {
693      if (cinfo->Ss == 0)
694        entropy->pub.decode_mcu = decode_mcu_DC_refine;
695      else
696        entropy->pub.decode_mcu = decode_mcu_AC_refine;
697    }
698  } else {
699    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
700     * This ought to be an error condition, but we make it a warning.
701     */
702    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
703        (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
704      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
705    /* Select MCU decoding routine */
706    entropy->pub.decode_mcu = decode_mcu;
707  }
708
709  /* Allocate & initialize requested statistics areas */
710  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
711    compptr = cinfo->cur_comp_info[ci];
712    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
713      tbl = compptr->dc_tbl_no;
714      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
715        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
716      if (entropy->dc_stats[tbl] == NULL)
717        entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
718          ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
719      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
720      /* Initialize DC predictions to 0 */
721      entropy->last_dc_val[ci] = 0;
722      entropy->dc_context[ci] = 0;
723    }
724    if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
725        (cinfo->progressive_mode && cinfo->Ss)) {
726      tbl = compptr->ac_tbl_no;
727      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
728        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
729      if (entropy->ac_stats[tbl] == NULL)
730        entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
731          ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
732      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
733    }
734  }
735
736  /* Initialize arithmetic decoding variables */
737  entropy->c = 0;
738  entropy->a = 0;
739  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
740
741  /* Initialize restart counter */
742  entropy->restarts_to_go = cinfo->restart_interval;
743}
744
745
746/*
747 * Module initialization routine for arithmetic entropy decoding.
748 */
749
750GLOBAL(void)
751jinit_arith_decoder (j_decompress_ptr cinfo)
752{
753  arith_entropy_ptr entropy;
754  int i;
755
756  entropy = (arith_entropy_ptr)
757    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
758                                SIZEOF(arith_entropy_decoder));
759  cinfo->entropy = &entropy->pub;
760  entropy->pub.start_pass = start_pass;
761
762  /* Mark tables unallocated */
763  for (i = 0; i < NUM_ARITH_TBLS; i++) {
764    entropy->dc_stats[i] = NULL;
765    entropy->ac_stats[i] = NULL;
766  }
767
768  /* Initialize index for fixed probability estimation */
769  entropy->fixed_bin[0] = 113;
770
771  if (cinfo->progressive_mode) {
772    /* Create progression status table */
773    int *coef_bit_ptr, ci;
774    cinfo->coef_bits = (int (*)[DCTSIZE2])
775      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
776                                  cinfo->num_components*DCTSIZE2*SIZEOF(int));
777    coef_bit_ptr = & cinfo->coef_bits[0][0];
778    for (ci = 0; ci < cinfo->num_components; ci++)
779      for (i = 0; i < DCTSIZE2; i++)
780        *coef_bit_ptr++ = -1;
781  }
782}
783