1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// Macroblock analysis
11//
12// Author: Skal (pascal.massimino@gmail.com)
13
14#include <stdlib.h>
15#include <string.h>
16#include <assert.h>
17
18#include "./vp8enci.h"
19#include "./cost.h"
20#include "../utils/utils.h"
21
22#if defined(__cplusplus) || defined(c_plusplus)
23extern "C" {
24#endif
25
26#define MAX_ITERS_K_MEANS  6
27
28//------------------------------------------------------------------------------
29// Smooth the segment map by replacing isolated block by the majority of its
30// neighbours.
31
32static void SmoothSegmentMap(VP8Encoder* const enc) {
33  int n, x, y;
34  const int w = enc->mb_w_;
35  const int h = enc->mb_h_;
36  const int majority_cnt_3_x_3_grid = 5;
37  uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
38  assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
39
40  if (tmp == NULL) return;
41  for (y = 1; y < h - 1; ++y) {
42    for (x = 1; x < w - 1; ++x) {
43      int cnt[NUM_MB_SEGMENTS] = { 0 };
44      const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
45      int majority_seg = mb->segment_;
46      // Check the 8 neighbouring segment values.
47      cnt[mb[-w - 1].segment_]++;  // top-left
48      cnt[mb[-w + 0].segment_]++;  // top
49      cnt[mb[-w + 1].segment_]++;  // top-right
50      cnt[mb[   - 1].segment_]++;  // left
51      cnt[mb[   + 1].segment_]++;  // right
52      cnt[mb[ w - 1].segment_]++;  // bottom-left
53      cnt[mb[ w + 0].segment_]++;  // bottom
54      cnt[mb[ w + 1].segment_]++;  // bottom-right
55      for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
56        if (cnt[n] >= majority_cnt_3_x_3_grid) {
57          majority_seg = n;
58        }
59      }
60      tmp[x + y * w] = majority_seg;
61    }
62  }
63  for (y = 1; y < h - 1; ++y) {
64    for (x = 1; x < w - 1; ++x) {
65      VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
66      mb->segment_ = tmp[x + y * w];
67    }
68  }
69  free(tmp);
70}
71
72//------------------------------------------------------------------------------
73// set segment susceptibility alpha_ / beta_
74
75static WEBP_INLINE int clip(int v, int m, int M) {
76  return (v < m) ? m : (v > M) ? M : v;
77}
78
79static void SetSegmentAlphas(VP8Encoder* const enc,
80                             const int centers[NUM_MB_SEGMENTS],
81                             int mid) {
82  const int nb = enc->segment_hdr_.num_segments_;
83  int min = centers[0], max = centers[0];
84  int n;
85
86  if (nb > 1) {
87    for (n = 0; n < nb; ++n) {
88      if (min > centers[n]) min = centers[n];
89      if (max < centers[n]) max = centers[n];
90    }
91  }
92  if (max == min) max = min + 1;
93  assert(mid <= max && mid >= min);
94  for (n = 0; n < nb; ++n) {
95    const int alpha = 255 * (centers[n] - mid) / (max - min);
96    const int beta = 255 * (centers[n] - min) / (max - min);
97    enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
98    enc->dqm_[n].beta_ = clip(beta, 0, 255);
99  }
100}
101
102//------------------------------------------------------------------------------
103// Compute susceptibility based on DCT-coeff histograms:
104// the higher, the "easier" the macroblock is to compress.
105
106#define MAX_ALPHA 255                // 8b of precision for susceptibilities.
107#define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
108#define DEFAULT_ALPHA (-1)
109#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
110
111static int FinalAlphaValue(int alpha) {
112  alpha = MAX_ALPHA - alpha;
113  return clip(alpha, 0, MAX_ALPHA);
114}
115
116static int GetAlpha(const VP8Histogram* const histo) {
117  int max_value = 0, last_non_zero = 1;
118  int k;
119  int alpha;
120  for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
121    const int value = histo->distribution[k];
122    if (value > 0) {
123      if (value > max_value) max_value = value;
124      last_non_zero = k;
125    }
126  }
127  // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
128  // values which happen to be mostly noise. This leaves the maximum precision
129  // for handling the useful small values which contribute most.
130  alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
131  return alpha;
132}
133
134static void MergeHistograms(const VP8Histogram* const in,
135                            VP8Histogram* const out) {
136  int i;
137  for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
138    out->distribution[i] += in->distribution[i];
139  }
140}
141
142//------------------------------------------------------------------------------
143// Simplified k-Means, to assign Nb segments based on alpha-histogram
144
145static void AssignSegments(VP8Encoder* const enc,
146                           const int alphas[MAX_ALPHA + 1]) {
147  const int nb = enc->segment_hdr_.num_segments_;
148  int centers[NUM_MB_SEGMENTS];
149  int weighted_average = 0;
150  int map[MAX_ALPHA + 1];
151  int a, n, k;
152  int min_a = 0, max_a = MAX_ALPHA, range_a;
153  // 'int' type is ok for histo, and won't overflow
154  int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
155
156  // bracket the input
157  for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
158  min_a = n;
159  for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
160  max_a = n;
161  range_a = max_a - min_a;
162
163  // Spread initial centers evenly
164  for (n = 1, k = 0; n < 2 * nb; n += 2) {
165    centers[k++] = min_a + (n * range_a) / (2 * nb);
166  }
167
168  for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
169    int total_weight;
170    int displaced;
171    // Reset stats
172    for (n = 0; n < nb; ++n) {
173      accum[n] = 0;
174      dist_accum[n] = 0;
175    }
176    // Assign nearest center for each 'a'
177    n = 0;    // track the nearest center for current 'a'
178    for (a = min_a; a <= max_a; ++a) {
179      if (alphas[a]) {
180        while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
181          n++;
182        }
183        map[a] = n;
184        // accumulate contribution into best centroid
185        dist_accum[n] += a * alphas[a];
186        accum[n] += alphas[a];
187      }
188    }
189    // All point are classified. Move the centroids to the
190    // center of their respective cloud.
191    displaced = 0;
192    weighted_average = 0;
193    total_weight = 0;
194    for (n = 0; n < nb; ++n) {
195      if (accum[n]) {
196        const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
197        displaced += abs(centers[n] - new_center);
198        centers[n] = new_center;
199        weighted_average += new_center * accum[n];
200        total_weight += accum[n];
201      }
202    }
203    weighted_average = (weighted_average + total_weight / 2) / total_weight;
204    if (displaced < 5) break;   // no need to keep on looping...
205  }
206
207  // Map each original value to the closest centroid
208  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
209    VP8MBInfo* const mb = &enc->mb_info_[n];
210    const int alpha = mb->alpha_;
211    mb->segment_ = map[alpha];
212    mb->alpha_ = centers[map[alpha]];  // for the record.
213  }
214
215  if (nb > 1) {
216    const int smooth = (enc->config_->preprocessing & 1);
217    if (smooth) SmoothSegmentMap(enc);
218  }
219
220  SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
221}
222
223//------------------------------------------------------------------------------
224// Macroblock analysis: collect histogram for each mode, deduce the maximal
225// susceptibility and set best modes for this macroblock.
226// Segment assignment is done later.
227
228// Number of modes to inspect for alpha_ evaluation. For high-quality settings
229// (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
230// during the analysis phase.
231#define FAST_ANALYSIS_METHOD 4  // method above which we do partial analysis
232#define MAX_INTRA16_MODE 2
233#define MAX_INTRA4_MODE  2
234#define MAX_UV_MODE      2
235
236static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
237  const int max_mode =
238      (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
239                                                  : NUM_PRED_MODES;
240  int mode;
241  int best_alpha = DEFAULT_ALPHA;
242  int best_mode = 0;
243
244  VP8MakeLuma16Preds(it);
245  for (mode = 0; mode < max_mode; ++mode) {
246    VP8Histogram histo = { { 0 } };
247    int alpha;
248
249    VP8CollectHistogram(it->yuv_in_ + Y_OFF,
250                        it->yuv_p_ + VP8I16ModeOffsets[mode],
251                        0, 16, &histo);
252    alpha = GetAlpha(&histo);
253    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
254      best_alpha = alpha;
255      best_mode = mode;
256    }
257  }
258  VP8SetIntra16Mode(it, best_mode);
259  return best_alpha;
260}
261
262static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
263                                   int best_alpha) {
264  uint8_t modes[16];
265  const int max_mode =
266      (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
267                                                  : NUM_BMODES;
268  int i4_alpha;
269  VP8Histogram total_histo = { { 0 } };
270  int cur_histo = 0;
271
272  VP8IteratorStartI4(it);
273  do {
274    int mode;
275    int best_mode_alpha = DEFAULT_ALPHA;
276    VP8Histogram histos[2];
277    const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
278
279    VP8MakeIntra4Preds(it);
280    for (mode = 0; mode < max_mode; ++mode) {
281      int alpha;
282
283      memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
284      VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
285                          0, 1, &histos[cur_histo]);
286      alpha = GetAlpha(&histos[cur_histo]);
287      if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
288        best_mode_alpha = alpha;
289        modes[it->i4_] = mode;
290        cur_histo ^= 1;   // keep track of best histo so far.
291      }
292    }
293    // accumulate best histogram
294    MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
295    // Note: we reuse the original samples for predictors
296  } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
297
298  i4_alpha = GetAlpha(&total_histo);
299  if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
300    VP8SetIntra4Mode(it, modes);
301    best_alpha = i4_alpha;
302  }
303  return best_alpha;
304}
305
306static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
307  int best_alpha = DEFAULT_ALPHA;
308  int best_mode = 0;
309  const int max_mode =
310      (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
311                                                  : NUM_PRED_MODES;
312  int mode;
313  VP8MakeChroma8Preds(it);
314  for (mode = 0; mode < max_mode; ++mode) {
315    VP8Histogram histo = { { 0 } };
316    int alpha;
317    VP8CollectHistogram(it->yuv_in_ + U_OFF,
318                        it->yuv_p_ + VP8UVModeOffsets[mode],
319                        16, 16 + 4 + 4, &histo);
320    alpha = GetAlpha(&histo);
321    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
322      best_alpha = alpha;
323      best_mode = mode;
324    }
325  }
326  VP8SetIntraUVMode(it, best_mode);
327  return best_alpha;
328}
329
330static void MBAnalyze(VP8EncIterator* const it,
331                      int alphas[MAX_ALPHA + 1],
332                      int* const alpha, int* const uv_alpha) {
333  const VP8Encoder* const enc = it->enc_;
334  int best_alpha, best_uv_alpha;
335
336  VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
337  VP8SetSkip(it, 0);         // not skipped
338  VP8SetSegment(it, 0);      // default segment, spec-wise.
339
340  best_alpha = MBAnalyzeBestIntra16Mode(it);
341  if (enc->method_ >= 5) {
342    // We go and make a fast decision for intra4/intra16.
343    // It's usually not a good and definitive pick, but helps seeding the stats
344    // about level bit-cost.
345    // TODO(skal): improve criterion.
346    best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
347  }
348  best_uv_alpha = MBAnalyzeBestUVMode(it);
349
350  // Final susceptibility mix
351  best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
352  best_alpha = FinalAlphaValue(best_alpha);
353  alphas[best_alpha]++;
354  it->mb_->alpha_ = best_alpha;   // for later remapping.
355
356  // Accumulate for later complexity analysis.
357  *alpha += best_alpha;   // mixed susceptibility (not just luma)
358  *uv_alpha += best_uv_alpha;
359}
360
361static void DefaultMBInfo(VP8MBInfo* const mb) {
362  mb->type_ = 1;     // I16x16
363  mb->uv_mode_ = 0;
364  mb->skip_ = 0;     // not skipped
365  mb->segment_ = 0;  // default segment
366  mb->alpha_ = 0;
367}
368
369//------------------------------------------------------------------------------
370// Main analysis loop:
371// Collect all susceptibilities for each macroblock and record their
372// distribution in alphas[]. Segments is assigned a-posteriori, based on
373// this histogram.
374// We also pick an intra16 prediction mode, which shouldn't be considered
375// final except for fast-encode settings. We can also pick some intra4 modes
376// and decide intra4/intra16, but that's usually almost always a bad choice at
377// this stage.
378
379static void ResetAllMBInfo(VP8Encoder* const enc) {
380  int n;
381  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
382    DefaultMBInfo(&enc->mb_info_[n]);
383  }
384  // Default susceptibilities.
385  enc->dqm_[0].alpha_ = 0;
386  enc->dqm_[0].beta_ = 0;
387  // Note: we can't compute this alpha_ / uv_alpha_.
388  WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
389}
390
391int VP8EncAnalyze(VP8Encoder* const enc) {
392  int ok = 1;
393  const int do_segments =
394      enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
395      (enc->segment_hdr_.num_segments_ > 1) ||
396      (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
397  enc->alpha_ = 0;
398  enc->uv_alpha_ = 0;
399  if (do_segments) {
400    int alphas[MAX_ALPHA + 1] = { 0 };
401    VP8EncIterator it;
402
403    VP8IteratorInit(enc, &it);
404    do {
405      VP8IteratorImport(&it);
406      MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_);
407      ok = VP8IteratorProgress(&it, 20);
408      // Let's pretend we have perfect lossless reconstruction.
409    } while (ok && VP8IteratorNext(&it, it.yuv_in_));
410    enc->alpha_ /= enc->mb_w_ * enc->mb_h_;
411    enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
412    if (ok) AssignSegments(enc, alphas);
413  } else {   // Use only one default segment.
414    ResetAllMBInfo(enc);
415  }
416  return ok;
417}
418
419#if defined(__cplusplus) || defined(c_plusplus)
420}    // extern "C"
421#endif
422