1/*M/////////////////////////////////////////////////////////////////////////////////////// 2// 3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4// 5// By downloading, copying, installing or using the software you agree to this license. 6// If you do not agree to this license, do not download, install, 7// copy or use the software. 8// 9// 10// License Agreement 11// For Open Source Computer Vision Library 12// 13// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14// Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15// Third party copyrights are property of their respective owners. 16// 17// Redistribution and use in source and binary forms, with or without modification, 18// are permitted provided that the following conditions are met: 19// 20// * Redistribution's of source code must retain the above copyright notice, 21// this list of conditions and the following disclaimer. 22// 23// * Redistribution's in binary form must reproduce the above copyright notice, 24// this list of conditions and the following disclaimer in the documentation 25// and/or other materials provided with the distribution. 26// 27// * The name of the copyright holders may not be used to endorse or promote products 28// derived from this software without specific prior written permission. 29// 30// This software is provided by the copyright holders and contributors "as is" and 31// any express or implied warranties, including, but not limited to, the implied 32// warranties of merchantability and fitness for a particular purpose are disclaimed. 33// In no event shall the Intel Corporation or contributors be liable for any direct, 34// indirect, incidental, special, exemplary, or consequential damages 35// (including, but not limited to, procurement of substitute goods or services; 36// loss of use, data, or profits; or business interruption) however caused 37// and on any theory of liability, whether in contract, strict liability, 38// or tort (including negligence or otherwise) arising in any way out of 39// the use of this software, even if advised of the possibility of such damage. 40// 41//M*/ 42 43#include "perf_precomp.hpp" 44 45using namespace std; 46using namespace testing; 47using namespace perf; 48 49////////////////////////////////////////////////////////////////////// 50// GEMM 51 52#ifdef HAVE_CUBLAS 53 54CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T) 55#define ALL_GEMM_FLAGS Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), \ 56 GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T)) 57 58DEF_PARAM_TEST(Sz_Type_Flags, cv::Size, MatType, GemmFlags); 59 60PERF_TEST_P(Sz_Type_Flags, GEMM, 61 Combine(Values(cv::Size(512, 512), cv::Size(1024, 1024)), 62 Values(CV_32FC1, CV_32FC2, CV_64FC1), 63 ALL_GEMM_FLAGS)) 64{ 65 const cv::Size size = GET_PARAM(0); 66 const int type = GET_PARAM(1); 67 const int flags = GET_PARAM(2); 68 69 cv::Mat src1(size, type); 70 declare.in(src1, WARMUP_RNG); 71 72 cv::Mat src2(size, type); 73 declare.in(src2, WARMUP_RNG); 74 75 cv::Mat src3(size, type); 76 declare.in(src3, WARMUP_RNG); 77 78 if (PERF_RUN_CUDA()) 79 { 80 declare.time(5.0); 81 82 const cv::cuda::GpuMat d_src1(src1); 83 const cv::cuda::GpuMat d_src2(src2); 84 const cv::cuda::GpuMat d_src3(src3); 85 cv::cuda::GpuMat dst; 86 87 TEST_CYCLE() cv::cuda::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, dst, flags); 88 89 CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); 90 } 91 else 92 { 93 declare.time(50.0); 94 95 cv::Mat dst; 96 97 TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst, flags); 98 99 CPU_SANITY_CHECK(dst); 100 } 101} 102 103#endif 104 105////////////////////////////////////////////////////////////////////// 106// MulSpectrums 107 108CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT) 109 110DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags); 111 112PERF_TEST_P(Sz_Flags, MulSpectrums, 113 Combine(CUDA_TYPICAL_MAT_SIZES, 114 Values(0, DftFlags(cv::DFT_ROWS)))) 115{ 116 const cv::Size size = GET_PARAM(0); 117 const int flag = GET_PARAM(1); 118 119 cv::Mat a(size, CV_32FC2); 120 cv::Mat b(size, CV_32FC2); 121 declare.in(a, b, WARMUP_RNG); 122 123 if (PERF_RUN_CUDA()) 124 { 125 const cv::cuda::GpuMat d_a(a); 126 const cv::cuda::GpuMat d_b(b); 127 cv::cuda::GpuMat dst; 128 129 TEST_CYCLE() cv::cuda::mulSpectrums(d_a, d_b, dst, flag); 130 131 CUDA_SANITY_CHECK(dst); 132 } 133 else 134 { 135 cv::Mat dst; 136 137 TEST_CYCLE() cv::mulSpectrums(a, b, dst, flag); 138 139 CPU_SANITY_CHECK(dst); 140 } 141} 142 143////////////////////////////////////////////////////////////////////// 144// MulAndScaleSpectrums 145 146PERF_TEST_P(Sz, MulAndScaleSpectrums, 147 CUDA_TYPICAL_MAT_SIZES) 148{ 149 const cv::Size size = GetParam(); 150 151 const float scale = 1.f / size.area(); 152 153 cv::Mat src1(size, CV_32FC2); 154 cv::Mat src2(size, CV_32FC2); 155 declare.in(src1,src2, WARMUP_RNG); 156 157 if (PERF_RUN_CUDA()) 158 { 159 const cv::cuda::GpuMat d_src1(src1); 160 const cv::cuda::GpuMat d_src2(src2); 161 cv::cuda::GpuMat dst; 162 163 TEST_CYCLE() cv::cuda::mulAndScaleSpectrums(d_src1, d_src2, dst, cv::DFT_ROWS, scale, false); 164 165 CUDA_SANITY_CHECK(dst); 166 } 167 else 168 { 169 FAIL_NO_CPU(); 170 } 171} 172 173////////////////////////////////////////////////////////////////////// 174// Dft 175 176PERF_TEST_P(Sz_Flags, Dft, 177 Combine(CUDA_TYPICAL_MAT_SIZES, 178 Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE)))) 179{ 180 declare.time(10.0); 181 182 const cv::Size size = GET_PARAM(0); 183 const int flag = GET_PARAM(1); 184 185 cv::Mat src(size, CV_32FC2); 186 declare.in(src, WARMUP_RNG); 187 188 if (PERF_RUN_CUDA()) 189 { 190 const cv::cuda::GpuMat d_src(src); 191 cv::cuda::GpuMat dst; 192 193 TEST_CYCLE() cv::cuda::dft(d_src, dst, size, flag); 194 195 CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); 196 } 197 else 198 { 199 cv::Mat dst; 200 201 TEST_CYCLE() cv::dft(src, dst, flag); 202 203 CPU_SANITY_CHECK(dst); 204 } 205} 206 207////////////////////////////////////////////////////////////////////// 208// Convolve 209 210DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool); 211 212PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve, 213 Combine(CUDA_TYPICAL_MAT_SIZES, 214 Values(17, 27, 32, 64), 215 Bool())) 216{ 217 declare.time(10.0); 218 219 const cv::Size size = GET_PARAM(0); 220 const int templ_size = GET_PARAM(1); 221 const bool ccorr = GET_PARAM(2); 222 223 const cv::Mat image(size, CV_32FC1); 224 const cv::Mat templ(templ_size, templ_size, CV_32FC1); 225 declare.in(image, templ, WARMUP_RNG); 226 227 if (PERF_RUN_CUDA()) 228 { 229 cv::cuda::GpuMat d_image = cv::cuda::createContinuous(size, CV_32FC1); 230 d_image.upload(image); 231 232 cv::cuda::GpuMat d_templ = cv::cuda::createContinuous(templ_size, templ_size, CV_32FC1); 233 d_templ.upload(templ); 234 235 cv::Ptr<cv::cuda::Convolution> convolution = cv::cuda::createConvolution(); 236 237 cv::cuda::GpuMat dst; 238 239 TEST_CYCLE() convolution->convolve(d_image, d_templ, dst, ccorr); 240 241 CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); 242 } 243 else 244 { 245 if (ccorr) 246 FAIL_NO_CPU(); 247 248 cv::Mat dst; 249 250 TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ); 251 252 CPU_SANITY_CHECK(dst); 253 } 254} 255